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Abstract: Underwater image enhancement recovers degraded underwater images to produce corre-
sponding clear images. Image enhancement methods based on deep learning usually use paired data
to train the model, while such paired data, e.g., the degraded images and the corresponding clear
images, are difficult to capture simultaneously in the underwater environment. In addition, how to
retain the detailed information well in the enhanced image is another critical problem. To solve such
issues, we propose a novel unpaired underwater image enhancement method via a cycle generative
adversarial network (UW-CycleGAN) to recover the degraded underwater images. Our proposed
UW-CycleGAN model includes three main modules: (1) A content loss regularizer is adopted into
the generator in CycleGAN, which constrains the detailed information existing in one degraded
image to remain in the corresponding generated clear image; (2) A blur-promoting adversarial loss
regularizer is introduced into the discriminator to reduce the blur and noise in the generated clear
images; (3) We add the DenseNet block to the generator to retain more information of each feature
map in the training stage. Finally, experimental results on two unpaired underwater image datasets
produced satisfactory performance compared to the state-of-the-art image enhancement methods,
which proves the effectiveness of the proposed model.

Keywords: image enhancement; CycleGAN; underwater image; unpaired data

1. Introduction

With the rapid development of marine resources, underwater robots are necessary
to replace humans to work in the complex underwater environment. The underwater
robot mainly relies on its visual ability to achieve several tasks, such as object recognition,
localization, 3D reconstruction, and route guidance. Due to the light absorption and
scattering properties in water, underwater images usually contain color distortion and low
contrast. Therefore, how to enhance underwater images becomes an urgent problem for
practical underwater applications [1].

Over recent decades, underwater image enhancement has attracted an increasing
amount of attention. Wang et al. [2] divided underwater image enhancement methods into
three main categories: spatial-domain methods, transform-domain methods, and the popular
deep learning-based methods.

The spatial-domain methods usually tune the grayscale range of one image to enhance
its contrast and reduce the color distortion [3]. Traditional methods include gray world [4],
white balance [4], automatic white balance [5], histogram equalization, adaptive histogram
equalization [6], contrast limited adaptive histogram equalization [7], and its variations.
Although these methods have had success in enhancing degraded images, they still have
significant limitations for severely degraded underwater images, which introduce red
artifacts and noise.
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The transform-domain methods transfer an underwater image to the frequency do-
main, then, they enhance the image contrast by amplifying the high-frequency informa-
tion and suppressing the low-frequency information. Classic transform-domain methods
include a low-pass filter [8], high-pass filter [9], homomorphic filter [10], and wavelet
transform [11–13]. Although these methods decrease the noise and enhance the contrast of
an underwater image, the performance of color correction is bad.

The above two categories of methods just enhance each underwater image inde-
pendently, without learning procedures. Deep learning-based methods can exploit an
end-to-end automatic training mechanism to enhance underwater images, which learns
the intrinsic underwater features from a set of underwater images. In [14], they replaced
the handcrafted features with the nonparametric deep features for the image representa-
tion. Other researchers [15,16] introduced the convolutional neural network (CNN) into
underwater image enhancement applications. A residual CNN was further proposed
in [17]. Furthermore, [18] provided a deep pixel-to-pixel network by designing an encod-
ing–decoding framework. In [19], they utilized domain adversarial learning to enhance
underwater images. In [20,21], they improved the quality of visual underwater scenes
using Generative Adversarial Networks (GAN), and then [22] proposed a fusion adver-
sarial network. Finally, Hu et al. [23] introduced the natural image quality evaluation to a
supervised generative adversarial network.

These methods improved the visual effect and quality of underwater images, but they
require a large amount of paired data, i.e., each degraded image has a corresponding
clear image. Paired data is difficult to obtain in an underwater environment, which
also causes difficulty for underwater image enhancement. Therefore, researchers usually
use synthetic data to construct paired data. Figure 1 shows some samples of unpaired
underwater images.

Figure 1. The Unpaired underwater images dataset. The top row displays the degraded underwater
images, and the bottom row shows the clear ones. Both rows are unpaired.

To solve the problem of deep learning-based underwater image enhancement methods
requiring paired data, we propose a novel underwater cycle generative adversarial network
(UW-CycleGAN) for image enhancement, which just needs one set of unpaired underwater
degraded images and clear images to train the proposed model. A brief illustration of
UW-CycleGAN is shown in Figure 2.

The main contributions of this paper are briefly summarized as follows:

• We introduce a content loss regularizer into the generator in CycleGAN, which keeps
more detailed information in the corresponding generated clear image. This strategy
is different from CartoonGAN [24];

• We add a blur-promoting adversarial loss regularizer into the discriminator in Cycle-
GAN, which reduces the effects of blur and noise and enhances the image clarity;

• We exploit the improved DenseNet Block in the generator to strengthen the forward
transfer of feature maps, so that every feature map can be utilized;

• We test our proposed UW-CycleGAN on different types of underwater images and
obtain a satisfactory performance.
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Figure 2. A brief illustration of UW-CycleGAN, which consists of two generators and two dis-
criminators. The generator G (or F) is a downsample–upsample framework with DenseNet blocks.
The discriminator DY (or DX) comprises five full convolution layers.

We develop an end-to-end underwater image enhancement system. The structure
of this paper is organized as follows: The necessary knowledge about underwater image
enhancement is reviewed in Section 2. An improved underwater CycleGAN model for
unpaired data, so-called UW-CycleGAN, is proposed in Section 3. The experimental results
on two underwater image datasets are illustrated in Section 4. Finally, we conclude this
paper in Section 5.

2. Underwater Image Enhancement

As we mentioned above, capturing paired data in the underwater environment is
difficult. To study the intrinsic relationship between the degraded image and the corre-
sponding clear image, some researchers designed a simplified physical model according to
the refraction, scattering, and attenuation properties of light [25],

Iλ(x) = Jλ(x) · tλ(x) + (1− tλ(x)) · Bλ, λ ∈ {r, g, b} (1)

where Iλ(x) denotes the degraded image captured by underwater cameras, Jλ(x) means the
corresponding restored clear image, tλ(x) is the medium transmission map, Bλ represents
the well-proportioned background light, and λ gives the light wavelength.

In order to enhance Jλ(x), the key problem of the traditional physical models is to
estimate tλ(x) and Bλ, since only image Iλ(x) is known. Although this physical model
does not need paired data, some assumptions and prior knowledge are required to evaluate
tλ(x) and Bλ, which severely limits the practical applications.

In recent years, many researchers have applied CNN to process underwater images
and achieved good results in underwater image enhancement applications. However, CNN
based methods need paired data to train their network models, and researchers have to use
synthetic data instead. Fortunately, CycleGAN can utilize unpaired data for the conversion
of image style, which offers a new direction for underwater image enhancement.
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3. Underwater CycleGAN (UW-CycleGAN)

Deep learning-based image enhancement methods usually need paired underwater
images to train network models. To solve this problem, we propose a CycleGAN-based
underwater image enhancement method (UW-CycleGAN), which can utilize unpaired
data to train its model.

Suppose we have the unpaired degraded image set X and clear image set Y. One
complete procedure of UW-CycleGAN is shown in Figure 2:

(1) The mapping function G generates the clear image G(x) from x ∈ X.
(2) Another mapping function F reconstructs the degraded image x by G(x)→ F(G(x)).
(3) Discriminator DY judges whether the generated image G(x) and clear image y derive

from the same distribution.

In addition, y → F(y) → G(F(y)) and DX are the similar inverse processes, which
ensures the model invertibility. We display some samples of x, G(x), and F(G(x)) in
Figure 3, respectively.

Figure 3. (a) input image x, (b) generated image G(x), and (c) reconstructed image F(G(x).

3.1. Loss Function

Zhu et al. [26] proposed a CycleGAN framework to achieve unpaired image-to-image
translation, which consisted of adversarial loss and cycle consistency loss.

The adversarial loss restricts the generated image G(x) and F(y) to derive from the
same distribution with the clear image y and degraded image x, respectively:

Ladv(G, DY) = Ey∼Pdata(y)[(DY(y))2]

+ Ex∼Pdata(x)[(1− DY(G(x)))2]

Ladv(F, DX) = Ex∼Pdata(x)[(DX(x))2]

+ Ey∼Pdata(y)[(1− DX(F(y)))2]

(2)

where Pdata(x) and Pdata(y) represent the distributions of underwater degraded images
and clear images, respectively.

The cycle consistency loss ensures the reconstructed images are similar to the input
images,

Lcyc(G, F) = Ex∼Pdata(x)[||F(G(x))− x||1]
+ Ey∼Pdata(y)[||G(F(y))− y||1].

(3)

where ‖ · ‖1 means the `1-norm.
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3.1.1. Content Loss

The cycle consistency loss (3) only minimizes the difference between the input image
x (or y) and its reconstructed image F(G(x)) (or G(F(y))), which ignores whether the
generated image G(x) (or F(y)) is visually similar to x (or y). Therefore, we add the content
loss regularizer measured by `1 norm,

Lcon(G, F) = Ex∼Pdata(x)[||G(x)− x||1]
+ Ey∼Pdata(y)[||F(y)− y||1]

(4)

However, the above function makes the generated image G(x) (or F(y)) too similar
to the input image x (or y) due to the element-wise subtraction, retaining almost all the
information of the input image x (or y). We want to keep the detailed information of the
input image x (or y) unchanged, meanwhile, calibrating the image color to enhance the
visual quality of the generated image G(x) (or F(y)).

In order to achieve this purpose, a VGG19 pretraining network is used to extract the
conv4_4 layer feature maps of the input and generated images. We also employ `1-norm
to measure the content loss, since `1-norm is more robust to noise and outliers, which
can recover the underwater image details well. Thus, the new content loss regularizer is
rewritten as,

Lcon(G, F) = Ex∼Pdata(x)[||VGG(G(x))−VGG(x)||1]
+ Ey∼Pdata(y)[||VGG(F(y))−VGG(y)||1]

(5)

where VGG(·) denotes the VGG19 feature map in this paper.

3.1.2. Blur-Promoting Adversarial Loss

Although the content of the image generated by G is consistent with its corresponding
input image, a large amount of noise and blur are also generated at the same time, which
effects the visual performance. We need to make the discriminator robust to blur. Therefore,
a blur dataset Z is constructed by adding Gaussian blur to the clear image dataset Y. The
discriminator DY should judge z ∈ Z as the fake image and y as the real image, so that the
images generated by generator G can be clearer. With this idea, the adversarial loss can be
rewritten as follows:

Lbadv(G, DY) = Ey∼Pdata(y)[(DY(y))2]

+ Ez∼Pdata(z)[(1− DY(z))2]

+ Ex∼Pdata(x)[(1− DY(G(x)))2],

(6)

where Pdata(z) represents the distribution of underwater clear images with Gaussian blur.

3.1.3. Full Loss Funtion

Finally, we construct the full loss function of UW-CycleGAN as follows,

L(G, F, DX , DY) = Lbadv(G, DY) + Ladv(F, DX)

+ Lcyc(G, F) + Lcon(G, F),
(7)

where the generator G, F and the discriminator DX , DY can be updated by

G∗, F∗ = arg min
G,F

max
Dx ,Dy

L(G, F, DX , DY). (8)

It should be noted, we equally treat each loss regularizer and never set several hyper-
parameters to tune experimental results.
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3.2. Network Architectures

As illustrated in Figure 2, our UW-CycleGAN network architecture consists of two
main generators and two discriminators.

Generators G and F have the same network structure with different parameters, which
directly adopts the encoder–decoder structure in this paper. Firstly, one flat convolution
stage with convolution kernel size of 7× 7 and step length of 1 and two down-convolution
stages with convolution kernel size of 3× 3 and step length of 2 are exploited to spatially
compress and encode the input images. Then, three DenseNet blocks are used to transfer
the feature maps and preserve their high-level features. The detailed structure of the
DenseNet block is shown in Figure 4b [27]. In the T layer, with 128 convolution kernels
size of 1× 1 and step length of 1, we reduce the size of feature maps from 64× 64× 256
to 64× 64× 128. In the L1 layer, L1 includes 64 convolution kernels size of 1× 1 and step
length 1 and 16 convolution kernels size of 3× 3 and step length 1, so the size of the output
feature maps is 64× 64× 16. Then, we concatenate the output of the T layer and the output
of the L1 layer to obtain a feature map size of 64× 64× 144 as the inputs for the L2 layer.
Similarly, the outputs of the L1 and L2 layers are concatenated as the input for the L3
layer. After several similar operations, we obtain the output size of 64× 64× 256 in the L8
layer. Finally, the generated clear images are reconstructed by two up-convolutions, which
contain one convolution kernel size of 3× 3 and step length 1/2 and one final convolution
kernel size of 7× 7 and step length 1.

Figure 4. Architecture of the generator and DenseNet blocks networks. (a) Generator network
structure and (b) DenseNet block, where “Conv” denotes the convolution layer and “Deconv” denotes
the deconvolution layer.

Discriminators DX and DY also contain the same network structure with different
parameters. In the discriminator network, a Markov discriminator, which comprises five
full convolution layers outputs a “0–1” indicator matrix size of 70× 70 and then calculates
the mean value of all elements in the matrix as the real/fake output at last.

4. Experiment and Evaluation

In this section, UW-CycleGAN is tested on two real-world unpaired underwater image
datasets and is compared with several classic image enhancement methods to evaluate the
superiority of UW-CycleGAN. Finally, the ablation experiments verify the importance of
each component in our UW-CycleGAN model.
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4.1. Datasets and Metrics

URPC2019 (http://www.cnurpc.org/a/js/2019/0805/125.html accessed on 17 De-
cember 2021) contains over 4000 underwater images [28], and we took a subset in this
paper. We chose 670 underwater images as the training set, in which 335 degraded images
belonged to training set X, and the remaining 335 clear images belonged to training set
Y. There was no paired relationship between training sets X and Y. The Gaussian blur
set E was formed by performing a Gaussian blur operation on the previous training set Y.
The testing set consisted of 70 degraded images. We set the color image size of both the
training set and the test set as 256× 256× 3.

EUVP (http://irvlab.cs.umn.edu/resources/euvp-dataset accessed on 17 December
2021) contains over 6446 underwater human images. We choose 405 degraded images as
the training set X and 405 clear images as the training set Y. The testing set consisted of
200 degraded images. The color image size was also set as 256× 256× 3.

To fairly assess these image enhancement methods from different aspects, we selected
three standard metrics, which were average gradient (AG) [29], information entropy
(IE) [30], and underwater image quality measure (UIQM) [31]. Lower values of IE reflect
better performance, while AG and UIQM are the opposite. The entire network was coded in
the pytorch framework and implemented on a workstation with 8 Nvidia Tesla P100 GPUs.

4.2. Experimental Assessment

If only the clear image set Y was used to train the discriminator, the generated image
usually had an obvious blur. To solve this problem, we exploited the Gaussian blur set Z to
train the discriminator, and the generator could output clear images well.

We compared the proposed model with three traditional underwater image enhance-
ment methods:

• De-scattering Underwater image (Deunderwater) [32]
• Diving into Haze-Lines: Color Restoration of Underwater Images (HL) [33]
• Unsupervised Color Correction Method (UCM) [34]

and three deep learning-based methods:

• Fast Underwater Image Enhancement for Improved Visual Perception (FUnIE-GAN-
UP) [35]

• Generative Adversarial Networks for Photo Cartoonization (CartoonGAN) [24]
• Unpaired Image-to-Image Translation using Cycle Consistent Adversarial Networks

(CycleGAN) [26].

Figure 5 displays the enhancement results of five underwater scene images on the
URPC dataset. Deunderwater recovered the image color to a certain extent, but the contrast
and details of the generated image were not good. Although HL restored the image
detailed information well, the generated image had the problems of poor contrast and color
distortion. UCM and FUnIE-GAN-UP recovered the image color and detail well, while
the contrast was relatively bad. CartoonGAN and CycleGAN improved the image color
and contrast excellently, but blur existed in the image detail. Our UW-CycleGAN obtained
good performance in image contrast, color, and detail.

Figure 6 shows the vision enhancement results of underwater human images on the
EUVP dataset. Obviously, Deunderwater, HL and UCM had color distortion problems.
FUnIE-GAN-UP, CatroonGAN, and CycleGAN performed reasonably well, and their
enhanced images were comparable to our UW-CycleGAN, but UW-CycleGAN was still
the best in terms of the image detail and clarity.

http://www.cnurpc.org/a/js/2019/0805/125.html
http://irvlab.cs.umn.edu/resources/euvp-dataset
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Figure 5. Visual quality comparisons of the enhanced underwater images on the URPC dataset.

Figure 6. Visual quality comparisons of the enhanced underwater images on the EUVP dataset.

Tables 1 and 2 estimate the underwater image enhancement performance of all meth-
ods under three standard metrics. Although the value performance of traditional methods
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(Deunderwater, HL, and UCM) in both tables are not bad, their visualization performance
in Figures 5 and 6 are obviously unsatisfactory. Deep learning-based methods work rela-
tively steadily in both value and visulization performance. Our UW-CycleGAN obtained
the best experimental results measured by all objective evaluation metrics.

Table 1. Quality evaluation of all methods on the URPC dataset.

AG ↑ IE ↓ UIQM ↑
Deunderwater 7.5047 7.8178 5.1460

HL 7.3021 7.4033 4.0719
UCM 4.9102 7.3955 3.8221

FUnIE-GAN-UP 5.9444 7.3819 4.2130
CartoonGAN 4.9079 7.2567 4.4997

CycleGAN 6.4737 7.2785 4.8380

UW-CycleGAN 7.6345 7.1824 5.1689

Table 2. Quality evaluation of all methods on the EUVP dataset.

AG ↑ IE ↓ UIQM ↑
Deunderwater 2.4945 7.7830 1.5500

HL 2.0565 7.4271 1.5769
UCM 2.5489 7.2451 2.0124

FUnIE-GAN-UP 2.6014 7.3463 0.9782
CartoonGAN 2.7224 6.7422 2.0883

CycleGAN 2.9969 6.7452 2.6075

UW-CycleGAN 3.1370 6.4827 2.7497

4.3. Ablation Experiments

We designed a set of ablation experiments to further analyze the importance of each
module in our UW-CycleGAN method, and the experimental results are shown in Figure 7
and Table 3. We introduce each ablation experiment as follows:

(i) w/o LContent: We removed the content loss from UW-CycleGAN, which led to
serious detail loss and image blur in the generated images.

(ii) w/o LBlur: Without the blur-adversarial loss, the generated images remain intact
but had slight blurring.

(iii) GResNet: DenseNet block in UW-CycleGAN was replaced by ResNet-block. Al-
though the subjective difference between GResNet and our UW-CycleGAN is not obvious in
Figure 7, the objective evaluation results in Table 3 verify the advantages of DenseNet-block.

In the above, the effect of each component in our UW-CycleGAN was verified.

Table 3. Ablation Experiments: Quality evaluation of all methods on URPC dataset.

AG ↑ IE ↓ UIQM ↑
w/o LContent 7.3567 7.3727 5.1268

w/o LBlur 7.5490 7.2750 5.1530
GResNet 6.9984 7.2864 5.0271

UW-CycleGAN 7.6345 7.1824 5.1689
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Figure 7. Ablation experiments: (a) input image, (b) w/o LContent, (c) w/o LBlur, (d) GResNet, and (e)
UW-CycleGAN.

5. Conclusions

Underwater vehicle vision has important research value in underwater applications.
We proposed an end-to-end underwater image enhancement method for unpaired data
(UW-CycleGAN). To be specific, we firstly added a content loss regularizer to the generator
in traditional CycleGAN through a VGG19 pretraining network. Then, a blur-promoting
adversarial loss regularizer was adopted in the discriminator. Finally, we replaced the
commonly used ResNet-block in CycleGAN with the DenseNet block in the coding layer.
Compared with several image enhancement methods, our proposed methods restored
the underwater degraded images with blue-green background and blur into clear images
effectively. We also performed ablation experiments to verify the importance of each
module in UW-CycleGAN.
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