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Abstract: In order to adapt to the actual scene of a stereo satellite observing the same area sequen-
tially and improve the accuracy of the target-oriented 3D reconstruction, this paper proposed a
building DSM fusion update method based on adaptive splines and target characteristic guidance.
This method analyzed the target characteristics of surface building targets to explore their intrinsic
geometric structure information, established a nonlinear fusion method guided by the target char-
acteristics to achieve the effective fusion of multiple DSMs on the basis of maintaining the target
structural characteristics, and supported the online updating of DSM to ensure the needs of practical
engineering applications. This paper presented a DSM fusion method for surface building targets
and finally conducted DSM fusion experiments using typical urban area images of different scenes.
The experimental results showed that the proposed method can effectively constrain and improve the
DSM of buildings, and the integrity of the overall construction of the target 3D model structure was
significantly improved, indicating that this paper provides an effective and efficient DSM constraint
method for buildings.

Keywords: remote sensing imagery; 3D reconstruction; DSM; adaptive splines

1. Introduction

Three-dimensional (3D) reconstruction is a research hotspot in the application
of computer-aided engineering technology for product and engineering design [1–3].
Three-dimensional (3D) reconstruction is a new technology that integrates knowledge
in the fields of machine vision, image processing, and computer cartography and has
characteristics that cannot be compared with 2D pictures. Traditional remote sensing 3D
reconstruction methods usually aim at large-area and large-scale scene reconstruction
and tend to realize the model construction of the overall structure of the target from a
global perspective, commonly without focusing on the local structure of the target, and
it is difficult to ensure the structural integrity and accuracy of the target with complex
structure [4–6].

In the field of target 3D reconstruction, the main data sources at this stage include
digital surface model (DSM) [7], digital elevation model (DEM), digital terrain model
(DTM), and airborne LiDAR data [8] generated from aerial imagery and satellite high-
resolution image interpretation. In the past decades, researchers have proposed many
methods to implement target 3D model construction based on DSM or LiDAR data, which
can be summarized into three categories: model-driven, data-driven, and hybrid-driven
methods [9–11].

Model-driven methods start with the construction of a library of predefined primitives
containing the basic model of the target, based on which the target 3D model construction is
achieved by matching the structure between the predefined model and the input data [12].
Model-driven methods are commonly applied to the 3D reconstruction process of models
whose targets are projected as rectangles in the 2D plane. Vosselman et al. [13] used
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geometric invariant moment features for primitive model matching and estimated the
parameters of the model primitives to achieve 3D model construction. Subsequently,
Brenner et al. [14] proposed a splitting rule for target shape and structure and realized the
construction of a three-dimensional model of the target with a more complex structure.
The model construction method proposed by Henn et al. [15] used the SVM algorithm to
statistically classify the point clouds of buildings within the rectangularly divided area
of the target bottom surface and the RANSAC algorithm to fit the model parameters
to achieve the estimation of the target model structure parameters to obtain the final
target construction results. Lafarge et al. [16] combined DSM data and the extracted 2D
contours of the target for 3D model reconstruction, which is based on the concept of
model splitting and stitching, using the Gibbs model to control the combination mode
between each primitive model of the target, using Markov Chain Monte Carlo (MCMC)
to find the optimal combination mode between model primitives, and estimating the
structural parameters of each primitive model, so as to realize the 3D reconstruction
of the overall structural model of the target. Huang et al. [17] proposed a generalized
model construction method that treats the construction of the target as a top-down process,
predefines the parametric description and combination method of the primitive models in
the model library, and uses the Reversible Jump Markov Chain Monte Carlo (RJMCMC)
technique combined with the structural transformation kernel function to achieve 3D model
construction of targets with different structures. However, it is difficult to construct targets
with complex structures based on model-driven target 3D reconstruction methods. Due to
the complex and variable target geometric structure, it is difficult to parametrically describe
the 3D model of targets with different degrees of complexity by a unified method, which
will affect the completeness and accuracy of the overall structural model construction of
the target without the constraints of the global structure.

In recent years, data-driven model construction methods have been widely used
in the field of 3D reconstruction due to their higher flexibility [18–20]. The data-driven
model construction method first uses segmentation methods to obtain different adjacent
subsurfaces of the top surface of the target and improves the regularization of the overall
structure of the target by adjusting the structure of adjacent points and lines between the
subsurfaces to obtain the final model construction results. Verma et al. [21] proposed a
data-driven model construction method, which introduced a seed region selection method
based on the similarity of local features based on the traditional segmentation method
of region growth to achieve the segmentation of the top surface of the target building by
effectively controlling the range of region growth through the constraints of the structural
features of local regions. Finally, the results of the 3D reconstruction of the model are
obtained by combining the boundary points of the target top surface and the connection
topology of the ridge line features. Chauve et al. [22] proposed a region growing method
based on topological constraints on the target top surface for segmentation, which added
structural constraints to the topological connections of the target top surface to the tradi-
tional region growing algorithm, thus enabling more accurate acquisition of information on
each subplane included in the top surface of the target, which improved the completeness
of the target model construction. Sampath et al. [23] used the fuzzy K-mean clustering
technique to segment the target top surface and obtain the boundary and ridge features
of each subplane and adjusted the connection between each vertex, as well as the line
features according to the predefined normalized structure criterion to achieve the model
construction of the overall structure of the target. Kim et al. [24] used the level-sets ap-
proach for model construction, which firstly constructed an energy function based on
multitemporal level sets and obtained the segmentation results of the target top surface
according to the minimization process of solving the energy function and then obtained
the contours and ridges of the target top surface according to the output of the zero-level
energy function and finally obtained the final model 3D reconstruction results according to
the boundaries of the adjacent subsurfaces of the top surface, the ridges, and the topological
connection relationships between the vertices. The limitation of the data-driven approach
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is that the quality of model construction is too dependent on the segmentation results of
the target top surface. When there are certain noise or singularities in the data source, the
segmentation for the target top surface usually has the phenomenon of over-segmentation
or undersegmentation, resulting in the final construction results losing local structural
features, and thus affecting the structural integrity of the target construction model.

In order to further improve the stereo model construction, a hybrid stereo model con-
struction method combining data-driven and model-driven has been widely used [25,26],
which mainly combines the advantages of model-driven and data-driven methods and
firstly constructs a library of well-formed building primitive models based on the model-
driven concept and predefines the parameterization of different types of model primitive
description methods. Secondly, the data-driven method is used to detect structural features
such as boundaries and ridges of the target, and finally, the 3D reconstruction of the target
is realized by the constraints of the connection rules of these basic structural elements.
Xiong et al. [27] proposed a dictionary library based on the structured cartographic de-
scription of the model, which stores the structured cartographic drawings for each type of
structure, and the dictionary library has representative error subdrawings and correspond-
ing structure correction subdrawings, based on which the structural integrity and accuracy
of the model 3D reconstruction are further improved by the techniques of cartographic
matching and structure correction.

In summary, traditional 3D reconstruction methods are aimed at building large re-
gional terrain or urban scenes, and commonly neglect the fine construction of the local
structure of the target. In the process of 3D reconstruction for the target, there is a higher
demand for the completeness and accuracy of the overall construction of the target 3D
model structure, and more focus on the high-precision construction of the local structure of
the target, which are the challenges faced by the traditional 3D reconstruction methods.

The remainder of this paper is organized as follows. Section 2 details the specific
workflow of research, including building geometry characteristics, adaptive spline-based
DSM fusion guided by building geometric characteristics. Section 3 is a comparative analy-
sis of experimental results. Discussions and conclusions are presented in Sections 4 and 5,
respectively.

2. Methodology

In this paper, we first analyzed the target characteristics of the surface building target
to explore the geometric structure information inherent in the building, established a
nonlinear fusion method guided by the target characteristics to achieve the effective fusion
of multiple DSMs on the basis of maintaining the target structural characteristics, proposed
the DSM fusion method for the surface building target, and finally conducted DSM fusion
experiments using typical urban area images of different scenes.

According to Figure 1, it can be found that typical building roof shapes are diverse
and contain flat roofs, pitched roofs, double-slope roofs, four-slope roofs, and multiwave
folding slab roofs. Although the specific manifestations of roof shapes are diverse, they can
be considered to consist of roof panels with different inclination angles. For this reason, it
is necessary to construct a unified mathematical description of building roof characteristics
to accommodate the different roof geometric structures of typical buildings.

2.1. Building Geometric Structure Characteristics

A typical building is composed of beam–slab–column elements, and its roof is mostly
composed of colorful steel sheets or modified bitumen. In this paper, we considered exactly
these types of buildings. From the geometric point of view, the roof shape of a typical
building is a polyhedral structure, a representative example of which is shown in Figure 1.

For building roofs with different morphologies, this paper constructed adaptive 2D
spline functions to describe building geometry universally. For the 2D spline function, each
roof panel of a building can be considered as a linear spline with specific parameters in 3D
space, the flat roof of a building can be considered as a 0th-order 2D spline, the pitched
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roof with different inclinations can be represented as a 1st-order spline with different
parameters, and the roof of the whole building can be considered as a complex and diverse
roof shape with linear splines connected by ridge lines with different parameters, as shown
in Figure 2.
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As can be seen from Figure 2, each roof panel of a four-slope building can be considered
as an inclined surface of different angles in 3D space, and the top flat roof panel can be
represented as a 0th-order spline, while the four sloping roof panels on the side can be
represented as 1st-order splines with different parameters. Connecting the spline functions
through the ridge line forms the roof geometry of the building, which means that the spline
functions can accurately describe a typical building roof.
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For typical flat roofs, pitched roofs and typical buildings with flat or pitched roof
panels such as multiwave folding roofs all can be accurately described using the spline
function, and the conclusion can be summarized as follows.

Theorem: For a rectangular interval defined in the subspace (x, y) of the right-angle
coordinate system (x, y, h), there exists a set of linear spline functions Si : Ii → R 1 ≤ i ≤ N
that can accurately fit the roof geometry of typical flat roofs, pitched roofs, and multiwave
folding roofs with flat or pitched roof panels under a specific interval division Ii|Ni=1, and
satisfying Ii ∩ Ij = ∅, i 6= j, ∪

i
Ii = I conditions.

Note that the spline function is a segmental function. Only by dividing Ii|Ni=1 in the
appropriate interval can the specific building roof structure be accurately described. The
spline function of each region constitutes each roof panel of the building, the intersection
line between the intervals corresponds to the ridge line of the building, and for buildings
with different roofs, the location and direction of the ridge line are not fixed. In order
to characterize the different directions and positions of the roof ridge lines of different
structural buildings, the building area needs to be gridded at different scales to approximate
the roof ridge lines of different buildings. The gridding of the building area at different
scales is shown in Figure 3.

It can be seen from Figure 3 that the different scales of meshing of the rectangular
area of the building can be adapted to buildings with different roof structures. Specifically,
a flat-roofed building can be represented as a 0th-order spline defined by a rectangular
grid, a pitched-roofed building can be represented as two 1st-order splines defined by
two rectangular grids (separated by the projection of the ridge line at (x, y)), and a four-
slope roof can be represented as five 1st-order splines defined by four trapezoids with
one rectangular grid (separated by the projection of the ridge line at (x, y)). Therefore, the
spline function only needs a suitable grid division so that the grid line and the ridge line in
the (x, y) projection line coincide to ensure that the spline function can accurately describe
the corresponding structure of the building. The gridding of scales I, II, and III in the figure
can be adapted to flat-roofed buildings, pitched-roofed buildings, and four-slope-roofed
buildings. It can be inferred that the denser the gridding, the more accurate the spline
function can be in describing the complex roof shape of the building.
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2.2. Analysis of Fitting Error of Adaptive Spline to Building Target

In practice, building targets have a wide variety of roof shapes, which means that it is
difficult to prespecify the exact grid to achieve an accurate description of arbitrarily shaped
roofs. In order to complete the meshing of the building area more effectively, the fitting
error of the spline function to the typical building roof shape is analyzed.

For any given building roof structure, that is, any nth-order differentiable function
F : I → R defined in the rectangular interval I in the subspace (x, y) of the right-angle
coordinate system (x, y, h), for any given positive number ε, there exists a sufficiently dense
interval division Ii|Ni=1 that satisfies Ii ∩ Ij = ∅, i 6= j, ∪

i
Ii = I so that the linear spline

function Si : Ii → R 1 ≤ i ≤ N interpolates any noncollinear three points of the building
roof panel, and the elevation error at any location of the spline function and the building
roof structure is less than ε.

Proof: First consider the spline function S1 : I1 → R in the interval I1. If it is able
to interpolate any noncollinear three points (x1, y1, h1), (x2, y2, h2) and (x3, y3, h3) of the
building roof, the parameters of this linear spline a0 + a1x + b1y = h, (x, y) ∈ I1 can be
calculated by the following equation. 1, x1, y1

1, x2, y2
1, x3, y3

×
 a0

a1
b1

 =

 h1
h2
h3

 (1)

Since a unique plane (i.e., the plane described by the linear splines) can be determined
through any noncollinear three points, the location of any point on the plane is an affine
combination of the three points, which can be expressed as the following equation.

S1

(
3

∑
i=1

li · [xi, yi]

)
= ∑

i
li · F(xi, yi)

3

∑
i=1

li · [xi, yi] ∈ I1 (2)

To calculate the elevation difference between the spline function and the building roof
function, Equation (3) is expanded using Taylor’s formula.

S1

(
3
∑

i=1
li · [xi, yi]

)
= ∑

i
li ·
(

F(x0, y0) +∇F(x0, y0)
T [xi − x0; yi − y0]+

0.5× [xi − x0; yi − y0]
TG(F(xc, yc))[xi − x0; yi − y0]

)
F
(

3
∑

i=1
li · [xi, yi]

)
= F(x0, y0) +∇F(x0, y0)

T
(

3
∑

i=1
li · [xi − x0; yi − y0]

)
+

0.5×
(

3
∑

i=1
li · [xi − x0; yi − y0]

)T

G(F(xc, yc))

(
3
∑

i=1
li · [xi − x0; yi − y0]

)
(3)

Notice that [xi − x0; yi − y0]|3i=1 ≤ llen, llen is determined by the size of the spline
function grid, so the upper limit of the deviation between the actual elevation of the
building roof at any location and the elevation fitted by the spline function is llen

2 × C,
C is defined in the following equation and can be approximated as a constant in general.
Therefore, the elevation deviation is inversely proportional to the square of llen, that is, the
denser the mesh, the smaller the maximum elevation deviation. For any given elevation

error ε, when the grid is sufficiently dense, that is, llen ≤
√

ε
C , the maximum elevation error

is less than ε. This means that a sufficiently dense grid division enables the spline function
to fit an arbitrary function accurately.
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C = 1
llen

2

 x1 − x0, y1 − y0
x2 − x0, y2 − y0
x3 − x0, y3 − y0

T(
[i1; i2; i3]G(F(xc, yc))[i1; i2; i3]

T +

diag(i1, i2, i3)G(F(xc, yc))diag(i1, i2, i3)
T
) x1 − x0, y1 − y0

x2 − x0, y2 − y0
x3 − x0, y3 − y0

 (4)

2.3. DSM Fusion Guided by Building Geometric Characteristics Based on Adaptive Spline

The spline function with sufficiently dense meshing can accurately describe buildings
with arbitrary roof shapes, including not only typical flat, pitched, and multiwave roofs, but
also unconventional buildings such as curved and spherical roofs. From an architectural
point of view, the design of the roof structure of a building has to consider the waterproof
performance and material shaping, which makes the roof of a building mostly flat and
pitched. When the roofs are flat and pitched, the spline function with dense meshing can
effectively fit the roofs, but the local deformation of the building generated by the inaccurate
elevation in DSM will also be fitted by the spline function. In order to maintain the building
roof structure as much as possible and avoid the introduction of inaccurate elevation
information in the DSM, this paper constructed an adaptive spline-based DSM fusion
method guided by the geometric structure characteristics of the building and established
an adaptive-meshing spline function to mine the structural information according to the
complexity of the building roof structure so as to guide the effective fusion of multiple
DSMs and output the building DSM with high accuracy while maintaining the target
structural characteristics.

First, the building segmentation method [28] is used to determine the building target
in the image, and then the elevation value of the building target in the n groups of DSMs
is determined according to the results of the stereo solution. For n DSMs, the points of

the building area in the ith DSM are represented as a set Si

∣∣∣∣ n
i = 1

, and the jth member

in Si

∣∣∣∣ n
i = 1

is a vector
[

p(i,j)x , p(i,j)y , p(i,j)h

]
, which represents the horizontal coordinate,

vertical coordinate, and elevation value of the jth point, respectively. The information of
each point in the DSM to be output is represented by a set S, whose jth member is a vector[

pj
x, pj

y

]
, representing the horizontal and vertical coordinates of the point, and whose final

result requires the output of the corresponding pj
h. Then, the elevation of any point of the

DSM of the fused building is obtained.
The elevation values of the fusion results of n sets of DSMs need to satisfy two

points, one is that the difference between the elevation of the corresponding approximate
homonymous points before fusion is small enough, and the other is that they are as
consistent as possible with the potential roof geometry of the building based on the spline
function. To address the first point, the confidence level of each point in the DSM should
be determined first. Similar to the method of confidence definition in the fusion method of
surface DSM, if the stereo solutions of the near homonymous points of different DSMs are
correct, they should have similar elevations. According to this assumption, this paper used
the similarity of elevation of the near homonymous points as the confidence degree of the
corresponding points. For the second point, the mesh partitioning of the spline function
needs to be defined. To fit buildings with different complex structures, the strategy of
iterative adaptive meshing was utilized to construct the proposed DSM fusion algorithm.
Considering that most of the buildings are flat and pitched roofs, the grid is initialized as a
low-scale grid. If the elevation deviation of the obtained fusion result is less than a given
threshold, the current grid division is valid; otherwise, the grid scale is increased, and
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recursive operations are performed. Based on the above two objectives, the optimization
problem of n DSMs fusion can be constructed as shown in Equation (5).

min
Ph ,a0,a1,b1

Ff usion(Ph, a0, a1, b1) =

∑
i

∑
j

cj‖pj
h − p(i,Neari(j))

h ‖
2

2 + δ1 ×∑
j

∑
[pi

x ,pi
y ]∈Sj

‖
[

aj
0, aj

1, bj
1,−1

]
×
[
1, pi

x, pi
y, pi

h

]T
‖

2

2

s.t.
[

aj
0, aj

1, bj
1

]
×
[
1, ni

x, ni
y

]T
=
[

ak
0, ak

1, bk
1

]
×
[
1, ni

x, ni
y

]T
∀j ∈ node(i), k ∈ node(i)[

aj
1, bj

1

]
×
[
li
x, li

y

]T
=
[

ak
1, bk

1

]
×
[
li
x, li

y

]T
∀j ∈ line(i), k ∈ line(i)

(5)

where
[

aj
0, aj

1, bj
1

]
,
[
1, ni

x, ni
y

]
,
[
li
x, li

y

]
, node(i) and line(i) are the parameters of the jth spline

function, the gridline intersection coordinates, the gridline slope parameter, the spline
label adjacent to node i, and the spline label adjacent to the gridline, respectively. The
left half of the objective function represents the elevation residuals of the DSM before and
after minimizing the fusion, and the right half represents the elevation residuals of the
DSM and the spline function after minimizing the fusion. Constraints are used to control
the continuity of the spline function at the grid lines. The above equation is a nonconvex
optimization problem, and in order to solve the problem, the idea of alternating iterations
is used to fix the variable [a0, a1, b1]

T when solving for the variable Ph. At this time, the
constraints do not contain variables, and the optimization problem is an unconstrained
convex optimization problem, which can be obtained from the equation about Ph by setting
the gradient to 0 by the objective function, as shown in Equation (6).

1
N ∑

i
diag(C)

[
Ph − Pi

h

]
− δ1 ×∑

j
∑

[pi
x ,pi

y ]∈Sj

[
aj

0, aj
1, bj

1,−1
]
×
[
1, pi

x, pi
y, pi

h

]T
= 0 (6)

Therefore, the optimal solution Ph can be expressed as Equation (7).

P∗h =

(
1
N ∑

i
diag(C)− diag(−1N)

)−1
δ1 ×∑

j
∑

[pi
x ,pi

y ]∈Sj

[
aj

0, aj
1, bj

1

]
×
[
1, pi

x, pi
y

]T
+

1
N ∑

i
diag(C)

[
Pi

h

] (7)

Subsequently, the obtained P∗h is fixed and solved for the variable [a0, a1, b1]
T . At this

point, the optimization problem is an equation-constrained convex optimization problem,
and the original problem is first transformed into a Lagrangian function to remove the
equation constraint, as shown in Equation (8).

L(a0, a1, b1, γ) =

∑
i

∑
j

cj‖pj
h − p(i,Neari(j))

h ‖
2

2 + δ1 ×∑
j

∑
[pi

x ,pi
y ]∈Sj

‖
[

aj
0, aj

1, bj
1,−1

]
×
[
1, pi

x, pi
y, pi

h

]T
‖

2

2
+ γA[a0, a1, b1]

T (8)

where A[a0, a1, b1]
T = 0 is the collapsed equation constraint, γ is the dual variable. Further,

the Lagrangian dual function is shown in Equation (9).

G(γ) = min
Ph

∑
i

∑
j

cj‖pj
h − p(i,Neari(j))

h ‖
2

2+

δ1 ×∑
j

∑
[pi

x ,pi
y ]∈Sj

‖
[

aj
0, aj

1, bj
1,−1

]
×
[
1, pi

x, pi
y, pi

h

]T
‖

2

2
+ γA[a0, a1, b1]

T
(9)

According to the slater condition, when the objective function is quadratic program-
ming and the constraints are linear constraints, the dual gap is 0, and the optimal solution
of the original problem coincides with the optimal solution of the dual problem. Since the
KKT condition is a sufficient condition for obtaining the optimal solution of the Lagrangian
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dual problem, the optimal solution of the dual problem can be solved through the KKT
condition, as shown in Equation (10).

∂L
∂[a∗0 ,a∗1 ,b∗1 ]

= 0⇒

δ1 ×∑
j

∑
[pi

x ,pi
y ]∈Sj

[
1, pi

x, pi
y

]T
×
[
1, pi

x, pi
y, pi

h

]
×
[

aj∗
0 , aj∗

1 , bj∗
1 ,−1

]T
+ γT A = 0

A
[
a∗0 , a∗1 , b∗1

]T
= 0

(10)

To solve for the optimal
[
a∗0 , a∗1 , b∗1

]
, the above equation is replaced by

[
a∗0 , a∗1 , b∗1

]
=

[a0, a1, b1] + [∆a0, ∆a1, ∆b1] and rewritten in matrix equation form (see Equation (11)) to
further solve for [∆a0, ∆a1, ∆b1].[

H, AT

A, 0

]
[∆a0, ∆a1, ∆b1, γ]T =

[
−G

0

]
G = δ1 ×∑

j
∑

[pi
x ,pi

y ]∈Sj

[
1, pi

x, pi
y

]T
×
[
1, pi

x, pi
y, pi

h

]
×
[

aj
0, aj

1, bj
1,−1

]T

H = δ1 ×∑
j

∑
[pi

x ,pi
y ]∈Sj

[
1, pi

x, pi
y

]T
×
[
1, pi

x, pi
y

] (11)

Solve this matrix equation to obtain [∆a0, ∆a1, ∆b1], and update the optimization
variables according to

[
a∗0 , a∗1 , b∗1

]
= [a0, a1, b1] + [∆a0, ∆a1, ∆b1], alternately optimize Ph

and [a0, a1, b1]
T , until

∣∣∣Ff usion
(

Pn
h , an

0 , an
1 , bn

1
)
− Ff usion

(
Pn−1

h , an−1
0 , an−1

1 , bn−1
1

)∣∣∣ ≤ Tthreshold

is satisfied or the number of iterations exceeds a given threshold. When the iterations
converge, the average elevation deviation between the fused DSM and the spline function

is compared, that is, 1
NDSM

∑
j

∑
[pi

x ,pi
y ]∈Sj

‖
[

aj
0, aj

1, bj
1,−1

]
×
[
1, pi

x, pi
y, pi

h

]T
‖

2

2
, where NDSM is

the number of points in the fused DSM. If the average elevation deviation is less than the
threshold, the current scale of meshing can effectively describe the building roof structure;
otherwise, the scale of meshing is increased until the elevation deviation is less than the
threshold or the number of iterations exceeds the limit. The DSM fusion method based on
adaptive spline guided by building target structure characteristics can be summarized in
Algorithm 1.

Algorithm 1. DSM fusion method based on adaptive spline guided by building target structure characteristics.

Input: n sets of DSMs Si

∣∣∣∣ n
i = 1

Initialization: Initialize the mesh partitioning of the spline function, calculate the n sets of DSM weights C and the iteration
counter n1 = 0, n1 = 0, initialize Pn

h and
[
an

0 , an
1 , bn

1
]T .

Step 1: n1 = n1 + 1
Step 2: n2 = n2 + 1
Step 3: Use alternate iteration method to optimize variables, fix

[
an

0 , an
1 , bn

1
]T and Pn

h in turn, and use Equations (3) and (7) to
calculate P∗h and [∆a0, ∆a1, ∆b1].

Step 4: Let Pn
h = P∗h ,

[
an

0 , an
1 , bn

1
]T

= [a0, a1, b1]
T + [∆a0, ∆a1, ∆b1].

Step 5: If
∣∣∣Ff usion

(
Pn

h , an
0 , an

1 , bn
1
)
− Ff usion

(
Pn−1

h , an−1
0 , an−1

1 , bn−1
1

)∣∣∣ ≤ Tthreshold or n2 ≥ n2
th then execute Step 6; otherwise,

skip to Step 2.

Step 6: If 1
NDSM

∑
j

∑
[pi

x ,pi
y ]∈Sj

‖
[

aj
0, aj

1, bj
1,−1

]
×
[
1, pi

x, pi
y, pi

h

]T
‖

2

2
≤ hth or n1 ≥ n1

th then the algorithm is executed; otherwise,

increase the mesh density and skip to Step 1.
Output: DSM after fusion S = {Pn2 |1 ≤ i ≤ NDSM}.
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3. Results
3.1. Experimental Results and Analysis of Simulated DSM Data

In order to verify the performance of the fusion algorithm under different roof shape
building conditions, firstly, the target DSM with different roof shapes was generated
as the truth map using computer simulation, and then Gaussian noise with different
variances was generated and superimposed on the truth map DSM to generate two sets of
observations, called DSM 1 and DSM 2. The two sets of noise-doped DSM 1 and DSM 2
were fused by executing the proposed DSM fusion algorithm, and the fusion results are
shown in Figures 4–6.

It can be seen from the figure that after the noise is superimposed, the two sets of
observed inputs DSM1 and DSM2 produce different degrees of difference from the truth
map. When the noise variance is greater than 0.5, the roof structure of the building has
undergone major deformation. By executing the proposed adaptive spline-based target
characteristic-guided DSM fusion algorithm, the potential roof shapes in the DSMs to be
fused are explored to the maximum extent to guide the generation of DSMs with high
confidence. It can be seen from Figure 5d,g,j that the fused DSMs have the same roof
geometry as the truth map, especially when the noise variance is 1. The proposed method
still obtains excellent fusion results, and the comparison of elevation errors before and after
fusion is shown in Tables 1–3.
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Table 1. Comparison of elevation errors before and after fusion of flat-roofed buildings.

DSM 1 DSM 2 DSM after Fusion

Noise variance 0.5 0.3934 0.3976 0.0128
Noise variance 1 0.8120 0.7076 0.0135

Table 2. Comparison of elevation errors before and after fusion of pitched-roofed buildings.

DSM 1 DSM 2 DSM after Fusion

Noise variance 0.1 0.0810 0.0801 0.0762
Noise variance 0.5 0.3942 0.4076 0.1266
Noise variance 1 0.8226 0.7983 0.1268

Table 3. Comparison of elevation errors before and after fusion of four-slope-roofed buildings.

DSM 1 DSM 2 DSM after Fusion

Noise variance 0.5 0.3858 0.4095 0.0203
Noise variance 1 0.7961 0.7609 0.0320
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The elevation error calculation is shown in Equation (12).√
1
m

m

∑
i=1

(hi − ĥi)
2

(12)

where hi represents the true elevation value of the ground point, ĥi represents the generated
elevation value, and m represents the total number of ground points.

Through Tables 1–3, it can be found that the proposed DSM fusion algorithm can still
significantly improve the DSM accuracy of the target under different roof shape building
conditions, even in the case of large noise variance.

3.2. IKONOS Data Experiment Results

In this paper, two different stereo matching algorithms are used to generate two sets
of DSMs for IKONOS data: Method 1 is a stereo matching algorithm based on the modified
Census transform [29], Method 2 is a robust stereo matching algorithm using adaptive
random walk with restart [30], and then the proposed DSM fusion algorithm is executed to
obtain the final DSM. Combined with the truth map to compare and analyze the errors, the
experimental results are shown in Figure 7, and the RMSEs before and after DSM fusion
are shown in Table 4. The experimental results showed that the proposed method can
effectively constrain and improve the DSM of the building, and the integrity of the overall
construction of the target 3D model structure was significantly improved.
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Table 4. Comparison of RMSE before and after fusion.

Method RMSE

Method 1 2.24
Method 2 2.87

Fusion 2.16

4. Discussion

In this paper, we studied the DSM fusion method for building targets. In order to
obtain better DSM results for buildings, a novel building DSM fusion method based on
adaptive splines and target characteristic guidance was proposed. The improved DSM
was obtained by assigning different DSM weights to integrate the advantages of multiple
DSMs. Based on the existing prior knowledge, the better the DSM effect, the higher the
weight assigned; otherwise, it is treated as equal weight.

This paper used adaptive spline functions to fit the roof structure of different buildings.
Since the spline function is a piecewise function, it can be divided into an appropriate
interval to accurately describe the specific building roof structure. At the same time,
through rigorous mathematical proofs, we concluded that the denser the grid, the more
accurately the spline function can describe the complex roof shape of a building. Therefore,
this paper constructed a set of adaptive-meshing low-order spline functions to describe the
characteristics of the target structure. The adaptive spline method can be applied in many
aspects [31–33].

The part of the local deformation of the building in the DSM generated by the inaccu-
rate elevation will also be fitted by the spline function. The DSM obtained directly is not
accurate enough, and many existing studies are based on the constraint DSM [1,3,5,27,34].
In order to maintain the building roof structure as much as possible and avoid the intro-
duction of inaccurate elevation information in the DSM, a DSM fusion method based on
adaptive spline guided by building geometric structure characteristics was constructed to
obtain a more accurate DSM of the building by fusing multiple DSMs. The acquired DSMs
can come from different sources, either from LIDAR or from stereo reconstruction [29,30].
We took the fusion of two DSMs as an example, used simulation to generate DSMs with
different roof shapes, generated two sets of observation data by superimposing Gaussian
noise with different variances in the generated DSMs, then performed fusion experiments
using the proposed method. At the same time, we also used IKONOS data with different
stereo matching algorithms to generate the corresponding DSMs and perform fusion. The
greater the number of DSMs, the better the fusion effect will be. However, as the number
of DSMs increases, the corresponding computational consumption will also increase. In
order to balance the number of DSMs with computational consumption, the number of
DSMs is not as large as possible.
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In summary, the proposed method can effectively preserve the edges and the integrity
of the DSM of buildings. The experimental results show that the proposed method is an
effective and efficient DSM constraint method for buildings.

5. Conclusions

This paper proposed an adaptive spline and target characteristic-guided DSM fusion
update method for buildings and conducted DSM fusion experiments using typical urban
area images of different scenes. The experimental results showed that the proposed method
can effectively constrain and improve the DSM of buildings, and the integrity of the overall
construction of the target 3D model structure was significantly improved, which is an
effective and efficient DSM constraint method for buildings.
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