

Article Time-Optimal Gathering under Limited Visibility with One-Axis Agreement⁺

Pavan Poudel 🕩 and Gokarna Sharma *🕩

* Correspondence: sharma@cs.kent.edu

+ A preliminary version of this article has been published in SSS'17 conference.

Abstract: We consider the distributed setting of N autonomous mobile robots that operate in *Look-Compute-Move* (LCM) cycles following the well-celebrated classic oblivious robots model. We study the fundamental problem of gathering N autonomous robots on a plane, which requires all robots to meet at a single point (or to position within a small area) that is not known beforehand. We consider limited visibility under which robots are only able to see other robots up to a constant Euclidean distance and focus on the time complexity of gathering by robots under limited visibility. There exists an $\mathcal{O}(D_G)$ time algorithm for this problem in the fully synchronous setting, assuming that the robots agree on one coordinate axis (say north), where D_G is the diameter of the visibility graph of the initial configuration. In this article, we provide the first $\mathcal{O}(D_E)$ time algorithm for this problem in the asynchronous setting under the same assumption of robots' agreement with one coordinate axis, where D_E is the Euclidean distance between farthest-pair of robots in the initial configuration. The runtime of our algorithm is a significant improvement since for any initial configuration of $N \ge 1$ robots, $D_E \le D_G$, and there exist initial configurations for which D_G can be quadratic on D_E , i.e., $D_G = \Theta(D_E^2)$. Moreover, our algorithm is asymptotically time-optimal since the trivial time lower bound for this problem is $\Omega(D_E)$.

Keywords: distributed algorithms; mobile robots; classic oblivious robot model; gathering; time complexity; visibility; connectivity

1. Introduction

In the classic model of distributed computation by mobile robots, also known as the *OBLOT* model, each robot is modeled as a point in the plane [1,2]. The robots are *autonomous* (no external control), *anonymous* (no unique identifiers), *indistinguishable* (no external identifiers), *disoriented* (no agreement on local coordinate systems and units of distance measures), *oblivious* (no memory of past computation), and *silent* (no direct communication and actions are coordinated via only vision and mobility). They execute the same algorithm. Each robot proceeds in *Look-Compute-Move* (LCM) cycles: when a robot becomes active, it first obtains a snapshot of its surroundings (*Look*), then computes a destination based on the snapshot (*Compute*), and then finally moves towards the destination (*Move*) [2].

We consider the *gathering* problem in the *OBLOT* model, where starting from any arbitrary (yet connected) initial configuration, all robots are required to meet at a single point (or to position within a small area) that is not known beforehand. Relaxing the requirement to meet at a single point by positioning them within a small area is performed to circumvent the impossibility result of gathering to a point in the asynchronous setting, even for two robots [3]. In fact, the algorithm we designed in this article positions all robots either at a single point not known beforehand or within a unit line segment not known beforehand depending on different conditions. Gathering is one of the most fundamental tasks and a central benchmark problem in distributed mobile robotics [4]. Early studies

Citation: Poudel, P.; Sharma, G. Time-Optimal Gathering under Limited Visibility with One-Axis Agreement. *Information* **2021**, *12*, 448. https://doi.org/10.3390/info12110448

Academic Editor: Giovanni Viglietta

Received: 30 August 2021 Accepted: 24 October 2021 Published: 27 October 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Department of Computer Science, Kent State University, Kent, OH 44240, USA; ppoudel@cs.kent.edu

on gathering in the *OBLOT* model solved it under *unlimited visibility*, where each robot is assumed to observe (the locations of) all other robots [5], and all the robots are connected to each other. The *viewing range* defines the maximum possible distance up to which a robot can observe other robots, and the *connectivity range* defines the maximum possible distance up to which a robot can observe other robots, and the *connectivity range* defines the maximum possible distance between any two nodes to be connected (i.e., to have an edge between them). Flocchini et al. [6] provided the first algorithm for gathering in the *OBLOT* model under *limited visibility*, where each robot can observe (the locations of) other robots within a fixed unit distance (*viewing range*), and each robot is connected to all other robots within that fixed unit distance (*connectivity range*), i.e., the viewing and connectivity ranges are the same. Subsequently, several algorithms were studied for this problem under different constraints [2,7–10]. These studies proved the correctness of the algorithms but provided no runtime analysis (except a proof of finite time termination).

The runtime analysis for gathering has been studied relatively recently [11–15]. Degener et al. [11] provided the first algorithm for this problem with runtime $\mathcal{O}(N^2)$ in expectation in the fully synchronous setting, where N is the total number of robots. Degener et al. [12] provided an $\mathcal{O}(N^2)$ -time algorithm for this problem in a fully synchronous setting. They also showed that, for some initial configurations, their algorithm is essentially tight by providing a matching lower bound of $\Omega(N^2)$. Kempkes et al. [13] provided an $\mathcal{O}(OPT \log OPT)$ -time algorithm for this problem under a slightly different continuous time setting, where *OPT* is the runtime of an optimal algorithm. All the above algorithms assume that both the viewing and connectivity ranges are of (fixed) radius 1. Recently, Cord-Landwehr et al. [14] provided an $\mathcal{O}(N)$ -time algorithm for this problem for robots positioned on a grid in a fully synchronous setting. In this algorithm, it is assumed that robots have the viewing range of (distance) 20, i.e., each robot can observe other robots within a fixed distance of 20, but the connectivity range is one, i.e., two robots are connected if and only if they are vertical or horizontal neighbors on the grid. Moreover, each robot is assumed to possess memory for remembering a constant number of previous cycles. Recently, Fischer et al. [15] provided an $\mathcal{O}(N^2)$ -time algorithm for gathering on a grid in the fully synchronous setting, if the memory is not available, by using the improved viewing range of 7.

The intriguing open question is whether a time-optimal algorithm can be designed for gathering under limited visibility and if possible, under what conditions. We define time optimality as follows: Let G be the visibility graph of an arbitrary initial configuration I of $N \ge 1$ robots in a plane. The robots in the system act as nodes of G. There is an edge between any two nodes in G if the distance between these two nodes is at most the connectivity range. Note that, according to the definitions above, the viewing and connectivity ranges may or may not be the same. If each robot is connected to all robots within its viewing range, then the viewing range also serves as the connectivity range; otherwise, the connectivity range is different than the viewing range. In order to solve the gathering problem, G must be connected [2]; G is connected if the robots (or nodes of G) cannot be separated into two subsets such that no robot of the one subset is connected to any robot of the other subset (and vice versa). For example, the authors in [14] used the viewing range 20, but the robots in horizontal or vertical distance of one are connected. Let D_G be the diameter of G, which is the greatest distance between any pair of nodes in G following the edges of G. Let D_E be the diameter of the initial configuration I, which is the greatest Euclidean distance between any pair of robots in *I*. Notice that for any *I*, $D_E \leq D_G$, and for some configurations the gap between D_G and D_E can be as much as quadratic on D_E , i.e., $D_G = \Theta(D_E^2)$. Figure 1 illustrates these ideas. Therefore, an $\mathcal{O}(D_E)$ time algorithm would be time-optimal for gathering starting from any initial connected configuration, since $\Omega(D_E)$ is the trivial time lower bound for robots to meet at a single point (or to position within a small area) starting from any arbitrary initial configuration. Hence, the open question specifically is whether an $\mathcal{O}(D_E)$ -time algorithm can be designed for gathering for classic oblivious robots under limited visibility.

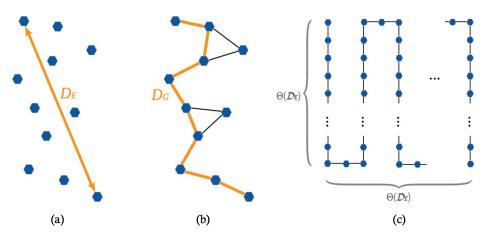


Figure 1. An illustration of two initial configuration dependent parameters, D_E (the Euclidean diameter) and D_G (the visibility graph diameter), and the relation between them: (**a**) the diameter D_E for an initial arbitrary configuration, (**b**) the visibility graph *G* with diameter D_G for the configuration of the left, and (**c**) an initial configuration showing the quadratic difference between D_E and D_G with $D_G = \Theta(D_E^2)$.

Recently, Izumi et al. [4] made progress towards addressing this open question. Specifically, they presented an $\mathcal{O}(D_G)$ -time algorithm for gathering on the plane in a fully synchronous setting under limited visibility with the condition that robots agree on one coordinate axis. They used viewing range of one with an assumption that the visibility graph *G* remains connected even if the edges with the corresponding distance of greater than $1 - \frac{1}{\sqrt{2}}$ are removed from it. The assumption on the visibility graph *G* in Izumi et al. [4] essentially means that the connectivity range is of radius $1 - \frac{1}{\sqrt{2}}$ (different and in fact smaller than the viewing range of one).

There is still a large gap between the $O(D_G)$ time bound of Izumi et al. [4] and the asymptotically optimal $O(D_E)$ time bound, since D_G can be quadratic on D_E (Figure 1). This work closes this gap under the same one axis agreement with a slightly modified viewing range of $\sqrt{10}$ and the square connectivity range (if we do not explicitly write "square", then the viewing and connectivity ranges are circular) of $\sqrt{2}$ compared to the viewing range of one and the (circular) connectivity range of $1 - \frac{1}{\sqrt{2}}$ in [4] (if we consider

the viewing range of one similar to [4], we need the square connectivity range of $1 - \frac{\sqrt{2}}{\sqrt{10}}$, and our algorithm again achieves $\mathcal{O}(D_E)$ runtime). Notice that the square connectivity range of distance *c* means that a robot is connected to all other robots inside or on the boundary of the (axis-aligned) square area with the (diagonal) distance from the robot to each corner of the square c. Notice also that the square connectivity range of $\sqrt{2}$ for a robot is equivalent to the L_{∞} -distance of 1 around the robot. Therefore, if we have both the viewing and connectivity ranges of *c*, then the area they enclose differs if the connectivity range is "square"; otherwise, they enclose the same area. Moreover, in contrast to Izumi et al. [4], which works in the fully synchronous setting, our algorithm works in the asynchronous setting. The algorithm presented by Izumi et al. [4] follows the movements of robots in one direction (either north or east) along D_G in such a way that in each round, starting from the southmost and westmost robots, each robot moves towards the farthest neighbor within its connectivity range. In our algorithm, robots do not follow D_G ; instead, they gather at a point (or within a small area) that is not known beforehand in $O(D_E)$ rounds. Particularly, in our algorithm, all the robots gather at a single point not known beforehand under both axis agreements and inside a horizontal line segment of length one that is not known beforehand under one axis agreement. A preliminary version of this article has been published in SSS'17 conference [16], and this article extends that version by including many details and proofs that were missing in that version.

Contributions. We focus, in this article, on optimizing runtime for gathering under limited visibility. We consider autonomous, anonymous, indistinguishable, oblivious, and

silent point robots (also called *swarms*) as in the classic OBLOT model [2]. Robots agree on the unit of distance measure. The viewing range is $\sqrt{10}$ —a robot can see all other robots within the fixed radius of at most distance $\sqrt{10}$. The square connectivity range is $\sqrt{2}$ —a robot is connected to all other robots inside or on the boundary of the (axis-aligned) 2×2 -sized square area for which its center is the position of the robot. In a LCM cycle, a robot can move to any position inside or on the square area, including its four corners. The challenge here is that robot movements must not harm swarm connectivity. As in Izumi et al. [4], we assume that robots agree on one coordinate axis (say north), but they may not agree on the other coordinate axis. Moreover, we assume that the robot setting is asynchronous—there is no notion of common time, and robots perform their LCM cycles arbitrarily. Furthermore, we assume that the robot moves are *rigid*—a robot in motion in each cycle cannot be stopped (by an adversary) before it reaches its destination at that cycle. Additionally, all previous algorithms assume that when two or more robots move to the same location, they are merged and act as a single robot. In this article, we do not have that assumption; in other words, even if robots are located at the same position and activated at different time, the gathering progress is achieved through the (individual) moves of those robots.

In this article, we prove the following result which, to our best knowledge, is the first algorithm for gathering that is asymptotically time-optimal for classic oblivious robots under limited visibility since the trivial time lower bound for gathering under limited visibility starting from any initial configuration of $N \ge 1$ robots is $\Omega(D_E)$.

Theorem 1. For any initial connected configuration of $N \ge 1$ robots with the viewing range of $\sqrt{10}$ and the square connectivity range of $\sqrt{2}$ on a plane, gathering can be solved in $\mathcal{O}(D_E)$ time in the asynchronous setting, when robots agree on one coordinate axis.

Notice that, the visibility graph *G* must be connected, since gathering may not be solvable under limited visibility if *G* is not connected [2,6]. Our selection of the viewing and (square) connectivity ranges and the assumption of one-axis agreement play an important role in proving Theorem 1. For both viewing and (circular or square) connectivity ranges of one, we conjecture that there is no $O(D_E)$ -time algorithm for gathering of classic oblivious robots in the asynchronous setting, even when robots agree on both coordinate axes. This is because a robot cannot move more than distance one in each LCM cycle to preserve connectivity, and only the end robots can move in each cycle. Therefore, if the robots are connected as shown in Figure 1, $O(D_G)$ time is required to gather them since only end robots can move and the rest cannot. For the viewing and (circular or square) connectivity ranges of classic oblivious robots if the robots do not agree on any coordinate axis. This is because the robots' movements become arbitrary as there is no agreement on the coordinate axes. Thus, robots can only gather if they move following the diameter D_G , which only provides an $O(D_G)$ -time algorithm.

Technique. Let *L* be the topmost horizontal line so that all the robots of any initial configuration *I* are either on the positions of line *L* or south from *L*. Let *L'* be the line parallel to *L* at distance one south of *L*. The main idea behind the algorithm is to make robots of *I* in the north of *L'* move to the positions of *L'* or south of *L'* in O(1) epochs, even under the asynchronous setting, where an epoch is the time interval for all *N* robots to execute their LCM cycle at least once (the formal definition of epoch is in Section 2). To accomplish this, we classify the moves of robots into three categories: *diagonal hops, horizontal hops*, and *vertical hops*. We will show that if all the robots in the north of *L'* make diagonal or vertical hops, they reach *L'* or south of *L'* in one epoch. However, if some of those robots make a horizontal hop, then in two epochs, they reach positions of *L'* or south of *L'* or south of *L'* or south of *L'* do not move in the first epoch, then they reach positions of *L'* or south of *L'* or south of *L'* or south of *L'* or diagonal hop by the next two epochs.

Similarly, let L_b be the bottommost horizontal line (parallel to L) so that the robots of I are either on L_b or north of L_b . The main idea is to show that the robots on L_b do not move south of L_b forever. Specifically, we show that robots on L_b wait for all the robots in the north of L_b so that they meet at distance (at most) D south of L_b where D is proportional to the horizontal diameter of the initial configuration I. This is achieved by asking robots not

of the corresponding robot). Other Related Work. The classic oblivious robots model or the OBLOT model has been considered heavily in order to solve a diverse set of problems, such as scattering, gathering, convergence, circle formation, flocking, etc., in distributed mobile robotics. A comprehensive description of the state-of-the-art research on distributed computing by mobile robots can be found in these excellent books [2,17]. Much work on the classic model on these problems does not provide runtime analysis, for example, see papers on gathering in a non-predefined point [5–7,18,19]. Pagli et al. [20] considered gathering classic robots to a small area by avoiding collisions between robots. However, they also do not provide runtime analysis. Kirkpatrick et al. [19] studied gathering as a point convergence problem where starting from an arbitrary initial configuration, robots move in such a manner that they reach inside a circle of radius that is at most $\epsilon, \epsilon > 0$. They proposed an algorithm to solve the problem in the *k*-asynchronous model (i.e., the degree of asynchrony is bounded to k); however, they showed that point convergence is unsolvable in the fully asynchronous model. In this article, we present an algorithm with runtime analysis to solve the gathering problem in the fully asynchronous model by assuming robots agree on one coordinate axis. Bhagat et al. [21] studied the limited visibility model for robots and presented different geometric pattern formation problems under limited visibility.

to make any diagonal, horizontal, or vertical hops if they see at least a robot in the north at vertical distance 1 (or more) from their positions (i.e., on or outside the connectivity range

Gathering on a predefined point has been studied in several papers [22–24]. These papers studied gathering in the context of robots with an extent (i.e., *fat robots*). Applying these algorithms to the classic model solves gathering in $\mathcal{O}(D)$ time (provided that gathering point is known to robots), where *D* is the largest distance from any robot to the predefined gathering point. However, the runtime bound is provided only for the grid, and the gathering point is known to robots a priori. Recently, Braun et al. [25] studied the gathering problem in a three-dimensional Euclidean space under limited visibility and presented $O(n^2)$ -time and $O(D_E \cdot n^{\frac{3}{2}})$ -time algorithms in the fully synchronous and continuous time models, respectively.

The question of gathering on graphs instead of gathering in the plane was studied in [26–28]. Di Stefano and Navarra [27] assumed unlimited visibility and an asynchronous setting and proved the optimal bounds on the number of robot movements for special graph topologies such as trees and rings. D'Angelo et al. [28] showed that gathering can be solved in grids without multiplicity detection. Di Stefano and Navarra [26] extended the results of [28] to infinite grids and bounded the total number of robot movements.

Gathering is solved by circumventing the impossibility of gathering at a single point in some recent papers. The relaxation is on the gathering requirement: Gathering occurs within a small area instead of at a point. A prominent paper that solves gathering in a small area is written by Cord-Landwehr et al. [14] in which, starting from any arbitrary configuration on a grid, robots gathered within a 2 × 2-sized grid area. Cord-Landwehr et al. [29] provided an O(N)-time algorithm for the robot convergence problem (converging toward a single not predefined point) [30].

Izumi et al. [31] considered the robot scattering problem (opposite of gathering) in the semi-synchronous setting and provided an expected $O(\min\{N, D^2 + \log N\})$ -time algorithm; here, D is the diameter of the initial configuration.

All the previous algorithms, including Izumi et al. [4], work in the fully synchronous setting, except for [11] which works in the one-by-one activation setting (also known as sequential activation). Our algorithm works in the asynchronous setting. Furthermore, all previous algorithms assume that when two or more robots move to the same location,

they are merged as only one robot. Our algorithm does not merge robots; in other words, even if robots located at the same position are activated at different times, the gathering progress is achieved through the (individual) moves of those robots.

Roadmap. In Section 2, we detail the model and touch on some preliminaries. For the sake of simplicity in discussion, we first provide an $O(D_E)$ -time algorithm for robots on a grid agreeing on both the coordinate axes in Section 3. We then provide an $O(D_E)$ -algorithm for robots on a plane agreeing on both the coordinate axes in Section 4. In Section 5, we discuss how the algorithms of Sections 3 and 4 can be modified to solve gathering when robots agree on only one axis. Finally, we provide concluding remarks in Section 6 with a brief discussion.

2. Model and Preliminaries

Robots. We consider a distributed system of *N* robots (agents) from a set $Q = \{r_0, r_1, \dots, r_{N-1}\}$. Each robot is a (dimensionless) point that can move in an infinite two-dimensional real space \mathbb{R}^2 . Throughout this article, we will use a point to refer to a robot as well as its position. We denote by dist (r_i, r_j) the distance between two robots $r_i, r_j \in Q$. Each robot r_i works under limited visibility and viewing range of each robot is $\sqrt{10}$, i.e., a robot r_i can see and be visible to another robot r_j if and only if dist $(r_i, r_j) \leq \sqrt{10}$. For some cases, e.g., for grid, the viewing range smaller than $\sqrt{10}$ is sufficient. We describe what exactly is the viewing range when we describe algorithms in Sections 3 and 5. The connectivity range of each robot is $\sqrt{2}$ following square connectivity, i.e., two robots have an edge between them on *G* if one robot is inside the (axis-aligned) 2×2 -sized square area formed by the other robot being at its center. The robots agree on the unit of distance measure, i.e., the viewing and connectivity ranges of $\sqrt{10}$ and $\sqrt{2}$ are the same for each robot $r_i \in Q$. The robots also agree on one coordinate axis, north (the assumption of robots agreeing on east is analogous). For the sake of simplicity in discussion, the algorithms in Sections 3 and 4 assume that robots agree on both coordinate axes. The assumption on both axis agreement is lifted in Section 5.

Look-Compute-Move. Each robot r_i is either active or inactive. When a robot r_i becomes active, it performs the "Look-Compute-Move" cycle as follows:

- Look: For each robot r_j that is within the viewing range of r_i, r_i can observe the position of r_j on the plane. Robot r_i also knows its own position;
- *Compute:* In any cycle, robot r_i may perform an arbitrary computation using only the positions observed during the "look" portion of that cycle. This includes determination of a (possibly) new position for r_i for the start of next cycle;
- Move: At the end of the cycle, robot r_i moves to its new position.

Robot Activation. In the fully synchronous setting (\mathcal{FSYNC}), every robot is active in every LCM cycle. In the semi-synchronous setting (\mathcal{SSYNC}), at least one robot is active, and over an infinite number of LCM cycles, every robot is often infinitely active. In the asynchronous setting (\mathcal{ASYNC}), there is no common notion of time, and no assumption is made on the number and frequency of LCM cycles in which a robot can be active. The only guarantee is that every robot is active infinitely often. Complying with the \mathcal{ASYNC} setting, we assume that a robot "wakes up" and performs its *Look* phase at an instant of time. We also assume that during the *Move* phase, it moves in a straight line and stops only after reaching its destination point; in other words, the moves are rigid [2].

Runtime. For the FSYNC setting, time is measured in rounds. Since a robot in the SSYNC and ASYNC settings could stay inactive for an indeterminate interval of time, we bound a robot's inactivity and use the standard notion of epoch to measure runtime. An *epoch* is the smallest interval of time within which each robot is guaranteed to execute its LCM cycle at least once. Therefore, for the FSYNC setting, a round is an epoch. We will use the term "time" generally to mean rounds for the FSYNC setting and epochs for the SSYNC and ASYNC settings.

Square Area. Let $r_i \in Q$ be a robot positioned at coordinate (x_i, y_i) . Let L_i, L'_i , respectively, be the horizontal and vertical lines passing through r_i . Since r_i knows north, r_i can easily compute L_i, L'_i . The *square area* for r_i , denoted as $SQ(r_i)$, is an area of the plane

enclosed by four lines $L_{i,t}$, $L_{i,t}$, $L_{i,t}$, $L_{i,t}$ with $L_{i,t}$, $L_{i,b}$ being parallel to L_i (perpendicular to L_i) and passes through coordinates $(x_i, y_i + 1)$ and $(x_i, y_i - 1)$, respectively, and $L_{i,l}$, $L_{i,r}$ is perpendicular to L_i (parallel to L_i') and passes through coordinates $(x_i - 1, y_i)$ and $(x_i + 1, y_i)$, respectively. Notice that $SQ(r_i)$ is axis-aligned, and both the height and width of it is two. We denote by p_{tl} , p_{br} , p_{tr} the intersection points of lines $L_{i,t}$ and $L_{i,l}$, $L_{i,b}$ and $L_{i,l}$, $L_{i,b}$ and $L_{i,r}$, and $L_{i,t}$ and $L_{i,r}$, respectively. We can divide $SQ(r_i)$ to four quadrant squares $SQ_1(r_i)$, $SQ_2(r_i)$, $SQ_3(r_i)$, and $SQ_4(r_i)$ with both heights and widths as one. Let $SQ_1(r_i)$ and $SQ_2(r_i)$ be at the north of L_i and $SQ_3(r_i)$ and $SQ_4(r_i)$ be at east of L_i' . We say that the positions of L_i in $SQ(r_i)$ belong to $SQ_3(r_i)$ and $SQ_4(r_i)$. Figure 2a illustrates these ideas.

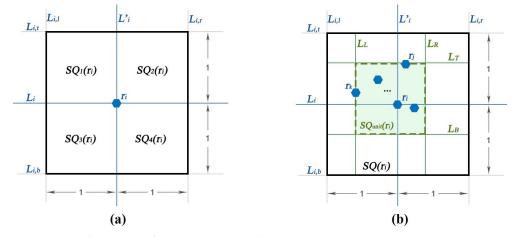


Figure 2. An illustration of (a) Square Area and (b) Unit Area.

Unit Area. Let r_j, r_k , respectively, be the topmost and leftmost robots among the robots in $SQ(r_i)$. In some situations, both r_j and r_k may be the same robot, and this definition is still valid. Let L_T be the horizontal line passing through r_j and L_L be the vertical line passing through r_k . Let L_B be the horizontal line parallel to L_T , and it is at distance one south of L_T . Similarly, let L_R be the vertical line parallel to L_L and at a distance of one east of L_L . The *unit area* for r_i , denoted as $SQ_{unit}(r_i)$, is an area of the plane inside $SQ(r_i)$ enclosed by lines L_L, L_T, L_R , and L_B . Note that $SQ_{unit}(r_i)$ is an (axis-aligned) unit square of both height and width one. We denote by p_{TL}, p_{BL}, p_{BR} , and p_{TR} the intersection points of lines L_T and L_L, L_B and L_L, L_B and L_R , and L_T and L_R , respectively. Figure 2b illustrates the idea of unit area computation.

Visibility Graph and Gathering Configuration. We define the visibility graph of any initial configuration *I* and gathering configurations as follows.

Definition 1 (Initial Visibility Graph). The visibility graph G(I) = (Q, E) of any arbitrary initial configuration I of robots is the graph such that, for any two distinct robots r_i and r_j , $(r_i, r_j) \in E$ where r_j is positioned on or inside $SQ(r_i)$ (or vice-versa).

SQ(*) provides connectivity for robots with square connectivity range $\sqrt{2}$. The gathering problem may not be solvable under limited visibility if the initial visibility graph G(I) is not connected [2,6]. Therefore, we assume that G(I) is connected at time t = 0. Moreover, any algorithm for gathering must maintain the connectivity of G(I) during its execution until a gathering configuration is reached. For the sake of clarity, we denote by $G_t(I)$ the visibility graph G(I) for any time $t \ge 0$.

Definition 2 (Ideal Gathering Configuration). *An ideal gathering configuration is one where all robots are at a single point that is not known beforehand.*

The relaxed gathering configuration (Definition 3) is inspired from the recent work of Cord-Landwehr et al. [14], where the authors modified the ideal gathering configuration (Definition 2) to solve gathering on a grid by locating all robots within a 2 × 2-sized square area that is not known beforehand. Additionally, Definition 3 helps us to circumvent the impossibility results relative to gathering to a point in the ASYNC setting [3], even when N = 2, by gathering the robots in a unit horizontal line segment. As an example, consider two robots r_i , r_j at distance 1 apart on a horizontal line working under an ASYNC setting. Let r_i and r_j activate at the same time and r_i moves to the position of r_j and r_j moves to the position of r_i as both of them move in the horizontal line. This scenario may repeat infinitely since r_i and r_j do not have common agreement on east or west under one-axis agreement on north. By using our square connectivity range $\sqrt{2}$, the viewing range $\sqrt{10}$ and one-axis agreement, even when N = 2, the robots can reach a horizontal segment of length one unit. The viewing range helps each robot r_i to see whether there is a robot outside $SQ(r_i)$ and decide whether Definition 3 is reached.

Under both axis agreement, our algorithm provides an ideal gathering configuration (Definition 2). Under one-axis agreement, our algorithm provides a relaxed gathering configuration (Definition 3). Since we focus on runtime, we do not explicitly characterize the configurations that do not achieve Definition 2 under one-axis agreement, but we simply prove that all the configurations (at least) attain Definition 3 in $O(D_E)$ time.

3. $\mathcal{O}(D_E)$ Time Algorithm for the Grid

In this section, we define the grid model that is a restriction imposed on the Euclidean plane. The motivation behind designing an algorithm for this model is that it is simple to understand and easy to analyze. We design and analyze an algorithm without the grid restriction in Section 4. In the grid model, a robot moves on a two-dimensional grid and changes its position to one of its eight horizontal, vertical, or diagonal neighboring grid points. Throughout this section, we assume that robots agree on both coordinate axes, and each robot has the viewing range of two. Moreover, each robot has the square connectivity range of $\sqrt{2}$. We say gathering is performed when the robot configuration satisfies Definition 2.

3.1. The Algorithm

The pseudocode of the algorithm is given in Algorithm 1. Depending on the positions of other robots within its viewing range, r_i distinguishes *diagonal*, *horizontal*, and *vertical hops*, which we discuss separately below. A robot r_i hops on one of its neighboring grid points based on the diagonal, horizontal, or vertical pattern that matches the snapshot it takes in the *Look* phase. Notice that since robots agree on north, r_i never hops on any of the three neighboring grid points relative to north from its position, i.e., r_i hops only to one of its five neighboring grid points on the same horizontal line L_i or south of L_i . We will show that this allows achieving a gathering progress in every epoch. Since robot moves are not instantaneous due to the ASYNC setting, a robot r_i also does not move if it observes at least one robot in the north of L_i inside or on $SQ(r_i)$. This is crucial for guaranteeing that robots do not move south forever. Robot r_i terminates when it sees no other robot inside or on $SQ(r_i)$ other than its position.

Diagonal Hops. A diagonal hop takes a robot r_i to one of the two diagonal neighboring grid points in the south (i.e., either p_{br} or p_{bl}). Let L_i be a horizontal line that passes from the current position of a robot r_i . Robot r_i makes a diagonal hop when it sees no robot in $SQ(r_i)$ at the north of L_i (including the positions of L_i) and either (i) r_i sees no other robot in $SQ_3(r_i)$ (except at its position) and sees at least one robot on $L_{i,r}$ at the south of L_i or (ii) r_i sees no other robot in $SQ_4(r_i)$ (except at its position) and sees at least one robot on $L_{i,l}$ at the south of L_i . In case (i), r_i hops on grid point p_{br} , whereas in case (ii), it hops on grid point p_{bl} .

In this hop, the robot moves diagonally at a distance of $\sqrt{2}$. Figure 3a,b illustrate diagonal hops.

	/* In every LCM cycle, each robot r_i does the following when it
	activates: *
	/* Look: *
1	$(x_i, y_i) \leftarrow$ current position of robot r_i in the grid graph G ;
	$C(r_i) \leftarrow$ snapshot of the positions of other robots within the viewing range of r_i ;
	/* Compute: *
	$SQ(r_i) \leftarrow$ square area for robot r_i ;
	$L_i, L'_i \leftarrow$ horizontal and vertical lines passing through r_i , respectively;
	$L_{i,t}$, $L_{i,b} \leftarrow$ horizontal lines parallel to L_i and passing through $(x_i, y_i + 1)$ and
	$(x_i, y_i - 1)$, respectively;
6	$L_{i,r}, L_{i,l} \leftarrow$ vertical lines parallel to L'_i and passing through $(x_i + 1, y_i)$ and
	$(x_i - 1, y_i)$, respectively;
7	$d_i \leftarrow$ destination point for r_i to move;
	If r_i sees no other robot in any of the neighboring grid points on $SQ(r_i)$ then
9	r_i terminates;
	Else if r_i sees at least a robot in $SQ(r_i)$ in North of L_i then
11	
	/* Check the following two conditions for a diagonal hop. *
12	Else if r_i sees no robot in $SQ(r_i)$ on or West of L'_i (except at its position), and see
	at least a robot on $L_{i,r}$ that is part of $SQ(r_i)$ in South of L_i then // Figure 3.
13	$d_i \leftarrow (x_i + 1, y_i - 1);$
14	Else if r_i sees no robot in $SQ(r_i)$ on or East of L'_i (except at its position), and sees
	at least a robot on $L_{i,l}$ that is part of $SQ(r_i)$ in South of L_i then // Figure 3
15	$d_i \leftarrow (x_i - 1, y_i - 1);$
	<pre>/* Check the following condition for a horizontal hop. *</pre>
16	Else if r_i sees at least a robot on $(x_i + 1, y_i)$ and sees no other robot in $SQ(r_i)$,
	except on L_i in the East then // Figure 3
17	$d_i \leftarrow (x_i + 1, y_i);$
18	Else // Check either of the following two conditions for a vertical
	hop.
19	If r_i sees no robot in $SQ(r_i)$ in North of L_i and sees at least a robot r_j on L'_i in
	South in $SQ(r_i)$ then // Figure 3
20	$d_i \leftarrow (x_i, y_i - 1);$
21	Else if r_i sees no robot in $SQ(r_i)$ in North of L_i and sees at least one robot each
	on two lines $L_{i,l}$ and $L_{i,r}$ on or South of L_i in $SQ(r_i)$ then // Figure 3
22	$d_i \leftarrow (x_i, y_i - 1);$
	/* Move: *
23	r_i moves to d_i ;
	/* Note: Each robot reaches a grid point after the completion of a
	cycle. But a robot may not necessarily see other robot(s) (which
	is/are moving) only at grid points since the robots may perform
	their LCM cycles at arbitrary times due to the \mathcal{ASYNC} setting.
	*/

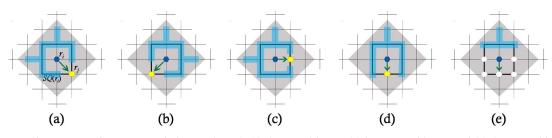


Figure 3. An illustration of moves made by a robot: (**a**,**b**) diagonal hops, (**c**) horizontal hop, and (**d**,**e**) vertical hops. The blue shaded area along the grid lines represents that there is no robot in that area. The outer diamond represents the set of grid points within the viewing range of r_i in grid (i.e., 2).

Horizontal Hops. A horizontal hop takes r_i to its neighboring grid point on L_i in the east. When a robot r_i sees at least one robot r_j at its horizontal neighboring grid point (and possibly others on L_i between r_i and r_j) and no other robot in $SQ(r_i)$, r_i makes a horizontal hop to the neighboring grid point in the east. Figure 3c illustrates the horizontal hop.

Vertical Hops. A vertical hop always takes r_i to its neighboring grid point vertically south from it. Robot r_i makes a vertical hop if either (i) it sees a robot r_j on L'_i at the south of L_i and no other robot in $SQ(r_i)$ at the north of L_i or (ii) it sees at least one robot each on $L_{i,l}$ and $L_{i,r}$ or south of L_i and no other robot in $SQ(r_i)$ at the north of $SQ(r_i)$ at the north of L_i . Figure 3d illustrates case (i) and Figure 3e illustrates case (ii).

3.2. Analysis of the Algorithm

We first prove the correctness of the algorithm in the sense that the visibility graph $G_t(I)$ remains connected during execution. We then prove the progress of the algorithm such that after a finite number of epochs, any connected initial configuration converges to an ideal gathering configuration (Definition 2). Let I be any arbitrary initial configuration of robots in Q on a grid such that $G_0(I)$ is connected. Let SER(I) be the *axis-aligned smallest enclosing rectangle* for the robots in I. Let D_Y and D_X , respectively, be the height and width of SER(I). Let $L_{D_Y}, L_{D_Y-1}, \ldots, L_0$ be the horizontal line segments of SER(I) at every 1 unit vertical distance, with L_{D_Y} being the topmost horizontal line segment and L_0 being the bottommost horizontal line segment. Similarly, let $L'_{D_X}, L'_{D_X-1}, \ldots, L'_0$ be the rightmost vertical line segment and L'_0 being the leftmost vertical line segment. Let L_S be the line parallel to L_0 at distance $\frac{D_X}{2}$ south of L_0 . Figure 4 illustrates these definitions.

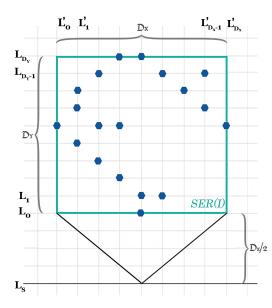


Figure 4. An illustration of an axis-aligned smallest enclosing rectangle SER(I) and the triangular area south of it.

Lemma 1. Given any initial configuration I such that the visibility graph $G_0(I)$ is connected, the graph $G_t(I)$ at any time t > 0 remains connected.

Proof. For a robot r_i , since $G_0(I)$ is connected, there are robots in at least two out of its eight neighboring grid points, unless r_i is a leaf node in $G_0(I)$ in which case there may be a robot in only one out of its eight neighboring grid points. We will show that no matter the moves of r_i and the robots in its eight neighboring grid points, in the new configuration, r_i has robots in at least two out of its eight neighboring grid points (unless it is a leaf node in $G_0(I)$ in which case there will be a robot in one of eight neighboring grid points). This immediately proves this lemma from our definition of connectivity.

Notice that the movements of r_i are either diagonal, horizontal, or vertical, and r_i never moves to its three neighboring grid points on $SQ(r_i)$ in the north of L_i . Furthermore, r_i does not move when it sees at least one robot r_j at the north of L_i or inside $SQ(r_i)$.

A diagonal hop for r_i is possible when r_i sees other robot(s) r_j only on one of its two diagonal neighboring grid points on $SQ_3(r_i)$ or $SQ_4(r_i)$, and r_i moves to the position of r_j (since r_j does not move as r_j sees r_i at the north of L_j until r_i reaches the position of r_j). Robot r_i also makes a diagonal hop when it sees other robot(s) r_j on either $L_{i,l}$ only or $L_{i,r}$ only that is part of $SQ(r_i)$ in the south of L_i . Since r_j is at the south of L_i , it must be in transit to the neighboring diagonal grid point of r_i and r_i , and r_j meet together when both of them reach that grid point. If one reaches that grid point before, it waits for the other since there will be at least one robot at the north of the horizontal line for the robot on that grid point until r_i and r_j meet.

A horizontal hop for r_i is possible only when r_i sees r_j in the east at the horizontal neighboring grid point (and no other robot inside or on $SQ(r_i)$ except on L_i in the east). After the movement, r_i either reaches the position of r_j (if r_j does not move) or r_i and r_j will be at the two vertical neighboring grid points (if r_j moves). That is, for r_j to move, r_j has to see at least one other robot in addition to r_i on L_i or at the south. The connectivity is maintained since r_i is the endpoint robot (i.e., it has only one neighboring robot), and if r_j is also the endpoint robot, then there is no third robot in the system; otherwise, r_j must see a robot $r_k \neq r_i$ in one of its five neighboring grid points on L_i or south of L_i .

A vertical hop for r_i is possible when it sees at least one other robot r_j on the neighboring grid point that is vertically south of it (and possibly others between r_i and r_j), but no robot is observed on or inside $SQ(r_i)$ in the north of L_i . In this case, r_i reaches the position of r_j since r_j cannot move until there is r_i in the north. r_i performs a vertical hop also when it sees at least one robot each on the two vertical lines $L_{i,l}$ and $L_{i,r}$ on or south of L_i in $SQ(r_i)$ and no robot in $SQ(r_i)$ in the north of L_i . Suppose r_i sees two robots r_j and r_k in $SQ(r_i)$ on or south of L_i such that $r_j \in L_{i,l}$ and $r_k \in L_{i,r}$. After the movement, in this case, the distance between r_i and one of r_j , r_k is at most $\sqrt{2}$ as they will be (at most) at the diagonal neighboring grid points from each other. The lemma is described as follows.

Lemma 2. Given any initial configuration I, if all the robots are not at one or two neighboring grid positions on the same horizontal line, the robots on the line segment L_{D_Y} of SER(I) move to the line segment L_{D_Y-1} in at most two epochs.

Proof. Since L_{D_Y} is the topmost horizontal line segment, there is no robot in the north of L_{D_Y} . Moreover, since robots agree on north, the robots at the grid points of L_{D_Y} never move north of L_{D_Y} . Therefore, if all the robots at the grid points of L_{D_Y} make diagonal or vertical hops when they become active, then they will reach the positions of L_{D_Y-1} ; hence, in at most one epoch, all robots on L_{D_Y} will be at L_{D_Y-1} , even in the ASYNC setting. Note that in an epoch, each robot completes its LCM cycle at least once. This means that, in this case, each activated robot at L_{D_Y} remains at a grid point on L_{D_Y} if and only if it makes a horizontal move in that epoch. We will show that r_i either terminates or moves to a position on L_{D_Y-1} in the next epoch.

Let r_j be the robot at the horizontal neighboring grid point that r_i sees on L_{D_Y} when it makes a horizontal hop. We have it that r_i must not have seen any robot on its other seven neighboring grid points or inside of $SQ(r_i)$ (except between r_i and r_j on the same horizontal line). When r_i moves to the position of r_j , either r_j is still on L_{D_Y} or has moved to L_{D_Y-1} in the neighboring grid point that is vertically south of r_j . If r_j has not moved south, either the execution is still in the first epoch or r_j does not see any other robot except on or between the positions of r_i and r_j in the same horizontal line. If r_j is still in the first epoch, then r_i reaches the position of r_j , and either this horizontal moving scenario repeats with execution still being in the first epoch or r_j moves south. If r_j does not see any other robot except on or between the positions of r_i and r_j in the same horizontal line, r_i (and all other robots on L_i up to r_j) reaches the position of r_j , and all of them terminate by achieving the gathering configuration. If r_j has moved to L_{D_Y-1} in the first epoch, r_i moves to the position of r_j on L_{D_Y-1} when it becomes active next time since r_j is in the neighboring grid point of $SQ(r_i)$ that is vertically south of it. Therefore, in at most two epochs, all the robots on L_{D_Y} move to the positions of L_{D_Y-1} . \Box

The following observation is immediate for vertical hops since a vertical hop by a robot takes it to its neighboring grid point vertically south of it. For a horizontal/diagonal hop, this is also true since a robot performing a horizontal/diagonal hop never finds its neighboring robot outside $L'_{D_{\rm v}}$ and L'_0 .

Observation 1. No robot of SER(I) moves to the positions outside of lines L'_0 and L'_{D_X} during the execution.

Lemma 3. No robot of SER(I) reaches the south of horizontal line L_S (Figure 4) during the execution.

Proof. Let $\mathcal{X} := \{r_0, \ldots, r_X\}$ be the robots on L_0 in the increasing order of their xcoordinates (some of the grid points on L_0 may be empty, and it does not impact our analysis). If all robots r_0, \ldots, r_X on set \mathcal{X} have robots on or inside SQ(*) at the north of L_0 , they do not move until those robots at the north of L_0 are moved to L_0 . Therefore, we first assume that only r_0 and r_X have robots at the north of L_0 inside or on $SQ(r_0)$ and $SQ(r_X)$, respectively, and $\{r_1, \ldots, r_{X-1}\}$ have no such robots at the north of L_0 inside or on their respective SQ(*). Robots r_2, \ldots, r_{X-2} can move to their neighboring grid points that are vertically south of them in one epoch. This is because they do not see any robot at the north of the horizontal line passing through their positions.

In the second epoch, r_2 and r_{X-2} see r_1 and r_{X-1} , respectively, in the north on their respective SQ(*), and only the robots r_3, \ldots, r_{X-3} can move to the next line in the south from their current horizontal line. This implies that each robot r_i , $1 \le i \le \frac{X}{2}$ waits for r_{i-1} since it sees r_{i-1} on the neighboring grid point in the north from their position, and this is also the case for the robots from $r_{\frac{X}{2}+1}$ (from $r_{\frac{X}{2}+2}$ in the even D_X case) to r_{X-1} . The scenario repeats until the middle robot of L_0 reaches at most $\frac{D_X}{2} - 1$ distance south from L_0 , if D_X is an odd number). If D_X is an even number, two robots $r_{\frac{X}{2}}$ and $r_{\frac{X}{2}+1}$ of L_0 reaches at most $\frac{D_X}{2}$.

at most $\frac{D_X}{2}$ – 2 distance south from L_0 .

Now consider the case where either r_0 or r_X has no robot on the neighboring grid point that is vertically north from it in addition to r_1, \ldots, r_{X-1} . Notice that at least one of r_0 or r_X must have a robot at the north to maintain the connectivity of $G_t(I)$. Let r_0 be that robot (the case of r_X is analogous). If r_0 moves first, it moves to the position of r_1 in L_0 performing a horizontal hop. If r_1 moves first, r_0 reaches r_1 at the horizontal line immediately below L_0 performing a diagonal hop. By repeating this, the robots $r_0, \ldots, r_{\frac{X}{2}-1}$ may reach the position of $r_{\frac{X}{2}}$ (the middle robot) at distance $D_{\frac{X}{2}}$ south of L_0 (i.e., L_S). For the remaining robots $r_{\frac{X}{2}}, \ldots, r_X$, each robot $r_{X-i}, 1 \le i \le \frac{X}{2}$ sees r_{X-i+1} in the north on respective SQ(*); thus, the middle robot can reach at most $D_{\frac{X}{2}}$ south of L_0 . Therefore, this process again ends up at line L_S in the worst-case.

During the execution, the robots at the north of L_0 in SER(I) may visit the robots south of L_0 . In that case, the robots at the south of L_0 do not move until they see at least one robot at the north of its position inside SQ(*). If a robot does not see any robots at the north of its position, then it either performs a diagonal hop which never takes it to the south of L_S or it performs a vertical hop. If it performs a vertical hop, it will perform a horizontal hop in the next epoch, and this never takes it south of L_S . Therefore, according to the moves of the robots of L_0 , it is easy to see that all the robots in Q are within the triangular area (as depicted in Figure 4). \Box

Lemma 4. The viewings of two and the square connectivity range of $\sqrt{2}$ are sufficient for gathering relative to a grid point (that is not known beforehand) on a grid under both axis agreements.

Proof. If a robot r_i sees robots only at the south (vertically below or diagonal), it can simply move towards the south, and when r_i sees no robot in the south and no robot on horizontal neighboring grid points, it can simply terminate. This is because if there is another robot within its viewing range, r_i must see it in one of its eight neighboring grid points in order to satisfy connectivity for $G_t(I)$, t > 0, (Lemma 1) since $G_0(t)$ satisfies this condition. If r_i sees a robot r_j in either of its horizontal neighboring grid points, then r_i moves to the position of r_j if r_j is at its east, and r_j simply waits for r_i as it does not perform a horizontal hop to the west or moves vertically south. Even in this case, r_i sees r_j . Therefore, if r_i sees no robot in $SQ(r_i)$, it can terminate. According to the definition of the connectivity range, the viewing range of two is enough for r_i to maintain connectivity with any of the eight neighboring grid points. \Box

The analysis of this section proves the following main result.

Theorem 2. Given any connected configuration of $N \ge 1$ robots with the viewing range of two and the square connectivity range of $\sqrt{2}$ on a grid, the robots can gather to a point in $\mathcal{O}(D_E)$ epochs in the ASYNC setting under both axis agreement.

Proof. We have from Lemma 1 that $G_t(I)$ remains connected during the execution. We have from Lemma 2 that all the robots at the topmost horizontal line $L_{D_{Y}}$ of SER(I)move to L_{D_Y-1} in at most two epochs. Thus, after at most two epochs, Lemma 2 applies again to the robots of L_{D_Y-1} , which takes all the robots on L_{D_Y-1} to L_{D_Y-2} or south in next two epochs. This process continues and all the robots in SER(I) move to line L_0 or south of it in at most $2 \cdot D_Y$ epochs. These robots will be at one grid point in at most the next D_X epochs. This is because for every one unit of vertical hop of the robots at the south of L_0 , the width of the positions of robots decreases by two. The width of the positions of robots at L_0 is at most D_X . Thus, the width of the positions of robots becomes zero at distance $\leq \frac{D_X}{2}$ south of L_0 . Again, from Lemma 2, it takes at most two epochs to move all the robots one unit south; hence, to move all the robots at $\frac{D_X}{2}$ distance south of L_0 , it takes at most D_X epochs. Therefore, the robots can gather in $\mathcal{O}(D_X + D_Y)$ epochs. We have that $\max\{D_X, D_Y\} \leq D_E \leq \sqrt{2} \cdot \max\{D_X, D_Y\}$ for SER(I) of any initial configuration I. Therefore, $D_X + D_Y \leq 2 \cdot \max\{D_X, D_Y\}$; hence, $\mathcal{O}(D_X + D_Y) = \mathcal{O}(2 \cdot \max\{D_X, D_Y\}) = \mathcal{O}(D_E)$. The algorithm terminates (Lemma 4) since if a robot r_i sees no robot in $SQ(r_i)$ other than its current position, then all the robots of Q must be gathered in the current position of r_i (due to the connectivity guarantee of Lemma 1).

4. $\mathcal{O}(D_E)$ Time Algorithm for the Euclidean Plane

We discuss here how to solve gathering in a Euclidean plane by removing the restrictions on robot moves imposed on a grid. The viewing range is of $\sqrt{10}$, and the square connectivity range is of $\sqrt{2}$ (both measured in Euclidean distance). The robots agree on both coordinate axes.

We say gathering is performed when the robot configuration satisfies the ideal gathering configuration (Definition 2).

4.1. The Algorithm

The pseudocode of the algorithm is provided in Algorithm 2. Depending on the positions of other robots in its viewing range, a robot r_i can decide to hop on the positions of one of its neighboring quadrants $SQ_3(r_i)$ or $SQ_4(r_i)$; we do not allow r_i to move to the positions north of L_i . In contrast to grid where robots always move in either unit distances (horizontal and vertical hops) or distance $\sqrt{2}$ (diagonal hops), in the Euclidean plane, a robot may move with varying distance of at most one for horizontal and vertical hops and varying distance of at most $\sqrt{2}$ for diagonal hops. The main difference (with the grid) is on how robots match patterns to perform diagonal, horizontal, and vertical hops. In contrast to relatively simple matching patterns of robots on a grid, the matching patterns of robots for the Euclidean plane are complex.

4.1.1. Overview of the Patterns

The idea is to resemble the patterns for the Euclidean plane to the respective patterns for the grid. For this purpose, we ask each robot r_i to compute unit area $SQ_{unit}(r_i)$ as defined in Section 2. $SQ_{unit}(r_i)$ helps r_i to decide whether to make a diagonal, horizontal, or vertical hop. If r_i sees itself or at least one robot in SQ_{unit} , (r_i) is connected to a robot at the north of L_T , and it does not move. This guarantees that robots do not move south forever. If the robots in $SQ_{unit}(r_i)$ are not connected to any other robot outside of $SQ_{unit}(r_i)$ at the west of L_R (or similarly at the east of L_L), then r_i makes a horizontal hop to the east (or similarly to west). If r_i satisfies the conditions for a horizontal hop, except that there is a robot on point p_{BR} (or similarly on p_{BL}), and the robots in $SQ_{unit}(r_i)$ are in a single diagonal line, then it makes a diagonal hop to p_{BR} (or similarly to p_{BL}). If the robots in $SQ_{unit}(r_i)$ are not connected to any other robot outside of $SQ_{unit}(r_i)$ at the north of L_B but (at least) a robot in $SQ_{unit}(r_i)$ is connected to a robot on or south of L_B and r_i does not satisfy a condition for a diagonal hop, then r_i makes a vertical hop. Moreover, if r_i sees at least one robot on each of its two sides (east and west) at horizontal distance \geq 2, then it makes a vertical hop. The termination is guaranteed by asking r_i to check, in every LCM cycle, whether all robots in its viewing range are positioned in $SQ_{unit}(r_i)$ (that is, r_i sees no robot outside $SQ_{unit}(r_i)$). When that is the case, r_i and the remaining robots in $SQ_{unit}(r_i)$ run a special procedure in order to reach a single point (Definition 2) and terminate their computation. Reaching a single point is facilitated for robots by both axis agreement.

4.1.2. Detailed Description of the Patterns

We provide details of the patterns below. Robot r_i terminates when it sees no other robot in $SQ(r_i)$, except on its current position.

Horizontal Hops. Robot *r_i* makes a horizontal hop in the following conditions:

- This case is similar to the grid. If r_i sees a robot r_j at its east at distance one on line L_i and there is no robot in $SQ(r_i)$, except the current position of r_i and possibly on L_i from r_i up to r_j , r_i hops to the position of r_i (distance 1).
- Robot r_i hops horizontally east on L_i distance $1 L_{ik}$ (L_{ik} is the distance between r_i and r_k , the leftmost robot in $SQ(r_i)$) if all the following conditions are satisfied (Figure 5a illustrates this case for a horizontal hop):
 - No robot in $SQ_{unit}(r_i)$ is connected to any other robot at the north of L_T .
 - No robot in $SQ_{unit}(r_i)$ is connected to any other robot at the west of L_R , except for the robots in $SQ_{unit}(r_i)$.
 - There is no robot on L_B of $SQ_{unit}(r_i)$.

Algorithm 2: The algorithm for gathering in the Euclidean plane In every LCM cycle, each robot r_i does the following when it becomes activated: /* Look: 1 $(x_i, y_i) \leftarrow$ current position of robot r_i in the plane; 2 $C(r_i) \leftarrow$ snapshot of the positions of other robots within the viewing range of r_i ; /* Compute: 3 *SQ*(r_i) ← square area for robot r_i ; 4 $SQ_{unit}(r_i) \leftarrow$ unit area for r_i ; 5 $L_i, L'_i \leftarrow$ horizontal and vertical lines passing through r_i , respectively; 6 $L_{i,t}, L_{i,b}, L_{i,r}, L_{i,l} \leftarrow$ top, bottom, right and left boundary lines of $SQ(r_i)$, respectively; 7 L_T , L_B , L_R , $L_L \leftarrow$ top, bottom, right and left boundary lines of $SQ_{unit}(r_i)$, respectively; s $d_i \leftarrow$ destination point for r_i to move; 9 If r_i sees no robot outside $SQ_{unit}(r_i)$ then execute the termination procedure; 10 11 If r_i sees a robot r_j in $SQ_{unit}(r_i)$ that is connected to other robot in North of $L_{i,t}$ (of $SQ(r_i)$) then r_i does not move; $d_i \leftarrow (x_i, y_i)$; 12 /* Conditions for horizontal hops */ 13 Else if there is no robot on L_B in the segment of $SQ_{unit}(r_i) \wedge$ no robot in $SQ_{unit}(r_i)$ is connected to any other robot in West of L_R except the robots in $SQ_{unit}(r_i)$ then set the destination point d_i as a point at horizontal distance $1 - L_{ij}$ in East (where L_{ij} is 14 the horizontal distance from r_i to the leftmost robot r_j in $SQ_{unit}(r_i)$; /* Note: If r_i be the leftmost robot in $SQ_{unit}(r_i)$, then it moves distance 1 horizontally in East. And, if the conditions satisfy symmetrically, then r_i sets as destination point to the position on L_L in West. */ /* Conditions for diagonal hops */ 15 Else if r_i sees at least a robot on the diagonal point $p_{BR} \wedge$ all the robots in $SQ_{unit}(r_i)$ are in the diagonal line that passes through $SQ_4(r_i) \wedge$ no robot in $SQ_{unit}(r_i)$ is connected to any other robot in the West of L_R , except the robots in $SQ_{unit}(r_i)$ then set d_i as the diagonal point p_{BR} at distance $\sqrt{2} - L_{ii}$ (where L_{ij} is the distance from r_i to 16 r_i , the topmost and leftmost robot in $SQ_{unit}(r_i)$); /* Note: Here, p_{BR} is the intersection point of L_B and L_R and $SQ_4(r_i)$ is the unit square quadrant of $SQ(r_i)$ in the South-West region. If r_i be the topmost (leftmost) robot in $SQ_{unit}(r_i)$, then it moves distance $\sqrt{2}$ diagonally to $p_{BR}.$ Moreover, if the above conditions satisfy symmetrically, then r_i sets as destination point p_{BL} (the intersection point of L_B and L_L). */ 17 Else // Conditions for vertical hops $SP_{unit}(r_i) \leftarrow$ unit area in West of $L_{i,l}$ and South of L_B ; 18 If r_i sees a robot at the intersection point of lines L'_i and $L_B \vee r_i$ sees at least one robot 19 each in both sides (East and West) at horizontal distance $\geq 2 \lor (r_i \text{ sees a robot on } L_B \text{ of }$ $SQ_{unit}(r_i)$, no robot in $SQ_{unit}(r_i)$ is connected to other robot in North of L_B and West of L_L) \lor (r_i sees at least one robot in $SQ_{unit}(r_i)$ that is connected to other robot in South of L_B in West of L_R and no robot in $SQ_{unit}(r_i)$ is connected to other robot in North of L_B and West of L_L \lor (r_i sees at least a robot in $SP_{unit}(r_i)$ and at least a robot in $SQ_{unit}(r_i)$ is connected to a robot in North of L_B and West of L_L) then set d_i as the point vertically South at distance $1 - L_{ii}$ on L_B of $SQ_{unit}(r_i)$ (where L_{ii} 20 is the vertical distance from r_i to L_T); /* Note: If r_i be the topmost robot in $SQ_{unit}(r_i)$ then it moves distance 1 vertically South. */ /* Move: */ 21 r_i moves to d_i ;

Since we ask the robots to always move east in a horizontal hop, we do not have a symmetric case for horizontal hops under both axis agreements.

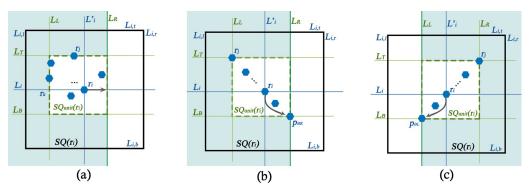


Figure 5. An illustration of a horizontal hop (a) and diagonal hops (b,c).

Diagonal Hops. Robot *r_i* makes a diagonal hop in either of the following conditions:

- This case is similar to grid. If r_i sees no other robot in $SQ(r_i)$ except at least one robot r_j in $SQ_4(r_i)$ on the diagonal corner point p_{br} , r_i hops to p_{br} . Robot r_i moves at a distance of exactly $\sqrt{2}$ if it performs this hop.
- Robot r_i hops diagonally at a distance of $\sqrt{2} L_{ij}$ (where L_{ij} is the distance between r_i and r_j , the topmost which is also the leftmost robot of $SQ_{unit}(r_i)$ at point p_{TL}) to a point in $SQ_4(r_i)$, if the following conditions are satisfied:
 - No robot in $SQ_{unit}(r_i)$ is connected to any other robot at the north of L_T .
 - No robot in $SQ_{unit}(r_i)$ is connected to any other robot at the west of L_R , except the robots in $SQ_{unit}(r_i)$.
 - All robots in $SQ_{unit}(r_i)$ are in the diagonal line that passes through $SQ_4(r_i)$.
 - There is at least one robot on the diagonal point p_{BR} of $SQ_{unit}(r_i)$.

Figure 5b illustrates this hop for r_i . The symmetric diagonal case moves r_i to point p_{BL} which is illustrated in Figure 5c.

Vertical Hops. If no robot in $SQ_{unit}(r_i)$ of a robot r_i is connected to any other robot at the north of $L_{i,t}$ (of $SQ(r_i)$), r_i makes a vertical hop of distance $1 - L_{im}$ (where L_{im} is the vertical distance from r_i to line L_T) in either of the following conditions:

- Robot r_i sees at least one robot at the intersection point of L'_i and L_B .
- Robot *r_i* sees at least one robot each at both the east and west at horizontal distance ≥ 2. Figure 6b illustrates this case.
- Robot r_i sees at least one robot on L_B of $SQ_{unit}(r_i)$, no robot in $SQ_{unit}(r_i)$ is connected to any other robot at the north of L_B and west of L_L , and the conditions for a diagonal hop are not satisfied for r_i . Figure 6a illustrates this case.
- Robot r_i sees at least one robot in $SQ_{unit}(r_i)$ that is connected to a robot at the south of L_B on or west of L_R , and no robot in $SQ_{unit}(r_i)$ is connected to any other robot at the north of L_B and west of L_L . Figure 6a also illustrates this case.
- Let $SP_{unit}(r_i)$ be a unit area at the west of $L_{i,l}$ and south of L_B with L_B being the topmost horizontal line L_T of $SP_{unit}(r_i)$ and $L_{i,l}$ being the rightmost vertical line L_R of $SP_{unit}(r_i)$. Robot r_i sees that at least one robot in $SQ_{unit}(r_i)$ is connected to a robot at the north of L_B and west of L_L , r_i sees at least one robot in $SP_{unit}(r_i)$, and the conditions for a horizontal hop are not satisfied. Figure 6c illustrates this case.

Remark 1. Robot r_i also makes a vertical hop if the symmetric situations in the last three conditions are satisfied. The above rules infer that the robots move only under certain situations. Robots do not move in all the remaining situations. This process repeats until all robots of Q are inside an (axis-aligned) 1×1 -sized square area so that the special procedure for termination, as described in the next paragraph, can be applied.

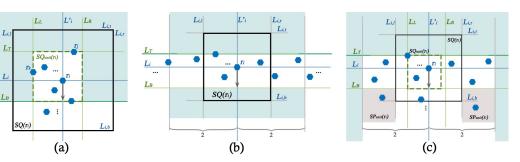


Figure 6. An illustration of vertical hops. (a) r_i sees at least one robot on L_B of $SQ_{unit}(r_i)$. (b) r_i sees at least one robot each in both sides east and west at horizontal distance ≥ 2 . (c) r_i does not see any robot at horizontal distance ≥ 2 in both sides east and west, but at least one in the west of L_L (or East of L_R) and is connected to other robot in the south of L_B and west of $L_{i,i}$ (or East of $L_{i,r}$).

4.1.3. The Termination Procedure

We will show in the analysis that the diagonal, horizontal, and vertical hops described above position all robots in Q in an axis-aligned 1×1 -sized square area, say SA. We now discuss how the robots reach a point and terminate. Let r_l , r_b , and r_r be the leftmost, bottommost, and rightmost robots in SA. We have that the unit area $SQ_{unit}(r_i)$ of each robot r_i that is in SA overlaps. Therefore, if all the robots in SA are in a single diagonal line, then r_b does not move, and all other robots in SA make a diagonal hop with their destination as the current position of r_b . Otherwise, the robots first perform a horizontal hop, as the destination points the positions on the right vertical line L_R of SA. The robots on L_R do not move until all the robots in SA (the same for all robots) are positioned on L_R . After that, the robots (now on L_R) perform a vertical hop to the destination, which is the position of the bottom most robot on L_R , which does not move. Now, since all the robots reach the same position, they terminate in the next epoch.

We have the following immediate observation after all the robots in Q are positioned in an axis-aligned 1×1 -sized square area *SA*.

Observation 2. *The robots within an axis-aligned* 1×1 *-sized square area SA are positioned at a single point in at most two epochs.*

4.2. Analysis of the Algorithm

We first prove correctness and then progress to providing a guarantee of the algorithm. We use SER(I) and other definitions as in Section 3 except L_S . Here, we define L_S as a horizontal line parallel to L_0 at distance D_X south of L_0 . Figure 7 illustrates these definitions for the algorithm in the Euclidean plane.

Based on the movement of robots in horizontal, diagonal, and vertical hops, the following observation is immediately made. This is because the robots never make a horizontal hop to the west, and the robots making the horizontal hops never reach east of L'_{D_X} . In the diagonal hops, robots move to the diagonal position that is closer to the other neighboring robots. Since all the robots are inside L'_0 and L'_{D_X} initially, there is no neighboring robot outside of those lines; hence, the diagonal hops will also be inside L'_0 and L'_{D_X} . In the vertical hops, robots always move vertically south. Since no robot has reached outside of L'_0 and L'_{D_X} with the horizontal as well as diagonal hops, this is true with the vertical hop as well.

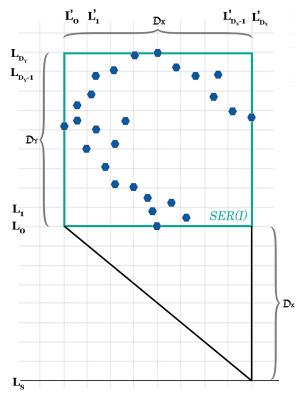


Figure 7. Illustration of *SER*(*I*) and the triangular area south of it in the Euclidean plane.

Observation 3. No robot of SER(I) moves outside of lines L'_0 and L'_{D_X} during the execution.

Lemma 5. Given that $G_0(I)$ is connected, the visibility graph $G_t(I)$ at any time t > 0 remains connected.

Proof. We extend the proof of Lemma 1. Similarly to the grid, a robot r_i either does not move or performs either a diagonal, horizontal, or a vertical hop. Note also that r_i never moves to any position at the north of L_i . Furthermore, r_i does not move when it sees at least one robot r_i on line $L_{i,t}$ or at the north of $L_{i,t}$.

First of all, if the robots move as in the grid case, Lemma 1 provides the connectivity proof for $G_t(I)$, t > 0, starting from connected $G_0(I)$. Therefore, we focus only on the cases that are particularly relevant to the Euclidean plane.

A diagonal hop for r_i is possible only when the robots in $SQ_{unit}(r_i)$ are in the diagonal line that passes through $SQ_4(r_i)$ and are not connected to any other robot at the west of L_R besides the robots in $SQ_{unit}(r_i)$ (the analogous case of $SQ_3(r_i)$ can be handled similarly). Moreover, there is at least one robot at point p_{BR} . Robot r_i then moves to p_{BR} . This preserves connectivity for $G_t(I)$ since the robot at p_{BR} must be connected to at least one robot at the east of L_R if all the robots of Q are not inside $SQ_{unit}(r_i)$. Due to the ASYNCsetting, the robot r_j at p_{BR} may perform its *Look* phase while r_i is in transit to p_{BR} . Let t'be the time at which r_j performs its *Look*. Let r_i be at point p at distance $\sqrt{2} - x$ from p_{BR} at time t. Let $SQ^p(r_i)$ be $SQ(r_i)$ for r_i when it is at position p. Even in this case, r_j does not move in a position outside of $SQ^p(r_i)$ regardless of whether it performs a horizontal, vertical, or a diagonal hop, preserving connectivity.

A horizontal hop for r_i is possible only when the robots in $SQ_{unit}(r_i)$ are not connected to any other robot at the west of L_R similarly to the diagonal hop case with only the difference being that there is no robot on p_{BR} so that even when all the robots in $SQ_{unit}(r_i)$ are in a diagonal line, r_i cannot perform a diagonal hop. Even in this case, connectivity is preserved since, if the robots move at most the permitted distance, they would have moved in the grid case. Similarly, in the vertical hop of robot r_i , if it sees no robot at the north in $SQ(r_i)$, it moves vertically south on L'_i with a distance of exactly one. If r_i sees at least one robot r_j at the north in $SQ(r_i)$ and satisfies the conditions for vertical hopping, it hops $1 - L_{ij}$ (where L_{ij} is the vertical distance between r_i and r_j) distance south to a position on L_B (of $SQ_{unit}(r_i)$). In both cases, by the end of first epoch, each robot moves at most a distance of one toward the south, and the robots remain connected because r_i reaches at most $\sqrt{2}$ distance away from the neighbor robot in $SQ(r_i)$ (if the neighbor robot does not move in this epoch) and remains connected. Moreover, the robots connected to r_i at the south of L_B do not move as they find r_i at the north and the connectivity with them remains unaffected. Thus, $G_t(I)$, t > 0 remains connected with a vertical hop. Figure 8 illustrates the movement of robots and how the connectivity is preserved. Note here that regardless of the grid case where robots are positioned on the grid points, in the Euclidean plane, robots can be positioned anywhere in the plane. The shaded regions in Figure 8 represent the arbitrary positions of robots within the equivalent grid areas in the Euclidean plane.

Lemma 6. All the robots in at the north of L_{D_Y-1} in SER(I) move to the positions on L_{D_Y-1} or south of L_{D_Y-1} in at most three epochs.

Proof. Since L_{D_Y} is the topmost horizontal line segment of SER(I), there is no robot at the north of L_{D_Y} . Moreover, since robots agree on north, they never move to the north of the horizontal line they are currently positioned. Consider the robots in the corridor area CA of SER(I) formed by horizontal lines L_{D_Y} and L_{D_Y-1} , excluding the positions of L_{D_Y-1} . Note that in the grid case, the robots were either on L_{D_Y} or on L_{D_Y-1} , and we proved in Lemma 2 that the robots on L_{D_Y} reach L_{D_Y-1} or the south in at most two epochs.

Consider $SQ_{unit}(r_i)$ of any robot r_i in CA. We will show that all the robots in $SQ_{unit}(r_i)$ that are in CA reach L_{D_Y-1} or below in at most two epochs. Since these robots do not see any robot on or north of L_{D_Y} , they perform at least one kind of hop (vertical, horizontal, or diagonal) in the first epoch except the robots positioned between L'_1 and L'_2 in the west and L'_{D_X-2} and L'_{D_X-1} in the east in CA (Figure 8). The robots between L'_1 and L'_2 and L'_{D_X-2} and L'_{D_X-1} may not satisfy any conditions for movement in the first epoch. If all the robots in $SQ_{unit}(r_i)$ in CA perform either a diagonal or a vertical hop, they reach L_{D_Y-1} or south in one epoch because, with both the diagonal and vertical hops, robots in $SQ_{unit}(r_i)$ reach L_B or below L_B and L_B is either L_{D_Y-1} or below. If some robots perform a horizontal hop in the first epoch, we show that it performs either a vertical or a diagonal hop in the second epoch.

A robot makes a horizontal hop if it sees no other robot at the west of L_R , except the robots in $SQ_{unit}(r_i)$, and there is no robot on L_B of $SQ_{unit}(r_i)$. By the end of the first epoch, all the robots in $SQ_{unit}(r_i)$ reach the positions on or east of L_R if all of them make a horizontal hop. In this case, the robots in CA between L'_1 and L'_2 do not move in the first epoch. If some robots performed horizontal hops and the rest performed vertical/diagonal hops, we only need to guarantee that the robots that performed a horizontal hop on the first epoch reached L_B or south of it in the second epoch performing a vertical or a diagonal hop. Consider a robot r_i that satisfies the conditions for a horizontal hop in the first epoch. We have it that there is no robot on L_B , and the robots in $SQ_{unit}(r_i)$ are connected to no other robot besides the robots in $SQ_{unit}(r_i)$ at the west of L_R . Let $SQ_{unit}^E(r_i)$ be a square area adjacent to $SQ_{unit}(r_i)$ at the east between lines L_T and L_B . Let L'_B and L'_R be the bottom horizontal and right vertical lines of $SQ_{unit}^E(r_i)$. If the robots in $SQ_{unit}^E(r_i)$ are not on L'_B and not connected to any other robot below L'_B at the west of L'_R , they do not move until all the robots in $SQ_{unit}(r_i)$ reach L_R or east of L_R in $SQ_{unit}^E(r_i)$. If there are robots on L'_{R} , let x be the robot on L'_{R} that is the closest from L_{R} . Let L_{V} be a line parallel to L_{R} at some unit distance west of x. All the robots in $SQ_{unit}(r_i)$ at the west of L_V perform one horizontal move each in the first epoch. The robots on L_V or east in $SQ_{unit}(r_i)$ perform a vertical hop as there are robots on L'_B . The robots of $SQ_{unit}(r_i)$ that performed a horizontal hop on the first epoch now observe robots on L_B in the second epoch and make a vertical

CA between L'_0 and L'_2 also move to L_{D_Y-1} or south in two epochs. Arguing similarly, if the robots in *CA* between L'_{D_X-2} and L'_{D_X-1} do not move in the first epoch, they also see a robot on their respective L_B in the second epoch since the robots at the west of L'_{D_X-2} have already moved south in the first epoch. Thus, these robots also move south in the second epoch. In the same manner the remaining robots between L'_{D_X-1} and L'_{D_X} in *CA* move to L_{D_Y-1} or move south in the third epoch as they can observe at least one robot on their respective L_B . Therefore, in three epochs, all the robots in *CA* reach L_{D_Y-1} or south. The Lemma is described follows. \Box

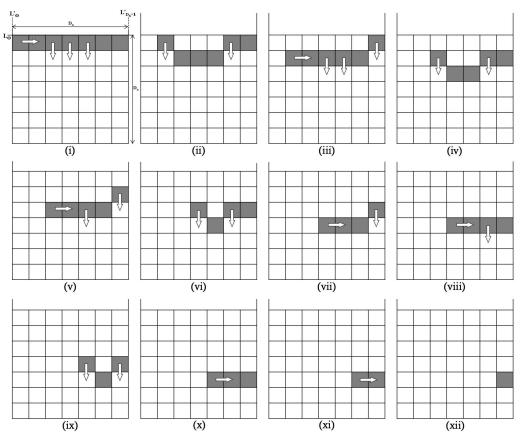


Figure 8. An illustration of movements of robots in the Euclidean plane below L_0 . The horizontal and vertical lines are separated by 1 unit distance away, and the robots are positioned arbitrarily in the shaded regions (i.e., they do not need to be necessarily always on the horizontal or vertical lines as in the grid case). At every one unit south of L_0 , the width of the positions of robots decreases by 1 unit; hence, all the robots reach inside a unit square at most D_X unit south of L_0 . (i) All the robots reached South of L_0 . (ii)–(xi) Movements of robots in the South of L_0 in each round. (xii) Robots gathered inside a unit square area in the South of L_0 .

Lemma 7. No robots of SER(I) reaches south of L_S during the execution.

Proof. We extend the proof of Lemma 3. Let $\mathcal{X} := \{r_0, \ldots, r_X\}$ be the set of robots in the increasing order of their x-coordinates in the corridor area *CA* between L_1 and L_0 of SER(I). If the robots on set \mathcal{X} see other robots at distance ≥ 1 north from their positions, they do not move and wait until they do not see any robot at the north at a distance ≥ 1 . Therefore, similarly to Lemma 3, the robots in *CA* that do not see any robot in the north at distance ≥ 1 proceed to move south. This will take those robots to the next corridor *CA'* adjacent to *CA* in the south. Suppose at some time t > 0, all the robots reach *CA*

between L_0 and L_1 . Some robots might see no robots at the north at the distance ≥ 1 before time t, and they can perform their moves earlier, which does not affect our argument. Now, the robots in CA that are in a unit square area (i.e., between L'_0 and L'_1) in the east perform horizontal moves, and the robots in the next unit square area (i.e., between L'_1 and L'_2) do not move in the first epoch. Similarly, the robots in CA that are in two unit square areas in the west (i.e., between L'_{D_X-2} and L'_{D_X}) do not move in the first epoch. The remaining robots in CA between L'_2 and L'_{D_X-2} move south. In the next epoch, the robots in CA between L'_1 and L'_2 (including the robots that moved horizontally to this area in the previous epoch) move south. The robots in CA between L'_{D_X-1} and L'_{D_X-1} also move south in the this epoch whereas the robots in CA between L'_{D_X-1} and L'_{D_X} still do not move; they move in the third epoch. The robots in CA' between L_2 and L_4 and $L_{D_{X-4}}$ and $L_{D_{X-2}}$ do not move first, and the other robots move south.

Following this, we can observe that as the robots move to the next corridor (of size one) in the south of L_0 , the width of the positions of robots decreases by one. This is because, at every corridor, the robots in the east most unit square area perform horizontal moves. Therefore, all the robots in \mathcal{X} will be within a single unit square area in the corridor at distance D_X south of L_0 (at most). When all the robots are within a unit square area, they follow the termination procedure and do not move further south.

Figure 8 illustrates how the robots move south of L_0 . The figure also shows how the robot chains merge to eventually reach a unit square during execution so that the termination procedure can be executed. \Box

The following observation is also immediate.

Observation 4. For every one unit vertical hop of the robots in Q in the south of L_0 , the width of the positions of robots decreases by (at least) one.

Lemma 8. The viewing range of $\sqrt{10}$ is sufficient for gathering to a point (that is not known beforehand) on a plane under both axis agreements.

Proof. Let *r* be a robot in Q. $SQ_{unit}(r)$ is computed based on the position of other robots in SQ(r), which may lie anywhere within SQ(r). For *r* to decide whether it is connected to other robots outside $SQ_{unit}(r)$, it has to see other robots in both the horizontal and vertical distance of at most one outside $SQ_{unit}(r)$. Therefore, the maximum distance between *r* and some other robot *r'* in $SQ_{unit}(r)$ (or SQ(r)) is $\sqrt{2}$ and *r'* may be connected to a robot at a distance of at most $\sqrt{2}$ away from *r'*. Therefore, *r* needs to see at most a distance of $\sqrt{2} + \sqrt{2} = 2\sqrt{2} = \sqrt{8}$ to find out whether there is a robot outside $SQ_{unit}(r)$ or not. When *r* sees that no robot in $SQ_{unit}(r)$ is connected outside of $SQ_{unit}(r)$, it can execute the termination procedure.

Now, for the vertical hops, there is one condition that requires *r* to see at least one robot each at horizontal distance ≥ 2 at both the east and west, within the corridor of L_T and L_B . To guarantee whether there is a robot at horizontal distance ≥ 2 or not, *r* needs to see up to a horizontal distance of < 3 and vertical distance of < 1. This is because if there is any robot at horizontal distance > 2, it must be connected to a robot at horizontal distance $\sqrt{3^2 + 1^2} = \sqrt{10}$. Figure 9 (left) illustrates this requirement. \Box

The analysis of this section proves the following main result.

Theorem 3. Given any connected configuration of $N \ge 1$ robots with the viewing range of $\sqrt{10}$ and the square connectivity range of $\sqrt{2}$ on a plane, the robots can gather to a point in $\mathcal{O}(D_E)$ epochs in the ASYNC setting under both axis agreements.

22 of 25

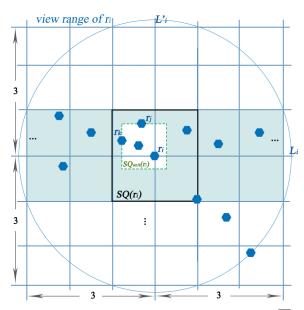


Figure 9. An illustration of the viewing range of $\sqrt{10}$.

Proof. We have from Lemma 5 that, given a connected $G_0(I)$, $G_t(I)$, t > 0, remains connected during the execution of the algorithm. We have from Lemma 6 that all the robots at the topmost horizontal line L_{D_Y} of SER(I) move to L_{D_Y-1} or south of L_{D_Y-1} in at most two epochs. In other words, L_{D_Y-1} becomes L_{D_Y} in at most two epochs and Lemma 6 applies again to L_{D_Y-1} . Therefore, all the robots in SER(I) move to line L_0 or south of it in at most $2 \cdot D_Y$ epochs. After that, we have it that, from Lemma 7, these robots will be inside an axis-aligned unit area in at most next $2 \cdot D_X$ epochs, arguing similarly with respect to Lemma 6. After all the robots of Q reach the insides of an unit square area, we have from Observation 2 that they reach a single point in at most the next two epochs. Therefore, the robots gather to a single point in $2 \cdot D_Y + 2 \cdot D_X + 2 = \mathcal{O}(D_X + D_Y) = \mathcal{O}(D_E)$ epochs. The algorithm terminates (Lemma 8). \Box

5. Gathering under One-Axis Agreement

We discuss modifying the above algorithms when the robots agree on only one axis.

5.1. Grid

We first discuss changes in the model of Section 3. We say gathering is performed when the robot configuration satisfies the relaxed gathering configuration (Definition 3). We also relax the viewing range from 2 to 3.

We now discuss changes in Algorithm 1 (Section 3). The change is only on Rules 1 (termination) and 3 (horizontal hop). Regarding Rule 3, instead of r_i moving only to the east (Figure 3 (middle)), r_i can also move to the west as well if it sees no robots on or inside $SQ(r_i)$, except for the situation where there is exactly one robot r_j on the neighboring grid point on L_i in the west. Regarding Rule 1, r_i terminates if it sees all the robots at at most one unit apart in a horizontal line (i.e., all the robots are positioned in two horizontal neighboring grid points).

Lemma 9. The viewing range of three is sufficient for gathering on a grid with guaranteed termination under a one-axis agreement.

Proof. Notice that a robot r_i terminates if it sees all the robots in Q are at most two neighboring grid points (one is current position of r_i and the other is either the left horizontal grid point only or the right horizontal neighboring grid point only). For r_i to make a decision that the robots are not at any third grid point, it has to see all the neighboring grid points of its two horizontal neighboring grid points as well. The distance from r_i to

either of its horizontal neighboring grid point is one, and the distance of the neighboring grid points of r_i 's horizontal neighboring grid points is at most $\sqrt{2}$. Therefore, r_i needs the viewing range of $(1 + \sqrt{2}) < 3$. The connectivity range remains $\sqrt{2}$.

Having the viewing range of three, the analysis of the algorithm in Section 3 applies directly to the modified algorithm for the grid under the one axis agreement. Therefore, we summarize the main result in the following theorem.

Theorem 4. Given any connected configuration of $N \ge 1$ robots with the viewing range of three and the square connectivity range of $\sqrt{2}$ on a grid, the robots can gather in a unit length horizontal line segment (that is not known beforehand) in $\mathcal{O}(D_E)$ epochs in the ASYNC setting under a one-axis agreement.

5.2. Euclidean Plane

We first discuss changes in the model of Section 4. We say gathering is performed when the configuration satisfies the relaxed gathering configuration (Definition 3). The viewing and square connectivity ranges remain the same as in Section 4.

We now discuss changes in the algorithm. The change is on horizontal and vertical hops and on termination. Instead of computing $SQ_{unit}(r_i)$ using L_L and L_T as reference lines, $SQ_{unit}(r_i)$ also needs to be computed by using L_R and L_T as references. When r_i sees no other robot on one side (say west) at a distance of >1 but does on the other side (east), it takes the topmost robot r_j and leftmost robot r_k in $SQ(r_i)$ in order to compute $SQ_{unit}(r_i)$; for the symmetric case, it takes the topmost and rightmost robots in $SQ(r_i)$ as a reference. This allows the robots to make horizontal hops in both directions (not necessarily only east under both axis agreement). Therefore, r_i hops to the west of L_i if the conditions for horizontal hop defined in Section 4 are satisfied symmetrically. Regarding vertical hopping, the following changes are made in the last three conditions:

- Robot r_i sees at least one other robot each on both sides of L'_i on L_B or south of L_B , which is connected to at least one robot of $SQ_{unit}(r_i)$.
- Robot r_i sees at least one other robot on L_B or south of L_B (which is connected $SQ_{unit}(r_i)$) at one side of L'_i (say east) and at least one other robot at horizontal distance ≥ 2 on the other side (west) (and vice-versa).
- Robot r_i sees other robot(s) on L_B (or connected to other robot(s) at the south of L_B) only at one side of L'_i , say east, then finds the leftmost robot r_l on L_B of $SQ_{unit}(r_i)$ (or south of L_B that is connected to $SQ_{unit}(r_i)$) and sees that no robot in $SQ_{unit}(r_i)$ is connected to another robot at its left (i.e., west) at a horizontal distance of ≥ 1 from r_l (and vice-versa).

Regarding termination, r_i terminates if all the robots it sees within its viewing range (including itself) are within a horizontal line segment of length 1. We will show in the analysis that, with these changes, the algorithm positions the robots in Q inside an axisaligned 1 × 1-sized square area *SA* in $O(D_E)$ epochs.

We now discuss how the robots in *SA* reached a relaxed gathering configuration (Definition 3). Let r_b be the bottommost robot in *SA* (if more than one, pick one arbitrarily). Let L_B be the horizontal line passing through r_b . The robots on L_B (including r_b) do not move. The other robots move vertically to the positions of L_B . The viewing range allows the robots to decide whether there are robots outside *SA* or not.

Proof of Theorem 1: It is easy to see from the analysis of Section 4 that robots in Q reach inside an axis-aligned unit square area in $\mathcal{O}(D_E)$ epochs. The only change on the analysis is on horizontal hops, which does not increase the number of epochs for the robots in Q to reach the inside of the unit area. Finally, it takes at most one additional epoch for all the robots that are in the unit square area to reach L_B . The robots that are not on L_B move vertically to L_B , and the robots on L_B do not move. Therefore, the robots reach a relaxed gathering configuration (Definition 3) in $\mathcal{O}(D_E)$ epochs.

6. Concluding Remarks

We have presented, to the best of our knowledge, the first time-optimal $O(D_E)$ -epoch algorithm for gathering $N \ge 1$ classic oblivious robots in a plane in the ASYNC setting under limited visibility, improving significantly on the previous $O(D_G)$ -round algorithm of [4] that works in the FSYNC setting. Our result assumes the viewing range of $\sqrt{10}$, the square connectivity range of $\sqrt{2}$, and the agreement on one axis. This is in contrast to the viewing range of one and the (circular) connectivity range of $1 - \frac{1}{\sqrt{2}}$ in [4] under the same one axis agreement. For future work, it will be interesting to relax our assumption of rigid moves to accommodate non-rigid moves. It will also be interesting to reduce the gap between the connectivity and viewing ranges without affecting time complexity.

Author Contributions: Conceptualization, G.S.; methodology, P.P. and G.S.; formal analysis, P.P. and G.S.; investigation, P.P. and G.S.; resources, G.S.; writing—original draft preparation, P.P.; writing—review and editing, G.S.; supervision, G.S.; project administration, G.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Acknowledgments: The authors thank Costas Busch for introducing this problem.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Suzuki, I.; Yamashita, M. Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. *SIAM J. Comput.* **1999**, 28, 1347–1363. [CrossRef]
- Flocchini, P.; Prencipe, G.; Santoro, N. Distributed Computing by Oblivious Mobile Robots. Synth. Lect. Distrib. Comput. Theory 2012, 3, 1–185. [CrossRef]
- 3. Prencipe, G. Impossibility of Gathering by a Set of Autonomous Mobile Robots. Theor. Comput. Sci. 2007, 384, 222–231. [CrossRef]
- 4. Izumi, T.; Kawabata, Y.; Kitamura, N. Toward Time-Optimal Gathering for Limited Visibility Model. 2015. Available online: https://sites.google.com/site/micromacfrance/abstract-tasuke (accessed on 18 October 2021).
- Cieliebak, M.; Flocchini, P.; Prencipe, G.; Santoro, N. Solving the Robots Gathering Problem. In Proceedings of the 30th International Colloquium on Automata, Languages, and Programming, Eindhoven, The Netherlands, 30 June–4 July 2003; pp. 1181–1196.
- 6. Flocchini, P.; Prencipe, G.; Santoro, N.; Widmayer, P. Gathering of Asynchronous Robots with Limited Visibility. *Theor. Comput. Sci.* 2005, 337, 147–168. [CrossRef]
- Prencipe, G. Autonomous Mobile Robots: A Distributed Computing Perspective. In Proceedings of the 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics, Sophia Antipolis, France, 5–6 September 2013; pp. 6–21.
- Souissi, S.; Défago, X.; Yamashita, M. Gathering Asynchronous Mobile Robots with Inaccurate Compasses. In Proceedings of 10th on Principles of Distributed Systems, Bordeaux, France, 12–15 December 2006; pp. 333–349. [CrossRef]
- Cieliebak, M.; Flocchini, P.; Prencipe, G.; Santoro, N. Distributed Computing by Mobile Robots: Gathering. SIAM J. Comput. 2012, 41, 829–879. [CrossRef]
- Agathangelou, C.; Georgiou, C.; Mavronicolas, M. A Distributed Algorithm for Gathering Many Fat Mobile Robots in the Plane. In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, Montréal, QC, Canada, 22–24 July 2013; pp. 250–259.
- 11. Degener, B.; Kempkes, B.; Meyer auf der Heide, F. A Local O(n²) Gathering Algorithm. In Proceedings of the Twenty-Second Annual ACM Symposium on Parallelism in Algorithms and Architectures, Thira, Greece, 13–15 June 2010; pp. 217–223.
- Degener, B.; Kempkes, B.; Langner, T.; Meyer auf der Heide, F.; Pietrzyk, P.; Wattenhofer, R. A Tight Runtime Bound for Synchronous Gathering of Autonomous Robots with Limited Visibility. In Proceedings of the Twenty-Third Annual ACM Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA, 4–6 June 2011; pp. 139–148.
- Kempkes, B.; Kling, P.; Meyer auf der Heide, F. Optimal and Competitive Runtime Bounds for Continuous, Local Gathering of Mobile Robots. In Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures, Pittsburgh, PA, USA, 25–27 June 2012; pp. 18–26.
- Cord-Landwehr, A.; Fischer, M.; Jung, D.; Meyer auf der Heide, F. Asymptotically Optimal Gathering on a Grid. In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, Pacific Grove, CA, USA, 11–13 July 2016; pp. 301–312. [CrossRef]
- 15. Castenow, J.; Fischer, M.; Harbig, J.; Jung, D.; Meyer auf der Heide, F. Gathering Anonymous, Oblivious Robots on a Grid. *Theor. Comput. Sci.* **2020**, *815*, 289–309. [CrossRef]

- 16. Poudel, P.; Sharma, G. *Universally Optimal Gathering Under Limited Visibility*; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10616, pp. 323–340. [CrossRef]
- 17. Flocchini, P.; Prencipe, G.; Santoro, N. (Eds.) *Distributed Computing by Mobile Entities, Current Research in Moving and Computing*; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11340. [CrossRef]
- Ando, H.; Suzuki, I.; Yamashita, M. Formation and Agreement Problems for Synchronous Mobile Robots with Limited Visibility. In Proceedings of Tenth International Symposium on Intelligent Control, Monterey, CA, USA, 27–29 August 1995; pp. 453–460. [CrossRef]
- Kirkpatrick, D.; Kostitsyna, I.; Navarra, A.; Prencipe, G.; Santoro, N. Separating Bounded and Unbounded Asynchrony for Autonomous Robots: Point Convergence with Limited Visibility. In *Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing*; ACM: New York, NY, USA, 2021; pp. 9–19. [CrossRef]
- 20. Pagli, L.; Prencipe, G.; Viglietta, G. Getting Close Without Touching: Near-gathering for Autonomous Mobile Robots. *Distrib. Comput.* **2015**, *28*, 333–349. [CrossRef]
- Bhagat, S.; Mukhopadhyaya, K.; Mukhopadhyaya, S. Computation Under Restricted Visibility. In *Distributed Computing by Mobile Entities: Current Research in Moving and Computing*; Springer International Publishing: Cham, Switzerland, 2019; pp. 134–183.
 [CrossRef]
- 22. Sharma, G.; Busch, C.; Mukhopadhyay, S.; Malveaux, C. Tight Analysis of a Collisionless Robot Gathering Algorithm. *ACM Trans. Auton. Adapt. Syst.* **2017**, *12*, 3:1–3:20. [CrossRef]
- Lukovszki, T.; auf der Heide, F.M. Fast Collisionless Pattern Formation by Anonymous, Position-Aware Robots. In Proceedings of the 18th Principles of Distributed Systems, Cortina d'Ampezzo, Italy, 16–19 December 2014; pp. 248–262.
- Cord-Landwehr, A.; Degener, B.; Fischer, M.; Hüllmann, M.; Kempkes, B.; Klaas, A.; Kling, P.; Kurras, S.; Märtens, M.; Meyer auf der Heide, F.; et al. Collisionless Gathering of Robots with an Extent. In Proceedings of the 37th Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, 22–28 January 2011; pp. 178–189.
- 25. Braun, M.; Castenow, J.; auf der Heide, F.M. Local Gathering of Mobile Robots in Three Dimensions. In *SIROCCO*; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 12156, pp. 63–79. [CrossRef]
- 26. Di Stefano, G.; Navarra, A. Optimal Gathering on Infinite Grids. In Proceedings of the 16th Symposium on Self-Stabilizing Systems, Paderborn, Germany, 28 September–1 October 2014; pp. 211–225.
- 27. Di Stefano, G.; Navarra, A. Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings. *Distrib. Comput.* **2017**, *30*, 75–86. [CrossRef]
- D'Angelo, G.; Stefano, G.D.; Klasing, R.; Navarra, A. Gathering of Robots on Anonymous Grids without Multiplicity Detection. In Proceedings of the 19th International Colloquium on Structural Information and Communication Complexity, Reykjavik, Iceland, 30 June–2 July 2012; pp. 327–338. [CrossRef]
- Cord-Landwehr, A.; Degener, B.; Fischer, M.; Hüllmann, M.; Kempkes, B.; Klaas, A.; Kling, P.; Kurras, S.; Märtens, M.; Meyer auf der Heide, F.; et al. A New Approach for Analyzing Convergence Algorithms for Mobile Robots. In Proceedings of the 38th International Colloquium on Automata, Languages, and Programming, Zurich, Switzerland, 4–8 July 2011; pp. 650–661. [CrossRef]
- 30. Cohen, R.; Peleg, D. Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems. *SIAM J. Comput.* **2005**, *34*, 1516–1528. [CrossRef]
- Izumi, T.; Potop-Butucaru, M.G.; Tixeuil, S. Connectivity-preserving Scattering of Mobile Robots with Limited Visibility. In Proceedings of the 12th Symposium on Self-Stabilizing Systems, New York, NY, USA, 20–22 September 2010; pp. 319–331.