
 information

Article

Learnable Leaky ReLU (LeLeLU): An Alternative
Accuracy-Optimized Activation Function

Andreas Maniatopoulos and Nikolaos Mitianoudis *

����������
�������

Citation: Maniatopoulos, A.;

Mitianoudis, N. Learnable Leaky

ReLU (LeLeLU): An Alternative

Accuracy-Optimized Activation

Function. Information 2021, 12, 513.

https://doi.org/10.3390/

info12120513

Academic Editor: Gabriele Gianini

Received: 27 October 2021

Accepted: 7 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical and Computer Engineering, Democritus University of Greece, 67100 Xanthi, Greece;
amaniato@ee.duth.gr
* Correspondence: nmitiano@ee.duth.gr; Tel.: +30-25410-79572

Abstract: In neural networks, a vital component in the learning and inference process is the activation
function. There are many different approaches, but only nonlinear activation functions allow such
networks to compute non-trivial problems by using only a small number of nodes, and such activation
functions are called nonlinearities. With the emergence of deep learning, the need for competent
activation functions that can enable or expedite learning in deeper layers has emerged. In this paper,
we propose a novel activation function, combining many features of successful activation functions,
achieving 2.53% higher accuracy than the industry standard ReLU in a variety of test cases.

Keywords: activation function; ReLU family; activation function test

1. Introduction

Activation functions originated from the attempt to generalize a linear discriminant
function in order to address nonlinear classification problems in pattern recognition. Thus,
an activation function is a nonlinear, monotonic function that transforms a linear boundary
function to a non-linear one. The same principle was used in perceptrons in order to allow
the perceptron to classify the inputs. The most straightforward activation function is the
identity function (y = x), along with the binary activation function in Equation (1) that
resembles an activation/classification switch.

y = 1 i f x > 0 or y = 0 i f x ≤ 0 (1)

This is the first nonlinearity used in perceptrons and multilayer perceptrons and made
its way to more complex neural networks later on. Despite its simplicity, the discontinuity
at x = 0, which rendered the calculation of the corresponding derivative rather difficult,
encouraged the search for new monotonic and continuous activation functions. The first
continuous, nonlinear activation function that was used was the sigmoid, also called the
logistic or the soft-step activation function, and is described by Equation (2).

σ(x) =
1

1 + e−x (2)

This allowed the computation of nonlinear problems by using a low number of
neurons. The sigmoid was used in the hidden layers of common neural networks and
enabled the training and inference of these systems for years. A similar function can arise
from the sigmoid function through a linear transformation of the input and the output is
the Hyperbolic tangent (Tanh) presented in Equation (3).

tanh(x) =
ex − e−x

ex + e−x (3)

Again, this was widely used in neural networks for years, and it was generally ac-
cepted that the Tanh function favored faster training convergence, compared to the sigmoid

Information 2021, 12, 513. https://doi.org/10.3390/info12120513 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-0898-6102
https://doi.org/10.3390/info12120513
https://doi.org/10.3390/info12120513
https://doi.org/10.3390/info12120513
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12120513
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12120513?type=check_update&version=1

Information 2021, 12, 513 2 of 16

function. However, the computation of these activation functions is rather expensive, since
it entails look-up table solutions; thus, they are non-optimal choices for neural networks.
The emergence of deeper architectures and deep learning, in general, has also highlighted
another deficit of the two traditional activation functions. Their bounded output restricted
the dissipation of derivatives in back-propagation when the network was deep. In other
words, deeper layers received almost zero updates to their weights; that is, they were able
to learn during the training process. This phenomenon is also known as the vanishing
gradient problem.

The difficulty in computational calculation and deep learning is partially solved with
the introduction of the rectified linear unit (ReLU) [1] in Equation (4).

y = max{0, x} = x | x >0 (4)

The ReLU achieves great performance, while being computationally efficient. Since
it poses no restriction on positive inputs, gradients have more chances to reach deeper
layers in back-propagation, thus enabling learning in deeper layers. In addition, the
computation of the gradient in backpropagation learning is reduced to a multiplication
with a constant, which is far more computationally efficient. Thus, a whole new era in
learning and inference with neural networks has emerged, dominating the last decade.

One drawback of the ReLU is that it does not activate for non-positive inputs, causing
the deactivation of several neurons during training, which can be viewed again as a
vanishing gradient problem for negative values. The non-activation for non-positive
numbers is solved with the introduction of the Leaky rectified linear unit (Leaky ReLU) [2],
which activates slightly for negative values, as expressed in Equation (5).

y =

{
0.01x i f x < 0
x i f x ≥ 0

(5)

One can encounter a number of other variations of ReLU in the literature. One basic
variation of the ReLU is the Parametric Rectified Linear Unit (PReLU) [3], which has a learn-
able parameter, α, controlling the leakage of the negative values, presented in Equation (6).
In other words, PReLU is a Leaky ReLU; however, the slope of the curve for negative
values of x is learnt through adaptation instead of being set at a predetermined value.

y =

{
αx i f x < 0
x i f x ≥ 0

(6)

Moving away from the family of ReLU, we see that there is the Gaussian Error Linear
Unit (GELU) [4] in Equation (7). This activation function is non-convex and non-monotonic
and features curvature everywhere in the input space. The authors in Reference [4] claim
that GELU can offer a regularization effect on the trained network, since the output is
determined on both the input and the stochastic properties of the input. Thus, neurons can
be masked off the network, based on the statistical properties of x, which resembles the
batch normalization [5] and the Drop-out [6] mechanisms.

y =
1
2

x(1 + erf(
x√
2
)) = xΦ(x) (7)

Another nonlinear activation function is the Softplus [7,8], as described by Equation (8).
The Softplus function features smooth derivatives and less computational complexity, as
compared to the GELU; however, it is still more complex compared to the ReLU family.

y = ln(1 + ex) (8)

The exponential linear unit (ELU) [9] in Equation (9) is another smooth, continuous
and differentiable function that tackles the vanishing gradient problem for negative values

Information 2021, 12, 513 3 of 16

through an exponential function. This function saturates for great negative values; however,
the degree of saturation is controlled by the learnable parameter, α.

y = α(ex − 1) i f x ≤ 0 or y = x i f x > 0 (9)

The scaled exponential linear unit (SELU) [10] is another version of the ELU with
controllable parameters that induce self-normalizing properties.

y = λα(ex − 1) i f x ≤ 0 or y = λx i f x > 0 (10)

where the values of α = 1.6733 and λ = 1.0507.
These last activation functions act similar to the ReLU family, providing slightly

higher accuracy in complex problems, while having higher computational cost due to
the exponential/logarithmic part in the computation and the more complicated implied
derivatives at back-propagation.

In Reference [11], Courbariauxet et al. introduced a stricter version of the original
sigmoid function, coined “hard sigmoid”, which is given by the formula:

y = max(0, min(1,
x + 1

2
)) (11)

The proposed function was less computationally expensive as compared to the original
sigmoid and yielded better results in its experiments [11].

Another derivative from the original sigmoid function is the Swish activation function,
which was introduced in Reference [12] and is described by the following formula:

y = swish(x) = x sigmoid(βx) =
x

1 + e−βx (12)

where β can be a fixed or a trainable parameter. Swish can be regarded as a smooth function
that serves as an intermediate between a linear function and a ReLU.

Finally, the Mish activation function [13] is a self-regularized non-monotonic activa-
tion function that was inspired by the Softplus function and Swish and is described by
the following:

y = x tanh(ln(1 + ex)) (13)

There is no trainable/adjustable parameter here, nonetheless, it seems to outperform
Swish and other functions in a study [13]. The computational complexity of estimating the
function is noteworthy in this case.

More complicated activation functions have also recently been proposed. In Reference [14],
Maguolo et al. propose the Mexican ReLU, which is described by the following equation:

y = PReLU(x) + ∑k−1
j=1 cj ϕaj,λj (x) (14)

where ϕa,λ(x) = max(λ− |x− a|, 0) is a Mexican-hat-type function, and a and λ are
learnable parameters. In Reference [15], the concept of reproducing activation functions is
introduced, where a different activation function is applied to each neuron. The applied
activation function is a weighted combination of a set of known activation functions with
learnable parameters and weights for each neuron. In Reference [16], Zhou et al. define
the activation function as a trainable piecewise linear unit with five learnable parameters
for each neuron. In Reference [17], Shridhar et al. introduce the concept of a stochastic
activation function, where y = µ(x) + σε, where ε is drawn randomly from a Gaussian pdf
with N(0,1), σ is a trainable or static parameter and µ(x) can be a static or learnable function,
usually initialized by the ReLU. In Reference [18], Bingham and Miikkulainen propose a
genetic algorithm to create customized activation functions from a family of well-known
activation functions. The evolution begins with a parent activation function that evolves
through four evolutionary operations (insert, remove, change and regenerate). Each

Information 2021, 12, 513 4 of 16

function that is generated is parameterized, and a fitness score is estimated. The functions
that yield the best fitness scores are added to the population of activation functions to be
used in the NN.

The objective of the paper is to propose a novel activation function that (a) expands
the ReLU family by adding support to the negative values; (b) the degree of saturation
for the negative values is controlled by a learnable parameter, α; (c) this parameter α
simultaneously controls a learning boost for positive values; (d) in the case of α → 0,
the learning at these nodes ceases, leading to a regularization of the network, similar to
Drop-out, which eliminates the need of such techniques; (e) the accuracy performance gain
of the proposed activation function over ReLU increases with the information complexity
of the dataset (i.e., the difficulty of the problem); and it (f) remains a simple function with
a single learnable/adaptive parameter and a simple update rule, in contrast to far more
complicated adaptive activation functions.

2. The Proposed Activation Function

In this paper, we propose a novel activation function combining the best qualities of
the ReLU family, while having low computational complexity and more adaptivity to the
actual data. The equation that describes the Leaky Learnable ReLU (LeLeLU) is as follows:

y = α max(x, 0) + 0.1α min(0, x) (15)

y =

{
0.1αx i f x < 0
αx i f x ≥ 0

(16)

where α is a learnable parameter that controls the slope of the activation function for
negative inputs, but what is different here is that it simultaneously controls the slope of the
activation function for all positive inputs. There is a constant multiplier, 0.1, that reduces
the slope for negative input values in a similar manner to the Leaky ReLU, which seems to
work well in our experiments. LeLeLU is depicted in Figure 1 for various values of α.

Information 2021, 12, x FOR PEER REVIEW 4 of 17

with Ν(0,1), σ is a trainable or static parameter and μ(x) can be a static or learnable func-
tion, usually initialized by the ReLU. In Reference [18], Bingham and Miikkulainen pro-
pose a genetic algorithm to create customized activation functions from a family of well-
known activation functions. The evolution begins with a parent activation function that
evolves through four evolutionary operations (insert, remove, change and regenerate).
Each function that is generated is parameterized, and a fitness score is estimated. The
functions that yield the best fitness scores are added to the population of activation func-
tions to be used in the NN.

The objective of the paper is to propose a novel activation function that (a) expands
the ReLU family by adding support to the negative values; (b) the degree of saturation for
the negative values is controlled by a learnable parameter, α; (c) this parameter α simul-
taneously controls a learning boost for positive values; (d) in the case of α → 0, the learning
at these nodes ceases, leading to a regularization of the network, similar to Drop-out,
which eliminates the need of such techniques; (e) the accuracy performance gain of the
proposed activation function over ReLU increases with the information complexity of the
dataset (i.e., the difficulty of the problem); and it (f) remains a simple function with a sin-
gle learnable/adaptive parameter and a simple update rule, in contrast to far more com-
plicated adaptive activation functions.

2. The Proposed Activation Function
In this paper, we propose a novel activation function combining the best qualities of

the ReLU family, while having low computational complexity and more adaptivity to the
actual data. The equation that describes the Leaky Learnable ReLU (LeLeLU) is as follows: 𝑦 = 𝛼 max(𝑥, 0) + 0.1𝛼 min(0, 𝑥) (15)𝑦 = ൜0.1𝛼𝑥 𝑖𝑓 𝑥 < 0𝛼𝑥 𝑖𝑓 𝑥 ≥ 0 (16)

where α is a learnable parameter that controls the slope of the activation function for neg-
ative inputs, but what is different here is that it simultaneously controls the slope of the
activation function for all positive inputs. There is a constant multiplier, 0.1, that reduces
the slope for negative input values in a similar manner to the Leaky ReLU, which seems
to work well in our experiments. LeLeLU is depicted in Figure 1 for various values of α.

Figure 1. Proposed activation function LeLeLU for various values of α. Figure 1. Proposed activation function LeLeLU for various values of α.

The derivative of LeLeLU can simply be calculated by the following:

dy
dx

=

0.1α i f x < 0
0 i f x = 0
α i f x > 0

(17)

Information 2021, 12, 513 5 of 16

The update formulations of the parameter α can be derived by using the chain rule.
The gradient of α for one layer for each neuron, i, can be given by the following:

∂L
∂αi

= ∑
yi

∂L
∂ f (yi)

∂ f (yi)

∂αi
(18)

where L(•) denotes the neural network’s loss function, and yi denote the output of the
i-th neuron.

In order to reduce the computational cost in demanding situations, one can choose to
keep the parameter α the same for a number of neurons, i.e., for a layer. For the layer-shared
variant, the gradient of α is as follows:

∂L
∂α

= ∑
i

∑
yi

∂L
∂ f (yi)

∂ f (yi)

∂α
(19)

where the summation Σi sums over all neurons of the layer. The complexity overhead of α,
the learnable parameter, is negligible for both forward and backward propagation, while
gradient descent with the momentum method was used during training.

α+i ← µαi − η
∂L
∂αi

(20)

where η is the learning rate, and µ denotes momentum.
The parameterα is learnable per filter during training, and during testing, we observed

a correlation between dataset complexity, depth-wise position of respective filter in the
neural network topology and training phase.

It is obvious in Figure 1 that, for α = 1, our proposed activation function turns into
the leaky ReLU activation function. The strong point of the proposed activation function
is that the learnable parameter influences both the negative and the positive values. This
implies that the adaptation of α can accelerate training in certain parts of the network
during certain epochs of the training procedure, when α gets values that are larger than
1. In contrast, when α gets lower than 1 values, learning slows down for certain parts of
the network.

In the special case that α gets values close to zero, not only learning is halted for these
neurons, but their output is close to zero, which implies that these neurons are severed
from the network. Hence, by de-activating several neurons, the network is automatically
regularized during training in a similar manner to the popular Drop-out technique [6].
The difference is that, by using the proposed activation function, network regularization
is performed by the adaptation of the activation function and network training, whereas
a Drop-out is a mechanism that works as an extra step during network training. The
adaptation of the parameter α is investigated in more detail in the next section.

3. Parameter Adaptation and Network Regularization

In this section, we investigate the role and behavior of parameter α during training. As
a testbed, we used the Fashion MNIST dataset and the corresponding network architecture
in Figure 2. The programming environment was MATLAB 2020a on a Haswell i7 4770 s,
16 GB DDR3 RAM, NVidia GTX 970 4 GB PC, running Windows 10. The code for imple-
menting LeLeLU can be found here (https://github.com/ManiatopoulosAA/LeLeLU,
accessed on 10 October 2021).

In the proposed network architecture, we included the use of Batch Normalization [5],
which is a form of network regularization that keeps the mean and variance of neurons’
output normalized. The use of Drop-out is often complementary to Batch Normalization;
therefore, we can see in the literature that they can be used in parallel. Since the proposed
activation function is similar to PReLU, we would like to compare the performance of the
proposed activation function with PReLU on the previously described testbed. In addition,

https://github.com/ManiatopoulosAA/LeLeLU

Information 2021, 12, 513 6 of 16

since the proposed activation function is performing regularization in the same manner as
Drop-out, we would like to compare its performance with a combination of PReLU, using
Drop-out on each layer.

Information 2021, 12, x FOR PEER REVIEW 7 of 17

Figure 2. Neural networks’ topologies that were employed for each dataset (MNIST, Fashion MNIST, Sign MNIST and
CIFAR-10).
Figure 2. Neural networks’ topologies that were employed for each dataset (MNIST, Fashion MNIST, Sign MNIST
and CIFAR-10).

The results are very conclusive. The architecture using PReLU only yields classification
accuracy of 0.82, with notably slower convergence. The architecture using PReLU and
Drop-out yields a classification accuracy of 0.829, whereas the proposed activation function

Information 2021, 12, 513 7 of 16

with batch normalization but without Drop-out achieves an accuracy of 0.912. Thus, at first,
LeLeLU performed better than PReLU itself. At the same time, LeLeLU is performing better
than PReLU with a regularizer (Drop-out). This implies that the adaptation of LeLeLU
is regularizing the network itself and even works better than Drop-out by 8.8%. There
is an extra computational cost for the adaptation of parameter α. Based on the previous
testbed, the runtime of the proposed scheme is marginally longer by 2.56%, compared to the
PReLU+Drop-out combination. We reckon that this might be due to the fact that Drop-out
completely removes and does not process some neurons from the network, whereas, in
our case, the network continues to process these neurons, even in the case that α→ 0 in
their LeLeLU.

In Figure 3, we visualized the adaptation of parameter α for a random neuron/filter
as it changes for every epoch. It is obvious that there is an active Drop-out-like behavior at
least twice for every neuron during the training process, while there are instances where
the parameter α is near 1, accelerating the learning of the neuron in question.

Information 2021, 12, x FOR PEER REVIEW 8 of 17

Figure 3. Values of parameter a during training for 3 neurons in different layers.

4. Results
In this section, we perform a more thorough comparison between the various activa-

tion functions for various different datasets.

4.1. Datasets and Network Topologies
The topology of all networks used to compare the four activation functions is dis-

played in Figure 3.
More specifically, MNIST and Fashion MNIST run on a three-hidden-layer convolu-

tional neural network with 16, 32 and 48 5 × 5 filters, while the last layer was a 10-neuron

Figure 3. Values of parameter a during training for 3 neurons in different layers.

Information 2021, 12, 513 8 of 16

4. Results

In this section, we perform a more thorough comparison between the various activa-
tion functions for various different datasets.

4.1. Datasets and Network Topologies

The topology of all networks used to compare the four activation functions is displayed
in Figure 3.

More specifically, MNIST and Fashion MNIST run on a three-hidden-layer convolu-
tional neural network with 16, 32 and 48 5 × 5 filters, while the last layer was a 10-neuron
classification layer. The Sign MNIST runs on a five-hidden-layer convolutional neural
network with 16, 32 and 48 5 × 5 filters, while the last two hidden layers have 64 and 96
3 × 3 filters, respectively. The last layer is a 24-neuron fully connected classification layer.
Lastly, the CIFAR-10 classification dataset runs on a five-hidden-layer convolutional neural
network with 32, 36 and 48 5 × 5 filters, while the last two hidden layers have 64 and 96
3 × 3 filters respectively, with the last layer being a 10 neuron classification layer.

The MNIST topology was trained for 15 epochs, the Fashion MNIST for 20 epochs, the
Sign Language dataset for 20 and the CIFAR-10 dataset for 60 epochs. Since the scope of
this paper is the comparison of different activation functions, and since the ReLU activation
function is the most widely known and used, all results presented were normalized to the
accuracy obtained used by the ReLU activation.

All testing was conducted with five-fold validation, and the results presented in
the next section are the mean of the three median values. In other words, from the five
accuracy results of five-fold validation, the largest and lowest values were dropped, and
the three median values were averaged to give a more balanced score that is less prone to
outliers. In our experiments, we benchmarked the following activation functions: Tanh,
ReLU, PReLU, ELU, SELU, HardSigmoid, Mish, Swish and the proposed LeLeLU. These
activation functions were chosen as representative examples of each category of baseline
activation functions, as described earlier in the introduction. We preferred to compare with
simple activation functions with minimal computational cost or adaptation, such as the
proposed one, avoiding those mentioned earlier with great adaptation complexity and
many trainable parameters.

4.2. Numerical Results

Here, we evaluate all experiments, using accuracy, i.e., the number of correctly classi-
fied examples over the total number of examples in the testing dataset. As stated previously,
the overall accuracy is estimated via five-fold validation. Then, we consider the accuracy
achieved by ReLU as the baseline result, and we calculate normalized accuracy as the
ratio (in percentage) of the new activation function accuracy over the accuracy achieved
by ReLU.

In Table 1, we can see the accuracy and normalized accuracy on the MNIST dataset,
using the nine activation functions. All activation functions perform well, with the LeLeLU
giving a small boost of 0.23% over the baseline ReLU. The proposed LeLeLU outperforms
current state-of-the-art activation functions, including Swish and Mish. The MNIST dataset
contains a well-studied and easy-to-classify dataset, and therefore the improvement is
minimal but existent. It should be noted that PReLU slightly underperforms in this
experiment, but this is minimal.

In Table 2, we can see the accuracy and normalized accuracy on the Fashion MNIST
dataset, using the nine activation functions. All activation functions perform relatively
well. The LeLeLU gives a significant boost of 1.8% over the baseline ReLU, whereas
PReLU improves slightly by 0.06%, with the ELU giving the second best improvement
of 1.2%. Mish and Swish outperform the traditional ReLU, but they are well below the
proposed LeLeLU.

Information 2021, 12, 513 9 of 16

Table 1. Test accuracy in the MNIST dataset of the activation functions in question, using the
corresponding neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy

ReLU 0.9875 100%
PReLU 0.9861 99.9%
Tanh 0.9835 99.6%
ELU 0.9879 100%

SELU 0.9878 100.04%
HardSigmoid 0.9756 98.79%

Mish 0.9881 100.06%
Swish 0.9878 100.04%

LeLeLU 0.9897 100.23%

Table 2. Test accuracy in the Fashion MNIST dataset of the activation functions in question, using the
corresponding neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy

ReLU 0.8956 100%
PReLU 0.8961 100.06%
Tanh 0.8979 100.2%
ELU 0.9071 101.2%

SELU 0.8959 100.03%
HardSigmoid 0.8704 97.19%

Mish 0.9037 100.9%
Swish 0.9019 100.7%

LeLeLU 0.912 101.8%

In Table 3, we can see the accuracy and normalized accuracy on the Sign Language
dataset, using the nine activation functions. Here, the results are more impressive. All
other activation functions clearly underperform, as compared to the baseline ReLU, with
the LeLeLU giving the only improved performance with a significant boost of 3.2% over
the baseline. Here, again, we witness the superiority of the proposed LeLeLU, compared
to Mish and Swish, which are the only ones that offer an improvement to ReLU, but
their improvement is less impressive than that of the LeLeLU. This experiment clearly
demonstrated the significant ability of LeLeLU to adapt over the dataset and improve both
positive and negative values learning, as compared to the stationary ReLU.

In Table 4, we can see the accuracy and normalized accuracy on the CIFAR-10 dataset,
using the five activation functions. Here, the LeLeLU is again scoring the best improvement
over the baseline, with a significant boost of 4.9%. PReLU and ELU have demonstrated
improvement in this example of 3.5% and 3.4% respectively, with the Tanh underperform-
ing, as expected. Mish and Swish offer less significant improvement, whereas, SELU is the
second runner-up, offering an improvement of 4%.

Overall, LeLeLU shows a consistent tendency to improve classification accuracy over
the baseline ReLU, which is not the case for the other tested activation function. PReLU,
which is very close to LeLeLU, shows very unstable performance with cases of serious
underperformance. It is evident that the performance of all competing tested activation
functions depends on the dataset used. Some might underperform or overperform the
original ReLU function. Only the proposed LeLeLU seems to consistently offer an im-
provement in all tested cases. This clearly demonstrates that the addition of a controllable
slope (parameter α) in the positive values area of the activation function has improved
classification performance. This parameter also controls the speed of adaptation of positive
values and seems to improve performance by either accelerating or slowing down learning,
in contrast to the fixed slope for positive values of ReLU and PReLU.

Information 2021, 12, 513 10 of 16

Table 3. Test accuracy in the Sign Language dataset of the activation functions in question, using the
corresponding neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy

ReLU 0.9073 100%
PReLU 0.8815 97.2%
Tanh 0.8522 93.9%
ELU 0.8721 96.1%

SELU 0.8196 93%
HardSigmoid 0.8586 97.4%

Mish 0.8974 101.8%
Swish 0.8947 101.5%

LeLeLU 0.9353 103.2%

Table 4. Test accuracy in the CIFAR-10 dataset of the activation functions in question, using the
corresponding neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy

ReLU 0.6829 100%
PReLU 0.7094 103.5%
Tanh 0.6785 99.3%
ELU 0.7065 103.4%

SELU 0.7103 104%
HardSigmoid 0.6652 97.4%

Mish 0.6938 101.6%
Swish 0.6890 100.9%

LeLeLU 0.7166 104.9%

4.3. LeLeLU Performance in Larger Deep Neural Networks

In this section, we evaluate the performance of the proposed LeLeLU in more real-life
deep network architectures, such as the VGG-16 and the ResNet-v1-56.

4.3.1. VGG-16 with LeLeLU

The first large neural network in our experimentation is the VGG-16, used to classify
Cifar-10 and Cifar-100 datasets. The topology of the network and the results for different
activation functions are also presented in Reference [17].

The CIFAR-100 dataset is an expansion of the Cifar-10. It has 100 classes, containing
600 images per class. From those 600 images per class, 500 are considered training images
and 100 test images per class. The resolution of the images is also 32 by 32 pixels, the same
as with Cifar-10.

The VGG-16 topology used in our work is the same with Reference [17], with two
convolutional layers with 64 filters, followed by max pooling; two convolutional layers with
128 filters, followed by max pooling; three convolutional layers with 256 filters, followed
by max pooling; and two similar blocks of three convolutional layers with 512 filters
each, followed by max pooling, one after the other. The final layer is a classification layer.
Figure 4 depicts the VGG-16 topology.

Information 2021, 12, 513 11 of 16

Information 2021, 12, x FOR PEER REVIEW 12 of 17

Cifar100 for an element-wise bound trainable parameter σ (comparable to ours). Their
score is better than LeLeLU in Cifar10, but far worse in Cifar100; however, it should also
be noted that the parameter σ should be bound by another sigmoid function during ad-
aptation (i.e., computational complexity) in order to stabilize the performance, which is
far more complicated than our simple unbound adaptation rule.

Figure 4. Neural networks VGG-16 topology that was employed for Cifar-10 and Cifar-100.

Table 5. Test accuracy in the CIFAR-10 dataset of the activation functions in question, using the
VGG-16 neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy
Sigmoid 0.1 11.46%

Tanh 0.1 11.46%
ReLU 0.8727 100%

Leaky ReLU 0.8649 99.1%
PReLU 0.8635 98.94%

ELU 0.8765 100.44%
SELU 0.8665 99.29%
Swish 0.8655 99.17%

LeLeLU 0.8792 100.74%

Table 6. Test accuracy in the CIFAR-100 dataset of the activation functions in question, using the
VGG-16 neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy
Sigmoid 0.01 1.99%

Tanh 0.01 1.99%
ReLU 0.5294 100%

Figure 4. Neural networks VGG-16 topology that was employed for Cifar-10 and Cifar-100.

In Tables 5 and 6, we depict the performance of VGG-16 for Cifar10 and Cifar100
for various activation functions. We can easily see that the proposed function LeLeLU
offers the best or the second best classification accuracy among the competing activation
functions and a clear improvement over the widely used ReLU. More specifically, it offers
the best performance for Cifar-10 and the second best for Cifar-100, behind ELU. However,
it outperforms the more state-of-the-art Swish function, which is more prominent in the
modern deep-learning literature. We preferred again to compare against simple activation
functions with minimal computational complexity and adaptation. The ProbAct function
that is proposed in Reference [17] yields a maximum of 0.8892 for Cifar10 and 0.5583 for
Cifar100 for an element-wise bound trainable parameter σ (comparable to ours). Their score
is better than LeLeLU in Cifar10, but far worse in Cifar100; however, it should also be noted
that the parameter σ should be bound by another sigmoid function during adaptation
(i.e., computational complexity) in order to stabilize the performance, which is far more
complicated than our simple unbound adaptation rule.

4.3.2. ResNet-v1-56 with LeLeLU

In Reference [18], there is an extensive comparison of various activation functions,
using the ResNet-v1-56 architecture for the classification of the Cifar-100 dataset. Here,
we use the same topology and training methods as in Reference [18], along with the
published results, to compare our proposed activation function. Again, in our comparison,
we prefer baseline activation function with minimal complexity, such as the one proposed
in this paper.

Table 7 contains the classification accuracy for CIFAR-100, along with the proposed
function. The proposed LeLeLU activation function enables the network to better adapt to

Information 2021, 12, 513 12 of 16

the complex dataset, having the highest classification accuracy in this test. Again, LeLeLU
seems to perform better, as compared to modern counterparts, including Mish and Swish.
It is also noteworthy that the complicated activation function produced by the genetic
algorithm in Reference [18] for the ResNet-v1-56 architecture does not exceed accuracy
of 0.7101.

Table 5. Test accuracy in the CIFAR-10 dataset of the activation functions in question, using the
VGG-16 neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy

Sigmoid 0.1 11.46%
Tanh 0.1 11.46%
ReLU 0.8727 100%

Leaky ReLU 0.8649 99.1%

PReLU 0.8635 98.94%
ELU 0.8765 100.44%

SELU 0.8665 99.29%
Swish 0.8655 99.17%

LeLeLU 0.8792 100.74%

Table 6. Test accuracy in the CIFAR-100 dataset of the activation functions in question, using the
VGG-16 neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy

Sigmoid 0.01 1.99%
Tanh 0.01 1.99%
ReLU 0.5294 100%

Leaky ReLU 0.4944 93.39%
PReLU 0.4630 87.46%

ELU 0.5660 106.91%
SELU 0.5152 97.31%
Swish 0.5401 102.02%

LeLeLU 0.5632 106.38%

Table 7. Test accuracy in the CIFAR-100 dataset of the activation functions in question, using the
ResNet-v1-56 neural network, and accuracy normalized to that attained by ReLU activation function.

Activation Function Accuracy Normalized Accuracy

Sigmoid 0.3647 52.37%
HardSigmoid 0.3255 46.74%

ReLU 0.6964 100%
Leaky ReLU 0.6978 100.2%

GELU 0.7019 100.79%

PReLU 0.7223 103.72%
ELU 0.6967 100.04%

SELU 0.6852 98.39%
Mish 0.6988 100.34%
Swish 0.6968 100.06%

Softplus 0.6971 100.1%
Softsign 0.5838 83.83%

Tanh 0.6388 91.73%
LeLeLU 0.7283 104.58%

4.4. LeLeLU Performance vs. Dataset Complexity

In this section, we attempt to identify possible correlation between the gain in accuracy,
offered by the proposed activation function LeLeLU, and the dataset used in the experiment.

Information 2021, 12, 513 13 of 16

We witnessed that in the previous experiments LeLeLU featured an increasing improvement
in accuracy. Thus, we attempt to quantify the difference between the four datasets.

One feature of a dataset that we can identify is its complexity. We propose to estimate
the complexity of the dataset by using an approximation of the Kolmogorov complexity
theorem. Kolmogorov complexity can be defined for any information source. It can be
shown [19–21] that, for the output of Markov information sources, Kolmogorov complexity
is related to the entropy of the information source [22]. More precisely, the Kolmogorov
complexity of the output of a Markov information source, normalized by the length of the
output, converges most probably to the entropy of the source (since the output’s length can
be assumed to go to infinity) [23].

Based on this conclusion, we deduce that it is possible to evaluate the complexity of
the dataset by using the product of the mean entropy of each sample and the bits required
to represent every category (e.g., 7 for 80 classes). This method is very efficient, even in
the case of large datasets. One could also employ only a representative amount of samples
from each class and not the full dataset, without generally losing accuracy in the estimation
of complexity. The following pseudocode (Algorithm 1) outlines the proposed procedure.

Algorithm 1 Dataset Complexity Estimation

Input: X_train data, number_of_classes
Output: Dataset_complexity
1 x_matrix is initialized to the X_train data
2 set number_of_classes to the number of classes of the classification problem
3 set number_of_training_files N to the number of training examples contained in the
dataset
4 T← 0
5 for each data sample in x_matrix
6 calculate the entropy E of the corresponding data sample
7 T← T + E
8 end for
9 calculate mean entropy (ME): ME← T/N
10 calculate the bits Q required to represent the number of classes
11 Dataset_complexity = ME× Q

We use the algorithm to estimate the complexity of each dataset used in our experi-
ments. The findings are outlined in Table 8. It is clear that the complexity of each dataset
correlates highly with the improvement offered by LeLeLU. Figure 5 depicts this finding
in a logarithmic plot. We can clearly see that the more complex the dataset is, the bigger
the improvement we can attain by using the proposed activation function. It also appears
that the improvement is almost analogous to the logarithmic complexity of the dataset
(see Figure 5. This implies that the adaptation of the parameter α for positive values
helps the overall neural network to adapt faster to the complexity of the dataset, thus
giving more improvement compared to the fixed non-adaptive baseline ReLU in more
challenging problems.

Table 8. Complexity of each dataset of Section 4.2, given the above algorithm and the corresponding
LeLeLU accuracy improvement.

Dataset Complexity LeLeLU Accuracy Improvement

MNIST 6.41 100.23%
Fashion MNIST 16.466 101.8%
Sign Language 33.584 103.2%

CIFAR-10 83.993 104.9%

Information 2021, 12, 513 14 of 16Information 2021, 12, x FOR PEER REVIEW 15 of 17

Figure 5. Correlation between the dataset’s complexity and accuracy improvement.

In this section, we attempt to derive an empirical equation that provides an estimate
of the accuracy improvement, offered by the LeLeLU over ReLU, given the complexity of
the dataset. The equation that correlates the improvement over ReLU of the proposed
function, based on our testing in small arbitrary topologies, is computed by finding the fit
function of the two lines of Figure 5 and combining the two equations:

Let C denote the dataset complexity, and x the increasing integer identity of the da-
taset. The dataset complexity fit function can be estimated by exhaustive parameter search
of an exponential function, as follows. 𝐶 = 3.159𝑒.଼ଽ௫ 𝑙𝑛 ൬ 𝐶3.159൰ = 0.789𝑥

𝑥 = 1.267𝑙𝑛 ൬ 𝐶3.159൰

(21)

Let AccImpr denote the accuracy improvement percentage. The accuracy improve-
ment fit function can be estimated by linear fitting, as follows: 𝐴𝑐𝑐𝐼𝑚𝑝𝑟 = 1.54𝑥 − 2.018 𝑥 = 𝐴𝑐𝑐𝐼𝑚𝑝𝑟 + 2.0181.54

(22)

By combining Equations (20) and (21), we can conclude the following: 𝐴𝑐𝑐𝐼𝑚𝑝𝑟 + 2.0181.54 = 1.267𝑙𝑛 ൬ 𝐶3.159൰ 𝐴𝑐𝑐𝐼𝑚𝑝𝑟 = 1.54 ∗ 1.267ሾ𝑙𝑛(𝐶) − 𝑙𝑛(3.159)ሿ − 2.018 𝐴𝑐𝑐𝐼𝑚𝑝𝑟 = 1.951𝑙𝑛(𝐶) − 1.503 − 2.018

Thus, we end up with Equation (23), which yields the accuracy improvement offered
by the proposed LeLeLU in terms of the dataset complexity. It is clear that Equation (23)
is a monotonic rising function; that is, the more complex the dataset, the more accuracy
improvement yielded the proposed LeLeLU. 𝐴𝑐𝑐𝐼𝑚𝑝𝑟 = 1.951𝑙𝑛(𝐶) − 3.521 (23)

To verify the validity of Equation (23), we use the experiment of Cifar-100 with VGG-
16, which was not used in the derivation of Equation (23). The Cifar-100 dataset has a

Figure 5. Correlation between the dataset’s complexity and accuracy improvement.

In this section, we attempt to derive an empirical equation that provides an estimate
of the accuracy improvement, offered by the LeLeLU over ReLU, given the complexity
of the dataset. The equation that correlates the improvement over ReLU of the proposed
function, based on our testing in small arbitrary topologies, is computed by finding the fit
function of the two lines of Figure 5 and combining the two equations:

Let C denote the dataset complexity, and x the increasing integer identity of the dataset.
The dataset complexity fit function can be estimated by exhaustive parameter search of an
exponential function, as follows.

C = 3.159e0.789x

ln
(

C
3.159

)
= 0.789x

x = 1.267ln
(

C
3.159

) (21)

Let AccImpr denote the accuracy improvement percentage. The accuracy improvement
fit function can be estimated by linear fitting, as follows:

AccImpr = 1.54x− 2.018

x =
AccImpr + 2.018

1.54

(22)

By combining Equations (20) and (21), we can conclude the following:

AccImpr + 2.018
1.54

= 1.267ln
(

C
3.159

)
AccImpr = 1.54 ∗ 1.267[ln(C)− ln(3.159)]− 2.018

AccImpr = 1.951ln(C)− 1.503− 2.018

(23)

Thus, we end up with Equation (23), which yields the accuracy improvement offered
by the proposed LeLeLU in terms of the dataset complexity. It is clear that Equation (23)
is a monotonic rising function; that is, the more complex the dataset, the more accuracy
improvement yielded the proposed LeLeLU.

AccImpr = 1.951ln(C)− 3.521 (23)

Information 2021, 12, 513 15 of 16

To verify the validity of Equation (23), we use the experiment of Cifar-100 with VGG-
16, which was not used in the derivation of Equation (23). The Cifar-100 dataset has a
complexity of 146.988, and the proposed function achieved an improvement of 6.38% over
ReLU, as presented in Table 7. By substituting these figures in Equation (23), we can see
that they verify Equation (23) very closely.

1.951ln(146.988)− 3.521 = 6.215 ∼= 6.38 (24)

In essence, Equation (23) provides a very good estimate of the LeLeLU’s performance
for any given dataset.

5. Discussion

The activation function is a core component in the neural network topology that
affects both the behavior and computational complexity. By combining the best features
of the ReLU family, we proposed the Learnable Leaky ReLU (LeLeLU), being linear and,
thus, easily computable, while providing the parametric freedom to model the problem
effectively. In our experiments, the proposed activation function consistently provided the
best accuracy among the tested functions and datasets. It is very interesting that it features
an almost analogous increase in accuracy gain to the complexity of the dataset. Thus,
LeLeLU assists the network to adapt to the demands of challenging datasets, achieving
almost analogous performance gain.

In the future, we will investigate methods to overcome the limitation of having to use
batch normalization as a core component when implementing LeLeLU in a network. We
will also investigate the effect of using higher-order polynomial versions of the original
LeLeLU activation function and/or adding noisy perturbations in a similar manner to
ProbAct [17].

Author Contributions: Conceptualization, A.M. and N.M.; methodology, A.M.; software, A.M.;
validation, A.M.; formal analysis, A.M. and N.M.; writing—original draft preparation, A.M.; writing—
review and editing, A.M. and N.M.; supervision, N.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used in this work can be found in the below publicly
available links. MNIST dataset: http://yann.lecun.com/exdb/mnist/, accessed on 6 October 2021;
Fashion MNIST dataset: https://github.com/zalandoresearch/fashion-mnist, accessed on 6 October
2021; Sign Language dataset: https://www.kaggle.com/datamunge/sign-language-mnist, accessed
on 6 October 2021b; Cifar-10 dataset: https://www.kaggle.com/c/cifar-10, accessed on 6 October
2021; Cifar-100 dataset: https://www.kaggle.com/fedesoriano/cifar100, accessed on 6 October 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International

Conference on International Conference on Machine Learning, 2010 ICML’10, Haifa, Israel, 21–24 June 2010; Omnipress: Madison,
WI, USA; pp. 807–814, ISBN 9781605589077.

2. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th
International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Volume 30.

3. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
arXiv 2015, arXiv:1502.01852.

4. Hendrycks, D.; Gimpel, K. Gaussian Error Linear Units (GELUs). arXiv 2016, arXiv:1606.08415.
5. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,

arXiv:1502.03167.

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://www.kaggle.com/datamunge/sign-language-mnist
https://www.kaggle.com/c/cifar-10
https://www.kaggle.com/fedesoriano/cifar100

Information 2021, 12, 513 16 of 16

6. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

7. Dugas, C.; Bengio, Y.; Bélisle, F.; Nadeau, C.; Garcia, R. Incorporating second-order functional knowledge for better option
pricing. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2001; pp. 472–478.

8. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the International Conference on
Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011.

9. Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs).
arXiv 2015, arXiv:1511.07289.

10. Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 972–981.

11. Courbariaux, M.; Bengio, Y.; David, J.-P. BinaryConnect: Training deep neural networks with binary weights during propagations.
In Proceedings of the NIPS’15: Proceedings of the 28th International Conference on Neural Information Processing Systems,
Montreal, QC, Canada, 7–12 December 2015; Volume 2, pp. 3123–3131.

12. Ramachandran, P.; Zoph, B.; Le, Q.V. Swish: A Self-Gated Activation Function. arXiv 2017, arXiv:1710.05941v1.
13. Misra, D.M. A self regularized non-monotonic neural activation function. arXiv 2019, arXiv:1908.08681.
14. Maguolo, G.; Nanni, L.; Ghidoni, S. Ensemble of convolutional neural networks trained with different activation functions. Expert

Syst. Appl. 2021, 166, 114048. [CrossRef]
15. Liang, S.; Lyu, L.; Wang, C.; Yang, H. Reproducing Activation Function for Deep Learning. arXiv 2021, arXiv:2101.04844.
16. Zhou, Y.; Zhu, Z.; Zhong, Z. Learning specialized activation functions with the Piecewise Linear Unit. arXiv 2021, arXiv:2104.03693.
17. Shridhar, K.; Lee, J.; Hayashi, H.; Mehta, P.; Iwana, B.K.; Kang, S.; Uchida, S.; Ahmed, S.; Dengel, A. ProbAct: A Probabilistic

Activation Function for Deep Neural Networks. arXiv 2020, arXiv:1905.10761v2.
18. Bingham, G.; Miikkulainen, R. Discovering Parametric Activation Functions. arXiv 2021, arXiv:2006.03179v4.
19. Burgin, M. Generalized Kolmogorov complexity and duality in theory of computations. Not. Russ. Acad. Sci. 1982, 25, 19–23.
20. Kaltchenko, A. Algorithms for Estimating Information Distance with Application to Bioinformatics and Linguistics. arXiv 2004,

arXiv:cs.CC/0404039.
21. Vitányi, P.M.B. Conditional Kolmogorov complexity and universal probability. Theor. Comput. Sci. 2013, 501, 93–100. [CrossRef]
22. Solomonoff, R. A Preliminary Report on a General Theory of Inductive Inference; Report V-131; Office of Scientific Research, United

States Air Force: Washington, DC, USA, 1960.
23. Jorma, R. Information and Complexity in Statistical Modeling; Springer: New York, NY, USA, 2007; p. 53, ISBN 978-0-387-68812.

http://doi.org/10.1016/j.eswa.2020.114048
http://doi.org/10.1016/j.tcs.2013.07.009

	Introduction
	The Proposed Activation Function
	Parameter Adaptation and Network Regularization
	Results
	Datasets and Network Topologies
	Numerical Results
	LeLeLU Performance in Larger Deep Neural Networks
	VGG-16 with LeLeLU
	ResNet-v1-56 with LeLeLU

	LeLeLU Performance vs. Dataset Complexity

	Discussion
	References

