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Abstract: We consider the distributed setting of N autonomous mobile robots that operate in Look-
Compute-Move (LCM) cycles following the well-celebrated classic oblivious robots model. We study
the fundamental problem of gathering N autonomous robots on a plane, which requires all robots to
meet at a single point (or to position within a small area) that is not known beforehand. We consider
limited visibility under which robots are only able to see other robots up to a constant Euclidean
distance and focus on the time complexity of gathering by robots under limited visibility. There
exists an O(DG) time algorithm for this problem in the fully synchronous setting, assuming that the
robots agree on one coordinate axis (say north), where DG is the diameter of the visibility graph of
the initial configuration. In this article, we provide the first O(DE) time algorithm for this problem in
the asynchronous setting under the same assumption of robots’ agreement with one coordinate axis,
where DE is the Euclidean distance between farthest-pair of robots in the initial configuration. The
runtime of our algorithm is a significant improvement since for any initial configuration of N ≥ 1
robots, DE ≤ DG, and there exist initial configurations for which DG can be quadratic on DE, i.e.,
DG = Θ(D2

E). Moreover, our algorithm is asymptotically time-optimal since the trivial time lower
bound for this problem is Ω(DE).

Keywords: distributed algorithms; mobile robots; classic oblivious robot model; gathering; time
complexity; visibility; connectivity

1. Introduction

In the classic model of distributed computation by mobile robots, also known as
the OBLOT model, each robot is modeled as a point in the plane [1,2]. The robots are
autonomous (no external control), anonymous (no unique identifiers), indistinguishable (no
external identifiers), disoriented (no agreement on local coordinate systems and units of
distance measures), oblivious (no memory of past computation), and silent (no direct com-
munication and actions are coordinated via only vision and mobility). They execute the
same algorithm. Each robot proceeds in Look-Compute-Move (LCM) cycles: when a robot
becomes active, it first obtains a snapshot of its surroundings (Look), then computes a desti-
nation based on the snapshot (Compute), and then finally moves towards the destination
(Move) [2].

We consider the gathering problem in the OBLOT model, where starting from any
arbitrary (yet connected) initial configuration, all robots are required to meet at a single
point (or to position within a small area) that is not known beforehand. Relaxing the
requirement to meet at a single point by positioning them within a small area is performed
to circumvent the impossibility result of gathering to a point in the asynchronous setting,
even for two robots [3]. In fact, the algorithm we designed in this article positions all robots
either at a single point not known beforehand or within a unit line segment not known
beforehand depending on different conditions. Gathering is one of the most fundamental
tasks and a central benchmark problem in distributed mobile robotics [4]. Early studies
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on gathering in the OBLOT model solved it under unlimited visibility, where each robot is
assumed to observe (the locations of) all other robots [5], and all the robots are connected
to each other. The viewing range defines the maximum possible distance up to which a
robot can observe other robots, and the connectivity range defines the maximum possible
distance between any two nodes to be connected (i.e., to have an edge between them).
Flocchini et al. [6] provided the first algorithm for gathering in the OBLOT model under
limited visibility, where each robot can observe (the locations of) other robots within a fixed
unit distance (viewing range), and each robot is connected to all other robots within that
fixed unit distance (connectivity range), i.e., the viewing and connectivity ranges are the
same. Subsequently, several algorithms were studied for this problem under different
constraints [2,7–10]. These studies proved the correctness of the algorithms but provided
no runtime analysis (except a proof of finite time termination).

The runtime analysis for gathering has been studied relatively recently [11–15]. De-
gener et al. [11] provided the first algorithm for this problem with runtime O(N2) in
expectation in the fully synchronous setting, where N is the total number of robots. De-
gener et al. [12] provided an O(N2)-time algorithm for this problem in a fully synchronous
setting. They also showed that, for some initial configurations, their algorithm is essentially
tight by providing a matching lower bound of Ω(N2). Kempkes et al. [13] provided an
O(OPT log OPT)-time algorithm for this problem under a slightly different continuous
time setting, where OPT is the runtime of an optimal algorithm. All the above algorithms
assume that both the viewing and connectivity ranges are of (fixed) radius 1. Recently,
Cord-Landwehr et al. [14] provided an O(N)-time algorithm for this problem for robots
positioned on a grid in a fully synchronous setting. In this algorithm, it is assumed that
robots have the viewing range of (distance) 20, i.e., each robot can observe other robots
within a fixed distance of 20, but the connectivity range is one, i.e., two robots are connected
if and only if they are vertical or horizontal neighbors on the grid. Moreover, each robot
is assumed to possess memory for remembering a constant number of previous cycles.
Recently, Fischer et al. [15] provided an O(N2)-time algorithm for gathering on a grid
in the fully synchronous setting, if the memory is not available, by using the improved
viewing range of 7.

The intriguing open question is whether a time-optimal algorithm can be designed
for gathering under limited visibility and if possible, under what conditions. We define
time optimality as follows: Let G be the visibility graph of an arbitrary initial configuration
I of N ≥ 1 robots in a plane. The robots in the system act as nodes of G. There is an
edge between any two nodes in G if the distance between these two nodes is at most
the connectivity range. Note that, according to the definitions above, the viewing and
connectivity ranges may or may not be the same. If each robot is connected to all robots
within its viewing range, then the viewing range also serves as the connectivity range;
otherwise, the connectivity range is different than the viewing range. In order to solve the
gathering problem, G must be connected [2]; G is connected if the robots (or nodes of G)
cannot be separated into two subsets such that no robot of the one subset is connected to
any robot of the other subset (and vice versa). For example, the authors in [14] used the
viewing range 20, but the robots in horizontal or vertical distance of one are connected.
Let DG be the diameter of G, which is the greatest distance between any pair of nodes in
G following the edges of G. Let DE be the diameter of the initial configuration I, which
is the greatest Euclidean distance between any pair of robots in I. Notice that for any I,
DE ≤ DG, and for some configurations the gap between DG and DE can be as much as
quadratic on DE, i.e., DG = Θ(D2

E). Figure 1 illustrates these ideas. Therefore, an O(DE)-
time algorithm would be time-optimal for gathering starting from any initial connected
configuration, since Ω(DE) is the trivial time lower bound for robots to meet at a single
point (or to position within a small area) starting from any arbitrary initial configuration.
Hence, the open question specifically is whether anO(DE)-time algorithm can be designed
for gathering for classic oblivious robots under limited visibility.
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Figure 1. An illustration of two initial configuration dependent parameters, DE (the Euclidean
diameter) and DG (the visibility graph diameter), and the relation between them: (a) the diameter DE

for an initial arbitrary configuration, (b) the visibility graph G with diameter DG for the configuration
of the left, and (c) an initial configuration showing the quadratic difference between DE and DG with
DG = Θ(D2

E).

Recently, Izumi et al. [4] made progress towards addressing this open question.
Specifically, they presented an O(DG)-time algorithm for gathering on the plane in a
fully synchronous setting under limited visibility with the condition that robots agree
on one coordinate axis. They used viewing range of one with an assumption that the
visibility graph G remains connected even if the edges with the corresponding distance
of greater than 1− 1√

2
are removed from it. The assumption on the visibility graph G in

Izumi et al. [4] essentially means that the connectivity range is of radius 1− 1√
2

(different
and in fact smaller than the viewing range of one).

There is still a large gap between the O(DG) time bound of Izumi et al. [4] and the
asymptotically optimal O(DE) time bound, since DG can be quadratic on DE (Figure 1).
This work closes this gap under the same one axis agreement with a slightly modified
viewing range of

√
10 and the square connectivity range (if we do not explicitly write

“square”, then the viewing and connectivity ranges are circular ) of
√

2 compared to the
viewing range of one and the (circular) connectivity range of 1− 1√

2
in [4] (if we consider

the viewing range of one similar to [4], we need the square connectivity range of 1−
√

2√
10

,
and our algorithm again achieves O(DE) runtime). Notice that the square connectivity range
of distance c means that a robot is connected to all other robots inside or on the boundary of
the (axis-aligned) square area with the (diagonal) distance from the robot to each corner of
the square c. Notice also that the square connectivity range of

√
2 for a robot is equivalent

to the L∞-distance of 1 around the robot. Therefore, if we have both the viewing and
connectivity ranges of c, then the area they enclose differs if the connectivity range is
“square”; otherwise, they enclose the same area. Moreover, in contrast to Izumi et al. [4],
which works in the fully synchronous setting, our algorithm works in the asynchronous
setting. The algorithm presented by Izumi et al. [4] follows the movements of robots in
one direction (either north or east) along DG in such a way that in each round, starting
from the southmost and westmost robots, each robot moves towards the farthest neighbor
within its connectivity range. In our algorithm, robots do not follow DG; instead, they
gather at a point (or within a small area) that is not known beforehand in O(DE) rounds.
Particularly, in our algorithm, all the robots gather at a single point not known beforehand
under both axis agreements and inside a horizontal line segment of length one that is not
known beforehand under one axis agreement. A preliminary version of this article has
been published in SSS’17 conference [16], and this article extends that version by including
many details and proofs that were missing in that version.

Contributions. We focus, in this article, on optimizing runtime for gathering under
limited visibility. We consider autonomous, anonymous, indistinguishable, oblivious, and
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silent point robots (also called swarms) as in the classic OBLOT model [2]. Robots agree
on the unit of distance measure. The viewing range is

√
10—a robot can see all other

robots within the fixed radius of at most distance
√

10. The square connectivity range is√
2—a robot is connected to all other robots inside or on the boundary of the (axis-aligned)

2× 2-sized square area for which its center is the position of the robot. In a LCM cycle,
a robot can move to any position inside or on the square area, including its four corners.
The challenge here is that robot movements must not harm swarm connectivity. As in
Izumi et al. [4], we assume that robots agree on one coordinate axis (say north), but they
may not agree on the other coordinate axis. Moreover, we assume that the robot setting is
asynchronous—there is no notion of common time, and robots perform their LCM cycles
arbitrarily. Furthermore, we assume that the robot moves are rigid—a robot in motion in
each cycle cannot be stopped (by an adversary) before it reaches its destination at that cycle.
Additionally, all previous algorithms assume that when two or more robots move to the
same location, they are merged and act as a single robot. In this article, we do not have that
assumption; in other words, even if robots are located at the same position and activated
at different time, the gathering progress is achieved through the (individual) moves of
those robots.

In this article, we prove the following result which, to our best knowledge, is the first
algorithm for gathering that is asymptotically time-optimal for classic oblivious robots
under limited visibility since the trivial time lower bound for gathering under limited
visibility starting from any initial configuration of N ≥ 1 robots is Ω(DE).

Theorem 1. For any initial connected configuration of N ≥ 1 robots with the viewing range of√
10 and the square connectivity range of

√
2 on a plane, gathering can be solved in O(DE) time

in the asynchronous setting, when robots agree on one coordinate axis.

Notice that, the visibility graph G must be connected, since gathering may not be
solvable under limited visibility if G is not connected [2,6]. Our selection of the viewing and
(square) connectivity ranges and the assumption of one-axis agreement play an important
role in proving Theorem 1. For both viewing and (circular or square) connectivity ranges of
one, we conjecture that there is no O(DE)-time algorithm for gathering of classic oblivious
robots in the asynchronous setting, even when robots agree on both coordinate axes. This
is because a robot cannot move more than distance one in each LCM cycle to preserve
connectivity, and only the end robots can move in each cycle. Therefore, if the robots are
connected as shown in Figure 1, O(DG) time is required to gather them since only end
robots can move and the rest cannot. For the viewing and (circular or square) connectivity
ranges of constant > 1, we conjecture that there is no O(DE)-time algorithm for gathering
of classic oblivious robots if the robots do not agree on any coordinate axis. This is because
the robots’ movements become arbitrary as there is no agreement on the coordinate axes.
Thus, robots can only gather if they move following the diameter DG, which only provides
an O(DG)-time algorithm.

Technique. Let L be the topmost horizontal line so that all the robots of any initial
configuration I are either on the positions of line L or south from L. Let L′ be the line
parallel to L at distance one south of L. The main idea behind the algorithm is to make
robots of I in the north of L′ move to the positions of L′ or south of L′ in O(1) epochs,
even under the asynchronous setting, where an epoch is the time interval for all N robots
to execute their LCM cycle at least once (the formal definition of epoch is in Section 2).
To accomplish this, we classify the moves of robots into three categories: diagonal hops,
horizontal hops, and vertical hops. We will show that if all the robots in the north of L′ make
diagonal or vertical hops, they reach L′ or south of L′ in one epoch. However, if some of
those robots make a horizontal hop, then in two epochs, they reach positions of L′ or south
of L′ through the subsequent vertical or diagonal hop. We also show that, if some robots in
the north of L′ do not move in the first epoch, then they reach positions of L′ or south of L′

through the vertical or diagonal hop by the next two epochs.
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Similarly, let Lb be the bottommost horizontal line (parallel to L) so that the robots of I
are either on Lb or north of Lb. The main idea is to show that the robots on Lb do not move
south of Lb forever. Specifically, we show that robots on Lb wait for all the robots in the
north of Lb so that they meet at distance (at most) D south of Lb where D is proportional to
the horizontal diameter of the initial configuration I. This is achieved by asking robots not
to make any diagonal, horizontal, or vertical hops if they see at least a robot in the north at
vertical distance 1 (or more) from their positions (i.e., on or outside the connectivity range
of the corresponding robot).

Other Related Work. The classic oblivious robots model or the OBLOT model has
been considered heavily in order to solve a diverse set of problems, such as scattering,
gathering, convergence, circle formation, flocking, etc., in distributed mobile robotics. A
comprehensive description of the state-of-the-art research on distributed computing by
mobile robots can be found in these excellent books [2,17]. Much work on the classic model
on these problems does not provide runtime analysis, for example, see papers on gathering
in a non-predefined point [5–7,18,19]. Pagli et al. [20] considered gathering classic robots
to a small area by avoiding collisions between robots. However, they also do not provide
runtime analysis. Kirkpatrick et al. [19] studied gathering as a point convergence problem
where starting from an arbitrary initial configuration, robots move in such a manner that
they reach inside a circle of radius that is at most ε, ε > 0. They proposed an algorithm to
solve the problem in the k-asynchronous model (i.e., the degree of asynchrony is bounded
to k); however, they showed that point convergence is unsolvable in the fully asynchronous
model. In this article, we present an algorithm with runtime analysis to solve the gathering
problem in the fully asynchronous model by assuming robots agree on one coordinate axis.
Bhagat et al. [21] studied the limited visibility model for robots and presented different
geometric pattern formation problems under limited visibility.

Gathering on a predefined point has been studied in several papers [22–24]. These
papers studied gathering in the context of robots with an extent (i.e., fat robots). Apply-
ing these algorithms to the classic model solves gathering in O(D) time (provided that
gathering point is known to robots), where D is the largest distance from any robot to the
predefined gathering point. However, the runtime bound is provided only for the grid,
and the gathering point is known to robots a priori. Recently, Braun et al. [25] studied
the gathering problem in a three-dimensional Euclidean space under limited visibility
and presented O(n2)-time and O(DE · n

3
2 )-time algorithms in the fully synchronous and

continuous time models, respectively.
The question of gathering on graphs instead of gathering in the plane was studied

in [26–28]. Di Stefano and Navarra [27] assumed unlimited visibility and an asynchronous
setting and proved the optimal bounds on the number of robot movements for special
graph topologies such as trees and rings. D’Angelo et al. [28] showed that gathering can be
solved in grids without multiplicity detection. Di Stefano and Navarra [26] extended the
results of [28] to infinite grids and bounded the total number of robot movements.

Gathering is solved by circumventing the impossibility of gathering at a single point
in some recent papers. The relaxation is on the gathering requirement: Gathering occurs
within a small area instead of at a point. A prominent paper that solves gathering in a small
area is written by Cord-Landwehr et al. [14] in which, starting from any arbitrary configu-
ration on a grid, robots gathered within a 2× 2-sized grid area. Cord-Landwehr et al. [29]
provided an O(N)-time algorithm for the robot convergence problem (converging toward
a single not predefined point) [30].

Izumi et al. [31] considered the robot scattering problem (opposite of gathering) in
the semi-synchronous setting and provided an expected O(min{N, D2 + log N})-time
algorithm; here, D is the diameter of the initial configuration.

All the previous algorithms, including Izumi et al. [4], work in the fully synchronous
setting, except for [11] which works in the one-by-one activation setting (also known as
sequential activation). Our algorithm works in the asynchronous setting. Furthermore,
all previous algorithms assume that when two or more robots move to the same location,
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they are merged as only one robot. Our algorithm does not merge robots; in other words,
even if robots located at the same position are activated at different times, the gathering
progress is achieved through the (individual) moves of those robots.

Roadmap. In Section 2, we detail the model and touch on some preliminaries. For
the sake of simplicity in discussion, we first provide an O(DE)-time algorithm for robots
on a grid agreeing on both the coordinate axes in Section 3. We then provide an O(DE)-
algorithm for robots on a plane agreeing on both the coordinate axes in Section 4. In
Section 5, we discuss how the algorithms of Sections 3 and 4 can be modified to solve
gathering when robots agree on only one axis. Finally, we provide concluding remarks in
Section 6 with a brief discussion.

2. Model and Preliminaries

Robots. We consider a distributed system of N robots (agents) from a set
Q = {r0, r1, · · · , rN−1}. Each robot is a (dimensionless) point that can move in an infinite
two-dimensional real space R2. Throughout this article, we will use a point to refer to a robot as
well as its position. We denote by dist(ri, rj) the distance between two robots ri, rj ∈ Q. Each
robot ri works under limited visibility and viewing range of each robot is

√
10, i.e., a robot ri can

see and be visible to another robot rj if and only if dist(ri, rj) ≤
√

10. For some cases, e.g., for grid,
the viewing range smaller than

√
10 is sufficient. We describe what exactly is the viewing range

when we describe algorithms in Sections 3 and 5. The connectivity range of each robot is
√

2
following square connectivity, i.e., two robots have an edge between them on G if one robot
is inside the (axis-aligned) 2× 2-sized square area formed by the other robot being at its
center. The robots agree on the unit of distance measure, i.e., the viewing and connectivity
ranges of

√
10 and

√
2 are the same for each robot ri ∈ Q. The robots also agree on one

coordinate axis, north (the assumption of robots agreeing on east is analogous). For the
sake of simplicity in discussion, the algorithms in Sections 3 and 4 assume that robots agree
on both coordinate axes. The assumption on both axis agreement is lifted in Section 5.

Look-Compute-Move. Each robot ri is either active or inactive. When a robot ri
becomes active, it performs the “Look-Compute-Move” cycle as follows:

• Look: For each robot rj that is within the viewing range of ri, ri can observe the position
of rj on the plane. Robot ri also knows its own position;

• Compute: In any cycle, robot ri may perform an arbitrary computation using only the
positions observed during the “look” portion of that cycle. This includes determina-
tion of a (possibly) new position for ri for the start of next cycle;

• Move: At the end of the cycle, robot ri moves to its new position.

Robot Activation. In the fully synchronous setting (FSYNC), every robot is active
in every LCM cycle. In the semi-synchronous setting (SSYNC), at least one robot is active,
and over an infinite number of LCM cycles, every robot is often infinitely active. In the
asynchronous setting (ASYNC), there is no common notion of time, and no assumption
is made on the number and frequency of LCM cycles in which a robot can be active. The
only guarantee is that every robot is active infinitely often. Complying with the ASYNC
setting, we assume that a robot “wakes up” and performs its Look phase at an instant of
time. We also assume that during the Move phase, it moves in a straight line and stops only
after reaching its destination point; in other words, the moves are rigid [2].

Runtime. For the FSYNC setting, time is measured in rounds. Since a robot in the
SSYNC and ASYNC settings could stay inactive for an indeterminate interval of time,
we bound a robot’s inactivity and use the standard notion of epoch to measure runtime.
An epoch is the smallest interval of time within which each robot is guaranteed to execute
its LCM cycle at least once. Therefore, for the FSYNC setting, a round is an epoch. We
will use the term “time” generally to mean rounds for the FSYNC setting and epochs for
the SSYNC and ASYNC settings.

Square Area. Let ri ∈ Q be a robot positioned at coordinate (xi, yi). Let Li, L′i,
respectively, be the horizontal and vertical lines passing through ri. Since ri knows north,
ri can easily compute Li, L′i. The square area for ri, denoted as SQ(ri), is an area of the plane
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enclosed by four lines Li,t, Li,b, Li,l , Li,r with Li,t, Li,b being parallel to Li (perpendicular to
L′i) and passes through coordinates (xi, yi + 1) and (xi, yi − 1), respectively, and Li,l , Li,r
is perpendicular to Li (parallel to L′i) and passes through coordinates (xi − 1, yi) and
(xi + 1, yi), respectively. Notice that SQ(ri) is axis-aligned, and both the height and width
of it is two. We denote by ptl , pbl , pbr, ptr the intersection points of lines Li,t and Li,l , Li,b
and Li,l , Li,b and Li,r, and Li,t and Li,r, respectively. We can divide SQ(ri) to four quadrant
squares SQ1(ri), SQ2(ri), SQ3(ri), and SQ4(ri) with both heights and widths as one. Let
SQ1(ri) and SQ2(ri) be at the north of Li and SQ3(ri) and SQ4(ri) be at the south of Li.
Moreover, let SQ1(ri) and SQ3(ri) be at west of L′i and SQ2(ri) and SQ4(ri) be at east of
L′i. We say that the positions of Li in SQ(ri) belong to SQ3(ri) and SQ4(ri). Figure 2a
illustrates these ideas.

Figure 2. An illustration of (a) Square Area and (b) Unit Area.

Unit Area. Let rj, rk, respectively, be the topmost and leftmost robots among the robots
in SQ(ri). In some situations, both rj and rk may be the same robot, and this definition
is still valid. Let LT be the horizontal line passing through rj and LL be the vertical line
passing through rk. Let LB be the horizontal line parallel to LT , and it is at distance one
south of LT . Similarly, let LR be the vertical line parallel to LL and at a distance of one
east of LL. The unit area for ri, denoted as SQunit(ri), is an area of the plane inside SQ(ri)
enclosed by lines LL, LT , LR, and LB. Note that SQunit(ri) is an (axis-aligned) unit square
of both height and width one. We denote by pTL, pBL, pBR, and pTR the intersection points
of lines LT and LL, LB and LL, LB and LR, and LT and LR, respectively. Figure 2b illustrates
the idea of unit area computation.

Visibility Graph and Gathering Configuration. We define the visibility graph of any
initial configuration I and gathering configurations as follows.

Definition 1 (Initial Visibility Graph). The visibility graph G(I) = (Q, E) of any arbitrary
initial configuration I of robots is the graph such that, for any two distinct robots ri and rj,
(ri, rj) ∈ E where rj is positioned on or inside SQ(ri) (or vice-versa).

SQ(∗) provides connectivity for robots with square connectivity range
√

2. The
gathering problem may not be solvable under limited visibility if the initial visibility graph
G(I) is not connected [2,6]. Therefore, we assume that G(I) is connected at time t = 0.
Moreover, any algorithm for gathering must maintain the connectivity of G(I) during its
execution until a gathering configuration is reached. For the sake of clarity, we denote by
Gt(I) the visibility graph G(I) for any time t ≥ 0.

Definition 2 (Ideal Gathering Configuration). An ideal gathering configuration is one where
all robots are at a single point that is not known beforehand.
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Definition 3 (Relaxed Gathering Configuration). A relaxed gathering configuration is one
where all robots are on a horizontal segment of length 1 unit that is not known beforehand.

The relaxed gathering configuration (Definition 3) is inspired from the recent work of
Cord-Landwehr et al. [14], where the authors modified the ideal gathering configuration
(Definition 2) to solve gathering on a grid by locating all robots within a 2× 2-sized square
area that is not known beforehand. Additionally, Definition 3 helps us to circumvent the
impossibility results relative to gathering to a point in the ASYNC setting [3], even when
N = 2, by gathering the robots in a unit horizontal line segment. As an example, consider
two robots ri, rj at distance 1 apart on a horizontal line working under an ASYNC setting.
Let ri and rj activate at the same time and ri moves to the position of rj and rj moves to
the position of ri as both of them move in the horizontal line. This scenario may repeat
infinitely since ri and rj do not have common agreement on east or west under one-axis
agreement on north. By using our square connectivity range

√
2, the viewing range

√
10

and one-axis agreement, even when N = 2, the robots can reach a horizontal segment
of length one unit. The viewing range helps each robot ri to see whether there is a robot
outside SQ(ri) and decide whether Definition 3 is reached.

Under both axis agreement, our algorithm provides an ideal gathering configuration
(Definition 2). Under one-axis agreement, our algorithm provides a relaxed gathering
configuration (Definition 3). Since we focus on runtime, we do not explicitly characterize
the configurations that do not achieve Definition 2 under one-axis agreement, but we
simply prove that all the configurations (at least) attain Definition 3 in O(DE) time.

3. O(DE) Time Algorithm for the Grid

In this section, we define the grid model that is a restriction imposed on the Euclidean
plane. The motivation behind designing an algorithm for this model is that it is simple
to understand and easy to analyze. We design and analyze an algorithm without the
grid restriction in Section 4. In the grid model, a robot moves on a two-dimensional grid
and changes its position to one of its eight horizontal, vertical, or diagonal neighboring
grid points. Throughout this section, we assume that robots agree on both coordinate
axes, and each robot has the viewing range of two. Moreover, each robot has the square
connectivity range of

√
2. We say gathering is performed when the robot configuration

satisfies Definition 2.

3.1. The Algorithm

The pseudocode of the algorithm is given in Algorithm 1. Depending on the positions
of other robots within its viewing range, ri distinguishes diagonal, horizontal, and vertical
hops, which we discuss separately below. A robot ri hops on one of its neighboring grid
points based on the diagonal, horizontal, or vertical pattern that matches the snapshot it
takes in the Look phase. Notice that since robots agree on north, ri never hops on any of the
three neighboring grid points relative to north from its position, i.e., ri hops only to one of
its five neighboring grid points on the same horizontal line Li or south of Li. We will show
that this allows achieving a gathering progress in every epoch. Since robot moves are not
instantaneous due to the ASYNC setting, a robot ri also does not move if it observes at
least one robot in the north of Li inside or on SQ(ri). This is crucial for guaranteeing that
robots do not move south forever. Robot ri terminates when it sees no other robot inside or
on SQ(ri) other than its position.

Diagonal Hops. A diagonal hop takes a robot ri to one of the two diagonal neighbor-
ing grid points in the south (i.e., either pbr or pbl). Let Li be a horizontal line that passes
from the current position of a robot ri. Robot ri makes a diagonal hop when it sees no robot
in SQ(ri) at the north of Li (including the positions of Li) and either (i) ri sees no other
robot in SQ3(ri) (except at its position) and sees at least one robot on Li,r at the south of Li
or (ii) ri sees no other robot in SQ4(ri) (except at its position) and sees at least one robot on
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Li,l at the south of Li. In case (i), ri hops on grid point pbr, whereas in case (ii), it hops on
grid point pbl .

In this hop, the robot moves diagonally at a distance of
√

2. Figure 3a,b illustrate
diagonal hops.

Algorithm 1: The algorithm for gathering on a grid (under both axis agreement)

/* In every LCM cycle, each robot ri does the following when it
activates: */

/* Look: */
1 (xi, yi)← current position of robot ri in the grid graph G;
2 C(ri)← snapshot of the positions of other robots within the viewing range of ri;
/* Compute: */

3 SQ(ri)← square area for robot ri;
4 Li, L′i ← horizontal and vertical lines passing through ri, respectively;
5 Li,t, Li,b ← horizontal lines parallel to Li and passing through (xi, yi + 1) and

(xi, yi − 1), respectively;
6 Li,r, Li,l ← vertical lines parallel to L′i and passing through (xi + 1, yi) and

(xi − 1, yi), respectively;
7 di ← destination point for ri to move;
8 If ri sees no other robot in any of the neighboring grid points on SQ(ri) then
9 ri terminates;

10 Else if ri sees at least a robot in SQ(ri) in North of Li then
11 ri keeps waiting; di ← (xi, yi); // do nothing

/* Check the following two conditions for a diagonal hop. */
12 Else if ri sees no robot in SQ(ri) on or West of L′i (except at its position), and sees

at least a robot on Li,r that is part of SQ(ri) in South of Li then // Figure 3a
13 di ← (xi + 1, yi − 1);
14 Else if ri sees no robot in SQ(ri) on or East of L′i (except at its position), and sees

at least a robot on Li,l that is part of SQ(ri) in South of Li then // Figure 3b
15 di ← (xi − 1, yi − 1);

/* Check the following condition for a horizontal hop. */
16 Else if ri sees at least a robot on (xi + 1, yi) and sees no other robot in SQ(ri),

except on Li in the East then // Figure 3c
17 di ← (xi + 1, yi);
18 Else // Check either of the following two conditions for a vertical

hop.
19 If ri sees no robot in SQ(ri) in North of Li and sees at least a robot rj on L′i in

South in SQ(ri) then // Figure 3d
20 di ← (xi, yi − 1);
21 Else if ri sees no robot in SQ(ri) in North of Li and sees at least one robot each

on two lines Li,l and Li,r on or South of Li in SQ(ri) then // Figure 3e
22 di ← (xi, yi − 1);

/* Move: */
23 ri moves to di;

/* Note: Each robot reaches a grid point after the completion of a
cycle. But a robot may not necessarily see other robot(s) (which
is/are moving) only at grid points since the robots may perform
their LCM cycles at arbitrary times due to the ASYNC setting.
*/
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Figure 3. An illustration of moves made by a robot: (a,b) diagonal hops, (c) horizontal hop, and (d,e) vertical hops. The
blue shaded area along the grid lines represents that there is no robot in that area. The outer diamond represents the set of
grid points within the viewing range of ri in grid (i.e., 2).

Horizontal Hops. A horizontal hop takes ri to its neighboring grid point on Li in the
east. When a robot ri sees at least one robot rj at its horizontal neighboring grid point (and
possibly others on Li between ri and rj) and no other robot in SQ(ri), ri makes a horizontal
hop to the neighboring grid point in the east. Figure 3c illustrates the horizontal hop.

Vertical Hops. A vertical hop always takes ri to its neighboring grid point vertically
south from it. Robot ri makes a vertical hop if either (i) it sees a robot rj on L′i at the south of
Li and no other robot in SQ(ri) at the north of Li or (ii) it sees at least one robot each on Li,l
and Li,r or south of Li and no other robot in SQ(ri) at the north of Li. Figure 3d illustrates
case (i) and Figure 3e illustrates case (ii).

3.2. Analysis of the Algorithm

We first prove the correctness of the algorithm in the sense that the visibility graph
Gt(I) remains connected during execution. We then prove the progress of the algorithm
such that after a finite number of epochs, any connected initial configuration converges to
an ideal gathering configuration (Definition 2). Let I be any arbitrary initial configuration
of robots inQ on a grid such that G0(I) is connected. Let SER(I) be the axis-aligned smallest
enclosing rectangle for the robots in I. Let DY and DX , respectively, be the height and width
of SER(I). Let LDY , LDY−1, . . . , L0 be the horizontal line segments of SER(I) at every 1 unit
vertical distance, with LDY being the topmost horizontal line segment and L0 being the
bottommost horizontal line segment. Similarly, let L′DX

, L′DX−1, . . . , L′0 be the vertical line
segments of SER(I) at every one unit horizontal distance, with L′DX

being the rightmost
vertical line segment and L′0 being the leftmost vertical line segment. Let LS be the line
parallel to L0 at distance DX

2 south of L0. Figure 4 illustrates these definitions.

Figure 4. An illustration of an axis-aligned smallest enclosing rectangle SER(I) and the triangular
area south of it.
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Lemma 1. Given any initial configuration I such that the visibility graph G0(I) is connected, the
graph Gt(I) at any time t > 0 remains connected.

Proof. For a robot ri, since G0(I) is connected, there are robots in at least two out of its
eight neighboring grid points, unless ri is a leaf node in G0(I) in which case there may be a
robot in only one out of its eight neighboring grid points. We will show that no matter the
moves of ri and the robots in its eight neighboring grid points, in the new configuration, ri
has robots in at least two out of its eight neighboring grid points (unless it is a leaf node
in G0(I) in which case there will be a robot in one of eight neighboring grid points). This
immediately proves this lemma from our definition of connectivity.

Notice that the movements of ri are either diagonal, horizontal, or vertical, and ri
never moves to its three neighboring grid points on SQ(ri) in the north of Li. Furthermore,
ri does not move when it sees at least one robot rj at the north of Li or inside SQ(ri).

A diagonal hop for ri is possible when ri sees other robot(s) rj only on one of its two
diagonal neighboring grid points on SQ3(ri) or SQ4(ri), and ri moves to the position of
rj (since rj does not move as rj sees ri at the north of Lj until ri reaches the position of rj).
Robot ri also makes a diagonal hop when it sees other robot(s) rj on either Li,l only or Li,r
only that is part of SQ(ri) in the south of Li. Since rj is at the south of Li, it must be in
transit to the neighboring diagonal grid point of ri and ri, and rj meet together when both
of them reach that grid point. If one reaches that grid point before, it waits for the other
since there will be at least one robot at the north of the horizontal line for the robot on that
grid point until ri and rj meet.

A horizontal hop for ri is possible only when ri sees rj in the east at the horizontal
neighboring grid point (and no other robot inside or on SQ(ri) except on Li in the east).
After the movement, ri either reaches the position of rj (if rj does not move) or ri and rj
will be at the two vertical neighboring grid points (if rj moves). That is, for rj to move, rj
has to see at least one other robot in addition to ri on Li or at the south. The connectivity is
maintained since ri is the endpoint robot (i.e., it has only one neighboring robot), and if rj
is also the endpoint robot, then there is no third robot in the system; otherwise, rj must see
a robot rk 6= ri in one of its five neighboring grid points on Li or south of Li.

A vertical hop for ri is possible when it sees at least one other robot rj on the neighbor-
ing grid point that is vertically south of it (and possibly others between ri and rj), but no
robot is observed on or inside SQ(ri) in the north of Li. In this case, ri reaches the position
of rj since rj cannot move until there is ri in the north. ri performs a vertical hop also when
it sees at least one robot each on the two vertical lines Li,l and Li,r on or south of Li in SQ(ri)
and no robot in SQ(ri) in the north of Li. Suppose ri sees two robots rj and rk in SQ(ri)
on or south of Li such that rj ∈ Li,l and rk ∈ Li,r. After the movement, in this case, the
distance between ri and one of rj, rk is at most

√
2 as they will be (at most) at the diagonal

neighboring grid points from each other. The lemma is described as follows.

Lemma 2. Given any initial configuration I, if all the robots are not at one or two neighboring grid
positions on the same horizontal line, the robots on the line segment LDY of SER(I) move to the
line segment LDY−1 in at most two epochs.

Proof. Since LDY is the topmost horizontal line segment, there is no robot in the north
of LDY . Moreover, since robots agree on north, the robots at the grid points of LDY never
move north of LDY . Therefore, if all the robots at the grid points of LDY make diagonal or
vertical hops when they become active, then they will reach the positions of LDY−1; hence,
in at most one epoch, all robots on LDY will be at LDY−1, even in the ASYNC setting. Note
that in an epoch, each robot completes its LCM cycle at least once. This means that, in this
case, each activated robot at LDY completes its LCM cycle after moving to the position of
LDY−1. Therefore, a robot ri on LDY remains at a grid point on LDY if and only if it makes
a horizontal move in that epoch. We will show that ri either terminates or moves to a
position on LDY−1 in the next epoch.
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Let rj be the robot at the horizontal neighboring grid point that ri sees on LDY when
it makes a horizontal hop. We have it that ri must not have seen any robot on its other
seven neighboring grid points or inside of SQ(ri) (except between ri and rj on the same
horizontal line). When ri moves to the position of rj, either rj is still on LDY or has moved
to LDY−1 in the neighboring grid point that is vertically south of rj. If rj has not moved
south, either the execution is still in the first epoch or rj does not see any other robot except
on or between the positions of ri and rj in the same horizontal line. If rj is still in the first
epoch, then ri reaches the position of rj, and either this horizontal moving scenario repeats
with execution still being in the first epoch or rj moves south. If rj does not see any other
robot except on or between the positions of ri and rj in the same horizontal line, ri (and all
other robots on Li up to rj) reaches the position of rj, and all of them terminate by achieving
the gathering configuration. If rj has moved to LDY−1 in the first epoch, ri moves to the
position of rj on LDY−1 when it becomes active next time since rj is in the neighboring grid
point of SQ(ri) that is vertically south of it. Therefore, in at most two epochs, all the robots
on LDY move to the positions of LDY−1.

The following observation is immediate for vertical hops since a vertical hop by a
robot takes it to its neighboring grid point vertically south of it. For a horizontal/diagonal
hop, this is also true since a robot performing a horizontal/diagonal hop never finds its
neighboring robot outside L′DX

and L′0.

Observation 1. No robot of SER(I) moves to the positions outside of lines L′0 and L′DX
during

the execution.

Lemma 3. No robot of SER(I) reaches the south of horizontal line LS (Figure 4) during the
execution.

Proof. Let X := {r0, . . . , rX} be the robots on L0 in the increasing order of their x-
coordinates (some of the grid points on L0 may be empty, and it does not impact our
analysis). If all robots r0, . . . , rX on set X have robots on or inside SQ(∗) at the north of L0,
they do not move until those robots at the north of L0 are moved to L0. Therefore, we first
assume that only r0 and rX have robots at the north of L0 inside or on SQ(r0) and SQ(rX),
respectively, and {r1, . . . , rX−1} have no such robots at the north of L0 inside or on their
respective SQ(∗). Robots r2, . . . , rX−2 can move to their neighboring grid points that are
vertically south of them in one epoch. This is because they do not see any robot at the north
of the horizontal line passing through their positions.

In the second epoch, r2 and rX−2 see r1 and rX−1, respectively, in the north on their
respective SQ(∗), and only the robots r3, . . . , rX−3 can move to the next line in the south
from their current horizontal line. This implies that each robot ri, 1 ≤ i ≤ X

2 waits for ri−1
since it sees ri−1 on the neighboring grid point in the north from their position, and this
is also the case for the robots from r X

2 +1 (from r X
2 +2 in the even DX case) to rX−1. The

scenario repeats until the middle robot of L0 reaches at most DX
2 − 1 distance south from

L0, if DX is an odd number). If DX is an even number, two robots r X
2

and r X
2 +1 of L0 reach

at most DX
2 − 2 distance south from L0.

Now consider the case where either r0 or rX has no robot on the neighboring grid
point that is vertically north from it in addition to r1, . . . , rX−1. Notice that at least one of
r0 or rX must have a robot at the north to maintain the connectivity of Gt(I). Let r0 be
that robot (the case of rX is analogous). If r0 moves first, it moves to the position of r1
in L0 performing a horizontal hop. If r1 moves first, r0 reaches r1 at the horizontal line
immediately below L0 performing a diagonal hop. By repeating this, the robots r0, . . . , r X

2 −1
may reach the position of r X

2
(the middle robot) at distance D X

2
south of L0 (i.e., LS). For

the remaining robots r X
2

, . . . , rX, each robot rX−i, 1 ≤ i ≤ X
2 sees rX−i+1 in the north on
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respective SQ(∗); thus, the middle robot can reach at most D X
2

south of L0. Therefore, this
process again ends up at line LS in the worst-case.

During the execution, the robots at the north of L0 in SER(I) may visit the robots
south of L0. In that case, the robots at the south of L0 do not move until they see at least
one robot at the north of its position inside SQ(∗). If a robot does not see any robots at
the north of its position, then it either performs a diagonal hop which never takes it to the
south of LS or it performs a vertical hop. If it performs a vertical hop, it will perform a
horizontal hop in the next epoch, and this never takes it south of LS. Therefore, according
to the moves of the robots of L0, it is easy to see that all the robots in Q are within the
triangular area (as depicted in Figure 4).

Lemma 4. The viewings of two and the square connectivity range of
√

2 are sufficient for gathering
relative to a grid point (that is not known beforehand) on a grid under both axis agreements.

Proof. If a robot ri sees robots only at the south (vertically below or diagonal), it can simply
move towards the south, and when ri sees no robot in the south and no robot on horizontal
neighboring grid points, it can simply terminate. This is because if there is another robot
within its viewing range, ri must see it in one of its eight neighboring grid points in order
to satisfy connectivity for Gt(I), t > 0, (Lemma 1) since G0(t) satisfies this condition. If
ri sees a robot rj in either of its horizontal neighboring grid points, then ri moves to the
position of rj if rj is at its east, and rj simply waits for ri as it does not perform a horizontal
hop to the west or moves vertically south. Even in this case, ri sees rj. Therefore, if ri sees
no robot in SQ(ri), it can terminate. According to the definition of the connectivity range,
the viewing range of two is enough for ri to maintain connectivity with any of the eight
neighboring grid points.

The analysis of this section proves the following main result.

Theorem 2. Given any connected configuration of N ≥ 1 robots with the viewing range of two
and the square connectivity range of

√
2 on a grid, the robots can gather to a point inO(DE) epochs

in the ASYNC setting under both axis agreement.

Proof. We have from Lemma 1 that Gt(I) remains connected during the execution. We
have from Lemma 2 that all the robots at the topmost horizontal line LDY of SER(I)
move to LDY−1 in at most two epochs. Thus, after at most two epochs, Lemma 2 applies
again to the robots of LDY−1, which takes all the robots on LDY−1 to LDY−2 or south
in next two epochs. This process continues and all the robots in SER(I) move to line
L0 or south of it in at most 2 · DY epochs. These robots will be at one grid point in
at most the next DX epochs. This is because for every one unit of vertical hop of the
robots at the south of L0, the width of the positions of robots decreases by two. The
width of the positions of robots at L0 is at most DX. Thus, the width of the positions
of robots becomes zero at distance ≤ DX

2 south of L0. Again, from Lemma 2, it takes at
most two epochs to move all the robots one unit south; hence, to move all the robots at
DX
2 distance south of L0, it takes at most DX epochs. Therefore, the robots can gather

in O(DX + DY) epochs. We have that max{DX, DY} ≤ DE ≤
√

2 ·max{DX, DY} for
SER(I) of any initial configuration I. Therefore, DX + DY ≤ 2 ·max{DX, DY}; hence,
O(DX + DY) = O(2 ·max{DX, DY}) = O(DE). The algorithm terminates (Lemma 4)
since if a robot ri sees no robot in SQ(ri) other than its current position, then all the robots
of Qmust be gathered in the current position of ri (due to the connectivity guarantee of
Lemma 1).

4. O(DE) Time Algorithm for the Euclidean Plane

We discuss here how to solve gathering in a Euclidean plane by removing the restric-
tions on robot moves imposed on a grid. The viewing range is of

√
10, and the square
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connectivity range is of
√

2 (both measured in Euclidean distance). The robots agree on
both coordinate axes.

We say gathering is performed when the robot configuration satisfies the ideal gather-
ing configuration (Definition 2).

4.1. The Algorithm

The pseudocode of the algorithm is provided in Algorithm 2. Depending on the
positions of other robots in its viewing range, a robot ri can decide to hop on the positions
of one of its neighboring quadrants SQ3(ri) or SQ4(ri); we do not allow ri to move to the
positions north of Li. In contrast to grid where robots always move in either unit distances
(horizontal and vertical hops) or distance

√
2 (diagonal hops), in the Euclidean plane, a

robot may move with varying distance of at most one for horizontal and vertical hops and
varying distance of at most

√
2 for diagonal hops. The main difference (with the grid) is on

how robots match patterns to perform diagonal, horizontal, and vertical hops. In contrast
to relatively simple matching patterns of robots on a grid, the matching patterns of robots
for the Euclidean plane are complex.

4.1.1. Overview of the Patterns

The idea is to resemble the patterns for the Euclidean plane to the respective patterns
for the grid. For this purpose, we ask each robot ri to compute unit area SQunit(ri) as
defined in Section 2. SQunit(ri) helps ri to decide whether to make a diagonal, horizontal,
or vertical hop. If ri sees itself or at least one robot in SQunit, (ri) is connected to a robot
at the north of LT , and it does not move. This guarantees that robots do not move south
forever. If the robots in SQunit(ri) are not connected to any other robot outside of SQunit(ri)
at the west of LR (or similarly at the east of LL), then ri makes a horizontal hop to the east
(or similarly to west). If ri satisfies the conditions for a horizontal hop, except that there
is a robot on point pBR (or similarly on pBL), and the robots in SQunit(ri) are in a single
diagonal line, then it makes a diagonal hop to pBR (or similarly to pBL). If the robots in
SQunit(ri) are not connected to any other robot outside of SQunit(ri) at the north of LB but
(at least) a robot in SQunit(ri) is connected to a robot on or south of LB and ri does not
satisfy a condition for a diagonal hop, then ri makes a vertical hop. Moreover, if ri sees at
least one robot on each of its two sides (east and west) at horizontal distance ≥ 2, then it
makes a vertical hop. The termination is guaranteed by asking ri to check, in every LCM
cycle, whether all robots in its viewing range are positioned in SQunit(ri) (that is, ri sees no
robot outside SQunit(ri)). When that is the case, ri and the remaining robots in SQunit(ri)
run a special procedure in order to reach a single point (Definition 2) and terminate their
computation. Reaching a single point is facilitated for robots by both axis agreement.

4.1.2. Detailed Description of the Patterns

We provide details of the patterns below. Robot ri terminates when it sees no other
robot in SQ(ri), except on its current position.

Horizontal Hops. Robot ri makes a horizontal hop in the following conditions:

• This case is similar to the grid. If ri sees a robot rj at its east at distance one on line
Li and there is no robot in SQ(ri), except the current position of ri and possibly on Li
from ri up to rj, ri hops to the position of rj (distance 1).

• Robot ri hops horizontally east on Li distance 1− Lik (Lik is the distance between
ri and rk, the leftmost robot in SQ(ri)) if all the following conditions are satisfied
(Figure 5a illustrates this case for a horizontal hop):

– No robot in SQunit(ri) is connected to any other robot at the north of LT .
– No robot in SQunit(ri) is connected to any other robot at the west of LR, except

for the robots in SQunit(ri).
– There is no robot on LB of SQunit(ri).
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Algorithm 2: The algorithm for gathering in the Euclidean plane
/* In every LCM cycle, each robot ri does the following when it becomes

activated: */
/* Look: */

1 (xi, yi)← current position of robot ri in the plane;
2 C(ri)← snapshot of the positions of other robots within the viewing range of ri;
/* Compute: */

3 SQ(ri)← square area for robot ri;
4 SQunit(ri)← unit area for ri;
5 Li, L′i ← horizontal and vertical lines passing through ri, respectively;
6 Li,t, Li,b, Li,r, Li,l ← top, bottom, right and left boundary lines of SQ(ri), respectively;
7 LT , LB, LR, LL ← top, bottom, right and left boundary lines of SQunit(ri), respectively;
8 di ← destination point for ri to move;
9 If ri sees no robot outside SQunit(ri) then

10 execute the termination procedure;
11 If ri sees a robot rj in SQunit(ri) that is connected to other robot in North of Li,t (of SQ(ri))

then
12 ri does not move; di ← (xi, yi);

/* Conditions for horizontal hops */
13 Else if there is no robot on LB in the segment of SQunit(ri) ∧ no robot in SQunit(ri) is

connected to any other robot in West of LR except the robots in SQunit(ri) then
14 set the destination point di as a point at horizontal distance 1− Lij in East (where Lij is

the horizontal distance from ri to the leftmost robot rj in SQunit(ri));
/* Note: If ri be the leftmost robot in SQunit(ri), then it moves

distance 1 horizontally in East. And, if the conditions satisfy
symmetrically, then ri sets as destination point to the position on
LL in West. */

/* Conditions for diagonal hops */
15 Else if ri sees at least a robot on the diagonal point pBR ∧ all the robots in SQunit(ri) are in

the diagonal line that passes through SQ4(ri) ∧ no robot in SQunit(ri) is connected to any
other robot in the West of LR, except the robots in SQunit(ri) then

16 set di as the diagonal point pBR at distance
√

2− Lij (where Lij is the distance from ri to
rj, the topmost and leftmost robot in SQunit(ri));

/* Note: Here, pBR is the intersection point of LB and LR and SQ4(ri)
is the unit square quadrant of SQ(ri) in the South-West region. If ri
be the topmost (leftmost) robot in SQunit(ri), then it moves distance√

2 diagonally to pBR. Moreover, if the above conditions satisfy
symmetrically, then ri sets as destination point pBL (the
intersection point of LB and LL). */

17 Else // Conditions for vertical hops
18 SPunit(ri)← unit area in West of Li,l and South of LB;
19 If ri sees a robot at the intersection point of lines L′i and LB ∨ ri sees at least one robot

each in both sides (East and West) at horizontal distance ≥ 2 ∨ (ri sees a robot on LB of
SQunit(ri), no robot in SQunit(ri) is connected to other robot in North of LB and West of
LL) ∨ (ri sees at least one robot in SQunit(ri) that is connected to other robot in South of
LB in West of LR and no robot in SQunit(ri) is connected to other robot in North of LB
and West of LL) ∨ (ri sees at least a robot in SPunit(ri) and at least a robot in SQunit(ri)
is connected to a robot in North of LB and West of LL) then

20 set di as the point vertically South at distance 1− Lij on LB of SQunit(ri) (where Lij
is the vertical distance from ri to LT);

/* Note: If ri be the topmost robot in SQunit(ri) then it moves
distance 1 vertically South. */

/* Move: */
21 ri moves to di;

Since we ask the robots to always move east in a horizontal hop, we do not have a
symmetric case for horizontal hops under both axis agreements.
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Figure 5. An illustration of a horizontal hop (a) and diagonal hops (b,c).

Diagonal Hops. Robot ri makes a diagonal hop in either of the following conditions:

• This case is similar to grid. If ri sees no other robot in SQ(ri) except at least one robot
rj in SQ4(ri) on the diagonal corner point pbr, ri hops to pbr. Robot ri moves at a
distance of exactly

√
2 if it performs this hop.

• Robot ri hops diagonally at a distance of
√

2− Lij (where Lij is the distance between
ri and rj, the topmost which is also the leftmost robot of SQunit(ri) at point pTL) to a
point in SQ4(ri), if the following conditions are satisfied:

– No robot in SQunit(ri) is connected to any other robot at the north of LT .
– No robot in SQunit(ri) is connected to any other robot at the west of LR, except

the robots in SQunit(ri).
– All robots in SQunit(ri) are in the diagonal line that passes through SQ4(ri).
– There is at least one robot on the diagonal point pBR of SQunit(ri).

Figure 5b illustrates this hop for ri. The symmetric diagonal case moves ri to point
pBL which is illustrated in Figure 5c.

Vertical Hops. If no robot in SQunit(ri) of a robot ri is connected to any other robot at
the north of Li,t (of SQ(ri)), ri makes a vertical hop of distance 1− Lim (where Lim is the
vertical distance from ri to line LT) in either of the following conditions:

• Robot ri sees at least one robot at the intersection point of L′i and LB.
• Robot ri sees at least one robot each at both the east and west at horizontal distance

≥ 2. Figure 6b illustrates this case.
• Robot ri sees at least one robot on LB of SQunit(ri), no robot in SQunit(ri) is connected

to any other robot at the north of LB and west of LL, and the conditions for a diagonal
hop are not satisfied for ri. Figure 6a illustrates this case.

• Robot ri sees at least one robot in SQunit(ri) that is connected to a robot at the south of
LB on or west of LR, and no robot in SQunit(ri) is connected to any other robot at the
north of LB and west of LL. Figure 6a also illustrates this case.

• Let SPunit(ri) be a unit area at the west of Li,l and south of LB with LB being the
topmost horizontal line LT of SPunit(ri) and Li,l being the rightmost vertical line LR
of SPunit(ri). Robot ri sees that at least one robot in SQunit(ri) is connected to a robot
at the north of LB and west of LL, ri sees at least one robot in SPunit(ri), and the
conditions for a horizontal hop are not satisfied. Figure 6c illustrates this case.

Remark 1. Robot ri also makes a vertical hop if the symmetric situations in the last three conditions
are satisfied. The above rules infer that the robots move only under certain situations. Robots do
not move in all the remaining situations. This process repeats until all robots of Q are inside an
(axis-aligned) 1× 1-sized square area so that the special procedure for termination, as described in
the next paragraph, can be applied.
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Figure 6. An illustration of vertical hops. (a) ri sees at least one robot on LB of SQunit(ri). (b) ri sees
at least one robot each in both sides east and west at horizontal distance ≥ 2. (c) ri does not see any
robot at horizontal distance ≥ 2 in both sides east and west, but at least one in the west of LL (or East
of LR) and is connected to other robot in the south of LB and west of Li,l (or East of Li,r).

4.1.3. The Termination Procedure

We will show in the analysis that the diagonal, horizontal, and vertical hops described
above position all robots in Q in an axis-aligned 1× 1-sized square area, say SA. We
now discuss how the robots reach a point and terminate. Let rl , rb, and rr be the leftmost,
bottommost, and rightmost robots in SA. We have that the unit area SQunit(ri) of each
robot ri that is in SA overlaps. Therefore, if all the robots in SA are in a single diagonal
line, then rb does not move, and all other robots in SA make a diagonal hop with their
destination as the current position of rb. Otherwise, the robots first perform a horizontal
hop, as the destination points the positions on the right vertical line LR of SA. The robots
on LR do not move until all the robots in SA (the same for all robots) are positioned on LR.
After that, the robots (now on LR) perform a vertical hop to the destination, which is the
position of the bottom most robot on LR, which does not move. Now, since all the robots
reach the same position, they terminate in the next epoch.

We have the following immediate observation after all the robots in Q are positioned
in an axis-aligned 1× 1-sized square area SA.

Observation 2. The robots within an axis-aligned 1× 1-sized square area SA are positioned at a
single point in at most two epochs.

4.2. Analysis of the Algorithm

We first prove correctness and then progress to providing a guarantee of the algorithm.
We use SER(I) and other definitions as in Section 3 except LS. Here, we define LS as a
horizontal line parallel to L0 at distance DX south of L0. Figure 7 illustrates these definitions
for the algorithm in the Euclidean plane.

Based on the movement of robots in horizontal, diagonal, and vertical hops, the
following observation is immediately made. This is because the robots never make a
horizontal hop to the west, and the robots making the horizontal hops never reach east
of L′DX

. In the diagonal hops, robots move to the diagonal position that is closer to the
other neighboring robots. Since all the robots are inside L′0 and L′DX

initially, there is no
neighboring robot outside of those lines; hence, the diagonal hops will also be inside L′0
and L′DX

. In the vertical hops, robots always move vertically south. Since no robot has
reached outside of L′0 and L′DX

with the horizontal as well as diagonal hops, this is true
with the vertical hop as well.
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Figure 7. Illustration of SER(I) and the triangular area south of it in the Euclidean plane.

Observation 3. No robot of SER(I) moves outside of lines L′0 and L′DX
during the execution.

Lemma 5. Given that G0(I) is connected, the visibility graph Gt(I) at any time t > 0
remains connected.

Proof. We extend the proof of Lemma 1. Similarly to the grid, a robot ri either does not
move or performs either a diagonal, horizontal, or a vertical hop. Note also that ri never
moves to any position at the north of Li. Furthermore, ri does not move when it sees at
least one robot rj on line Li,t or at the north of Li,t.

First of all, if the robots move as in the grid case, Lemma 1 provides the connectivity
proof for Gt(I), t > 0, starting from connected G0(I). Therefore, we focus only on the cases
that are particularly relevant to the Euclidean plane.

A diagonal hop for ri is possible only when the robots in SQunit(ri) are in the diagonal
line that passes through SQ4(ri) and are not connected to any other robot at the west of LR
besides the robots in SQunit(ri) (the analogous case of SQ3(ri) can be handled similarly).
Moreover, there is at least one robot at point pBR. Robot ri then moves to pBR. This
preserves connectivity for Gt(I) since the robot at pBR must be connected to at least one
robot at the east of LR if all the robots of Q are not inside SQunit(ri). Due to the ASYNC
setting, the robot rj at pBR may perform its Look phase while ri is in transit to pBR. Let t′

be the time at which rj performs its Look. Let ri be at point p at distance
√

2− x from pBR
at time t. Let SQp(ri) be SQ(ri) for ri when it is at position p. Even in this case, rj does
not move in a position outside of SQp(ri) regardless of whether it performs a horizontal,
vertical, or a diagonal hop, preserving connectivity.

A horizontal hop for ri is possible only when the robots in SQunit(ri) are not connected
to any other robot at the west of LR similarly to the diagonal hop case with only the
difference being that there is no robot on pBR so that even when all the robots in SQunit(ri)
are in a diagonal line, ri cannot perform a diagonal hop. Even in this case, connectivity is
preserved since, if the robots move at most the permitted distance, they would have moved
in the grid case.
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Similarly, in the vertical hop of robot ri, if it sees no robot at the north in SQ(ri), it
moves vertically south on L′i with a distance of exactly one. If ri sees at least one robot
rj at the north in SQ(ri) and satisfies the conditions for vertical hopping, it hops 1− Lij
(where Lij is the vertical distance between ri and rj) distance south to a position on LB (of
SQunit(ri)). In both cases, by the end of first epoch, each robot moves at most a distance
of one toward the south, and the robots remain connected because ri reaches at most

√
2

distance away from the neighbor robot in SQ(ri) (if the neighbor robot does not move in
this epoch) and remains connected. Moreover, the robots connected to ri at the south of LB
do not move as they find ri at the north and the connectivity with them remains unaffected.
Thus, Gt(I), t > 0 remains connected with a vertical hop. Figure 8 illustrates the movement
of robots and how the connectivity is preserved. Note here that regardless of the grid
case where robots are positioned on the grid points, in the Euclidean plane, robots can be
positioned anywhere in the plane. The shaded regions in Figure 8 represent the arbitrary
positions of robots within the equivalent grid areas in the Euclidean plane.

Lemma 6. All the robots in at the north of LDY−1 in SER(I) move to the positions on LDY−1 or
south of LDY−1 in at most three epochs.

Proof. Since LDY is the topmost horizontal line segment of SER(I), there is no robot at the
north of LDY . Moreover, since robots agree on north, they never move to the north of the
horizontal line they are currently positioned. Consider the robots in the corridor area CA
of SER(I) formed by horizontal lines LDY and LDY−1, excluding the positions of LDY−1.
Note that in the grid case, the robots were either on LDY or on LDY−1, and we proved in
Lemma 2 that the robots on LDY reach LDY−1 or the south in at most two epochs.

Consider SQunit(ri) of any robot ri in CA. We will show that all the robots in SQunit(ri)
that are in CA reach LDY−1 or below in at most two epochs. Since these robots do not see
any robot on or north of LDY , they perform at least one kind of hop (vertical, horizontal,
or diagonal) in the first epoch except the robots positioned between L′1 and L′2 in the west
and L′DX−2 and L′DX−1 in the east in CA (Figure 8). The robots between L′1 and L′2 and
L′DX−2 and L′DX−1 may not satisfy any conditions for movement in the first epoch. If all the
robots in SQunit(ri) in CA perform either a diagonal or a vertical hop, they reach LDY−1 or
south in one epoch because, with both the diagonal and vertical hops, robots in SQunit(ri)
reach LB or below LB and LB is either LDY−1 or below. If some robots perform a horizontal
hop in the first epoch, we show that it performs either a vertical or a diagonal hop in the
second epoch.

A robot makes a horizontal hop if it sees no other robot at the west of LR, except
the robots in SQunit(ri), and there is no robot on LB of SQunit(ri). By the end of the first
epoch, all the robots in SQunit(ri) reach the positions on or east of LR if all of them make a
horizontal hop. In this case, the robots in CA between L′1 and L′2 do not move in the first
epoch. If some robots performed horizontal hops and the rest performed vertical/diagonal
hops, we only need to guarantee that the robots that performed a horizontal hop on the
first epoch reached LB or south of it in the second epoch performing a vertical or a diagonal
hop. Consider a robot ri that satisfies the conditions for a horizontal hop in the first epoch.
We have it that there is no robot on LB, and the robots in SQunit(ri) are connected to no
other robot besides the robots in SQunit(ri) at the west of LR. Let SQE

unit(ri) be a square
area adjacent to SQunit(ri) at the east between lines LT and LB. Let L′B and L′R be the
bottom horizontal and right vertical lines of SQE

unit(ri). If the robots in SQE
unit(ri) are not

on L′B and not connected to any other robot below L′B at the west of L′R, they do not move
until all the robots in SQunit(ri) reach LR or east of LR in SQE

unit(ri). If there are robots on
L′B, let x be the robot on L′B that is the closest from LR. Let LV be a line parallel to LR at
some unit distance west of x. All the robots in SQunit(ri) at the west of LV perform one
horizontal move each in the first epoch. The robots on LV or east in SQunit(ri) perform a
vertical hop as there are robots on L′B. The robots of SQunit(ri) that performed a horizontal
hop on the first epoch now observe robots on LB in the second epoch and make a vertical
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move. Moreover, the robots in SQE
unit(ri), which were waiting for the robots in SQunit(ri)

to perform a horizontal hop in the first epoch, now see robots at their respective LB and,
hence, perform either a vertical or a diagonal hop to LB. This means that the robots in
CA between L′0 and L′2 also move to LDY−1 or south in two epochs. Arguing similarly, if
the robots in CA between L′DX−2 and L′DX−1 do not move in the first epoch, they also see
a robot on their respective LB in the second epoch since the robots at the west of L′DX−2
have already moved south in the first epoch. Thus, these robots also move south in the
second epoch. In the same manner the remaining robots between L′DX−1 and L′DX

in CA
move to LDY−1 or move south in the third epoch as they can observe at least one robot on
their respective LB. Therefore, in three epochs, all the robots in CA reach LDY−1 or south.
The Lemma is described follows.

Figure 8. An illustration of movements of robots in the Euclidean plane below L0. The horizontal
and vertical lines are separated by 1 unit distance away, and the robots are positioned arbitrarily in
the shaded regions (i.e., they do not need to be necessarily always on the horizontal or vertical lines
as in the grid case). At every one unit south of L0, the width of the positions of robots decreases by 1
unit; hence, all the robots reach inside a unit square at most DX unit south of L0. (i) All the robots
reached South of L0. (ii)–(xi) Movements of robots in the South of L0 in each round. (xii) Robots
gathered inside a unit square area in the South of L0.

Lemma 7. No robots of SER(I) reaches south of LS during the execution.

Proof. We extend the proof of Lemma 3. Let X := {r0, . . . , rX} be the set of robots in
the increasing order of their x-coordinates in the corridor area CA between L1 and L0 of
SER(I). If the robots on set X see other robots at distance ≥ 1 north from their positions,
they do not move and wait until they do not see any robot at the north at a distance ≥ 1.
Therefore, similarly to Lemma 3, the robots in CA that do not see any robot in the north
at distance ≥ 1 proceed to move south. This will take those robots to the next corridor
CA′ adjacent to CA in the south. Suppose at some time t > 0, all the robots reach CA
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between L0 and L1. Some robots might see no robots at the north at the distance ≥ 1 before
time t, and they can perform their moves earlier, which does not affect our argument.
Now, the robots in CA that are in a unit square area (i.e., between L′0 and L′1) in the east
perform horizontal moves, and the robots in the next unit square area (i.e., between L′1
and L′2) do not move in the first epoch. Similarly, the robots in CA that are in two unit
square areas in the west (i.e., between L′DX−2 and L′DX

) do not move in the first epoch. The
remaining robots in CA between L′2 and L′DX−2 move south. In the next epoch, the robots
in CA between L′1 and L′2 (including the robots that moved horizontally to this area in the
previous epoch) move south. The robots in CA between L′DX−2 and L′DX−1 also move south
in the this epoch whereas the robots in CA between L′DX−1 and L′DX

still do not move; they
move in the third epoch. The robots in CA′ between L2 and L4 and LDX−4 and LDX−2 do
not move first, and the other robots move south.

Following this, we can observe that as the robots move to the next corridor (of size one)
in the south of L0, the width of the positions of robots decreases by one. This is because,
at every corridor, the robots in the east most unit square area perform horizontal moves.
Therefore, all the robots in X will be within a single unit square area in the corridor at
distance DX south of L0 (at most). When all the robots are within a unit square area, they
follow the termination procedure and do not move further south.

Figure 8 illustrates how the robots move south of L0. The figure also shows how
the robot chains merge to eventually reach a unit square during execution so that the
termination procedure can be executed.

The following observation is also immediate.

Observation 4. For every one unit vertical hop of the robots in Q in the south of L0, the width of
the positions of robots decreases by (at least) one.

Lemma 8. The viewing range of
√

10 is sufficient for gathering to a point (that is not known
beforehand) on a plane under both axis agreements.

Proof. Let r be a robot in Q. SQunit(r) is computed based on the position of other robots
in SQ(r), which may lie anywhere within SQ(r). For r to decide whether it is connected to
other robots outside SQunit(r), it has to see other robots in both the horizontal and vertical
distance of at most one outside SQunit(r). Therefore, the maximum distance between r
and some other robot r′ in SQunit(r) (or SQ(r)) is

√
2 and r′ may be connected to a robot

at a distance of at most
√

2 away from r′. Therefore, r needs to see at most a distance
of
√

2 +
√

2 = 2
√

2 =
√

8 to find out whether there is a robot outside SQunit(r) or not.
When r sees that no robot in SQunit(r) is connected outside of SQunit(r), it can execute the
termination procedure.

Now, for the vertical hops, there is one condition that requires r to see at least one
robot each at horizontal distance ≥ 2 at both the east and west, within the corridor of LT
and LB. To guarantee whether there is a robot at horizontal distance ≥ 2 or not, r needs
to see up to a horizontal distance of < 3 and vertical distance of < 1. This is because if
there is any robot at horizontal distance > 2, it must be connected to a robot at horizontal
distance < 2. Therefore, r needs to see at most distance

√
32 + 12 =

√
10. Figure 9 (left)

illustrates this requirement.

The analysis of this section proves the following main result.

Theorem 3. Given any connected configuration of N ≥ 1 robots with the viewing range of
√

10
and the square connectivity range of

√
2 on a plane, the robots can gather to a point in O(DE)

epochs in the ASYNC setting under both axis agreements.



Information 2021, 12, 448 22 of 25

Figure 9. An illustration of the viewing range of
√

10.

Proof. We have from Lemma 5 that, given a connected G0(I), Gt(I), t > 0, remains con-
nected during the execution of the algorithm. We have from Lemma 6 that all the robots
at the topmost horizontal line LDY of SER(I) move to LDY−1 or south of LDY−1 in at most
two epochs. In other words, LDY−1 becomes LDY in at most two epochs and Lemma 6
applies again to LDY−1. Therefore, all the robots in SER(I) move to line L0 or south of it in
at most 2 ·DY epochs. After that, we have it that, from Lemma 7, these robots will be inside
an axis-aligned unit area in at most next 2 · DX epochs, arguing similarly with respect to
Lemma 6. After all the robots of Q reach the insides of an unit square area, we have from
Observation 2 that they reach a single point in at most the next two epochs. Therefore, the
robots gather to a single point in 2 ·DY + 2 ·DX + 2 = O(DX + DY) = O(DE) epochs. The
algorithm terminates (Lemma 8).

5. Gathering under One-Axis Agreement

We discuss modifying the above algorithms when the robots agree on only one axis.

5.1. Grid

We first discuss changes in the model of Section 3. We say gathering is performed
when the robot configuration satisfies the relaxed gathering configuration (Definition 3).
We also relax the viewing range from 2 to 3.

We now discuss changes in Algorithm 1 (Section 3). The change is only on Rules
1 (termination) and 3 (horizontal hop). Regarding Rule 3, instead of ri moving only to
the east (Figure 3 (middle)), ri can also move to the west as well if it sees no robots on or
inside SQ(ri), except for the situation where there is exactly one robot rj on the neighboring
grid point on Li in the west. Regarding Rule 1, ri terminates if it sees all the robots at at
most one unit apart in a horizontal line (i.e., all the robots are positioned in two horizontal
neighboring grid points).

Lemma 9. The viewing range of three is sufficient for gathering on a grid with guaranteed termi-
nation under a one-axis agreement.

Proof. Notice that a robot ri terminates if it sees all the robots in Q are at most two neigh-
boring grid points (one is current position of ri and the other is either the left horizontal
grid point only or the right horizontal neighboring grid point only). For ri to make a
decision that the robots are not at any third grid point, it has to see all the neighboring
grid points of its two horizontal neighboring grid points as well. The distance from ri to
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either of its horizontal neighboring grid point is one, and the distance of the neighboring
grid points of ri’s horizontal neighboring grid points is at most

√
2. Therefore, ri needs the

viewing range of (1 +
√

2) < 3. The connectivity range remains
√

2.

Having the viewing range of three, the analysis of the algorithm in Section 3 applies
directly to the modified algorithm for the grid under the one axis agreement. Therefore,
we summarize the main result in the following theorem.

Theorem 4. Given any connected configuration of N ≥ 1 robots with the viewing range of three
and the square connectivity range of

√
2 on a grid, the robots can gather in a unit length horizontal

line segment (that is not known beforehand) in O(DE) epochs in the ASYNC setting under a
one-axis agreement.

5.2. Euclidean Plane

We first discuss changes in the model of Section 4. We say gathering is performed
when the configuration satisfies the relaxed gathering configuration (Definition 3). The
viewing and square connectivity ranges remain the same as in Section 4.

We now discuss changes in the algorithm. The change is on horizontal and vertical
hops and on termination. Instead of computing SQunit(ri) using LL and LT as reference
lines, SQunit(ri) also needs to be computed by using LR and LT as references. When ri sees
no other robot on one side (say west) at a distance of >1 but does on the other side (east), it
takes the topmost robot rj and leftmost robot rk in SQ(ri) in order to compute SQunit(ri);
for the symmetric case, it takes the topmost and rightmost robots in SQ(ri) as a reference.
This allows the robots to make horizontal hops in both directions (not necessarily only
east under both axis agreement). Therefore, ri hops to the west of Li if the conditions for
horizontal hop defined in Section 4 are satisfied symmetrically. Regarding vertical hopping,
the following changes are made in the last three conditions:

– Robot ri sees at least one other robot each on both sides of L′i on LB or south of LB,
which is connected to at least one robot of SQunit(ri).

– Robot ri sees at least one other robot on LB or south of LB (which is connected
SQunit(ri)) at one side of L′i (say east) and at least one other robot at horizontal
distance ≥2 on the other side (west) (and vice-versa).

– Robot ri sees other robot(s) on LB (or connected to other robot(s) at the south of LB)
only at one side of L′i, say east, then finds the leftmost robot rl on LB of SQunit(ri)
(or south of LB that is connected to SQunit(ri)) and sees that no robot in SQunit(ri) is
connected to another robot at its left (i.e., west) at a horizontal distance of ≥1 from rl
(and vice-versa).

Regarding termination, ri terminates if all the robots it sees within its viewing range
(including itself) are within a horizontal line segment of length 1. We will show in the
analysis that, with these changes, the algorithm positions the robots in Q inside an axis-
aligned 1× 1-sized square area SA in O(DE) epochs.

We now discuss how the robots in SA reached a relaxed gathering configuration
(Definition 3). Let rb be the bottommost robot in SA (if more than one, pick one arbitrarily).
Let LB be the horizontal line passing through rb. The robots on LB (including rb) do not
move. The other robots move vertically to the positions of LB. The viewing range allows
the robots to decide whether there are robots outside SA or not.

Proof of Theorem 1: It is easy to see from the analysis of Section 4 that robots in Q reach
inside an axis-aligned unit square area in O(DE) epochs. The only change on the analysis
is on horizontal hops, which does not increase the number of epochs for the robots in Q
to reach the inside of the unit area. Finally, it takes at most one additional epoch for all
the robots that are in the unit square area to reach LB. The robots that are not on LB move
vertically to LB, and the robots on LB do not move. Therefore, the robots reach a relaxed
gathering configuration (Definition 3) in O(DE) epochs.



Information 2021, 12, 448 24 of 25

6. Concluding Remarks

We have presented, to the best of our knowledge, the first time-optimal O(DE)-epoch
algorithm for gathering N ≥ 1 classic oblivious robots in a plane in the ASYNC setting
under limited visibility, improving significantly on the previous O(DG)-round algorithm
of [4] that works in the FSYNC setting. Our result assumes the viewing range of

√
10,

the square connectivity range of
√

2, and the agreement on one axis. This is in contrast to
the viewing range of one and the (circular) connectivity range of 1− 1√

2
in [4] under the

same one axis agreement. For future work, it will be interesting to relax our assumption of
rigid moves to accommodate non-rigid moves. It will also be interesting to reduce the gap
between the connectivity and viewing ranges without affecting time complexity.
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