
 information

Article

BDPS: An Efficient Spark-Based Big Data Processing Scheme
for Cloud Fog-IoT Orchestration

Rakib Hossen 1, Md Whaiduzzaman 2,3,* , Mohammed Nasir Uddin 1, Md. Jahidul Islam 1 ,
Nuruzzaman Faruqui 2 , Alistair Barros 3, Mehdi Sookhak 4 and Md. Julkar Nayeen Mahi 2

����������
�������

Citation: Hossen, R.;

Whaiduzzaman, M.; Uddin, M.N.;

Islam, M.J.; Faruqui, N.; Barros, A.;

Sookhak, M.; Mahi, M.J.N. BDPS: An

Efficient Spark-Based Big Data

Processing Scheme for Cloud Fog-IoT

Orchestration. Information 2021, 12,

517. https://doi.org/10.3390/

info12120517

Academic Editor: Willy Susilo

Received: 4 November 2021

Accepted: 7 December 2021

Published: 10 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Jagannath University, Dhaka 1100, Bangladesh;
rakibcsejnu001@gmail.com (R.H.); nasir@cse.jnu.ac.bd (M.N.U.); jahid@cse.green.edu.bd (M.J.I.)

2 Institute of Information Technology, Jahangirnagar University, Dhaka 1342, Bangladesh;
faruquizaman27@gmail.com (N.F.); mahi.1992@gmail.com (M.J.N.M.)

3 School of Information Systems, Queensland University of Technology, Brisbane 4000, Australia;
alistair.barros@qut.edu.au

4 Department of Computer Science, Texas AM University, Corpus Christ, TX 78412, USA; m.sookhak@ieee.org
* Correspondence: wzaman@juniv.edu

Abstract: The Internet of Things (IoT) has seen a surge in mobile devices with the market and technical
expansion. IoT networks provide end-to-end connectivity while keeping minimal latency. To reduce
delays, efficient data delivery schemes are required for dispersed fog-IoT network orchestrations.
We use a Spark-based big data processing scheme (BDPS) to accelerate the distributed database
(RDD) delay efficient technique in the fogs for a decentralized heterogeneous network architecture
to reinforce suitable data allocations via IoTs. We propose BDPS based on Spark-RDD in fog-IoT
overlay architecture to address the performance issues across the network orchestration. We evaluate
data processing delays from fog-IoT integrated parts using a depth-first-search-based shortest path
node finding configuration, which outperforms the existing shortest path algorithms in terms of
algorithmic (i.e., depth-first search) efficiency, including the Bellman–Ford (BF) algorithm, Floyd–
Warshall (FW) algorithm, Dijkstra algorithm (DA), and Apache Hadoop (AH) algorithm. The BDPS
exhibits low latency in packet deliveries as well as low network overhead uplink activity through a
map-reduced resilient data distribution mechanism, better than in BF, DA, FW, and AH. The overall
BDPS scheme supports efficient data delivery across the fog-IoT orchestration, outperforming faster
node execution while proving effective results, compared to DA, BF, FW and AH, respectively.

Keywords: efficient data processing; depth-first search; map reduction; in-memory accelerator; spark

1. Introduction

The growing IoT network [1–3], end-to-end packet distribution, finds mesh networks
for end devices, along with short-range communication [4–6]. The anonymous users and
excessive delays in heterogeneous network hops make it challenging to deliver data with
better scalability and elasticity [7–9]. Increasing user loads within IoT connections raises
latency-based delays toward gateway endpoints [10–12]. When distributed processes have
been merged and aligned to continue [13,14] through the network gateway, they occur due
to delayed package delivery and inconsistent planning of processes for high memory gain
at the edge of the network nodes [15,16].

Fog computing reduces latency problems by distributing processes across different
shared hops, splitting them at their right ends, and assigning network data within a timed
frame (i.e., time-based or peer-to-peer programming manner). The end devices or the
IoT network receive their collected data by managing a lower latency period and sharing
defined (i.e., planned) workloads in federated fog-IoT orchestrations [17]. In connection
with these IoT gateways, custom fogs achieve a lower memory gain through less delay-
based data provision [18,19] across these IoT gateways. When processing large amounts

Information 2021, 12, 517. https://doi.org/10.3390/info12120517 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-2822-0657
https://orcid.org/0000-0003-1289-6484
https://orcid.org/0000-0001-9306-9637
https://orcid.org/0000-0001-5822-3432
https://orcid.org/0000-0002-1763-2544
https://doi.org/10.3390/info12120517
https://doi.org/10.3390/info12120517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12120517
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12120517?type=check_update&version=1

Information 2021, 12, 517 2 of 22

of data (e.g., big data), IoT gateways experience problems with the distribution to the
intended users, and errors occur during data processing. The middleware fog architecture
of the middleware can also help reduce the overhead of cloud data processing as the data
delivery (i.e., mapping) is loaded onto validated users [20].

Typical big data architecture works with Apache Hadoop-based data mapping deliver-
ies concerning veracity, validity, velocity, variability, volatility, and vulnerability. However,
Hadoop makes it difficult and increases additional latency-based delay when considering
validity, variability, and volatility across data delivery mappings [21]. Hadoop is highly
volatile, and hence, a resilient data delivery mechanism is a reasonable need for the appro-
priate data validation. Thus, for efficient data delivery at the IoT hop ends, a resilient data
distribution-based mapping mechanism [22] is a better choice, and fog service deliverables
(i.e., gateways, and microservice extenders) act here as a beneficiary helper for the three-tier
architecture [23].

The overlay tree topology for interconnects works as mesh-based peer-to-peer data
sharing [24,25], a master–slave and slave–master pattern. IoT networks often encounter
a delay in the two-way verified communication of latencies [26] at the hop-to-hop ends
offloading [27], causing latencies based on delay at the network ends [28] of the devices
depending on their data delivery priorities, end-to-end [29,30]. Fog networks have difficulty
in making appropriate decisions for end-to-end data distribution. Therefore, process
planners at the fog endpoints [31,32] must access and share through the IoT data allocation
procedures. A valid developed schema based on proper planning resource allocation
can fine-tune fog services [33], enabling integrated fog-IoT orchestrations. Without the
verification from the cloud, the fog cluster cannot validate the scheduled data distribution.
Hence, for rapid data delivery and efficient in-memory scheduling across the network ends,
a low latency-based data distribution scheme is still needed for fog-IoT overlay networks.

We propose BDPS, a delay optimization scheme to run with in-memory Spark process-
ing to reduce the Apache Hadoop [34] extra delay problem for the verification, validation,
and execution of files caused by distribution of data processing. “BDPS” can manage data
processing [35] for architectures or massive storage modules to fast process scheduling
to run different frame intervals in a single frame slot and minimize the end-to-end hop
latency problem. Deploying the Spark framework activity through resilient distributed
data can help to speed up deliveries of data within the overlay network and improve
network efficiency by reducing the extended delay problem on mesh interconnections at
the hop-to-hop ends. A star mesh topology was designed to connect the main fog controller
via cloud for faster scaling of the network delay measurements and process validations [36].
The cloud is at the back end of our developed BDPS scheme, and gateways of IoTs are
placed at the front end [37]. In the fog layer [38], the RAMA scheduling process runs
through BDPS data distribution [39], containers and delivering priority scheduled data [40]
from the IoT layer toward the central cloud [41]. After the fog cluster [42,43] validates
the frames [44–46], the derived data feed to the RDD in memory accelerators to provide
efficient data deliveries across the IoT clusters [47,48] (i.e., gateways).

This paper uses three popular shortest-path-routing algorithms (i.e., the Bellman–Ford
(BF) algorithm, Floyd–Warshall (FW) algorithm and Dijkstra algorithm (DA)) and a map-
reduction data delivery algorithm (i.e., Apache Hadoop (AH) algorithm) based comparison
(Table 1) to estimate a performance analysis. The performance analysis is shown by
developing a rapid data delivery scheme (i.e., BDPS) across the fog-IoT environment.
However, the packet drop ratio, frame delivery ratio, network overhead, computational
delay, are throughput are primarily checked to estimate the performance analysis within a
hierarchical tree architecture.

Information 2021, 12, 517 3 of 22

Table 1. List of acronyms used in alphabetical order.

Notations Description

APSP ALL pair shortest path
AH Apache Hadoop algorithm
BF Bellman–Ford algorithm
DA Dijkstra algorithm
DFS Depth-first search algorithm
FW Floyd–Warshall algorithm
IoT Internet of Things
BDPS Spark-RDD-in-memory-based scheme
RAMA Read-only memory accelerator
RDD Resilient data distributor
SP Session password

The main contributions of the research work include the following:

• We present an efficient Spark-RDD-in-memory-based scheme to mitigate against exist-
ing challenges in a scheduled priority batch processing data distribution framework.

• We implement the delay efficient high-speed data processing algorithmic scheme for a
hierarchical tree-based overlay mesh architecture in the cloud–fog and IoT ecosystem.

• We conduct an overall performance analysis of our scheme with shortest path al-
gorithms, such as BF, FW and AH, with efficient delay time analysis (e.g., system
run-time tolerance or service load).

The remainder of this paper is organized as follows: Section 2 generalizes a discussion
about BDPS scheme work procedures within the fog-IoT environment. Section 3 employs
an overview of the background study to identify the current solutions and limitations.
Section 4 represents the system model and methodology of the developed BDPS scheme.
Section 5 illustrates a rigorous experimental result of BDPS and other existing algorithms.
Section 6 concludes the paper by providing future insights and outcomes.

2. Background Study with Related Work

In this section, we discuss the background study of fog-IoT, SDN and Spark-RDD
related to this research.

2.1. Spark-RDD

Spark has RDDs (i.e., resilient distributed datasets), performed as the main unit of
logical data structures. RDDs are mainly distributed objects, and depend on storing data
toward memory locations (i.e., cache and RAM) or on disks attached over machines within
a cluster. A single RDD may be divided into multiple partitions of logical data slots. These
configured partitions can store and process over different clusters of the allocated machines.
RDD data sets are read-only (i.e., immutable) in nature but process override may create
new RDD stacks within previous stacks through granular operations.

The RDDs can be stored in the cache and reusable. RDDs in Spark (Figure 1) are
estimated in a lazy order (i.e., evaluates the processing delay until it is needed to be
overlapped since it carries memory-based operations). This procedure saves a good
amount of process execution time and shows effectiveness across the network. In Spark,
the RDDs may operate in two ways—(1) transformations and (2) actions.

Information 2021, 12, 517 4 of 22

Figure 1. Spark-RDD mechanism.

2.2. SDN

Software-defined network (i.e., SDN) architecture defines a computing system of
networks building through a distinct set of open-software technologies and hardware
commodities. The SDN architecture works by dividing the data and control plane of the
networked stacks packaged and integrated with code distribution generated by different
vendor proprietaries. The SDN uses an OpenFlow protocol for the whole network, and
preferably considers the controller plane. The SDN data controller gets instructions from
the application layer and employs them toward active components through application
programming interfaces (APIs). The SDN APIs are defined as north- and south-bound in-
terfaces carrying virtual network overlays, and the allocated devices need not be physically
located at the same place while performing operations.

2.3. Fog-IoT

Fog computing is a decentralized communication infrastructure, where computational
data, applications, and storage reside between the source data and the cloud counterparts.
Fog communication supersedes cloud computation and permits short data analytics near
the edge, whereas the cloud employs long-term resource-intensive analytics. Internet-
of-things (i.e., IoT) fog computation reveals the initial benefits and power enhancements
of the cloud nearer to a middle layer of communication (Figure 2) in which the data are
created and acted as per the strategy build-ups. Moreover, IoT devices and actuators are the
platforms where data are gathered and updated, but they do not have high computational
and storage capabilities to engage artificial intelligent tasks or advance analytics.

Information 2021, 12, 517 5 of 22

Figure 2. Fog-IoT orchestration.

The approaches of fogging address the emerging issues of IoT and industrial IoT
(i.e., IIoT) by reducing computation delays, communication latencies between sensors
and the cloud, presumably affecting IoT performance, and providing effectiveness across
the network.

2.4. Overlay Tree Architecture

The overlay tree architecture deploys an internal tree of communication processes
to leverage the application of processes toward the end-users. In the root of the tree
architecture, there resides the front-end process, and at the leaves, there are the back-end
processes to be carried by end-points within tree architecture. The processes run through as
a first-in-first-out or last-in-first-out manner based on priority queues within the tree nodes.
The data abstraction filter is generated for data aggregation and reduction operations over
in-stack packet deliveries. The persistent filter carries side effects of filter execution from
one to the next and increases filter abstraction availability. The overlay tree architecture
communicates with a master–slave and slave–master pattern (Figure 3) with its respective
parent–child nodes within a hierarchical fashion. This communication approach provides
an efficient reliability mechanism across the parent–child data delivery process.

Information 2021, 12, 517 6 of 22

Figure 3. A generic mesh-based overlay tree architecture.

3. Related Works

Proper data acquisition and distribution is a vital concern for heterogeneous fog-IoT
networks. It is necessary to orchestrate and tune the interaction of processes in a resilient
distributed data mechanism to provide efficient data deliveries over the fog–cloud data
flow while ensuring high-speed data processing.

Ramya et al. [4] found out the lightweight dynamic graph query mechanisms for the
networking-as-a-service (i.e., NaaS) system, which provide access to cloud customers to
virtual network functions. They used the net graph library to support network manage-
ment operations and designed an architecture using the all pair shortest path (i.e., APSP)
algorithm to pre-compute all topology paths and achieve practical compute times.

Whaiduzzaman, M., Naveed, A and Gani, A. [5] implemented a cloudlet resource
enhancement framework, MobiCore. MobiCore uses the M/M/c/K queue, and the system
model runs through the birth death Markov chain execution of processes. The framework
supports an optimal average service time 1/µ of cloudlets for the mobile applications to
outperform the maximum benefit. The MobiCoRE framework gathers up to 50% extra users
while performing optimal service time and shared mobile resources for task remaining
within the cloudlet. It can also achieve up to 47% time enhancement for mobile device
users in terms of sharing only 16% resources of the cloudlet.

EL-Garoui, L., Pierre, S. and Chamberland, S. [7] proposed a new routing protocol
based on SDN and the Naive Bayes framework to improve the delay and also minimize the
duration between the sender and receiver. They achieved realistic results using a machine
learning algorithm and designed a new routing protocol to formulate the delay.

Ragaventhiran, J. and Kavithadevi, M.K. [11] constructed a map reduce optimization
framework through the emperor penguin colony (EPC) approach while comparing the
mapper and reducer. The optimization framework is an extended version of frequent
pattern mining (FPM), primarily allocated in the Hadoop cluster to reduce data redundancy.
The framework works in canonical order (CAN) tree-based frequent pattern (FP) growth
to reduce the data execution time and frequent tree construction while performing within
the Hadoop cluster. The affinity propagation (AP) based clustering of this optimization

Information 2021, 12, 517 7 of 22

framework helps to avoid oversight of data scanning and growing minimal searching space
in MapReduce to deploy balanced loads among different data blocks. The performance
evaluation of this framework with the existing works supports the succeeding metrics for
execution time, scalability, response time and load balancing rate.

Whaiduzzaman et al. [12] developed a fault-tolerant framework for seamless microser-
vice execution within the fog-IoT orchestration. The framework supports efficient task
execution of end-to-end processes while performing the seamless transfer of microservices
toward the intended fog-IoT shared devices.

Awan et al. [13] developed a procedure for detecting and relieving DDoS attacks
through using Apache Spark from a large amount of data delivery times. In their research
outcomes, the Apache Spark process shows much faster data execution than other existing
frameworks. They used SDN (i.e., software-defined networking) to visualize their process
of work. In our work, we developed an in-memory processing-based Spark-RDD high-
speed data delivery scheme for efficient computation and providing less delay across the
network hops or ends. Wilfried et al. [15] proposed a MapReduce framework that promotes
computing the shortest path routing mechanism into a large-scale graph of a parallel and
distributed algorithm referred to as A* algorithm. The algorithm comprises a large road
network into some small path network. However, this proposed algorithm reduces the
time complexity while showing not many effective results.

Quasim, M.T. [16] employed a mobile edge computing-based resource management
and task scheduling (MEC-RMTS) framework to deliver an efficient task-offloading-based
data delivery mechanism with low latency and scalability for IoT-network-enabled smart-
phone handling. The developed module uses power usage (PU) to decrease energy con-
sumption, providing a convex technique of gradient-dependent game model (GM) data
acquisition. Moreover, a mixed-intelligent, non-linear program model is configured for the
issue of common needs and resource utilization (CNRU) to minimize request delays at the
end device nodes. The simulated performance depicts that MEC-RMTSF saves the energy
usage by up to 7.1% and gathers a delay of 0.95 seconds for scheduled resource allocation.

Dongbo et al. [17] proposed an algorithmic mechanism to suppress a large-scale road
network by dividing into some small-scale road networks according to the configured
central distance. This algorithmic procedure creates better executing results.

Aslanpour, M.S., Gill, S.S. and Toosi, A.N. [19] illustrated an in-depth performance
analysis review considering the latest technology changes within cloud, fog and IoT
process optimizations, device interactions, etc. The descriptive review shows possible
future technology development taxonomies, benchmarks and standardization.

Abdel-Basset et al. [24] used a marine predators algorithm (MPA) to improve the
quality of service of task scheduling across the IoT networks. However, fog distributions
are triggered to carry genetic mutations of process reinitialization, specifically to compute
and deliver the best packet stacks throughout the fog-IoT orchestrated environment. The
MPA is compared with other existing metaheuristic algorithms and genetic algorithms to
show effective performance metrics, considering energy consumption, makespan, flow
time, and the carbon dioxide emission rate within the fog-IoT device allocations.

Zhihui et al. [29] described a big data edge cloud data analytics model to develop
an IoTDeM big data feasibility model which suppresses the existing LWLR model in
multiple edge clouds of the Hadoop 1 and Hadoop 2 environment. The generalized
IoTDeM model selects cluster scale parameters to improvise the traditional LWLR model
and finds effective results in data reliability, performance and scalability over the Hadoop 2
environment. Yassine et al. [36] showed a knowledge-based IoT data analytics framework
for smart homes. The configured fog nodes across cloud system perform effectively in data
collection, processing and real-time recognition from the end-user activities. The overall
results and research study employs beneficiary outcomes to establish real smart homes
through orchestrated IoT networks.

Our proposed BDPS scheme follows depth-first search-based map reduced scheduling
policies for high-speed packet deliveries at the network edges. The map reduced (i.e.,

Information 2021, 12, 517 8 of 22

shorten the active master–slave communication path or routing) scheduling mechanism
supports the Spark-RDD in-memory data processing mechanism and carries the packet
distribution across the mesh overlay network. The BDPS scheme provides efficient compu-
tation, and low latency around the fog-IoT network hop ends. A brief comparison is shown
in (Table 2) to gain insight throughout the existing key technologies and research gaps.

Table 2. Emerging key technologies, contributions and research gaps.

Works
Key Technologies

Contributions and Research Gap
Cloud Fog IoT Map.R Big.D

Farjana et al. (2020) [2] X X X X X Security issues declared in fog only services.

Ramya et al. (2012) [4] X X X X X Dynamic graph query module for NaaS Cloud.

Oma et al. (2018) [23] X X X X X WSN platform for serving lower fogs.

Tajalli et al. (2020) [27] X X X X X DoS security aware framework for WSANs.

Forti et al. (2021) [28] X X X X X Application placement for map reduced services.

Zhihui et al. (2017) [29] X X X X X Weighted Linear Regression for hadoop clusters.

Swain et al. (2020) [30] X X X X X TDMA task offload scheduler for fog-IoT nodes.

Saito et al. (2020) [31] X X X X X Wireless message subscription model for IoT nodes.

Vasudevan et al. (2020) [32] X X X X X Scheduler problem in distributed IoT labeling.

Ortiz et al. (2022) [33] X X X X X Inappropriate 3-tier interfacing for large data set.

Postoaca et al. (2020) [34] X X X X X Distributed algorithmic access for cloud datacenter.

Yassine et al. (2018) [36] X X X X X Only big data based task schedulers.

Saba et al. (2021) [37] X X X X X Dynamic IoT traffic model for fog analytics.

Li et al. (2019) [38] X X X X X Shortest paths algorithms for road networks.

Baranwal et al. (2021) [39] X X X X X Data deliverable services and shared architectures.

Honar et al. (2021) [40] X X X X X Facing trouble in middle ware latency support.

Bendechache et al. (2020) [41] X X X X X Gap in middleware feasibilities.

Losada et al. (2021) [46] X X X X X Gaps in between Proposed and ES scheme.

Map.R—declares map reduce, Big.D—declares big data in Table 2.

4. System Model and Methodology

In this section, we describe our system model and methodology.

4.1. BDPS Data Processing in Cloud, Fog and IoT Network Layer

We developed a high-speed data delivery mechanism to increase efficient data distribu-
tion at the IoT network end. The illustrated scheme enhances the data distribution pattern
by working through in-memory Spark-RDD accelerator-based process schedulers across
the fog-IoT network ends while performing distributed data sharing activities. The layered
architecture is divided into three segments—cloud, fog, and IoT layers (e.g., end devices).
The three-layer data distribution architecture (Figure 4) works in a bottom-up fashion. IoT
network layers are the concerning part for major data loads to distribute toward the end
devices. We contrived the in-memory Spark-RDD accelerator-based process schedulers
(i.e., BDPS scheme) through a fog layer that works within the fog-IoT orchestration to
reduce the data loads at the network end, specifically in the end devices. Here, the fog
layer serves as a primary helper for the IoT and a secondary helper for the cloud end to
overcome the extra data processing load of mesh networks over the IoTs by providing the
utmost data delivery enhancement or service efficiency toward the end devices. The fog
has Spark-RDD process schedulers (e.g., in-memory depth-first search accelerator) for the
concerned IoTs or end devices. For data jamming, excess process overload in the IoT layer

Information 2021, 12, 517 9 of 22

end, the fog carrier schedules the in-memory Spark-RDD accelerator toward the fog-IoT
gateway connection and sends back the information to the cloud end for a process log list
and further possible in-memory depth-first search (i.e., DFS) schedule verification. The
fog layer has a SP (e.g., session password) timestamp to shut off the BDPS process to run
after the regular processed data loads. The fog generates in-memory process schedulers
while carrying the data after being overridden by the SP timestamp for scheduled data
toward the IoT and central cloud layers containing the information of the in-memory-based
process accelerations. Thus, the system’s data acceleration improves with efficient process
deliveries toward the network ends.

Figure 4. Overview of our developed BDPS scheme.

4.2. Components of the Fog-IoT Hierarchical Overlay Network and BDPS Architecture

Our system architecture is divided into three conventional layers: the back-end,
middleware, and front-end services. The three-layer architecture may be categorized as
(1) the cloud layer or core (back-end), (2) the fog layer (middleware), and (3) the IoT layer
(front-end).

The core or cloud layer: The central cloud or service tracks the active participation
of BDPS process schedulers to deliver from the fog toward the cloud in a secure fashion
through the SP (session password). According to the process loads at the fog-IoT network
ends, the cloud sends verification and validation to the fog to start the BDPS to reduce
(Algorithm 1) the extra delay overheads. The current fog sessions work to process the data
allocations assigned for the allocated devices. The overall cloud-to-fog communication
creates an initialization delay (e.g., session-based configured counter for packet scheduling).
The fog sessions resume the work through re-scheduling (i.e., enabling BDPS) for the
previous information (e.g., overloaded information at the network ends) for creates extra
jamming loads. The cloud comprises a data center that acts as a reservoir and contains
the logs or verified proofs for the generated BDPS scheme timings (e.g., a counter for the

Information 2021, 12, 517 10 of 22

affected processed packets). Later, the reservoir sends a code of conduct to the fog to cause
a re-scheduling (i.e., in-memory-based Spark-RDD or BDPS) of synchronized processed
packets within the fog-IoT orchestrations. Each renewed processed packet includes the
information of the previous overloaded packets and the new super-seeded packets (i.e.,
BDPS-verified packets) as a hash table generation for the fog-IoT nodes. The hash table is a
cloud-only mechanism or cloud-native function for assuring the process verification and
validation. Thus, the developed scheme re-distributes the synchronized high-speed packets
throughout the fog-IoT network ends with no loss of data with a delay efficient property.

The fog layer or middleware: The fog layer is equipped with a timer-based scheduled
counter that acts as middleware for the cloud and IoT for super seeding (i.e., high-speed
deliveries through in-memory) the extra overflow of processes or data jamming toward
the IoT network ends. The fog layer establishes a Spark-RDD in-memory data accelerator
(i.e., BDPS) mechanism to synchronize the processed data toward the IoT ends. The fog
gathers direction from the cloud and verifies the needful (i.e., search for extra loaded data
over packets using depth-first strategy) to generate the BDPS scheme for overcoming the
extra user loads (i.e., data stress) across the fog-IoT ends. The BDPS scheme gathers the
previous overloaded process stacks, aligns them with a counter track, and feeds them into
the RAMA scheduler running or generated processes into the memory (i.e., RAM and cache
for new and previous feeding sequentially) for the fast delivery of data distribution. The
information-gathering procedure is performed regularly (Algorithm 1) after each process
execution and verification from the cloud. The fog layer comprises a timestamp, SP (e.g.,
session password), which is generated if BDPS is needed to establish and track by the
cloud reservoir. Furthermore, for the data load, the fog generates a counter-timer-based
depth-first packet search strategy to encapsulate the loaded processes and check back
for the cloud verification. After verification and validation, the fog layer starts the BDPS
scheme, a mechanism for in-memory Spark-RDD data accelerator, to re-synchronize the
packets (Algorithm 2) and deliver them to the respective device ends. Thus, the scheme
synchronized past and newly created processes by supporting data loss avoidance by
delivering it in a time-wise (i.e., high-speed process accelerators) function pattern. The fog
layer also has a similar security pattern (i.e., SP) as the cloud to provide extra security for
the packet schedulers.

The IoT layer or front-end service for the attached fog and cloud layer: The IoT layer
has permission to connect with individual devices across the network for verification from
the fog-IoT orchestration service. The IoT layer is concerned with data overloads and needs
to check for the loaded process. The derived system design follows a generalized pattern
for the fog-IoT layer to connect with different devices within the network. However, the
architecture proceeds with the BDPS scheme only after initializing the session (Algorithm 2)
from the fog through the cloud verification and validation. On the other hand, the scheme
has an SP (session password) mechanism for secured data flow procedures. The SP
mechanism (Table 3) provides secure packet distribution through BDPS over the fog,
rescuing the cloud from packet sniffing problems.

Table 3. Symbols used in the algorithms.

Symbol Definition

nc Current process packet
(nc + 1) Increment of packet stacks to the next upcoming
clss Cloud session service container
f ss Fog mapreduce-Spark service container
iss IoT cluster session service
n Processing packet at first start

Information 2021, 12, 517 11 of 22

Algorithm 1: BDPS—delay efficient scheme for rapid data delivery (cloud, fog
to IoT end)—Part 1

Input: Overflow of queuing data processes at the network ends based on priority
schedulers

Output: in-memory map-reduction-based functional RDD-RAMA data
accelerators

/* isOver f low = A Boolean value defines data Overflow of processes
or Not, denoted as o f */

/* PriorityPacketList = Priority-based threaded packet counter,
denoted as pl */

/* SchedulerRAMA = Particular feed-forwarding scheduled packet for
data into both RAMandCacheMemoryList, denoted as srama and rcml
*/

/* Veri f ication and Validation In f o, denoted as vvi */
/* Fog Session Service, denoted as f ss */
/* IoT Cluster Session Service, denoted as icss */
/* Cloud Session Service, denoted as clss */
foreach srama in rcml do

Step 1: Actor: clss
vvi← srama.get vvi()
if srama is NOT from regular packet execution AND vvi() generated then

o f ← true
n← pl.size()
srama.number← n + 1
send.srama To f ss

end
else

o f ← false
check.previous scheduled process queue info () of the srama
Assign existing process delivery priority queues() To f ss

end
if o f then

Step 2: Actor: f ss
regenerate.RAMA scheduler()
get.validated from Cloud
reallocate.RAMA with running process schedulers()
reduce.bottlenecks at IoT end()
nc ← current executing process packet scheduler()
traverse.(nc) To priority reallocation()
srama.number← (nc+1)

end
end

Information 2021, 12, 517 12 of 22

Algorithm 2: BDPS—delay efficient scheme for rapid data delivery (cloud, fog
to IoT end)—Part 2

Input: Overflow of queuing data processes at the network ends based on priority
schedulers

Output: in-memory map-reduction-based functional RDD-RAMA data
accelerators

/* isOver f low = A Boolean value defines data Overflow of processes
or Not, denoted as o f */

/* PriorityPacketList = Priority based threaded packet counter,
denoted as pl */

/* SchedulerRAMA = Particular feed-forwarding scheduled packet for
data into both RAMandCacheMemoryList, denoted as srama and rcml
*/

/* Veri f ication and Validation In f o, denoted as vvi */
/* Fog Session Service, denoted as f ss */
/* IoT Cluster Session Service, denoted as icss */
/* Cloud Session Service, denoted as clss */
if o f then

Step 2: Actor: f ss
Increment srama Numbers By One()
else

Step 2: Actor: f ss
Assign existing and new scheduled processes() to IoT cluster ends

Step 3: Actor: icss
if Cloud and fog vvi is confirmed then

Continue the fog srama processes()
srama.get allocated
numbers according to pl.size()
set.configured srama to intended
IoT device()
Generate and process srama counter() for cloud vvi()

end
else

Step 3: Actor: icss
get.regular process execution ()
from cloud–fog ends
set.delivery according
To pl.size()
Assign existing and new scheduled processes() to
IoT intended device ends

end
end

end

5. Experimental Research and Analysis

We compared the established scheme (BDPS) with the traditional Bellman–Ford (BF)
algorithm, the Floyd–Warshall (FW) algorithm, Dijkstra algorithm (DA), and the Apache
Hadoop (AH) algorithm. The algorithmic performance considerations were checked
(Table 4) under these parametric data delivery (i.e., service response) metrics across the
cloud, fog, and IoT continuum: packet drop (time), network node execution or network
latency (time), frame delivery (time), network overhead (time), computational delay (time)
and throughput (time). See Tables 5 and 6 for simulation environment details.

Information 2021, 12, 517 13 of 22

Table 4. Performance criteria and baselines.

Performance Criterion Baselines

Throughput [Mb/s] Cloud Orchestrated Fog-IoT network
Node Failure Rate [%] Spark-RDD based Fog-IoT Controller Scheduling

Computational Delay [s] Schedule-Aware Bundle Routing (SABR)

Bandwidth Prediction [Kb/s]
Preemptive Scheduling Regressor
Spark-RDD Regressor
Asymptotic Regressor

Table 5. Parameters of the simulation environment (software centric).

Simulation Parameters Values

Software Centric Parameters

Network emulator OMNET++ 5.5.3; Jupyter Notebook 6.1.0;
ns-3.2.1; iFogSim

Cloud storage platform Owncloud 10.3
Packet analyzer Wireshark Packet Analyzer
Programming language Python 3.5.3, Java 9, C++17

Table 6. Parameters of the simulation environment (device centric).

Simulation Parameters Values

Cloud Parameters

No. of Fog controllers 1
No. of CloudBus switches 2
No. of Cloud gateways 1
Type of Cloud controllers HP Z4 G4 Workstation
Cloud routing protocol TCP/IP

Fog Parameters

No. of Fog controllers 4
No. of FogBus switches 6
No. of Fog gateways 4
Type of Fog controllers Dell Optiplex 3060 MT; Raspberry Pi 3b+
Fog routing protocol TCP/IP

IoT Parameters

Mobility model Reference point group model (RPGM)
Type of IoT Controller Amazon Fire HD 7; Dell Edge Gateway 5000
Traffic type Constant Bit Rate (CBR)
Number of IoT devices 100
Simulation time 600 s
Simulation area 5000 m × 5000 m
Data rate 20 Mbps
Transmitted packet size 256–1024 B
Initial energy value 10–12 J
Initial trust value 5 J

5.1. Throughput Generation Scenario over the FW, AH, BF, DA and BDPS Algorithm in Cloud,
Fog, IoT Orchestration

Figure 5 illustrates that the Bellman–Ford (BF) algorithm has a higher throughput in
the fog continuum compared to IoT and cloud. BF does not employ data mapping toward
intended users. The data offloads are higher in the IoT, and cloud redirects the middleware
inconsistency of data processing within the three-tier architecture. BF declares a higher
throughput of 10 ms in fog, showing a multiplication of data packet offload of 2.4% in
1000 packet deliveries. However, having a resilient map reduction data architecture, the

Information 2021, 12, 517 14 of 22

BDPS shows higher throughputs of 10 ms in fog, 8 ms in IoT and 7 ms in cloud, respectively,
and the data offload remains 1.4% in 1000 packet deliveries.

This data execution pattern of BDPS shows consistency within the three-tier data
distribution architecture across intended nodes. Less data offload resembles better data
deliveries across the fog-IoT network continuum. The FW, DA and AH algorithms perform
the same in terms of data offload around the cloud, fog, and IoT orchestration, and employ
lower data throughput. Comparing to BF and others, the BDPS performs better, delivering
the map reduction data delivery pattern toward the network edges.

Figure 5. Throughput of data execution among existing algorithms and BDPS over fog-IoT mesh architecture.

5.2. Network Overhead Generation Scenario over the FW, AH, BF, DA and BDPS Algorithms in
Cloud, Fog, and IoT Orchestration

Figure 6 describes that the Bellman–Ford (BF) algorithm has a higher network over-
head in the fog continuum rather than cloud and IoT. BF does not employ data mapping
toward intended users. The data offloads are higher in the fog, and cloud (rather than
IoT) redirects the stack overload of data processing within the three-tier mesh architecture.
Hence, BF, DA, FW and AH are not a worthy choice for the increased network overhead
over system run time. BF declares a higher network overhead of 12 ms in fog, showing
a multiplication of the data packet offload of 1.6% in 1000 packet deliveries. However,
having a resilient map reduction data architecture, the BDPS shows lower network over-
head of 7 ms in fog, 6.5 ms in cloud and 5.9 ms in IoT, respectively, and the data offload
remains 0.7% in 1000 packet deliveries. This data execution pattern of BDPS shows gradual
consistency within the three-tier data distribution architecture across intended nodes. Less
network overhead resembles better data deliveries across the fog-IoT network continuum.
The FW, DA and AH algorithms show a gradual increase in the data offload similar to BF
throughout the cloud, fog, and IoT orchestration, and employ higher data offload. Com-
paring to BF and others, in terms of network overhead, BDPS performs better, delivering
the map reduction data delivery pattern toward the network edges.

Information 2021, 12, 517 15 of 22

Figure 6. Network overhead among existing algorithms and BDPS over fog-IoT mesh architecture.

5.3. Packet Drop Generation Scenario over the FW, AH, BF, DA and BDPS Algorithms in Cloud,
Fog, and IoT Orchestration

Figure 7 shows that the Bellman–Ford (BF) algorithm has a higher packet drop in the
cloud continuum rather than IoT and fog. The BF does not employ data mapping toward
intended users. The data hand-offs or packet drop are higher in the cloud, and IoT (rather
than fog) redirects data stack overloads within the three-tier mesh architecture. Hence, BF,
DA, FW and AH are not a worthy choice for increased packet drops over the system run
time. BF declares a higher packet drop of 12 ms in fog, showing a multiplication of the
packet offload of 2.2% in 1000 packet deliveries. However, having a resilient map reduction
data architecture, BDPS shows lower packet drops of 11 ms in fog, 10 ms in IoT and 12 ms in
cloud, respectively, and the packet drop or data hand-off remains at 0.2–0.3%, respectively,
in 1000 packet deliveries. This data execution pattern of BDPS shows gradual consistency
within the three-tier data distribution architecture across intended nodes. Less packet drop
resembles better data deliveries across the fog-IoT network continuum. The FW, DA and
AH algorithms show a gradual increase in packet drop similar to BF throughout the cloud,
fog, and IoT orchestration, and employ higher data hand-off. Comparing to BF and others,
in terms of packet drop, BDPS performs better, delivering the map reduction data delivery
pattern toward the network edges.

Information 2021, 12, 517 16 of 22

Figure 7. Packet drop generation scenario over the FW, AH, BF, DA and BDPS algorithms in cloud, fog and IoT orchestration.

5.4. Network Efficiency Generation Scenario over the FW, AH, BF, DA and BDPS Algorithms in
Cloud, Fog, and IoT Orchestration

Figure 8 depicts that the Bellman–Ford (BF) algorithm has better efficiency in the fog
continuum rather than IoT and cloud. BF does not employ data mapping toward intended
users. The packet hand-offs are higher in the IoT, and cloud redirects the middleware
inconsistency of data processing within the three-tier architecture and fog continuum
misplaced stack handlers. BF declares higher efficiency of 12 ms in fog, showing a multi-
plication of misplaced stack handling of 2.5% and faster process execution in 1000 packet
deliveries. However, having a resilient map reduction data architecture, BDPS shows better
efficiency, without misplaced data handling, of 12 ms in fog, 10 ms in IoT and 7 ms in cloud,
respectively. The misplaced packet handling remains at 1.2% in 1000 packet deliveries.

This data execution pattern of BDPS shows consistency within the three-tier data
distribution architecture across fog-IoT intended nodes. Less misplaced packet handling
resembles better data deliveries across the fog-IoT network continuum among other algo-
rithms, namely FW, DA and AH. FW, DA and AH algorithms show less misplaced data
handling around the cloud, fog, and IoT orchestration but cannot deliver resilient data
mapping toward the intended edge nodes. Comparing to BF and others, BDPS performs
better, delivering map-reduction data delivery patterns toward the network edges.

Information 2021, 12, 517 17 of 22

Figure 8. Network efficiency generation scenario over the FW, AH, BF, DA and BDPS algorithms in cloud, fog, and
IoT orchestration.

5.5. Computational Delay Generation Scenario over the FW, AH, BF, DA and BDPS Algorithms in
Cloud, Fog, and IoT Orchestration

Figures 9 and 10 show that the Dijkstra algorithm (DA) has a higher computational
delay in the fog-IoT continuum and does not employ data mapping toward edge network
intended users. The data hand-offs and packet delays across the edge nodes are higher,
which redirects the inconsistency of data processing within the three-tier mesh architecture.
The Dijkstra algorithm declares an overall higher computational delay of 45 ms in 40 edge
node data executions. Having a resilient map reduction data architecture, the BDPS shows
an overall lower computational delay of 2 ms in 3 edge node execution and 26 ms overall
computational delay for 40 edge node execution. The Bellman–Ford, Floyd–Warshall and
Apache Hadoop algorithms show 66 ms, 85 ms and 80 ms, respectively, for 40 edge node
data execution.

This data execution pattern of BDPS shows consistency within the three-tier data
distribution architecture across intended nodes. Less computational delay from the box
plot statistics resembles better data deliveries across the fog-IoT network continuum. The
histogram plot shows that we have maximum edge node data delivery in 5–40 ms. That
supports our BDPS higher data delivery capacity across the edge nodes. Considering the
FW, DA, AH and BF algorithms, in terms of computational delay and having a resilient
data delivery architecture, BDPS is a better choice for fog-IoT-based data orchestration.
However, comparing with computational delay and box plot statistics, we can derive that
BDPS performs better compared to the others. Hence, BDPS is a desirable and beneficial
scheme for the fog-IoT hierarchical overlay mesh architecture.

Information 2021, 12, 517 18 of 22

Figure 9. Histogram view of computational delay over node execution among existing algorithms and BDPS.

Figure 10. Box plot statistics of time delay among existing algorithms and BDPS.

Information 2021, 12, 517 19 of 22

6. Discussion

In this work, we employed a scheme to ensure rapid data delivery within the fog-
IoT network through a Spark-RDD in-memory processing-based accelerator scheme (i.e.,
BDPS). We implemented a heterogeneous hierarchical-tree-based mesh overlay network
to display the process executions within the distributed fog-IoT orchestrations scenario
with the BDPS scheme. In the IoT layer, if a data overflow occurs at the end of an IoT
device, the running information in the processing frame is scheduled for verification and
validation to get feed-forwarded through BDPS. Our configured scheme acts through
timer-based session password generation (SP) from fog to IoT and fog to cloud in terms of
data execution. Hence, our scheme is developed as a three-layer architecture, where the
central cloud server acts as a hidden backbone (i.e., reservoir) for the log file verification
and validation. The central cloud processes the operations by collecting from the fog
session, giving the command to regenerate the queries for validation, and starting the
BDPS scheme toward fog-IoT orchestration deliveries. The newly processed stack (i.e.,
overloaded encapsulate packets) from the fogs are assured, compiled, and delivered across
the IoT bases. The fog cluster generates the BDPS process only if there occurs an overflow
of process jamming or bottleneck across the fog-IoT network ends. The in-memory Spark-
RDD rapid data delivery mechanism supports a high-speed data execution procedure by
encapsulating previous jammed packets and distributing them to their intended authority
(i.e., dwelled devices) around the fog-IoT network mediums. Thus, the BDPS scheme
provides less network latency and delays, resulting in efficient process deliveries across
the connected network ends. The individual devices also have a hashing agreement to
collect, process, and deliver data toward their respective ends. Thus, the occupied data-link
layer safety for less data loss is assured and verified. The SP of each device puts a record
over the cloud end if it goes through the BDPS scheme verification of rapid data transfer
agreements. Our established BDPS scheme delivers an in-memory RAMA data scheduling
and processing strategy that is efficient in providing less delay time over data executions at
the hop-to-hop ends.

In our new algorithmic scheme—BDPS—the over-flooded IoT network nodes have
new hashing sessions of information (e.g., previous and encapsulated ones). The hashing
table of the fog-IoT nodes is carried upon packet overflow in a data table. Thus, the BDPS
scheme is verified to feedforward the over-flooded packets and convert them into bigger
packets while delivering them rapidly within a prioritized manner. In this architecture,
the client sides (e.g., IoT and fog) rely on the BDPS scheme, whereas the server-side (e.g.,
cloud) acts only in a needed situation to verify the scheme. In the data overflow situation,
the fog node carries the alert and delivers it via cloud verification to enable BDPS needed
for the desired nodes or devices. The intermediate node carriers (i.e., devices in awaiting
pipeline for BDPS) act according to their prioritized packets, and hence, deliver themselves
for the respective BDPS feed-forwarding data acceleration process within the fog-IoT
network orchestrations. The established BDPS scheme continues to generate the number of
prioritizing packet schedulers iteratively until the data bottleneck occurs across the desired
network ends.

The BDPS scheme performs well considering other existing algorithms. However, for
the further development of this scheme, we will focus on comparatively large scaled-up
architecture and algorithmic complexity issues in future.

7. Conclusions

It is difficult to maintain an efficient process delivery inside a cloud-based heteroge-
neous fog-IoT orchestration. We created a delay-efficient process delivery strategy (i.e.,
BDPS) for a fog-IoT overlay tree-based hierarchical mesh architecture in this study. The
performance of our delay efficient algorithmic approach, BDPS, was superior to the BF,
DA, FW, and AH algorithms. The inflated BDPS method suppresses the BF, DA, FW, and
AH algorithms. The overall BDPS scheme is three times more efficient in data delivery
across the fog-IoT coordination. Generally, the BDPS scheme outperforms by 28% efficiency

Information 2021, 12, 517 20 of 22

in node execution, compared to BF, DA FW, and AH. The result employs the beneficiary
outcome of the BDPS, proving the low latency of existing algorithms at almost one-fourth
of DA, half of BF, and one-third of FW and AH, respectively. The histogram and box plot
statistics shows the beneficiary outcome of the BDPS scheme, proving its low latency of
26 ms rather than those of other existing algorithms, redirecting 45 ms in DA, 66 ms in BF,
85 ms in FW and 80 ms in AH, respectively, while running the central cloud network as a
backbone service.

Author Contributions: Data curation, N.F. and M.S.; funding acquisition, M.W. and A.B.; investiga-
tion, R.H., M.W. and M.J.N.M.; methodology, R.H., M.J.I. and M.J.N.M.; project administration, M.W.;
software, M.J.N.M.; supervision, M.W., M.N.U. and A.B.; visualization, N.F.; writing—original draft,
R.H., M.N.U., M.J.I. and M.J.N.M.; writing—review and editing, M.W. and M.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research is funded through the “ICT Innovation Fund (2016-17): ICT Division,
Bangladesh” and also partially supported through the Australian Research Council Discovery Project:
DP190100314.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hossain, M.R.; Whaiduzzaman, M.; Barros, A.; Tuly, S.R.; Mahi, M.J.N.; Roy, S.; Fidge, C.; Buyya, R. A scheduling-based dynamic

fog computing framework for augmenting resource utilization. Simul. Model. Pract. Theory 2021, 111, 102336. [CrossRef]
2. Farjana, N.; Roy, S.; Mahi, M.J.N.; Whaiduzzaman, M. An identity-based encryption scheme for data security in fog computing.

In Proceedings of International Joint Conference on Computational Intelligence; Springer: Singapore, 2020; pp. 215–226.
3. Whaiduzzaman, M.; Gani, A.; Naveed, A. Towards enhancing resource scarce cloudlet performance in mobile cloud computing.

Comput. Sci. Inf. Technol. 2015, 5, 1.
4. Raghavendra, R.; Lobo, J.; Lee, K.W. Dynamic graph query primitives for sdn-based cloudnetwork management. In Proceedings

of the First Workshop on Hot Topics in Software Defined Networks, Helsinki, Finland, 13 August 2012; pp. 97–102.
5. Whaiduzzaman, M.; Naveed, A.; Gani, A. MobiCoRE: Mobile device based cloudlet resource enhancement for optimal task

response. IEEE Trans. Serv. Comput. 2016, 11, 144–154. [CrossRef]
6. Mahi, M.J.N.; Hossain, K.M.; Biswas, M.; Whaiduzzaman, M. SENTRAC: A Novel Real Time Sentiment Analysis Approach

Through Twitter Cloud Environment. In Advances in Electrical and Computer Technologies; Springer: Singapore, 2020; pp. 21–23.
7. EL-Garoui, L.; Pierre, S.; Chamberland, S. A New SDN-Based Routing Protocol for Improving Delay in Smart City Environments.

Smart Cities 2020, 3, 1004–1021. [CrossRef]
8. Firouzi, F.; Farahani, B.; Marinšek, A. The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things

(IoT). Inf. Syst. 2021, 101840, in press. [CrossRef]
9. Whaiduzzaman, M.; Mahi, M.J.N.; Barros, A.; Khalil, M.I.; Fidge, C.; Buyya, R. BFIM: Performance Measurement of a Blockchain

Based Hierarchical Tree Layered Fog-IoT Microservice Architecture. IEEE Access 2021, 9, 106655–106674. [CrossRef]
10. Manogaran, G.; Lopez, D.; Chilamkurti, N. In-Mapper combiner based MapReduce algorithm for processing of big climate data.

Future Gener. Comput. Syst. 2018, 86, 433–445. [CrossRef]
11. Ragaventhiran, J.; Kavithadevi, M.K. Map-optimize-reduce: CAN tree assisted FP-growth algorithm for clusters based FP mining

on Hadoop. Future Gener. Comput. Syst. 2020, 103, 111–122. [CrossRef]
12. Whaiduzzaman, M.; Barros, A.; Shovon, A.R.; Hossain, M.R.; Fidge, C. A Resilient Fog-IoT Framework for Seamless Microservice

Execution. In Proceedings of the IEEE International Conference on Services Computing (SCC), Chicago, IL, USA, 5–10 September
2021; pp. 213–221.

13. Awan, M.J.; Farooq, U.; Babar, H.M.A.; Yasin, A.; Nobanee, H.; Hussain, M.; Hakeem, O.; Zain, A.M. Real-time DDoS attack
detection system using big data approach. Sustainability 2021, 13, 10743. [CrossRef]

14. Whaiduzzaman, M.; Farjana, N.; Barros, A.; Mahi, M.; Nayeen, J.; Satu, M.; Roy, S.; Fidge, C. HIBAF: A data security scheme for
fog computing. J. High Speed Netw. 2021, 27, 381–402. [CrossRef]

15. Adoni, W.Y.H.; Nahhal, T.; Aghezzaf, B.; Elbyed, A. The MapReduce-based approach to improve the shortest path computation
in large-scale road networks: The case of A* algorithm. J. Big Data 2018, 5, 1–24. [CrossRef]

16. Quasim, M.T. Resource Management and Task Scheduling for IoT using Mobile Edge Computing. Wirel. Pers. Commun. 2021,
1–18. [CrossRef]

http://doi.org/10.1016/j.simpat.2021.102336
http://dx.doi.org/10.1109/TSC.2016.2564407
http://dx.doi.org/10.3390/smartcities3030050
http://dx.doi.org/10.1016/j.is.2021.101840
http://dx.doi.org/10.1109/ACCESS.2021.3100072
http://dx.doi.org/10.1016/j.future.2018.02.048
http://dx.doi.org/10.1016/j.future.2019.09.041
http://dx.doi.org/10.3390/su131910743
http://dx.doi.org/10.3233/JHS-210673
http://dx.doi.org/10.1186/s40537-018-0125-8
http://dx.doi.org/10.1007/s11277-021-09087-7

Information 2021, 12, 517 21 of 22

17. Zhang, D.; Zhang, W.; Yang, R.; Guo, M.; Chen, C.M. A distributed computation of the shortest path in large-scale road network.
J. Ambient. Intell. Humaniz. Comput. 2019, 1–16. [CrossRef]

18. Alazzam, H.; AbuAlghanam, O.; Sharieh, A. Best path in mountain environment based on parallel A* algorithm and Apache
Spark. J. Supercomput. 2021, 1–20. [CrossRef]

19. Aslanpour, M.S.; Gill, S.S.; Toosi, A.N. Performance evaluation metrics for cloud, fog and edge computing: A review, taxonomy,
benchmarks and standards for future research. Internet Things 2020, 12, 100273. [CrossRef]

20. Whaiduzzaman, M.; Sookhak, M.; Gani, A.; Buyya, R. A survey on vehicular cloud computing. J. Netw. Comput. Appl. 2014, 40,
325–344. [CrossRef]

21. Eswaran, S.P.; Sripurushottama, S.; Jain, M. Multi criteria decision making (mcdm) based spectrum moderator for fog-assisted
internet of things. Procedia Comput. Sci. 2018, 134, 399–406. [CrossRef]

22. Moertini, V.S.; Adithia, M.T. Uncovering Active Communities from Directed Graphs on Distributed Spark Frameworks, Case
Study: Twitter Data. Big Data Cogn. Comput. 2021, 5, 46. [CrossRef]

23. Oma, R.; Nakamura, S.; Duolikun, D.; Enokido, T.; Takizawa, M. Fault-tolerant fog computing models in the IoT. In Proceedings
of the 13th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, Taichung, Taiwan, 27–29 October
2018; pp. 14–25.

24. Abdel-Basset, M.; Mohamed, R.; Elhoseny, M.; Bashir, A.K.; Jolfaei, A.; Kumar, N. Energy-aware marine predators algorithm for
task scheduling in IoT-based fog computing applications. IEEE Trans. Ind. Inform. 2020, 17, 5068–5076. [CrossRef]

25. Huang, W.; Zhou, J.; Zhang, D. On-the-Fly Fusion of Remotely-Sensed Big Data Using an Elastic Computing Paradigm with a
Containerized Spark Engine on Kubernetes. Sensors 2021, 21, 2971. [CrossRef]

26. Whaiduzzaman, M.; Ismail Sumi, A.; Barros, A.; Satu, M.S.; Razon Hossain, M. Towards Latency Aware Emerging Technology for
Internet of Vehicles. In Proceedings of the 25th Pacific Asia Conference on Information Systems (PACIS), Dubai, United Arab
Emirates, 12–14 July 2021.

27. Tajalli, S.Z.; Mardaneh, M.; Taherian-Fard, E.; Izadian, A.; Kavousi-Fard, A.; Dabbaghjamanesh, M.; Niknam, T. DoS-resilient
distributed optimal scheduling in a fog supporting IIoT-based smart microgrid. IEEE Trans. Ind. Appl. 2020, 56, 2968–2977.
[CrossRef]

28. Forti, S.; Gaglianese, M.; Brogi, A. Lightweight self-organising distributed monitoring of Fog infrastructures. Future Gener.
Comput. Syst. 2021, 114, 605–618. [CrossRef]

29. Lu, Z.; Wang, N.; Wu, J.; Qiu, M. IoTDeM: An IoT Big Data-oriented MapReduce performance prediction extended model in
multiple edge clouds. J. Parallel Distrib. Comput. 2018, 118, 316–327. [CrossRef]

30. Swain, C.; Sahoo, M.N.; Satpathy, A.; Muhammad, K.; Bakshi, S.; Rodrigues, J.J.; de Albuquerque, V.H.C. METO: Matching Theory
Based Efficient Task Offloading in IoT-Fog Interconnection Networks. IEEE Internet Things J. 2021, 8, 12705–12715. [CrossRef]

31. Saito, T.; Nakamura, S.; Enokido, T.; Takizawa, M. August. Topic-based processing protocol in a mobile fog computing model. In
Proceedings of the 23rd International Conference on Network-Based Information Systems (NBiS-2020), Victoria, BC, Canada,
31 August–2 September 2020; pp. 43–53.

32. Vijayalakshmi, R.; Vasudevan, V.; Kadry, S.; Lakshmana Kumar, R. Optimization of makespan and resource utilization in the fog
computing environment through task scheduling algorithm. Int. J. Wavelets Multiresolut. Inf. Process. 2020, 18, 1941025. [CrossRef]

33. Ortiz, G.; Zouai, M.; Kazar, O.; Garcia-de-Prado, A.; Boubeta-Puig, J. Atmosphere: Context and situational-aware collaborative
IoT architecture for edge-fog-cloud computing. Comput. Stand. Interfaces 2022, 79, 103550. [CrossRef]

34. Postoaca, A.V.; Negru, C.; Pop, F. Deadline-aware Scheduling in Cloud-Fog-Edge Systems. In Proceedings of the IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Internet Computing (CCGRID), Melbourne, Australia, 11–14 May 2020; pp. 691–698.

35. Moura, J.; Hutchison, D. Fog computing systems: State of the art, research issues and future trends, with a focus on resilience.
J. Netw. Comput. Appl. 2020, 169, 102784. [CrossRef]

36. Yassine, A.; Singh, S.; Hossain, M.S.; Muhammad, G. IoT big data analytics for smart homes with fog and cloud computing.
Future Gener. Comput. Syst. 2019, 91, 563–573. [CrossRef]

37. Saba, U.K.; ul Islam, S.; Ijaz, H.; Rodrigues, J.J.; Gani, A.; Munir, K. Planning Fog networks for time-critical IoT requests. Comput.
Commun. 2021, 172, 75–83. [CrossRef]

38. Li, L.; Guo, M.; Ma, L.; Mao, H.; Guan, Q. Online workload allocation via fog-fog-cloud cooperation to reduce IoT task service
delay. Sensors 2019, 19, 3830. [CrossRef]

39. Baranwal, G.; Vidyarthi, D.P. FONS: A fog orchestrator node selection model to improve application placement in fog computing.
J. Supercomput. 2021, 77, 10562–10589. [CrossRef]

40. Honar Pajooh, H.; Rashid, M.A.; Alam, F.; Demidenko, S. IoT Big Data provenance scheme using blockchain on Hadoop
ecosystem. J. Big Data 2021, 8, 1–26. [CrossRef]

41. Bendechache, M.; Svorobej, S.; Takako Endo, P.; Lynn, T. Simulating resource management across the cloud-to-thing continuum:
A survey and future directions. Future Internet 2020, 12, 95. [CrossRef]

42. Markakis, E.K.; Karras, K.; Sideris, A.; Alexiou, G.; Pallis, E. Computing, caching, and communication at the edge: The cornerstone
for building a versatile 5G ecosystem. IEEE Commun. Mag. 2017, 55, 152–157. [CrossRef]

43. Wang, J.; Li, D. Task scheduling based on a hybrid heuristic algorithm for smart production line with fog computing. Sensors
2019, 19, 1023. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s12652-019-01615-5
http://dx.doi.org/10.1007/s11227-021-04072-0
http://dx.doi.org/10.1016/j.iot.2020.100273
http://dx.doi.org/10.1016/j.jnca.2013.08.004
http://dx.doi.org/10.1016/j.procs.2018.07.192
http://dx.doi.org/10.3390/bdcc5040046
http://dx.doi.org/10.1109/TII.2020.3001067
http://dx.doi.org/10.3390/s21092971
http://dx.doi.org/10.1109/TIA.2020.2979677
http://dx.doi.org/10.1016/j.future.2020.08.011
http://dx.doi.org/10.1016/j.jpdc.2017.11.001
http://dx.doi.org/10.1109/JIOT.2020.3025631
http://dx.doi.org/10.1142/S021969131941025X
http://dx.doi.org/10.1016/j.csi.2021.103550
http://dx.doi.org/10.1016/j.jnca.2020.102784
http://dx.doi.org/10.1016/j.future.2018.08.040
http://dx.doi.org/10.1016/j.comcom.2021.03.002
http://dx.doi.org/10.3390/s19183830
http://dx.doi.org/10.1007/s11227-021-03702-x
http://dx.doi.org/10.1186/s40537-021-00505-y
http://dx.doi.org/10.3390/fi12060095
http://dx.doi.org/10.1109/MCOM.2017.1700105
http://dx.doi.org/10.3390/s19051023
http://www.ncbi.nlm.nih.gov/pubmed/30823391

Information 2021, 12, 517 22 of 22

44. Niu, X.; Shao, S.; Xin, C.; Zhou, J.; Guo, S.; Chen, X.; Qi, F. Workload allocation mechanism for minimum service delay in edge
computing-based power Internet of Things. IEEE Access 2019, 7, 83771–83784. [CrossRef]

45. Ali, B.; Pasha, M.A.; ul Islam, S.; Song, H.; Buyya, R. A Volunteer-Supported Fog Computing Environment for Delay-Sensitive
IoT Applications. IEEE Internet Things J. 2020, 8, 3822–3830. [CrossRef]

46. Losada, M.; Cortés, A.; Irizar, A.; Cejudo, J.; Pérez, A. A Flexible Fog Computing Design for Low-Power Consumption and Low
Latency Applications. Electronics 2021, 10, 57. [CrossRef]

47. Taherizadeh, S.; Apostolou, D.; Verginadis, Y.; Grobelnik, M.; Mentzas, G. A Semantic Model for Interchangeable Microservices in
Cloud Continuum Computing. Information 2021, 12, 40. [CrossRef]

48. Rocha Neto, A.; Silva, T.P.; Batista, T.; Delicato, F.C.; Pires, P.F.; Lopes, F. Leveraging edge intelligence for video analytics in smart
city applications. Information 2021, 12, 14. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2019.2920325
http://dx.doi.org/10.1109/JIOT.2020.3024823
http://dx.doi.org/10.3390/electronics10010057
http://dx.doi.org/10.3390/info12010040
http://dx.doi.org/10.3390/info12010014

	Introduction
	Background Study with Related Work
	Spark-RDD
	SDN
	Fog-IoT
	Overlay Tree Architecture

	Related Works
	System Model and Methodology
	BDPS Data Processing in Cloud, Fog and IoT Network Layer
	Components of the Fog-IoT Hierarchical Overlay Network and BDPS Architecture

	Experimental Research and Analysis
	Throughput Generation Scenario over the FW, AH, BF, DA and BDPS Algorithm in Cloud, Fog, IoT Orchestration
	Network Overhead Generation Scenario over the FW, AH, BF, DA and BDPS Algorithms in Cloud, Fog, and IoT Orchestration
	Packet Drop Generation Scenario over the FW, AH, BF, DA and BDPS Algorithms in Cloud, Fog, and IoT Orchestration
	Network Efficiency Generation Scenario over the FW, AH, BF, DA and BDPS Algorithms in Cloud, Fog, and IoT Orchestration
	Computational Delay Generation Scenario over the FW, AH, BF, DA and BDPS Algorithms in Cloud, Fog, and IoT Orchestration

	Discussion
	Conclusions
	References

