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Abstract: The DEVS formalism has been recognized to support generic open architectures that allow
incorporating multiple engineering domains within integrated simulation models. What is missing
for accelerated adoption of DEVS-based methodology for intelligent cyberphysical system design
is a set of building blocks and architectural patterns that can be replicated and reused in system
development. As a start in this direction, this paper offers a notional architecture for intelligent
hybrid cyberphysical system design and proceeds to focus on the decision layer to consider DEVS
models for basic behaviors such as choice of alternatives, perception of temporal event relations, and
recognition and generation of finite state languages cast into DEVS time segments. We proceed to
describe a methodology to define DEVS-based building blocks and architectural patterns for design
of systems employing fast, frugal, and accurate heuristics. We identify some elements of this kind
and establish their status as minimal realizations of their defined behaviors. As minimal realizations
such designs must ipso facto underlie any implementation of the same cognitive behaviors. We
discuss architectures drawn from the cognitive science literature to show that the fundamental
elements drawn from the fast, frugal, and accurate paradigm provide insights into intelligent hybrid
cyberphysical system design. We close with open questions and research needed to confirm the
proposed concepts.

Keywords: modeling & simulation; DEVS; building blocks; architectural patterns; intelligent systems;
hybrid systems; cyberphysical systems; system design; neural networks; brain models

1. Introduction

Discrete Event System Specification (DEVS) and its extensions to hybrid modeling and
simulation [1–3] are increasingly being adopted as the preferred approach to intelligent
hybrid (continuous and discrete) cyberphysical system design [4–9]. After decades of devel-
opments in its theory, software support, and breadth of applications, the DEVS formalism
has been recognized to support generic open architectures that allows incorporating mul-
tiple engineering domains within integrated simulation models. DEVS enables formal
and complete description of hybrid model components and subsystems. DEVS-based
software tool sets provide atomic model and hierarchical coupled model specifications
that support graphical description of the internals and interfaces of component behavior
combining energy, material, and information flows. The hybrid DEV&DESS formalisms
enables expressing differential and algebraic equations for energy-related internal variables
intermixed with discrete behavior described in state-based system form. Finally, trans-
parent implementation of the canonical DEVS abstract simulator for handling events and
equations enable design of dedicated simulation functionality.

What is missing for the accelerated adoption of DEVS-based methodology for intel-
ligent cyberphysical system design is a set of building blocks and architectural patterns
that can be replicated and reused in system development. In this paper, we first review the
DEVS formalism in relation to hybrid cyberphysical systems and offer a functional archi-
tecture for these systems. Taking this architecture as representative of state-of-the-art, we
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review the architectural features presented in [10,11] in order to examine them as reusable
building blocks and architectural patterns. We then present an approach to establishing that
a proposed model is a minimal realization of a given cognitive behavior. We also show how
to create DEVS models at the state description level that generate the defined behaviors.
The state level description sets up the design of a building blocks that can be employed
in network applications to establish the generic reusability of the minimal realization. We
show how the network form is typically closer to potential plausible biological and other
implementations. The established minimality of realization allows us to claim that the
latter realizations must be a homomorphic image of any such realization. We close with an
architecture drawn from the cognitive science literature where parallel systems compete to
control the response to environmental conditions and show that the fundamental elements
drawn from the fast, frugal, and accurate heuristics paradigm [12–14] provide insights into
this form of intelligent hybrid cyberphysical system design. We close with open questions
and research needed to confirm the proposed concepts.

1.1. Review of DEVS Abstractions for Brain Architectures

DEVS is a system theoretic characterization of discrete event simulations based on
abstraction of events and time intervals from continuous data streams [15–17]. Such ab-
stractions carry information that can be efficiently employed, not only in simulation, but
also in accounting for the real-world constraints that shape cognitive information pro-
cesses [18,19]. An abstraction attempts to capture the essence of a complex phenomenon
relative to a set of behaviors of interest to a modeler. A discrete event abstraction represents
dynamic systems through two basic elements: discretely occurring events and the time
intervals that separate them [1]. Discrete event models of neurons, neural processing
architectures, and “fast frugal” bounded rational decision-making models [12] offer the
abstractions for capturing cyber-physical cognitive systems structure and behavior. While
other formalisms allow representation of space and related resources, only discrete event
models offer the additional ability to explicitly and flexibly express time and its essential
constraints on system behavior and structure. Discrete event models can be distinguished
along at least two dimensions from traditional dynamic system models—how they treat
passage of time (stepped vs. event-driven) and how they treat coordination of component
elements (synchronous vs. asynchronous). Recent event-based approaches enable more re-
alistic representation of loosely coordinated semi-autonomous processes, while traditional
models such as differential equations and cellular automata tend to impose strict global
coordination on such components.

Definitions for state-based realization of cognitive behaviors based on mathematical
system theory and DEVS fundamentally include temporal and probabilistic characteristics
of neuron system inputs, state, and outputs [1] and provide a solid system-theoretical
foundation and simulation modeling framework for the high-performance computational
support of such applications. Spiking neural nets (SNN), [20–25] a form of hybrid con-
tinuous discrete event abstraction, have demonstrated potential for solving complicated
time-dependent pattern recognition problems because of their inclusion of temporal and dy-
namic behavior [3]. Realizations of SNN’s in DEVS have been shown [25,26]. Event-based
simulation is inherently efficient since it concentrates processing attention on events—
significant changes in states that are relatively rare in space and time—rather than continu-
ally processing every component at every time step. Exploiting asynchronous behavior
and sparsity of events, activity, and fan-out that seems to characterize real brain processing,
neural nets of large sizes (millions of neurons and billions of synapses) can be simulated on
a desktop computer [24]. For the same reasons, DEVS can support fast and energy efficient
hardware implementation [25] of spiking neural nets (SNN) and other such models. In
particular, DEVS supports the abstractions underlying neural net models for which:

(1) The neural elements (neurons, synapses, others to be discussed) have discrete states,
DEVS provides an intuitive and expressive state-based modeling formalism.
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(2) The neural elements send and receive discrete signals, which are effectively modeled
by message exchange in the DEVS formalism.

(3) Events and time are fundamental to the behavior of neural elements. DEVS naturally
models event-driven processing and captures precise timing requirements at a high
level, which can substantially improve design productivity and minimize the power
consumption of implemented designs.

(4) Neural elements can be easily modeled by DEVS atomic models. Neural elements
communicate with each other in networks that can be easily modeled via a DEVS
coupled models.

(5) Stochastic representation is often required to accurately depict the behavior of neural
elements. DEVS includes Markov models [1,26,27] that can be coupled with other
DEVS components for design, modeling, and simulation.

1.2. Functional Architecture for Hybrid Intelligent Cyberphysical Systems

Figure 1 sketches the functional layers for a hybrid (discrete event, discrete time,
and continuous modeling formalisms) control architecture for intelligent cyberphysical
systems built under the DEVS system-theoretic framework [1]. An instance of architecture
is the detailed design model of an unmanned vehicle and its associated discrete-event and
continuous variable controllers. This simulation model was developed using a unified and
flexible DEVS-based toolkit for modeling and simulation of a complete functional stack
to develop and validate the system. Castro et al. [28] showed that the underlying DEVS
simulator is capable of managing all dynamics (discrete event, discrete time and continuous)
involved in the hybrid system. Differential equations represent continuous dynamics of the
aircraft on the physical layer using quantized state system (QSS) integrators. A finite state
discrete event controller at the top layer links to the action implementation layer containing
a coupled model of DEVS atomics planners and conventional feedback controllers in. The
DEVS-based architecture achieved simulation speed-ups of up to one order of magnitude
above widely employed robot middleware-based simulation setups thus enabling on-board
predictive simulations.

Figure 1. Functional Layers for Hybrid Intelligent Cyberphysical System Architecture.

Taking this architecture as representative of state-of-the-art DEVS-based hybrid intelli-
gent cyberphysical system architectures, we will focus on the decision layer and review
the architectural features presented in [11] in order to examine them for updating to
current knowledge.

2. Methods

We now describe our methodology for developing DEVS building blocks and archi-
tectural patterns for Hybrid Intelligent Cyberphysical Systems.
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Our approach to establishing that a model is a minimal realization of a given cognitive
behavior, illustrated in Figure 2, is to specify the behavior as a system at the I/O behavior
level. This requires us to define the behavior formally as a function mapping input
segments to output segments (Figure 3). We employ structural inference to then seek
a DEVS model at the state description level that generates the defined behavior. This
amounts to associating the state description to the original I/O system description. This
shows that the putative model is a realization of the specified behavior and then try to
show it is a minimal realization. The state level description sets up the design of a network
equivalent which amounts to a specification at the coupled component level of systems
specification which we may be able to prove is homomorphic to the established minimal
realization or we validate that it generates the required behavior by direct simulation. The
network form is typically closer to potential plausible biological implementations and
the established minimality of realization allows to claim that the latter realizations must
be a homomorphic image of any such realization. (Please refer to [1] (Chapter 16) for a
detailed exposition).

Figure 2. Approach to formulating behaviors and minimal realizations for building blocks.

Figure 3. Example of the definition of an I/O function and deriving its minimal realization. The I/O function definition for
modulo 2 addition is in (a), the semigroup monoid is in (b), and the minimal realization is in (c). * refers to Kleene star.
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Using a modulo 2 adder as an example, Figure 3a, we briefly review the approach to
deriving a minimal realization from an input time function description. The I/O behavior
manifested by the adder is illustrated in Figure 3a as the function β:{0,1}*→ {0,1} where

β(ω) = ∑mod2ω(τi). (1)

Here, {0,1}* is the set of all strings with input set X = {0,1} and the function specifies
the mod2 sum of the input string as output at the end of the input. Figure 3b shows
how the minimal realization is derived in this case using the approach of constructing
the reduced version of the monoid (semigroup with identity) representation of the set
of all strings. As an example, X = {0,1} and starting with the empty string “”, the tree
grows by adding branches for inputs 0 and 1 respectively. Whenever a node is encountered
with the same derivative function as one earlier encountered it can be merged with the
earlier one. For a finite state function this will eventually bring a halt to the unfolding
of the tree. Here we find that the output from node “0” is the same as from node “” and
that the output from node “1” is different. This shows that we cannot merge these nodes.
Furthermore, expansion of the definitions for the derivative functions, β0(ω) = β(0ω) and
β1(ω) = β(1ω), shows that these are equal to β(ω) and 1 + β(ω), respectively. This implies
that continued unfolding of the tree will not yield any new derivative functions. Thus, the
minimal realization has two states corresponding to the two distinct nodes with transitions
reflecting the alternating pattern exhibited in the tree.

Homomorphisms [29] are useful in proving that implementation are correct realiza-
tions and establishing minimal realizations. The general concepts of homomorphism and
isomorphism relate system models at the same level of specification. Corresponding to
each of the system specification levels is a relation appropriate to a pair of systems specified
at that level. We call such a relation a preservation relation or system morphism because it
establishes a correspondence between a pair of systems whereby features of the one system
are preserved in the other. Morphisms appropriate to each level of system specification are
defined such that higher level morphisms imply lower level morphisms. This means that a
morphism which preserves the structural features of one system in another system at one
level, also preserves its features at all lower levels.

Indeed, the minimal realization can be shown to be a homomorphic image of any
realization of its behavior. In particular, in this case the function β is a homomorphic
mapping from the monoid system of Figure 3a to the minimal realization. There is a close
relation between homomorphisms and implementations in network form. For example, the
Krohn-Rhodes theory of finite state machine decomposition shows that any such system
can be homomorphically realized by a cascade of basic primitives that themselves are
not decomposable [30]. As a special subcase, any module m counter can be realized by a
cascade of prime counters. For example, a four-counter can be implemented in this way
by a pair of binary counters of the form in Figure 3b. In this paper, we are seeking such
building blocks, primitives, and compositions useful for intelligent hybrid cyberphysical
system design. Stemming from this account, we refer to building blocks as models that
can be replicated and reused in different standardized configurations called architectural
patterns where a building block may be called primitive if it cannot be decomposed further.

Figure 4 illustrates a DEVS hierarchical coupled model that provides the proposed
basic ontology of terms for components and their interactions that an intelligent system
such as a neuron-level architecture of the brain would contain. Rather than pointing
to neurons as the main components, we refer to Neuron Elements (NE) which stand
for the components that perform the primary processing functions typically associated
with neurons but that may include other supporting elements beside neurons. Similarly
interconnect elements (IC) generalize the role of synapses in connecting information flows
among the NEs. The architecture may be hierarchical in that the main components NE and
IC are in fact coupled models themselves. Considering the information flows themselves
leads us to examine the form of messages sent/received by the components and the
corresponding types of the inputs and output ports. As examples of such considerations,
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neuromorphic hardware implementations of spiking neuron nets have to make such
architectural choices in order-to-tradeoff processing capability with energy consumption
and design complexity [1].

Figure 4. DEVS Hierarchical Coupled Model that illustrates the terms to be used.

3. Results: Building Blocks and Architectural Patterns

In this section, we show how the methodology presented is applied to obtain DEVS
building blocks and architectural patterns for Hybrid Intelligent Cyberphysical Systems.

3.1. Fast Discrete Event Neuron Architectures for Decision Layer

We proceed to review the DEVS characterization of neural network models based on
discrete rather than continuous abstractions. DEVS abstractions capture the many features
of biological neurons that are not represented in conventional artificial neural networks and
to exploit these capabilities to perform intelligent control tasks [31,32]. Of particular note is
the “One-spike-per-neuron” concept that refers to information transmission from neuron
to neuron by single pulses (spikes) rather than pulse trains or firing frequencies [33]. The
distinguishing feature of the one-spike neural architecture is that it relies on a temporal,
rather than firing rate, code for propagating information through neural processing layers.
This means that an interneuron fires as soon as it has accumulated sufficient “evidence”
and therefore the latency to the first spike codes the strength of this input. Single spike
information pulses are thus able to traverse a multi-layered hierarchy asynchronously and
as fast as the evidential support allows. “Act-as-soon-as-evidence-permits” behavior can
be implemented by “order-of-arrival” neurons which have plausible real-world implemen-
tations [33]. Such processing is invariant with respect to input intensity because latencies
are uniformly affected by such changes. Moreover, coding which exploits firing order of
neurons is much more efficient than a firing-rate code which is based on neuron counts.

The basic concept that supports discrete event abstraction of neural behavior is
strength-to-latency coding. Here the strength of the input of an evidence-gathering neuron
(such as sensory neuron) is coded in the latency of its output response for downstream
neurons. In other words, the greater the stimulation of an input volley (evidence) the
quicker the generation of a corresponding output spike. Thus, a neuron with lots of ev-
identiary support will be “heard” earlier by neurons in the next processing layer than
one with low or no input strength. Dispersion in such latencies sets the stage for neurons
that are sensitive to the order of arrival of spikes. An input train arrives on the input
lines in the order of their weights accumulates maximum activation and may cause the
neuron to fire if this exceeds the threshold. Any other order of arrival will accumulate less
activation and therefore, depending on the threshold level, may not generate an output
spike. Thus, the neuron can discriminate among different order-of-arrivals of stimuli. This
ability to distinguish between N! input patterns (where N is the number of input wires)
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thus supports a combinatorically more efficient information code than one based on the
number of stimulated input wires rather than their order of stimulation [33].

The “one-spike-per-neuron” architecture [33,34] proposed several processing layers
between input from sensors and outputs going to actuators. Sensory layer neurons react
directly to incoming energy (in various modalities such as visual or infrared electromag-
netic waves, sonar, etc.) These neurons perform the analog-to-latency coding just discussed.
Fusion/Analysis layer neurons fuse the data collected from the various sensors into stereo-
typed complexes that can be further related to reactive courses of action. These neurons
operate on the order-of-arrival principles discussed above. Priming of alternative candi-
dates for behavioral course of action is also done by order-of-arrival neurons. Decision,
i.e., selection from the candidates, is performed the by winner-take-all neurons. Action
sequencing plays out the memorized sequence of actions associated with a selected course
of action and is done by event-based control neurons.

In [11] it was hypothesized that a proposed generic neuron model could be specialized
to satisfy all the requirements for behavior at each of the layers. Here we step back and
examine the problem of uncovering fundamental requirements, whether implementable in a
single generic neuron or not, for realizing cognitive behavior that are also biological plausible.

3.2. Fast and Frugal Heuristics: Voting Example

The “fast frugal and accurate” (FFA) perspective on real word intelligence [12,13]
provides a holistic cognitive system framework that characterizes decisions that an intelli-
gent system has to make under time pressure and limited information. FFA hypothesizes
that fast and accurate heuristics can be constructed from simple building blocks that con-
trol attention to informative cues, quickly terminate search processing, and make final
decisions. As an illustration of an FFA we briefly discuss an example, the “take the best”
inferencing heuristic which employs only a fraction of the available knowledge and stops
immediately when the first answer is found (rather than the best answer). “Take the best”
does not attempt to integrate all available information into its decision. Consequently, it is
non-compensatory, non-linear, and can violate transitivity, the cannon of rational choice.

As an example of FFA, we review a recent study of how people determine their votes
for political candidates [14]. Recognizing that the actual amount of political information
possessed by voters is small, unevenly distributed, and time pressured, the study confirmed
the predictions of [14] which predicts that employing specific cognitive shortcuts can help
voters make good and quick decisions, even with a lack of information. Voters appear
to simplify decision making by focusing mainly on those policy positions they consider
important. The study measured the congruence between a voter and candidate by the
distance between their positions on the most important issues to the voter. This enables
the assertion that voters’ decisions are correct if they have chosen the candidate with the
highest congruence. This explains experimental results where voters are able to make
correct decisions (as measured in this manner) independently of the amount of information
available. The results confirm that fast and frugal heuristics may be the decision strategies
that voters adopt to make quick, frugal, and correct (as measured) decisions.

“Take the best” amounts to using a lexicographical ordering of candidates based on
importance of issues and matching between a candidate’s and voter’s views on the issues.
In other words, the voter looks at their most important issue and compares candidates
on this issue. The candidate most congruent to his views on this issue is chosen unless it
is not possible to rank on this issue, in which case the same procedure is applied to the
next important issue, and so on. Note that importance of issue does not depend on the
candidate—so importance comes first in the lexicographical order.

If fast and frugal heuristics characterize human bounded rationality, then they ought
to be implementable by discrete event neural architecture introduced earlier. Indeed, let
us sketch a construction to show this to be the case. Figure 5 depicts a network of DEVS
components that implements “take the best” for the voting example. First Arrival is an
NE that lets the first spike to arrive through and blocks subsequent arrivals. Computation



Information 2021, 12, 531 8 of 21

Delay is an IC between First Arrivals that delays an incoming spike by an amount specified
by a parameter. As a model of cognitive behavior, the delay represents in an inverse manner
the strength of the weight of the connection—the shorter the delay the earlier the spike
will arrive at the target node. Thus, in Figure 5, the Computation Delays represent the
respective importance of issues to the voter so that the most important issue emerges from
the First Arrival en route to the downstream instance. These delays are packaged together
in a Parallel Delay that is a hierarchical parallel DEVS coupled model. The most important
issue continues to be evaluated in parallel for each candidate with the one most congruent
with the voter’s attitudes emerging from the second First Arrival.

Figure 5. DEVS neural architecture implementing “take the best” inferencing.

Figure 5 identifies potential building blocks with First Arrival and Computation Delay
as primitives and Parallel Delay as a composite. We focus on First Arrival to consider its
minimal realization and potential implementations. Recall that our approach to establishing
that a model is a minimal realization of a given cognitive behavior, illustrated in Figure 6,
is to specify the behavior as a system at the I/O behavior level. This requires us to define
the behavior formally as a function mapping input segments to output segments.

Figure 6. Formal representation of first arrival via definition of an I/O function.

The I/O Behavior manifested by the First Arrival is illustrated in Figure 6 as the function

β:ΩX → ΩX
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where ΩX is the set of all DEVS segments with input set X and for allω ∈ ΩX, β(ω) ∈ ΩX.
β is defined by

β (ω)(tx) = x⇔ [tx = min{t|ω(t) 6= ϕ ∧ ω(t) = x}] (2)

where tx is the time at which the event with value x occurs. This states that the only output,
if any, is the event occurring first in the interval. Note that the definition also requires that
any events occurring after the first do not appear in the output.

Figure 7 shows how the minimal realization is derived in this case using the approach
of constructing the reduced version of the monoid (semigroup with identity) representation
of all DEVS segments as generalized from the case of strings introduced above. As an
example, X = {a,b} and starting with the empty segment the tree grows by adding branches
for segments ending with events a and b, respectively. Whenever a node is encountered
with the same derivative function as one earlier encountered it can be merged with the
earlier one. For a finite state function this will eventually bring a halt to the unfolding
of the tree. The output function requires outputs with these respective values and that
subsequent inputs do not result in outputs. A null event segment does not change the
output. Thus, there are 4 different derivative functions β, βa, βb, and βaa for the original
requirement, β, the outputs after the input events a and b, respectively, and the blocking of
subsequent input. In general, we see that n + 2 states are required for an event set X with
cardinality n.

Figure 7. Semigroup monoid system representation of first arrival behavior and minimal realization.

The DEVS model specification for this behavior can be presented as the following
atomic model:

M = <X, Y, S, ta, δint, λ>

where
X is the set of input values = {a,b}
Y is the set of output values = {a,b}
S is the set of partial states of the system = {waitforInput,send,passive}
ta: is the function of advancing time:
ta(send,x,0) = 0
ta(waitforInput,null,∞) = ∞
δint: is the internal transition function:
δint(send,x,0) = (passive,∞)
δext: is the external transition function:
δext(waitforInput,null,∞,e,x) = (send,x,0)
δext(send,x,0,e,x’) = (send,x,0)—ignore later arriving input
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δext(passive,∞,e,x) = (passive,∞)
λ: the output function:
λ(send,x) = x
Note that the specification is deceptively simple as it hides the underlying semantics

that operationalize the definition in the proper simulation infrastructure. Please refer to [1]
for a detailed exposition.

Figure 8 displays a user-developed state diagram in MS4 Me [27] for this DEVS model.

Figure 8. De-activate behavior (a) and implementation of activation in in FirstArrival (b,c).

To establish a homomorphism from this model to the minimal realization, we note that
the states waitforInput and passive map to the initial and final states of the latter. The state
send, is actually the phase of the state pair (send,x) where x is the event received so that it
represents the storage required for the n states of X. We can easily trace the transitions of
this model and of the minimal realization to check that the correspondence is preserved.

3.3. Activation as Distinct from I/O Processing

We now introduce an important capability called activation that is distinct from in-
put/output processing. As illustrated in Figure 8, the state waitforActivate replaces the
waitforInput and passive states as the starting and ending state. An Activate input sets the
model to a new waitForInput state that is equivalent to the original except that it can be
sent back to the initial state by a DeActivate input. The representation in DEVS is obtained
essentially by adding the definitions:

δext(waitForActivate,∞,e,Activate) = (waitForInput,∞)
δext(waitForInput,∞,e,DeActivate) = (waitForActivate,∞)
δext(send,∞,e,DeActivate) = (waitForActivate,∞)
While appearing to be a small change when represented in the state diagram, the

additional capability has large consequences in the implementations to be discussed.

3.4. Variations on First Arrival

As a first example where activation facilitates design, we consider detecting the arrival
of the first two candidates.

A pair x, x’ will be the earliest arriving pair if

β(ω)(tx) = x ∧ β(ω)(tx’) = x’⇔

[tx = min{t|ω(t) 6= ϕ ∧ ω(t) = x }] ∧ [tx’ = min{s > t|ω(s) 6= ϕ ∧ ω(s) = x’}] (3)

To implement the ordered pair arrival, we can employ a coupled model of FirstArrival
units with activation capability as in Figure 9.
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Figure 9. Coupling of FirstArrival models and implementation in the MS4 Me environment [26].

Here the input is sent to both components as in a parallel composition but the Activate
coupling is implemented in a serial manner. The upper FirstArrival starts in the activated
state and detects the first arrival while the second component is not active. Receiving the
activation from the first (now passive) component, the second component can now wait for
the second arrival and respond to it when it arrives. Any subsequent inputs will be blocked
by both units. Note: we will discuss the included DeadlineTimer component momentarily.

Following the methodology of Figure 2, we ask how the realization in Figure 9 relates
to a minimal realization of the ordered pair arrival behavior. By unfolding the monoid tree
as earlier discussed, we note that the tree expands to depth 2. Due to the restriction on
reoccurrence, the number of nodes beyond the root is n(n − 1) where n is the cardinality
of the event set. Therefore, the required number states is n2 − n + 1. In comparison, the
pair of FirstArrival components gives the coupled model a state cardinality of (n + 2)2

so that it has order(n) more states than minimally required. As before, we can define a
homomorphism from the FirstArrival pair to the minimal realization noting the first level
of the tree maps to the first unit states with a similar mapping from second level to the
second unit.

Note that this method can be extended from ordered pairs to ordered tuples of any size,
m. The coupled model of Figure 9 then expands to contain m FirstArrivals with the same
kind of coupling pattern which distinguishes I/O processing from activation—the former
a distribution in parallel, and the latter in serial. The implementation has (n + 2)m states
while the minimal realization has n(n − 1) · · · (n − m + 1) = n!/(n − m + 1)! states. Again,
a homomorphism from the implementation to the minimal realization maps successive
stages of the implementation to successive levels of the monoid tree.



Information 2021, 12, 531 12 of 21

Note that Equation (3) requires the output function to reproduce the order in which
the pair of events occurred. If the order does not matter to the downstream processing than
the unordered pair would be defined as output. In this case, a function γ would be defined
that emitted the unordered pair {x, x’} at the time of the second arrival:

γ(ω)(tx’) = {x,x’}⇔[tx = min{t|ω(t) 6= ϕ ∧ ω(t)=x}]

∧ [tx’= min{s> t|ω(s) 6= ϕ ∧ ω(s)=x’}] (3)

As before this definition can be extended to any size, m of arriving tuple so that the
unordered set of the first m events that arrive is output. This reduces the size of the minimal
realization to the combinatorial n!/(n − m + 1)!m! states. We note that the same form
of implementation can be retained, leaving the question open of constructing a smaller
implementation that exploits the loss of information due to removal of order in the output.

Another possible variation is to set a deadline and accept only those events that occur
before the deadline instant, D:

β (ω)(t) = x⇔ [t < D ∧ ω(t) 6= ϕ ∧ ω(t) = x}]. (4)

As illustrated in Figures 9 and 10, an implementation here can add a timer in parallel
with a FirstArrival composition and have it deactivate the latter at the expiration of the
deadline duration. Given that no limitation is placed on the occurrence of the events
relative to the deadline, the minimal realization must still be able to reproduce the original
output and there it must have at least the same number of states as before. In addition,
the composition with the timer, which has initial and final states, doubles the number via
the cross-product.

Figure 10. Timer for implementation of deadline-based decision.

3.5. Perception of Order of Discrete Event Arrival

With an ultimate interest in generation and recognition of DEVS segments of events
we first characterize the behavioral requirements underlying perception of order of dis-
crete event arrival. We will provide a minimal realization for such behavior and use its
implementation subsequently in the finite language framework for DEVS segments. As
in Figure 11, consider two discrete events, a and b, that occur in a given time interval and
are input to a system that is supposed to output judgements about the arrivals in relation
to each other. We represent the perception of order of occurrence as a function that maps
event segments into a value at end of the interval. Further, different from the considerations
earlier made for decision making, we include the separation in time between the events as
relevant. We start with the requirement that the function be able to mark the arrival of b
after a within a given interval. Other possibilities to distinguish include a or b happening
alone, simultaneous occurrence, and no events occurring within a given interval. As in
Figure 11, we formulate the computation, β, as an I/O Function behavior in the DEVS
formalism. We then provide a realization at the state level as a DEVS atomic model and
show this to be a minimal realization.
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Figure 11. Order of arrival behavior definition and minimal realization.

The definition of the function becomes:

β(ω) = 1⇔ ∃s,t: s< t < s + µ ∧ ω(s) = a andω(t) = b

β(ω) = 0 otherwise (5)

Unfolding the monoid tree, we obtain Figure 11 which leads to the minimal realization.
Note that we distinguish between an arrival of event b following event a within interval µ
and later than that by corresponding segment length limits.

As above, we can formally represent the behavior of the order-of-arrival neuron
mentioned earlier. By unfolding the monoid tree, we can lay out a minimal realization
which given any specific order of arrival of n distinct events, i.e., any permutation of
the events, recognizes it with n+1 states. By unfolding the tree, we see that the minimal
realization of the behavior that recognizes any one of an incident permutation of n events
has n! + 1 states (a reduction in size from nn states required to recognize any combination
of n events).

3.6. Elementary Perception Unit

To create an Elementary Perception Unit (EPU), the FirstArrival design is extended to
include a parameter specifying a particular event to recognize and a time to wait for the
event after activation. As in Figure 12, this makes use of the DEVS time advance function
that assigns a time to remain in a state before transitioning to the next assigned one—in
this case to a state indicating that no event of the specified form has been received.
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Figure 12. Definition of Elementary Perception Unit (EPU).

The coupled model in Figure 13 implements the order of arrival of event a followed by
event b, where the EPUs recognize a and b, respectively. The coupling manifests the earlier
pattern in which activation and I/O processing couplings are distinguished. Activation is
passed on sequentially from the first EPU to the second upon the positive event recognition
by the latter. In contrast, the input is distributed to all components uniformly, as is the reset
input. Similarly, activation is emitted externally only from the last EPU. However, the time
out notice can emerge from any component.

Figure 13. Series coupling of EPUs showing difference between input and activation coupling patterns.

In the following we extend this capability to regular languages which are sets of event
segments that can be defined in a generalized finite state manner.
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4. Finite State Regular Language Framework

In [10], we identified a finite state regular language framework as a basis for modeling
of cognitive behavior. In brief, regular expressions are strings of symbols that include the
alphabet and connectors for concatenation, Boolean operations, and Kleene star (denoting
iterative concatenation) [35]. we proved that given a temporally represented finite alphabet
and a regular expression over the alphabet, we can construct a DEVS coupled model that
constitutes a networked recognizer for the regular expression.

Regular expressions are descriptions of behavior at the I/O Behavior level for which
there are computable realizations by finite state automata. Indeed, for every regular
expression there is a finite state acceptor (that can recognize strings in its language) and
a finite state generator that can generate such strings [36,37]. Therefore, we took this
framework as the basis for the computations that mediate between cognitive and neural
domains, and we identified realizations of such system specifications at the coupled system
level involving neural componentry and potentially other needed cellular elements.

4.1. DEVS Recognizer Models

Let DEVS(X) be a set of DEVS segments based on X a finite alphabet. Given an
input segment,

ϕt1 > x1ϕt2 > x2 ...ϕtn > xn

We strip the time information to obtain the string x1,x2,..,xn. The erasure of time
information is called the natural encoding of DEVS segments to strings. We extend the con-
cept of language recognition and generation from sequences to DEVS segments. Roughly,
this requires that the DEVS model partitions the set of all segments into accepted and
non-accepted sets just in case the stripped sequences are partitioned in the same manner
by an automaton. Indeed, the way we proceed is to extend a finite state automaton to a
DEVS in such a way that the language it accepts is in fact, the set of sequences stripped
from the DEVS input segments. Figure 14 illustrates the approach. An atomic model that
recognizes a single symbol e.g., the language {x} appears in Figure 14a with input Activate
to send it from the Wait state to the Hold State as shown in Figure 14c. After this, an input
with label x happening some time later will cause the model to enter the Send state and to
output an Activate output signaling the acceptance of the input. Any other input label will
return the model to the Wait state without sending such an output. The model in DEVS set
notation appears in Figure 14b.

Figure 14. DEVS recognizer model. The interfaces are shown in (a), the model specification is in (b),
and the state diagram is shown in (c).

4.2. Constructing a DEVS Recognizer for Segments Sets in DEVS(X)

As illustrated in Figure 15a, we define an input-driven DEVS as a DEVS model for
which the time advance in all states is infinite. Effectively, this means that the only source
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of state change is from external events and we may omit the internal transition function
as in the definition: M = <X,S,δext,ta> where ta(s) = ∞, for all s ∈ S. For convenience
we also omit the output function. Furthermore, we will require that the elapsed time,
e plays no role in state transitions due to inputs so that: δext (s,e,x) = δ(s,x). Now, as
illustrated in Figure 15b, a transition system, underlying a finite automaton, can be defined
as T = <X,S,δ> where δ:S × X→ S. Therefore, we have the following proposition:

Figure 15. Mapping from input-driven DEVS to transition system.

Proposition 1. Given a transition system, T, there is a DEVS M that homomorphically simulates it.

A sketch of the proof is illustrated in Figure 15c. Construct a DEVS M whose states and
transitions are labelled in one-one correspondence to those of T. Suppose that T undergoes
a state sequence s0, s1, s2, s3 in response to an input sequence x1, x2, x3. Then if M is fed
an event segment with natural encoding to x1 x2 x3, M will undergo the state trajectory
shown which in stripped form matches that of T. Technically, we can show that the natural
encoding together with the one-one state mapping constitute a homomorphic simulation
of T by M (see definition in [1]).

We also readily have the converse:

Proposition 2. Given an input-driven DEVS, there is a state transition system that it homomor-
phically simulates.

Now we can extend T to an automaton AT by adding to it labels for an initial state
and a set of final states. Likewise, extend M to a DEVS Recognizer, RM with addition of the
same initial state and set of final state labels. Then stated in succinct form:

Corollary 1 The language accepted by RM. is also accepted by AT.

Expanded, this means that the set of DEVS segments that drive the input free DEVS
from its initial state to a final state, when stripped of their timing, is the set of sequences
that drive the corresponding automaton from its initial state to one of its final states.

Note that to conform to the input/output interface for the DEVS model of Figure 14a,
we have the model start in a Wait state and have it transition to the initial state upon
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receiving an Activate output. Likewise, we have it generate an Activate output when
transitioning into a final state. This converts its input-free nature to a full-fledged DEVS.
However, this interaction is only manifest for the Activate interface.

Theorem 1. A subset of DEVS(X) is recognized by an input-driven DEVS if, and only if, the
natural encoding of the set is a regular language. We call such a subset of DEVS(X) a regular
language of DEVS segments.

The proof centers on the fact that the internal operation of an input-driven DEVS is
exactly replicated in the automaton constructed from it. Conversely if a set is accepted by
an automaton, then an input-free DEVS can be constructed that replicates this behavior in
relation to the natural encoding.

4.3. Regular Realization at the DEVS Network Level

In this section our goal is to develop templates for realizing the behavior expressed
by regular languages in the form of DEVS coupled models. This will be done by realizing
finite state automata in network form in a particular way that allows generalization to
continuous time segments.

There are multiple representations of a regular language as a regular expression and as
a finite state automaton. The mapping in Figure 16a,b gives a simple example. Further there
are multiple realizations of finite state machines in networked form as e.g., well-known
clocked sequential circuits. As illustrated in Figure 16b,c, the realization approach we
take employs the recognizers for elementary symbols from Figure 16. In the mapping,
each transition label is mapped to a recognizer of that label and each state is mapped to
an activation node shown as a black oval component. For example, the states s0 and s1
are mapped to activation nodes s0 and s1, while the transition from s0 to s1 labelled a is
mapped to a recognizer for a. Starting in initial state s0 is represented by external activation
of its representative component. External input is coupled to each recognizer’s input port.
As in Figure 12, a recognizer can only pass on activation to its target state representative if
has received activation from a predecessor state. The mapping is algorithmic and can be
implemented to generate coupled model recognizers for the source regular expression as
illustrated in Figure 16d in a DEVS simulation environment [26].

Figure 16. Realization of Regular language at Finite State and Network levels. An example language is in (a), its finite state
acceptor is in (b), the mapping to network form is in (c), and the implementation is shown in (d).
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Note that the activation node behavior can be easily captured by a simple atomic
DEVS which produces an Activate output in response to the first Activate input that it
receives. Quick considerations shows that the minimal realization of this behavior requires
only two states.

Formally, we can prove the theorem:

Theorem 2 A regular language of DEVS segments can be realized by a coupled model of symbol
recognizers and activation nodes.

The proof shows that exactly one activation node is in the Active state and it enables
the recognizers for its corresponding state’s outgoing input labels. Only one recognizer for
each label accepts the next external event (assuming deterministic automata) and activates
the target activation node representing the next automaton state. The proof then proceeds
by induction to show that at the end of the input segment a final state is reached or not
according to whether or not it is in the regular language.

5. Discussion

In this article, we described and applied a methodology for developing DEVS building
blocks and architectural patterns for Hybrid Intelligent Cyberphysical Systems. Before
discussing potential applications, we provide a summary of the models discussed.

5.1. Summary of Building Blocks and Architectural Patterns

Building blocks can be summarized as:

• FirstArrival: used to select the first (strongest)competitor to produce a proposed response
• Computation Delay: converts strength of proposed responses to speed of travel to

First Arrival selector
• FirstArrival Variants: can sub-select contenders for further down-selection
• Elementary Perception Unit: recognizes arrival of event
• Elementary Generation Unit: generates events in time
• Activation Units: transmit activation in networks

Architectural patterns:

• FFA networks: First Arrivals and Computation Delays to make informed choices
• DEVS-segment regular language generators and acceptors: implement finite state

automata in network form of EPUs, EGUs, and activation units.

5.2. Multiple Subsystems Competition Application

Now we discuss an application that illustrates the application to system design.
An example where the overall methodology illuminates the modeling of cognitive

behavior is offered by the multiple memory systems theory [38] which asserts different
kinds of information are processed and stored in different parts of the brain. This can lead
to different proposals for action in response to a situation and the need to resolve the compe-
tition. In Figure 17, the Procedural, Emotional, and Declarative systems operate in parallel
with common inputs and outputs. Further, each have their own structures and indepen-
dently extract different kinds of information from the ongoing activity. Procedural memory
refers to constant stimulus-response (S-R) relationships that lead to successful outcomes.
Information processed and stored in this system tends to produce the response whenever
the stimulus is encountered. The Emotional system refers to (S-Af, or stimulus-affect
associations) while the Declarative system stores and applies S-S higher level cognitive
factual knowledge relations.

An experiment [38] tested the theory’s claim of independent parallel potentially
conflicting decisions by placing rats in a maze with different configurations to elicit different
foraging strategies.
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Figure 17. First Arrival-based selection of actions vs. resolution of conflict at the output stage.

Each configuration provided the rat with a different kind of information about the
location of food on the maze. Normal rats learned to locate the food easily in all three
configurations. The first task requires keeping track of the locations of past successful
accesses to food to enable predicting future food locations (requiring spatial map declarative
processing). In the second task lights inform the rats about the current location of the food
and they learn to associate the light with the food availability (requires operant stimulus-
response procedural processing). The third task confines a rat to one location and requires
associating environmental cues there with presence or absence of food (requiring emotional
system classical conditioned response processing). Lesions to different parts of the brain
confirmed the separate location and independence of the respective systems responding to
these tasks. However, training from the first task did cause reduced performance in the
second task as rats showed uncertainty whether to follow the light cues or the dependence
on prior location.

To explain this reduction, the experimenters hypothesized that (1) the system with the
most coherent representation produces the strongest output and wins the competition for
control of behavior, but (2) another system with a less coherent representation can produce
output that is sufficiently strong to negatively influence behavior [38]. In Figure 17, we
show this direct resolution of conflict by direct outputs from the parallel systems to the
actuator output. In contrast, the candidate selection computation primitive, represented by
the FirstArrival component, would enable the conflict to be resolved before any output is
generated. In this design, the relative strengths of the system outputs would be manifested
as computation delays with the fastest gaining control of the final output. In a variation, the
deadline feature could leave a subset to compete for final output with resulting degradation
in performance. This would predict that under time pressure, output behavior is more
likely to be optimal than with none applied. As in FFA, if rats are forced to make a choice,
they make the best available. Thus, design of artificial agents might potentially improve on
natural systems with more advanced designs for conflict resolution decision systems.

Future research should be focused on using and extending the methodology for further
exploring potentially useful DEVS building blocks and architectural patterns for Hybrid
Intelligent Cyberphysical Systems [39,40].

A note about using Classic DEVS rather than PDEVS as basis for the theory developed
in this paper: Classic DEVS was used in an effort to keep the exposition as simple as
possible for the reader unfamiliar with DEVS. I believe that the main results carry through
to the PDEVS case which introduces the complications of simultaneous events and multiple
simultaneous inputs. However, establishing this claim is left for future work. It should
be stated that the current results apply to discrete event neural nets due to the vanishing
probability of synchronous events [24].
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6. Conclusions

Among the contributions of this research, this article provides the first attempt to
uncover DEVS-based building blocks and architectural patterns for intelligent hybrid cy-
berphysical system design. We argued that discrete event abstraction captures information
in rich continuous data streams in terms of events and their occurrences in time. Models of
neurons and neural processing architectures and from fast and frugal heuristics provide
further support for the centrality of discrete event abstraction in modeling cyberphysical
systems with intelligent cognitive behavior. More generally, any cyberphysical system
must operate within the constraints imposed by space, time, and resources on its infor-
mation processing. The discrete event paradigm provides the right level of abstraction to
tackle these issues. Therefore, it is appropriate to seek DEVS-based models that can be
employed in a repeatable manner to implement characteristic behavior requirements of
smart systems.

More generally, DEVS may be the best candidate to implement conflict resolution in
today’s complex systems of systems design problems. For example, the design phase of
industrial products related to Internet of Things (IoT) systems could take advantage of the
power of DEVS design pattern-based approach. DEVS gives a high level of abstraction to
easily specify temporal constraints within intelligent hybrid cyberphysical system design
that are difficult to manage otherwise [41].
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