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Abstract: In the last years, methods for detecting text in real scenes have made significant progress
with an increase in neural networks. However, due to the limitation of the receptive field of the
central nervous system and the simple representation of text by using rectangular bounding boxes,
the previous methods may be insufficient for working with more challenging instances of text. To
solve this problem, this paper proposes a scene text detection network based on cross-scale feature
fusion (CSFF-Net). The framework is based on the lightweight backbone network Resnet, and the
feature learning is enhanced by embedding the depth weighted convolution module (DWCM) while
retaining the original feature information extracted by CNN. At the same time, the 3D-Attention
module is also introduced to merge the context information of adjacent areas, so as to refine the
features in each spatial size. In addition, because the Feature Pyramid Network (FPN) cannot
completely solve the interdependence problem by simple element-wise addition to process cross-
layer information flow, this paper introduces a Cross-Level Feature Fusion Module (CLFFM) based
on FPN, which is called Cross-Level Feature Pyramid Network (Cross-Level FPN). The proposed
CLFFM can better handle cross-layer information flow and output detailed feature information, thus
improving the accuracy of text region detection. Compared to the original network framework, the
framework provides a more advanced performance in detecting text images of complex scenes, and
extensive experiments on three challenging datasets validate the realizability of our approach.

Keywords: feature extraction; attention mechanism; pyramid network; deep learning; text detection

1. Introduction

Text has become one of the essential means of conveying information in the contempo-
rary world, and there is a wide variety of textual information in the social scenes we live in.
Detecting the text in the natural environment is the process of locating text regions in an
image through a detection network and representing them with polygonal bounding boxes.
Accurate detection results are beneficial to comprehensive practical applications, such
as instant translation, image retrieval, scene analysis, geographic location, license plate
recognition, and so forth, which has aroused strong interest in the domain of computer
vision and document analysis. Existing CNN-based text detection algorithms [1,2] can be
divided into approximately two categories: regression-based and segmentation methods.

For regression-based scene text detection algorithms [3–12], text objects are usually
represented in the form of a rectangular or square field with a certain orientation. Although
the detection speed is fast and can avoid the generation of errors that accumulate over
multiple stages, most existing relapsing-based ways are no longer able to handle the text
detection problem accurately and efficiently due to the limited form of the text represen-
tation (axis-aligned rectangles, rotated rectangles or quadrilaterals), and in particular do
not perform very well when used to detect curved text on datasets such as Total-Text [13],
which is very unfavorable to the subsequent text recognition in the whole optical character
recognition engine.
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On the other hand, segmentation-based scene text detection algorithms [14–20] focus
on locating text instances by classifying pixels. Although recent approaches have made
telling improvements in scene text detection tasks, the focus has shifted from lateral text
to multidirectional text and more sophisticated forms of text (curved text). There are two
other challenges that need to be faced when detecting arbitrarily shaped scene text due to
specific properties of the scene text, such as significant variations in color, scale, orientation,
proportion, and shape that clearly distinguish it from the common target object, along
with various properties of natural pictures, such as degree of image blur, intensity of
illumination and so forth.

The first challenge is to refine features. First of all, the network formed by stacking
standard convolutional [21,22] layers lacks sufficient high-semantic information extraction
and storage capabilities. Specifically, the entire network learns through similar patterns, and
the feature information extraction is incomplete. Secondly, under the complex background
conditions, because of the limitation of CNN receptive field size, the text information in the
image cannot be effectively utilized, thus it is impossible to arbitrarily localize the text more
accurately. Therefore, to solve the above problems, we introduce two modules—the depth
weighted convolution module and the 3D-Attention module. The property of scene text
detection is improved by increasing the depth of the CNN model, with more parameters
and a deeper network to learn more complex feature information.

The second challenge is the large-scale variation in the scene text. Firstly, the scale
variation in scene text is much larger than that of a general target object, which makes
it hard for CNN to learn a specimen. Secondly, as different scale feature layers have
different distribution characteristics, the deep feature layer has rich semantic information
but lacks accurate location information, while the shallow feature layer has detailed and
rich information but introduces a large amount of redundant information, which can
make some of the regions to belong to inappropriate areas (e.g., non-text regions) to be
classified [23] incorrectly. Therefore, to settle this question, a new cross-level feature
pyramid network is proposed in this paper to obtain feature maps of text representation at
various scales. By aggregating these multi-scale feature maps, the problem of large-scale
differences in scene texts is effectively solved, and the text area is located more finely, and
it can be easily utilized in existing methods.

This article proposes a new text detector to effectively solve these two problems, al-
lowing a more accurate detection of the text of the scene in any form. As shown in Figure 1,
obtain an input image, then the feature pyramid backbone ResNeDt generates layers of
different scales through a downsampling operation. Compared with the original residual
network, ResNeDt increases the depth of the network, further enlarges the receptive field
and adapts more effectively to arbitrarily shaped text, that is, horizontal, multi-directional,
curved and wavy texts, thus achieving the finer localization of text regions. To collect the
feature information for the surface layer and the deep layer comprehensively at the same
time, we propose the Cross-Level Feature Pyramid Network for modelling the extracted
feature information on two adjacent feature layers to further enhance feature extraction. To
take advantage of this property, the module can produce multi-scale feature representations,
effectively solving the problem of multi-scale variation in scene text detection with minimal
increase in computational effort. Finally, the binarization map is obtained through adaptive
learning of the differentiable binarization module to produce higher quality prediction
boxes, further improving the robustness of text detection for various shapes.

To demonstrate the validity of our proposed framework, experiments have been
carried out on three different types of datasets, containing ICDAR 2015 [24], Total-Text [13]
and MSRA-TD500 [25]. In these datasets, Total-Text is specifically designed for curve text
detection. Therefore, experimental results in the MSRA-TD500 and Total-Text datasets
show that this method has high flexibility in complex situations (such as multilingual text,
curved text, arbitrarily shaped text). Specifically, on Total-Text with arbitrarily shaped text,
it significantly exceeded the results of most of the most modern methods, and our model
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achieves a comparable performance (82.6%). In addition, the framework proposed in this
paper also achieves a good performance on the ICDAR 2015.

Figure 1. The general architecture of the proposed CSFF-Net. ResNeDt is considered to be the backbone network. Our
proposed method is mainly processed in three steps: Firstly, the pictures are output to different feature layers through the
backbone network ResNeDt. Secondly, the outputs of the backbone network extract detailed feature information by the
Cross-Level FPN. At last, the output result of the Cross-Level FPN is obtained by the DB module.

To sum up, the primary contributions of this article are as follows: (1) a deep weighted
convolution module is proposed to produce more expressive features, which is a more
efficient method with a universal structure and less computational effort than previous
methods; (2) The proposed 3D-Attention module can model the contextual relevance of
characteristic graph, thus improving the performance of text detection, and generating
more representative features; (3) Cross-Level Feature Pyramid Network with Cross-Level
Feature Fusion Module, which not only handles feedforward information flow efficiently
but also enriches features through upper (lower) feature layers as well as jump connections,
can effectively solve the problem of detecting arbitrarily shaped scene text, and improve
the performance of text detection; (4) This article has realized the most advanced perfor-
mance on several benchmarks including different forms of text instances (oriented, long,
multilingual and curved), which proves the superiority of our newly designed module.

2. Related Work

The detection of scene texts has been a popular research theme and many means
have been proposed. Before the appearance of deep learning, early text detectors [26–28]
mainly used hand-crafted features as basic components, such as Stroke Width Transform
(STW) [26], Maximally Stable Extremal Regions (MSER) [27] and symmetry feature [28]. In
recent years, scene text detection method based on deep learning have achieved remarkable
effects. Modern text detectors are mainly based on CNN and these methods can be divided
into two categories, that is, methods based on regression and segmentation.

Regression-based detection methods typically follow a target detection framework
driven by convolutional neural networks (CNNs) [1,2], such as Faster R-CNN and SSD [29].
Unlike ordinary objects, text is usually displayed in irregular shapes with different propor-
tions. To deal with this problem, TextBoxes [3] used SSD as the base detector, modifying
the size and shape of the convolutional kernel anchor box to accommodate variations in
the proportion of text instances. As versions of the Faster RCNN, the Rotation Region
Proposal Network (RRPN) [4] and Rotational Region CNN (R2CNN) [1] were designed to
detect text in arbitrary directions in a two-stage manner. To handle the detection of long
text, Baoguang et al. [5] and Zhi et al. [6] proposed SegLink and CTPN, which predicted
text fragments and connected them into text boxes. RRD [7] extracted feature maps from
two separate branches for text classification and regression to better detect long texts.
Reference [8] obtained text vertices and grouped them into boxes. Unlike these methods,
which regress anchor boxes/segments/corners, Xinyu et al. [9] and Wenhao et al. [10]
performed box regression and predicted pixel offsets in the text area without using anchors
and suggestions. Chuhui et al. [11] based on [9], the boundary region of the text is divided
to distinguish the text instances. However, there are certain structural limitations in using
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this method to capture all possible shapes. The newly proposed LOMO [12] suggests an
initiative refinement module to bitterly refine bounding box proposals for extremely long
text, and then provides for centerline offsets, text region, and frame offsets to recreate the
text instance.

Although regression-based approaches have achieved advanced performance, which
still require tedious multi-stage tasks, which might require comprehensive adjustment and
lead to sub-optimal performance. In addition, due to the huge difference in the aspect
ratio of texts (especially non-Latin texts) and the limited receiving domain of CNN, these
methods cannot effectively deal with texts under complex background conditions.

Segmentation-based approaches [30,31] mainly draw on semantic segmentation meth-
ods, where all pixels in a text bounding box are considered positive sample regions, and
describe the text areas by adopting different representations, and then reconstruct the text
instances through specific post-processing. Yongmin et al. [14] put forward the method
of character probability prediction. The main idea of this algorithm is to use a Gaus-
sian heat map to generate a heat map of a single character, and then use the distance
between characters to generate an affinity heat map for weak supervision training and
learning. This method is effective for dealing with languages with constant character
spacing. Reference [15] formulated a range of text as multiple attributes, such as text region
and orientation, and predicted the corresponding heatmaps by FCN to extract the text
region. Liu et al. [16] proposed a Transverse and Longitudinal Offset Connection (TLOC)
based on [32] and RNNs to directly regress the polygon shape of textboxes. Reference [17]
considers the detection of curved text as an instance segmentation problem and uses MASK
RCNN to generate the boundaries of text instances. The component segmentation method
divides the text area into several components that are grouped into different instances
by grouping data, communicating between nodes, or post-processing. For example, Pix-
elLink [18] predicts connections between pixels and finds text area and separates links
belonging to different text instances. Tian et al. [19] designed a two stages method to
separate dense text instances. PSENet [20] is gradually extending kernels at a certain scale
to split nearby text instances. Our method combines the advantages of goal detection and
segmentation methods, adopts a three-step structure, and uses contour points to represent
text areas. This model effectively solves the problem of large-scale differences and enhances
the text-related regions by reducing the background interference of the feature layer and
the use of the attention mechanism. Compared with the previous methods, this method
gives a more accurate description of the text regions, so it can produce finer text boundaries.

3. Methods

Deep convolutional neural networks [21,22] have made a series of breakthroughs
in image classification [21,23,33] and are able to effectively learn and understand high-
level semantic information directly from visual images because of their powerful feature
representation capabilities. In order to improve network performance, build lightweight
networks that are easy to deploy and meet the requirements for real-time performance in
practical applications, in this paper we chose DBNet [34] as our baseline and improved
the original neural network. Without adjusting the model infrastructure and ensuring the
original feature information of the network, it improves the feature expression process of
the backbone network, and introduces a depth weighted convolution module (DWCM)
and a 3D-Attention module to model the context relevance of effective features, further
optimizing the feature extraction network and enhancing the effectiveness. As shown in
Figure 2, not only can the depth of the network be increased compared with the original
network, but also the detection accuracy of the model is improved.
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Figure 2. The left figure represents the residual structure of the original paper and the right figure
represents the residual structure of this paper. We further extract feature information by embedding
DWCM and 3D-Attention.

Our overall network structure is shown in Figure 1, and its specific steps and roles are
shown in Table 1. It can be seen from Table 1 that the network is mainly composed of three
parts, namely Backbone, Neck and Head. Backbone refers to ResNeDt18 and ResNeDt50 in
this paper, and its role is to extract the feature information in the image for later network
use. Neck is placed between Backbone and Head. The Neck in this paper is our Cross-level
FPN, which can make better use of the features extracted by the Backbone to generate more
representative features. The Head is the detection head, which is the network that acquires
the output content of the network. The Head here is Differentiable Binarization, which
predicts the text boxes by using the features extracted before.

Table 1. The steps and roles of our model.

Module Input Output Roles

Backbone ResNeDt(18/50) Iin C2, C3, C4, P5 Generating multi-level features

Neck Coss-level FPN
CLFFM P5, C4 P4

′, P4 Generating correction and output values
CLFFM P4

′, C3 P3
′, P3 Generating correction and output values

CLFFM P3
′, C2 _ , P2 Generating output values

Head Differentiable Binarization
Probability map Binary map Generating prediction box
Threshold map

3.1. Depth Weighted Convolution Module (DWCM)

For any series of residual networks (e.g., ResNet 18, 34, 50, 101, 152), the structure
of the front part is the same—7 × 7 standard convolutional layers and 3 × 3 maximum
pooling layers—and then a series of respective residual structures formed by stacking
several standard convolution layers. For standard convolution, the output feature mapping
for the i-th channel can be expressed as follows:

yi = ki ∗ X = ∑C
j=1 kj

i ∗ Xj, (1)

where * denotes the convolution handle and ki is the convolution kernel size.
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However, the standard convolution has the following shortcomings: each standard
convolutional output feature map must sum all channels, and all the feature layers of the
original network are repeatedly generated by Equation (1). It is known that the entire
network is learned using similar patterns. In addition, the network stacked by the standard
convolution layers also lacks enough high semantic information storage capacity and
cannot capture high semantic information. In addition, the presence of pooling layers
somewhat causes insensitivity to image details, and the content of target information is
less under complex background conditions, which leads to the inability to accurately locate
the target object. As a result, the above drawbacks may result in a weaker representation of
the feature map. To alleviate the above problems and improve the detection performance
of convolutional networks, we specifically designed a novel convolutional neural network
structure, as shown in Figure 3, which is added between the standard convolution layers
to learn more image features.

Figure 3. Design of the Deep Weighted Convolution Module (DWCM).

As an enhanced version of standard convolution, our depth weighted convolution
module consists of two main steps: firstly, a 3 × 3 convolution operation is performed
independently on each channel of the input, and then the output features are summed
with the input features of the module element by element, that is, the ⊕ operation. The
advantage of such processing is that it retains the reuse of feature information from the
original network, reduces the loss of low-dimensional feature information and ensures that
the network learns richer features at each spatial dimension. This process can be expressed
by mathematical Formula (2):

x1
out = fDWCM

(
x1

in

)
⊕ x1

in (2)

where fDWCM represents the 3 × 3 convolutional layer, x1
in and x1

out represents input and
output, respectively.

Here, the single-channel convolution operation is performed on a two-dimensional
plane and a single convolution kernel is applied to each channel. For example, the sample
input size is set to H (image height) ×W (image width) × K (number of image channels).
The 3 × 3 convolution is chosen here because the 3 × 3 convolution structure is more
computationally intensive in the GPU than the 1 × 1 convolution or even the 5 × 5
convolution, and using the 3 × 3 convolution structure is faster in the GPU operation.
Each channel of the input feature is convolved with the corresponding convolution kernel
of a single channel, so that the number of feature maps is kept unchanged. Here, after
K-channel convolution operation, K feature maps (H ×W) are still obtained, so the purpose
of filtering the input features can be achieved, providing more efficient input features for
subsequent operations. The expression is as follows:

Gi,j,m =
W,H

∑
w,h

Kw,h,m � Xi+w,j+h,m (3)

In Equation (3), G is the output, K is the convolution kernel of width (W) and height (H),
X is the input, m denotes the m-th channel of the feature map, i,j denotes the coordinates of
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the output on the m-th channel, and w and h are the coordinates of the convolution kernel
weight elements of the channel.

Compared with the standard convolution operation, this module has two advantages.
Firstly, it enhances the information of the channels, making the feature representation
generated by our depth-weighted convolutional module more expressive and making
the network model achieve better results. As a result, the residual network with the
depth weighted convolutional module can locate text regions more completely and more
accurately. Secondly, the depth weighted convolution module is universal and can be easily
applied to standard convolutional layers without introducing any parameters or changing
hyperparameters, thus achieving portability.

3.2. 3D-Attention Module

It is well known that human visual processing ability is limited and cannot process all
the information at the same time. Attention is mainly focused on regions with significant
features, and machine vision can also use this attention mechanism to effectively improve
work efficiency. There is a large amount of information in complex scenes, and the most
important information in an image is generally concentrated in a relatively small area, so
using visual attention mechanisms to quickly and accurately acquire effective information
from an image is particularly important in the process of visual model building. Therefore,
inspired by this, we designed a simple and universal 3D-Attention module that applies it
to the features in each BasicBlock [35] together with training, aiming to extract effective
features to suppress ineffective features and screen high semantic feature information,
enhance the network’s ability to refine features and make the network more focused on
information features, such as text regions in images, which can effectively improve the
network’s feature extraction ability and increase the model’s expressiveness.

The module significantly expands the receptive field of each feature layer by improv-
ing the feature transformation of the convolutional network, helping the CNN to produce
more representative information, enhancing the learning representation of the network,
enriching the output features of the backbone network and improving the accuracy of
feature extraction, thus further optimizing the network. Compared with other attention
mechanisms, no additional parameters are introduced and only a small amount of computa-
tion is added to improve the model performance with a smaller overhead. First, we briefly
introduce the channel attention mechanism [36] and the spatial attention mechanism [32].
The purpose of [36] is to obtain a one-dimensional feature vector with a size of (C × 1 × 1),
while spatial attention obtains a two-dimensional feature map with a size of (1 × H ×W).
It is worth noting that C denotes channels number, and H and W are the height and width
of the characteristic graph, respectively. The 3D-Attention module in this paper is similar
to Zhu et al. [32] and Hu et al. [36], but there are some differences. The difference is that
our attention produces a three-dimensional matrix (C × H ×W) as an attention feature
map, rather than a one-dimensional feature vector or a two-dimensional feature map. As
shown in Figure 4.

Figure 4. Architecture of the 3D-Attention module.
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The 3D-Attention module uses only a standard ConvBnRelu (1× 1 convolutional) and
sigmoid activation function to obtain the attention feature map, and then multiplies the
attention feature map by the input of the module and then adds it with the input features,
thus obtaining a high semantic feature map under the 3D-Attention module, introducing
fewer additional parameters to enhance the sensitivity of the network to text, and generate
better detection results. The input of this module is the feature map output by the previous
convolution block, and the attention module provides the position index corresponding to
its dimension. We denote the input feature map as x2

in and the output feature map as x2
out,

with x2
out passed on to the next stage as the module output. Thus, the 3D-Attention module

can be described as follows.

x2
out = f3D

(
x2

in

)
� x2

in ⊕ x2
in, (4)

in which f3D represents the 1 × 1 convolution layer, batch normalization layer BN and
nonlinear layer Relu, followed by a sigmoid. The BN can prevent data distribution from
shifting after matrix multiplication and nonlinear operation, which will slow down the
convergence of network. Passing through the BN layer effectively avoids the gradient
disappearance and explosion problems of deep networks, and also reduces the reliance on
parameter initialization methods. The Sigmoid function lies in the output of a probability
map that determines the weights of each feature. The non-linear relationship between the
channels is constructed using the Relu activation function and the sigmoid function to
enhance the non-linear capabilities of the model, improve the learning representation of
the network. It is worth noting here that we have placed the 3D-Attention module after
the depth weighted convolution module (DWCM), and only in this way can maximize the
usefulness of each module.

The 3D-Attention module proposed in this paper not only calibrates the features
between channels, but also improves the local feature representation of spatial domain
information. In the process of calibration, spatial features and channel information are effec-
tively combined to further enrich the contextual semantic information of small targets (text)
in shallow features. The advantages are mainly reflected in the following three aspects:

Firstly, compared to standard convolution, each spatial location not only embeds
its surrounding information as a scalar of the original spatial response, but also models
the long-distance inter-channel dependencies to capture the rich contextual relationships.
Screening each input channel facilitates the network to selectively enhance features contain-
ing useful information and suppress redundant features, thereby effectively improving the
transferability of target features between high and low layers and enhancing the semantic
information in the feature layer.

Secondly, instead of collecting global contextual information, the 3D-Attention module
only considers the contextual information around each spatial location, which to some
extent avoids certain pollution information from irrelevant regions (non-text). It also
uses a residual connection structure in the deeper part of the network to further enhance
the information transfer between non-adjacent feature layers, improve feature utilization,
avoid the gradient disappearance problem and make the network layers deeper.

Finally, the 3D-Attention module can be easily embedded into modern classification
networks for a wide range of tasks due to its generic nature. Although it increases the
number of parameters in the network, the structure is simple. The introduction into existing
networks will only add a small amount of computation and model complexity, with good
generalization to different datasets, which is extremely attractive.

3.3. Cross-Level Feature Pyramid Networks

At present, many networks only use a single high-level feature to classify objects, but
there is an obvious defect, that is, small objects (such as text) have less pixel information and
are easily lost during the up-sampling process. In view of this kind of object size is different
from the general object detection, the classic approach is to enhance multi-scale changes by
using image pyramids, but this will bring a great deal of computation. Therefore, this paper
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proposes a Cross-Level Feature Pyramid Network (Cross-Level FPN) based on Feature
Pyramid Network (FPN), as shown in Figure 5.

Figure 5. Design of a Cross-Level Feature Pyramid Network.

Cross-Level FPN is a top-down network structure with horizontal connections, which
is used to construct feature maps with high semantic information of different sizes. Specifi-
cally, the inputs {C2, C3, C4, C5} are the outputs of the backbone (ResNeDt), their sizes are{

1
4 , 1

8 , 1
16 , 1

32

}
of the original size, corresponding to the outputs of level 2, 3, 4, 5 respectively.

The level refers to each stage of the network. In general, the output feature maps that
produce the same size are considered to be at the same level, and each level is defined as a
stage, and the output of the last stage of each stage serves as the input of Cross-Level FPN,
which enables us to create a pyramid network that contains more semantic information.
Level 1 is not included in the feature pyramid network as it is too large in size and takes
up a lot of memory.

A multi-scale feature representation is generated by extracting features for each scale of
the image. Information from both high-resolution lower features and high-semantics higher
features are used to predict the feature maps at each level. It can effectively solve the multi-
scale variation in scene text detection with minimal computation. Thus, it can be concluded
that shallow feature layers (such as C2) contain more textured (detail) information, while
deeper feature maps (such as C5) contain more semantic information. In order to combine
feature maps with different features, Cross-Level FPN uses top-down and lateral linking
strategies. The top-down path produces higher resolution features by upsampling that
are smaller in spatial size but more semantically informative at higher pyramidal network
levels. Then, the features are further enhanced by transverse connection. It should be
noted that the feature sizes of transverse connections are the same. As shown in Figure 5,
the red arrows represent the output branches, the blue arrows represent the correction
branches, and the yellow circles indicate the Cross-Level Feature Fusion Module (CLFFM).
The correction branch of feature layer C5 is corrected by CLFFM for feature layer C4 to
obtain the output branch and correction branch of C4; the correction branch of feature layer
C4 is corrected by CLFFM for feature layer C3 to obtain the output branch and correction
branch of C3; the correction branch of feature layer C3 is corrected by CLFFM for feature
layer C2 to obtain the output branch of C2 branch. The output branches of all feature layers
are fed into the next stage of the task as the output of the Cross-Level FPN.

The working mechanism of CLFFM is mainly introduced by taking two input feature
layers C4 and C5 as examples, as shown in Figure 6.
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Figure 6. Architecture of the Cross-Level Feature Fusion Module (CLFFM).

First of all, for the smaller resolution feature map (C5) the bilinear interpolation
method is used to improve the resolution to the same scale as (C4), and cross-layer feature
maps C′4 and C′5 on their branches are generated by a convolution operation:

C′4 = Relu(Bn(Conv(C4))) (5)

C′5 = Relu
(

Bn
(

Conv
(

C↑5
)))

(6)

where C↑5 denotes the upsampling operation, Conv is the 3× 3 convolution, Bn denotes
normalisation and Relu denotes the activation function.

Secondly, we multiply the generated cross-layer feature maps C′4 and C′5 by convolu-
tion operation and element by element, and output two branches, output branch F4 and
correction branch F′4:

F4 = Relu
(

Bn
(
Conv

(
C′4
)))
� Relu

(
Bn
(
Conv

(
C′5
)))

(7)

F′4 = Relu
(

Bn
(
Conv

(
C′4
)))
� Relu

(
Bn
(
Conv

(
C′5
)))

(8)

where � represents dot multiplication operation. Here, the processed two-level features
are point multiplied. The purpose of this is that lower-level features can provide more
accurate location information, while the up-sampling operation will cause errors in the
positioning information of the deep network, so we combine them to form a deeper feature
pyramid network, which integrates multiple layers of feature information and outputs
them in different features.

Then, both F4 on the output branch and F′4 on the correction branch are passed through
a convolution with a channel number of 64 and a convolution kernel size of 3× 3. The
resulting feature maps are then summed element by element with the cross-layer feature
maps C′4 and C′5 respectively for feature fusion, and finally a 3× 3 convolution is appended
to generate the final feature maps P4 and P′4.

P4 = Relu
(

Bn
(
Conv

([
Relu(Bn(Conv(F4)))⊕ C′4

])))
(9)

P′4 = Relu
(

Bn
(
Conv

([
Relu

(
Bn
(
Conv

(
F′4
)))
⊕ C′5

])))
(10)

where ⊕ denotes the element-by-element summation operation.
Finally, the purpose of convolution operation is to reduce the confounding effect

caused by upsampling and further ensure the integrity of pyramid network structure. The
reason for outputting two branches is, on the one hand, because P′4 on the correction branch
can be used as an input to repeat the above process with the feature map C3 of the previous
stage. In this way, the high semantic information of the deep feature map is retained,
which can be perfectly fused with the low-level feature map to further enhance feature
extraction. On the other hand, one of the outputs of the CLFFM module (P4), that combines
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the high semantic information of the high-level feature with the rich details of the low-level
feature, thus obtaining the final highly accurate feature map, is called {P2, P3, P4, P5}, which
corresponds to the input feature map with the same size {C2, C3, C4, C5}. This process can
be expressed in mathematical Equation (11) as follows.

Pi, Pi+1, . . . , Pi+n = f (Ci, Ci+1, . . . , Ci+n) (11)

At the beginning of the iteration, it is necessary to add a 1× 1 convolution to each
input feature layer {C2, C3, C4, C5} to reduce the dimension, so as to ensure the consistency
of the number of channels.

3.4. Differentiable Binarization

The structure of differentiable binarization is shown in Figure 7. The input is an image
with text, and after the network a segmentation probability map P is obtained along with an
adaptive threshold map T (each pixel on the image has a corresponding threshold and each
pixel has a different threshold). The final result is obtained by performing a differentiable
binarization operation using the P and T outputs. Specifically, after the enhanced feature
extraction network Cross-Level FPN outputs four feature layers {P2, P3, P4, P5}, three of
the feature layers {P3, P4, P5} are upsampled to the largest size feature layer P2. Then these
four feature layers are spliced together to obtain a feature layer F, which has the same size
as P2. The F is used to predict P and T. Finally, P and T are combined to obtain the binarized
map B̂.

Figure 7. The blue paths represent the standard binarization process and the dashed lines only
represent the inference process; the red paths are the differentiable binarization used in this paper,
which adaptively predicts the threshold at each position of the image.

4. Results
4.1. Datasets

In this paper, experiments are carried out on three challenging public datasets. They
are Total-Text [13], MSRA-TD500 [25], ICDAR15 [24]. The visualization results are shown
in Figure 8.
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Figure 8. Visualization results of our method on different types of text examples, including curved, multidirectional,
multilingual texts. For each unit in the above diagram, the probability diagram is in the upper right corner, the threshold
map is in the lower right corner.

1. Total-Text [13] is a dataset used for detecting curved texts, which contains the curved
texts of commercial signs and sign entrances in real-life scenes, with a total of 1555 pic-
tures, 1255 training sets, and 300 the test sets.

2. MSRA-TD500 [25] belongs to a multi-language and multi-category dataset, with
500 photos, 300 for training, and 200 for testing. These photos are used to shoot signs,
house numbers and warning signs in indoor scenes and guide plates, and billboards
in some complex backgrounds in outdoor sets.

3. ICDAR2015 [24] is a linear detection and recognition dataset belonging to the English
class, with 1500 images, including 1000 training pictures and 500 test pictures. This
dataset is a street or shopping mall image taken randomly by Google Glass without
focusing; the goal is to improve the generalization performance of the detection model.

4.2. Loss Functions

The loss function plays a crucial role in deep neural networks, the L1 loss function and
the binary cross-entropy loss function are used to optimize our network. The loss function
in this paper consists of three components in the training process: probability map loss Ls,
binarization map loss Lb, and adaptive threshold map loss Lt, represented as follows:

L = LS + α× Lb + β× Lt, (12)

where α and β are the weight parameters, α is set to 1 and β is set to 10.
Among them, the binary cross-entropy loss function is used for probability map loss

Ls and binary map loss Lb. The formula is as follows, and negative hard mining [34] is
used to overcome the imbalance between positive and negative samples.

Ls = Lb = ∑i∈Sl
yilogxi + (1− yi)log(1− xi) (13)

in which Sl represents samples whose positive and negative ratio is 1:3, and L1 loss function
is adopted for the loss Lt of the adaptive threshold map, and its formula is:

Lt = ∑i∈Rd
|y∗i − x∗i |, (14)

where Rd is the index of the pixels in the region and y∗ is the label of the adaptive thresh-
old map.

4.3. Implementation Details

The experiments in this paper use Python 3.7 as the programming language and the
deep learning framework used is Pytorch1.5. All the experiments were conducted on
TITAN RTX. The initial learning rate was set to 0.007. The training process involved two
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steps: firstly, the network was trained for 100k iterations by using the SynthText dataset [37],
then the models were finetuned on the benchmark real-world datasets for 1200 epochs.
Our model was trained by using the official training image of each dataset, a weight decay
of 0.0001 and a momentum of 0.9. The training optimizer was Adam [38], and the training
batch size was set to 16. The text marked as “NEGLECT” was discarded in the training
process. In the pre-processing stage of the network, the labels of the probability map and
threshold map were created based on the labels of the train dataset. Since smaller text
regions are not easy to detect, some text regions that were too small (e.g., Minimum side
length of the smallest rectangle of the text area less than three or polygon area less than 1
were ignored in the process of creating the labels. As a result, small regions of text marked
as “NEGLECT” were discarded during the training process. In the testing stage, single-scale
images were input, and the results were evaluated by the official evaluation protocol.

Because the test images of different scales have great influence on the detection
effect [6,8], the aspect ratio of the test images was kept in the reasoning stage, and the size
of the input image was adjusted by setting a suitable height for each dataset.

We made full use of and expanded the data in the same way as in [34], mainly in
the following three ways: (1) random rotation; (2) random cutting; (3) random flipping.
In order to improve the training efficiency, the processed images were all adjusted to
640 × 640.

4.4. Ablation Study

In order to better prove the realization of each module proposed in this paper, ab-
lation research was carried out, which proved the effectiveness of our proposed Deep
Weighted Convolution Module (DWCM), the 3D-Attention Module, and the Cross-Level
Feature Pyramid Network (Cross-Level FPN). In the ablation experiments, we tested DB-
Net, DBNet+DWCM,DBNet+3D-Attention,DBNet+DWCM+3D-Attention,DBNet+Cross-
Level FPN and the method proposed in this paper (DBNet+DWCM+3D-Attention+Cross-
Level FPN). The detailed experimental results are shown in Table 2. It can be seen from
Table 2 that the precision, recall and F-measure of the baseline DBNet on the test dataset
ICDAR2015 are 89.3%, 73.8% and 80.8%, respectively. Our method DBNet+DWCM+3D-
Attention+Cross-Level FPN has a precision, recall and F-measure of 86.4%, 79.2% and
82.7%, respectively. The F-measure of this method on ICDAR2015 is 1.9% higher than
the baseline, and the detection result is obviously better than the original DBNet. We
explored the performance of the proposed module on baseline through ablation experi-
ments, the results of which are shown in Table 2. Table 2 shows the impact of the different
modules on the performance of the network, with the final network DBNet+DWCM+3D-
Attention+Cross-Level FPN achieving a better performance; thus, proving the validity of
our proposed module. It is worth noting that DBNet is our baseline.

Table 2. Test results under different settings. “P”, “R” and “F” respectively represent precision, recall
and F-measure.

Backbone DWCM 3D-Attention Cross-Level FPN P R F

Resnet-18 89.3 73.8 80.8
Resnet-18

√
86.9 76.0 81.1

Resnet-18
√

87.5 76.2 81.5
Resnet-18

√ √
87.6 77.7 82.3

Resnet-18
√

88.6 76.3 82.0
Resnet-18

√ √ √
86.4 79.2 82.7

Figure 9 shows the visualization results of GT, baseline and our method, respectively.
It is worth noting that the images in the figure (from top to bottom) are randomly selected
from the test datasets ICDAR2015, MSRA-TD500 and Total-Text. The images here are
randomly selected from three datasets, which can better prove the robustness of our model.
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Figure 9. Visualization results of our method. After a series of enhanced feature extraction operations,
the position information of the text box is more accurate and our method (ours) is more effective
than baseline.

4.4.1. 3D-Attention

DBNet+3D-Attention can effectively remove some irrelevant information and make
the prediction box closer to the real box. In Table 1, it can be seen that the 3D-Attention mod-
ule significantly improves the performance of ResNet-18. Specifically, using the ResNet-18
backbone network, the F-measure of the 3D-Attention module on the ICDAR2015 dataset
has been improved by 0.7%, and the recall has been improved by 2.4%.

4.4.2. DWCM

Compared to DBNet, the DBNet+DWCM method will yield richer features when the
DWCM is added. As shown in Table 1, the deep weighted convolution module can also
result in a performance gain of 0.3% as it extends the receptive domain of the backbone
network, it takes only a little extra time. For ResNet-18, depth weighted convolution
improves the recall rate by 2.2% on the ICDAR2015 dataset.

4.4.3. 3D-Attention+DWCM

Faced with different types of complex datasets, we take advantage of two modules,
the Deep Weighted Convolution and the 3D-Attention module, as a starting point and
propose DBNet+DWCM+3D-Attention to meet the challenges posed by this complexity.
From Table 1 we can know that, for the ICDAR2015 dataset, 1.5% (with ResNet-18) im-
provements are achieved by the 3D-Attention and the DWCM, the precision of 87.6%, recall
of 77.7%, F-measure of 82.3%. Compared to DBNet+DWCM and DBNet+3D-Attention
and DBNet+DWCM+3D-Attention achieves 1.2% and 0.8% performance gain in terms of
F-measure, respectively. Thus, it can be seen that the detection performance of a network
combining the advantages of these two modules is better than that of a network applying
either the depth weighted convolution module or the 3D-Attention module alone.

4.4.4. Cross-Level FPN

DBNet+Cross-Level FPN is able to fully capture text areas through constant supple-
mentation and fusion when dealing with irregularly shaped text in complex background
conditions, with better detection results than DBNet. As can be seen from Table 2, with
the help of Cross-Level Feature Pyramid Networks, due to increased network representa-
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tion capabilities, the proposed method achieves a result of 76.3%, 88.6%, 82.0% in recall,
precision and F-measure, respectively; it can bring a performance gain of 1.2%. The ex-
perimental results illustrate that cross-level feature pyramid networks can indeed extract
feature information more comprehensively and improve image classification accuracy. It
has stronger feature capture capability than the original feature pyramid network (FPN).

4.5. Compare with Previous Method

We compare our proposed method with previous methods on different datasets,
including a benchmark for curved text, a benchmark for multi-directional text, and a
benchmark for long text and multiple languages. Based on the evaluation criteria proposed
in Herbert et al. [39] and Mark et al. [40], the experimental results are reported in Tables 3–5.
Compared with the basic network DBNet, our approach shows significant improvements
on all three datasets. Especially on the Total-Text dataset on the Total-Text dataset, the
method of this paper also shows a corresponding improvement in each metric compared
to the base network. Similarly, for the MSRA-TD500 dataset, the method outperforms its
competitors in terms of P, R, F. By comparing the P, R, F on three datasets, our proposed
module is robust in terms of improving text detection performance.

Table 3. Test results on curve datasets. The values in brackets refer to the height of the input image.
“*” refers to multi-scale test. “MTS” and “PSE” are short for Mask TextSpotter and PSENet.

Method P (%) R (%) F (%)

TextSnake (Long et al., 2018) 82.7 74.5 78.4
ATRR (Wang et al., 2019b) 80.9 76.2 78.5

MTS (Lyu et al., 2018a) 82.5 75.6 78.6
TextField (Xu et al., 2019) 81.2 79.9 80.6

LOMO (Zhang et al., 2019) * 87.6 79.3 83.3
CRAFT (Baek et al., 2019) 87.6 79.9 83.6

CSE (Liu et al., 2019b) 81.4 79.1 80.2
PSE-1s (Wang et al., 2019a) 84.0 78.0 80.9
DB-ResNet-18 (800 × 800) 86.7 75.4 80.7

CSFF-ResNeDt-18 (800 × 800) 87.4 77.3 82.1
DB-ResNet-50 (800 × 800) 84.3 78.4 81.3

CSFF-ResNeDt-50 (800 × 800) 86.6 78.9 82.6

Table 4. Test results on ICDAR 2015 data set. The values in parentheses represent the height of the
input image. “PSE” is PSENet.

Method P (%) R (%) F (%)

EAST (ZHOU et al., 2017) 83.6 73.5 78.2
Corner (Lyu et al., 2018b) 94.1 70.7 80.7

RRD (Liao et al., 2018) 85.6 79.0 82.2
PSE-1s (Wang et al., 2019a) 86.9 84.5 85.7
SPCNet (Xie et al., 2019a) 88.7 85.8 87.2

LOMO (Zhang et al., 2019) 91.3 83.5 87.2
CRAFT (Baek et al., 2019) 89.8 84.3 86.9

SAE (Tian et al., 2019) 88.3 85.0 86.6
DB-ResNet-18 (1280 × 736) 89.3 73.8 80.8

CSFF-ResNeDt-18 (1280 × 736) 86.4 79.2 82.7
DB-ResNet-50 (1280 × 736) 88.6 77.8 82.9

CSFF-ResNeDt-50 (1280 × 736) 90.6 77.3 83.4
DB-ResNet-50 (2048 × 1152) 89.8 79.3 84.2

CSFF-ResNeDt-50 (2048 × 1152) 89.6 81.1 85.1
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Table 5. Test results of the algorithm on MSRA-TD500 dataset. The value in parentheses is the height
of the input image.

Method P (%) R (%) F (%)

(He et al., 2016b) 71.0 61.0 69.0
DeepReg (He et al., 2017b) 77.0 70.0 74.0

RRPN (Ma et al., 2018) 82.0 68.0 74.0
RRD (Liao et al., 2018) 87.0 73.0 79.0
MCN (Liu et al., 2018) 88.0 79.0 83.0

PixelLink (Deng et al., 2018) 83.0 73.2 77.8
Corner (Lyu et al., 2018b) 87.6 76.2 81.5

TextSnake (Long et al., 2018) 83.2 73.9 78.3
(Xue, Lu, and Zhan 2018) 83.0 77.4 80.1

(Xue, Lu, and Zhang 2019) 87.4 76.7 81.7
CRAFT (Baek et al., 2019) 88.2 78.2 82.9

SAE (Tian et al., 2019) 84.2 81.7 82.9
DB-ResNet-18 (512 × 512) 85.7 73.2 79.0

CSFF-ResNeDt-18 (512 × 512) 88.8 77.7 82.9
DB-ResNet-18 (736 × 736) 90.4 76.3 82.8

CSFF-ResNeDt-18 (736 × 736) 87.8 81.8 84.7
DB-ResNet-50 (736 × 736) 91.5 79.2 84.9

CSFF-ResNeDt-50 (736 × 736) 89.4 82.3 85.7

4.5.1. Curved Text Detection

In this paper, the model is also evaluated on the Total-Text dataset, which is used
to demonstrate the ability of detecting curved text. Set the height of the input image to
800 according to [3,4]. As shown in Table 3, the performance of our method is greatly
improved compared to that of the original network. Specifically, “CSFF-ResNeDt-18
(ResNeDt-18+Cross-Level FPN+DB)” outperforms the previous baseline method by 1.4%.
Compared to previous best method TextSnake, “CSFF-ResNeDt-50 (ResNeDt-50+Cross-
Level FPN+DB)” shows advantages in accuracy and F-measure, and the effect is improved
by 3.9% and 4.2% respectively. The visualization results are shown in Figure 8. Experiments
show that this method can effectively deal with irregular shapes and curved texts in
any direction, and shows strong robustness in detecting arbitrarily bent text instances.
Compared with the baseline, the results of our method have higher accuracy and can obtain
more accurate boundary boxes. It is worth noting that the CSFF-ResNeDt represents the
different backbones used in our network.

Both the CRAFT and the CSFF-Net proposed in this paper are segmentation-based
text detection. The difference is that CRAFT mainly detects a single character and the
links among characters, and then determines the final text box based on the links among
characters. while the CSFF-Net generates the text box by directly detecting the text. Since
character-level image segmentation is more time-consuming and introduces less back-
ground information than text line image segmentation, a better performance may be
achieved. LOMO detects the text region by regression, and then obtains the final text box
by using the text box center line and text box boundary offset. The CSFF-Net in this paper
obtains text regions directly by segmentation. The former network model is more complex
possibly learning more feature information while resulting in a longer training time, which
is not hardware friendly.

4.5.2. Multi-Oriented Text Detection

ICDAR 2015 is a multi-directional English text dataset, which contains a large number
of small and low-resolution text examples. For ICDAR 2015, we evaluated our model
using an image height of 736 or 1152 to test its performance in multi-oriented text. In
Table 4, we can see that “CSFF-ResNeDt-50 (2048 × 1152)” achieves 89.6%,81.1% and 85.1%
in the precision, recall, F-measure. Generally speaking, the model exceeds the baseline
by 1.9% in terms of F-measure. Compared with other advanced methods, although the
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F-measure of this model on ICDAR 2015 dataset is not superior to other methods, it can also
be compared with other methods. Compared with EAST, the method in this paper “CSFF-
ResNeDt-50 (1280 × 736)” has improved by 7%, 7.6% and 6.9% in P, R and F respectively.
For “CSFF-ResNeDt-18 (1280 × 736)”, when ResNet-18 is used, the F-measure of the model
reaches 82.7%.

4.5.3. Multi-Language Text Detection

The algorithm is robust for multilingual text detection. For the MSRA-TD500 dataset,
the text contained in it is long and large, so large input cannot improve the performance.
Therefore, we simply adjusted the height of the test images to 512 or 736 to fit our model.
Table 5 shows the comparison results between this method and other advanced methods.
The algorithm has high precision, recall, and F-measure, which is an advantage over most
other existing algorithms on the MSRA-TD500 dataset. In this paper, “CSFF-ResNeDt-50
(ResNeDt-50+Cross-Level FPN+DB)” is superior to previous methods in terms of accuracy.
For the accuracy, “CSFF-ResNeDt-50” exceeds the previous advanced method by 2.8%.
With a lightweight backbone, “CSFF-ResNeDt-18 (512 × 512)” achieves a comparative
accuracy compared to the most classic algorithm (Liu et al., 2018) (82.9 vs. 83.0). This
proves that our model is robust for multilingual detection and can actually be used in
complex natural scenarios. To summarize, this framework performs better than other
existing methods in performing scene text detection tasks, and has a superior performance,
and can effectively and accurately detect texts.

In the multilingual dataset, MSRA-TD500, the feature information of various texts is
quite different. For example, the proportion of English text shapes is relatively small, and
the white space between texts is large. Chinese text shapes are complex, and the overall
proportion is relatively large. One of the advantages of CSFF-Net in this paper is that it
is designed for multi-scale changes of texts, so it is sensitive to the feature information of
multilingual texts and can detect texts well.

5. Discussion

Aiming at the problem of insufficient feature information extraction in complex back-
ground image classification, this paper proposes a structure for detecting arbitrary shape
text in a complex background environment and successfully detects arbitrary shape text
examples. The proposed Cross-Level Feature Pyramid Network (Cross-Level FPN) plays
a crucial role in the training process and is used for effective feature reuse and fusion
of multi-scale contextual information. Model detection accuracy is improved by using a
deep weighted convolution module and a 3D-Attention module for the backbone feature
extraction network to highlight the representation of important information. The efficiency
and universality of our approach have been demonstrated in publicly available scene text
datasets, including long, curved, oriented, and multilingual text cases. The experiments
showed the superior performance of this method and have a comparable performance
compared to more advanced methods. As we deepen the depth of the network to some
extent and increase the multi-scale calculation, resulting in a slight increase in time during
training, but it has little impact on the detection efficiency and can achieve a real-time
detection effect, and the network should be further optimized in the subsequent work.

For the next step in the future, we hope that the end-to-end recognition model can be
used to train this model, and we can see if its performance, robustness, and generalization
ability can be transformed into a better scene text recognition system so that it can be
further applied to a wider natural environment.
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