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Abstract: In some languages, Named Entity Recognition (NER) is severely hindered by complex
linguistic structures, such as inflection, that will confuse the data-driven models when perceiving
the word’s actual meaning. This work tries to alleviate these problems by introducing a novel neural
network based on morphological and syntactic grammars. The experiments were performed in four
Nordic languages, which have many grammar rules. The model was named the NorG network (Nor:
Nordic Languages, G: Grammar). In addition to learning from the text content, the NorG network
also learns from the word writing form, the POS tag, and dependency. The proposed neural network
consists of a bidirectional Long Short-Term Memory (Bi-LSTM) layer to capture word-level grammars,
while a bidirectional Graph Attention (Bi-GAT) layer is used to capture sentence-level grammars.
Experimental results from four languages show that the grammar-assisted network significantly
improves the results against baselines. We also investigate how the NorG network works on each
grammar component by some exploratory experiments.

Keywords: named entity recognition; morphology; syntax; language processing; deep learning

1. Introduction

Machine Learning models have widely applied Natural Language Processing (NLP)
techniques, which replace the previous rule-based models and show better performances.
NLP techniques, such as recommendation and sentiment analysis, have become ubiquitous
and necessary among businesses across industries [1]. Named Entity Recognition (NER)
is a type of NLP technique based on machine learning models that extracts entities from
sentences [2]. Entities are generally considered the keywords in marketing, and recognizing
‘named entities’, i.e., the name of a person, an organization, a place, and all other entities
identified by a name, is vital for the potential business strategies in the big data era [3,4].
On one hand, NER has seen considerable development in English, and many data-driven
models have been proposed. On the other hand, there is insufficient research to support
languages other than English [5,6]. Compared with English, some languages have many
linguistic structures. Aiming at these grammar rules, this work proposes a grammar-based
network for named entity recognition and selected four Nordic languages in experiments.

In the Norwegian Bokmål language, one of the experimental languages, some words
have feminine, masculine, and neutral varieties. Moreover, there are many compound
words, that is, one word consists of several separated words, and the boundaries in com-
pound words are hard to discern. As is shown in Table 1, English words cannot make a one-
to-one alignment with Norwegian Bokmål language words, which will hinder the model’s
performance. Here, ‘Høyesterettsjustitiarius’ comprises three word-tokens, ‘Supreme’,
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‘Court’, and ‘Justice’ in English. However, data-driven models cannot well learn these lin-
guistic structures. This work proposes a novel method incorporating the missing grammar
information and discusses how the grammars influence NER performance.

Table 1. Examples of one-to-one alignment in English and Norwegian Bokmål sentences.

English Norwegian Bokmål

Supreme Court Justice Carsten Smith had
ex-Queen Anne-Marie of Greece as her
table lady.

Høyesterettsjustitiarius Carsten Smith hadde
eks-dronning Anne-Marie av Hellas som
sin borddame.

Pürische Nacht is obviously drawn by the
pattern of the Crystal Night.

Pürische Nacht er åpenbart tegnet etter
mønster av Krystallnatten.

We caught up this threat, and decided to
evacuate the school, says police inspector Heidi
L. Arneberg at Fredrikstad police station to
Aftenposten.no.

Vi fanget opp denne trusselen, og besluttet å
evakuere skolen, sier politiinspektør Heidi L.
Arneberg ved Fredrikstad politistasjon til
Aftenposten.no.

Traditionally, a bidirectional Long Short-Term Memory (Bi-LSTM) layer and a con-
ditional random field (CRF) layer are applied, which encode the sentence in a sequential
pattern [7] (see Figure 1). However, as Shen et al. argued, the Bi-LSTM- and CRF-based
models also suffer some problems because a sentence does not follow a ‘front-to-end’ se-
quential pattern [8]. The NorG network can break through the sequential pattern according
to the graphical dependency grammars (see Figure 2). Recently, stronger representations
have been proposed. For example, BERT embedding achieved state-of-the-art performance
in the NER model [9], but knowledge of the grammar is not well considered during training.
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Figure 2. Dependency parsing.

To verify the effectiveness of the linguistic structure for NER, we built a new structure,
called the NorG network, and conducted experiments on four Nordic languages. The NorG
network incorporates morphological and syntactic grammars. Morphological and syntactic
grammars can be obtained by existing tools, such as NLTK [10]. NorG consists of a bidirec-
tional LSTM layer to produce embeddings with word-level grammar, while a bidirectional
Graph Attention (Bi-GAT) layer is used to capture the sentence-level dependency grammar.
The NorG network reduces the reliability of the word embedding, shows good robustness
in the four Nordic languages, and can alleviate the abovementioned problems.

The involved named entities in this study are defined in Table 2. We used ten types of
entities. The entity annotation IOB2 is explained in Table 3.
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Table 2. Named entity labels.

Entities Abbreviation Explanation

Person PER Real or fictional characters and animals

Organization ORG Any collection of people, such as firms, institutions,
and organizations.

Location LOC Places, buildings, facilities, etc.

Geo-political entity GPE Geographical regions defined by political and/or
social groups

GPE_LOC GPE with a locative sense
GPE_ORG GPE with an organization sense

Product PROD Artificially produced entities are regarded as products

Event EVT Festivals, cultural events, sports events, weather
phenomena, wars, etc.

Derived DRV Words that are derived from a name, but arenot a
name in themselves.

Miscellaneous MISC Other named entities

Table 3. IOB2 entity annotation.

IOB2 Explanation

I-Entity This token is inside the entity
O This token is outside the entity
B-Entity This token is the first token of the entity

The main contributions of this paper can be summarized as follows:

(1) In addition to using embeddings from content, we propose the use of embeddings
from different grammars for NER.

(2) We propose the NorG network, which integrates the text content, morphology, and
syntax. We found that bidirectional LSTM can capture the morphological knowledge
well, and bidirectional GAT can capture the syntactic dependency knowledge well.

(3) Experimental results demonstrate the effectiveness of the proposed method in four lan-
guages and some exploratory experiments were conducted to discover the influences
of different grammar components on the NER performance.

The rest of the paper is organized as follows. Section 2 introduces related works about
Nordic NER resources, Nordic NER algorithms, and general NER algorithms. Section 3
presents the details of how we used the grammar features and explains the process from
the input to the output. Section 4 introduces the dataset and experimental setting. Section 5
presents the results and a discussion. Finally, our conclusions on the NorG network can be
found in Section 6.

2. Related Works

With the recent release of several Nordic NER databases, more experiments on Nordic
languages have become possible. Most notably, ref. [11] published the first Norwegian
Bokmål and Nynorsk NER datasets and gave some experimental benchmarks. Ref. [12]
presents a Danish NER dataset, and a few tools for Danish NER [13–15] are available. For
Finnish NER, ref. [16] collected a new dataset across ten field corpora. FiNER trigger [17,18]
is a dictionary- and rule-based method for Finnish NER based on a combination of morpho-
logical analysis and an extensive dictionary. However, the existing Nordic NER methods
are mostly based on grammar rules or basic deep neural networks.

In recent studies, some researchers have released deep models with a multilingual
version that supports Nordic languages. Some pretrained multilingual models can be
directly used. BERT [9], the well-known embedding, has been successfully applied to more
than 100 languages in different NLP tasks. Moreover, some models can be transferred from
English. The FLAIR framework [19] is a Bi-LSTM + CRF based on Huang et al.’s method [7]
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and has shown state-of-the-art performance in English NER [20,21]. Hvingelby et al. [12]
found that this model works well on the Danish NER dataset. These models are compatible
with existing resources. However, they lack a specific deep learning structure that improves
the performance by using grammar information.

The milestone of the NER method is CRF [22], which is a probabilistic sequence label-
ing model. Huang et al. [7] found that bidirectional LSTM can best obtain the sequence
features. Their experiments showed a better performance when CRF received the hidden
state of the Bi-LSTM layer. The recent success of graph neural networks on node classifica-
tion has made it possible to handle graph-structured data [23]. Zhang et al. [24] proposed
using dependency parse trees to construct a graph for relation extraction. Recently, multi-
head attention mechanisms [25] have been widely used by graph neural networks during
the fusion process [26,27], which can aggregate graph information by assigning different
weights to neighboring nodes or associated edges. In this study, we utilized a bidirectional
Graph Attention network, a type of graph neural network, to capture the dependency and
improve the performance by word-level and sentence-level grammars.

Most leading NER models are based on BERT [9], a type of word embedding pre-
trained by the Transformer architecture [25]. Since its release, it has attracted the attention
of many researchers. The state-of-the-art NER models for the Norwegian, Danish, and
Finnish languages are based on BERT. Kutuzov et al. [6] introduced the first large-scale
monolingual BERT model for Norwegian. They tested their model in a Norwegian NER
task and obtained the best results. Hvingelby et al. [12] trained the first monolingual BERT
model for Danish, and their results were better than those of the best traditional NER
models. Virtanen et al. [28] introduced the first Finnish BERT model. They evaluated their
model in a Finnish NER task and obtained the best performance.

3. Materials and Methods

In this Section, we introduce the NorG network that incorporates morphological and
syntactic information. A sentence example in the Norwegian Bokmål NER dataset is shown
in Table 4.

Table 4. A sentence example in the Norwegian Bokmål NER annotation.

# Text = Hvordan Skal det gå Med EU? (How Will It Go with EU?)

Word_id Word Segments Lemma POS Tag Dependency NER Label

1 Hvordan (How) hvordan ADV 4 name = O
2 skal (will) skulle AUX 4 name = O
3 det (it) det PRON 4 name = O
4 gå (go) gå VERB 0 (root) name = O
5 med (with) med ADP 6 name = O

6 EU (EU) EU PROPN 4 name =
B-GPE_ORG

7 ? (?) $? PUNCT 4 name = O

The overall flowchart of message parsing is shown in Figure 3. The explanation
is based on the sentence example shown in Table 4. The NorG embedding comprises
different morphological structures, and Bi-LSTM is used to mix and produce the word-level
embedding. Second, a bi-GAT layer captures the sentence-level dependency, and the output
of the bi-GAT layer comprises syntactic knowledge. The implementation of the Bi-GAT
layer for nodes and edges is similar to that of the multi-head attention mechanism in
Transformer [25].
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3.1. NorG Embedding

The NorG embedding comprises different types of linguistic structure that help the
model locate named entities.

1. Word Embedding: To obtain context knowledge, we use word-level segments and
embeddings, which are pretrained on the corresponding unilingual datasets.

2. Lemma Stamp: A lemma is the base form of a word. Due to the rich morphological
changes in languages, some transformations may help the model locate named entities.
For example, if a word frequently changes in a corpus, the word can be a verb, an
adjective, or a noun but will rarely be an entity. For this reason, a special mark is
added to the pretrained embeddings; 1 is set if the lemma and word segments are the
same, while 0 is set if the lemma and word segments are different.

3. POS Tag Embedding: Part-of-speech (POS) tags can disambiguate words and improve
semantic expression. In universal standards, the POS tag contains 17 classes, such as
NOUN (Noun) and ADV (Adverb). In the Penn tree standard, the POS tag contains
36 classes, such as NN (Noun, singular) and NNS (Noun, plural). We found that
universal standard POS tags positively impacted named entities in experiments, but
there are very few POS tag classes. We reclassified the POS tags through a dense
layer. In this way, the NOUN tag was subdivided into more fine-grained dimensions.
The meaning of the new POS tags is agnostic because they are produced by neural
networks. In the end, a dense connection mapped the one-hot universal POS tag
vector to 300 dimensions, so the POS tag provides 300 extra features in the pretrained
word embedding (see Figure 3a).

4. Uppercasing or lowercasing leads to different NER results on named entities [29]. By
investigating a large number of Nordic sentences, we found that many entities are
displayed in capital letters (either the first letter, the entire word, or an abbreviation).
For example, Person Name with the first letter capitalized is easier to recognize.
Therefore, it is necessary to train the NER model alongside the capitalization, although
lowercasing can reduce the vocabulary size and complexity of the neural network.
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For a sentence, as shown in Figure 3a, features include a pretrained word embedding
x = { x1, x2, . . . , xN }, xi ∈ RF, where N is the sentence length and F is the embedding
size in each word. Features include lemma stamps l, l ∈ {[0], [1]}, where 1 is set if word
segments and the lemma are the same, and 0 is set if they are different. Features also
include a POS tag p = { p1, p2, . . . , pN }, pi ∈ Ptag, where Ptag is the one-hot coding.

Ideally, the lemma feature will be trained as a critic symbol because an entity is usually
unchangeable in different sentences.

POS tags are very useful. However, one-hot encoding is insufficient to represent
information about them. To improve the expressive ability of POS features, we applied a
single layer of dense connections with 300 units after one-hot encoding. That is,

p′i = σ
(
Wp pi + bp

)
(1)

To that end, a shared structure, parameterized by a weight matrix Wp and bias bp, is
applied to every step unit. σ is the element-wise ELU non-linearization. The ith word of the
NorG embedding is ei, which is concatenated by a pretrained word embedding, a lemma
embedding, and a POS tag embedding. That is,

ei =
[

xi ‖ li ‖ p′i
]

(2)

where ‖ is the concatenation operation, xi is the pretrained word embedding, li is the
lemma embedding, and p′i is the POS tag embedding.

3.2. NorG Network
3.2.1. Bi-LSTM Layer

Figure 3b shows that a Bi-LSTM layer is applied to serialize sentences forward and back-
ward. Bi-LSTM contains two-directional information and achieves a better performance com-
pared with unidirectional LSTM. Following Equation (2), a sentence coding e = (e1, e2, . . . , eN)
goes into the LSTM layer. The layer produces a new set of features h = (h1, h2 , . . . , hN) as
its output. Formally, the formulas to update a LSTM unit at time i are

Ii = α(WIei + UIhi−1 + bI) (3)

Fi = α(WFei + UFhi−1 + bF) (4)

Oi = α(WOei + UOhi−1 + bO) (5)

c̃ = tanh(Wcei + Uchi−1 + bc) (6)

ci = Fi·ci−1 + Ii· c̃i (7)

where α is the element-wise sigmoid function, · is the element-wise matrix multi-
plication, ei is the input vector at time i, hi represents the hidden state vector, and
WI , WF, WO, Wc, UI , UF, UO, Uc, bI , bF, bO, bc are trainable parameters. Given a sequence
of input vectors (e1, e2, . . . , eN), LSTM computes a context representation vector hi
for each input ei . For bidirection, the final representation of a word is obtained by

concatenating the left context
→
hi and the right context

←
hi , that is, hi = [

→
hi ‖

←
hi].

3.2.2. Bi-GAT Layer

Graph neural networks have been successfully applied to node classification. We used
the GAT method proposed by [23,30] to obtain the syntactic grammar. Figure 3b shows that
each node represents a word segment, and the dependency relationship between words
can be treated as an edge. The dependency graph changes the situation such that the words
can only be serialized forward or backward.

Given the node features h, GAT will generate the output s, which contains dependency
grammars and preceding features. The hidden states h = (h1, h2 , . . . , hN) are converted
into a bidirected graph, as shown in Figure 3b, where each node represents a word and
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the connection edgek,i from syntax dependencies can be treated as an edge. The state of
the ith node represents the features of the ith token in a text sequence. The state of each
edge represents the features of a corresponding dependency word, which help the node
remove ambiguity. In GAT, we used multi-head attention to aggregate the corresponding
predecessor nodes hk for each node hi. The incoming edges and predecessor nodes are able
to indicate the meaning of a variety of words. The node aggregation can be formulated
as followed:

si = MultiAtt
(
hi,
{
∀k[hi ‖ edgek,i]

})
(8)

where i refers to the aggregation at the ith step and ‖ represents the concatenation operation.
We found that bidirectional GAT performs better compared with unidirectional GAT. The
final outputs become the concatenation of two directions, i.e., si = [

→
si ‖

←
si ].

3.2.3. CRF Layer

After the graph message processing, a conditional random field (CRF) layer is used.
The CRF layer adds some constraints to ensure that the predicted label has a legal order
between the output tags. For example, the I-PER (I-person) tag should follow the B-PER
(B-person) tag or the I-PER tag, while it cannot be behind the B-LOC (B-location) tag. In
this stage, we obtain the sequence of final node states s = (s1, s2, . . . , sN). The probability
of a NER label sequence y = (y1, y2 , . . . , yN) can be defined as follows:

p(y|X) =
exp
(
Σn

i=1φ(yi−1, yi, si)
)

Σỹ∈Y(X)exp
(
Σn

i=1φ(ỹi−1, ỹi, si)
) (9)

where ỹ is an arbitrary label sequence, and Y(X) is the set of all possible output label
sequences for the model input X.

φ(yi−1, yi, si) = Wyi−1,yi si + byi−1,yi (10)

where Wyi−1,yi and byi−1,yi are the weight and bias parameters specific to the labels yi−1, yi,
ỹi−1, and ỹi, respectively.

For training, we minimized the sentence-level negative log-likelihood loss as follows:

L = −
N

∑
i=1

log(p(yi|Xi)) (11)

For testing and decoding, we maximized the likelihood to find the optimal sequence,

y′ = argmax
y∈Y(X)

p(y|s) (12)

To calculate the above equations, we used the Viterbi algorithm, which can reduce the
computational complexity efficiently.

4. Experiments

This section describes the four selected Nordic language corpora (Norwegian Bokmål,
Norwegian Nynorsk, Danish, and Finnish). Then, we introduce the baselines applied for
comparison and detail the hyperparameter configuration of the proposed model.

4.1. NER Datasets

Our model was evaluated in the NorNE (Norwegian Bokmål), NorNE (Norwegian
Nynorsk), DaNE (Danish), and Turku NER (Finnish) datasets whose linguistic structures
are annotated in CONLL-U format. All the NER labels were manually annotated based on
Tables 2 and 3. The linguistic structures applied for the NorG Network are listed in Table 5.
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Table 5. Linguistic structures of the NorG network.

Inputs Outputs

Word Segment NER label
POS Tag
Lemma

Upper/Lower Case
Dependency

4.1.1. Norwegian Bokmål and Nynorsk

NorNE [11] comprises two types of Norwegian: the Bokmål language and the Nynorsk
language. Their morphological and syntactic grammars were both obtained from the
Norwegian Dependency Treebank [31]. The dependency was converted to the Universal
Dependencies (UD) standard by [32,33]. The text resources were mostly extracted from
Norwegian News. The Bokmål language contains 16,309 sentences, and the Nynorsk
language contains 14,878 sentences. Each language has eight entity labels: PER, ORG, LOC,
GPE_LOC, GPE_ORG, PROD, EVT, DRV, and MISC.

4.1.2. Danish

DaNE [12] is a moderate-size dataset for Danish NER. Grammars come from the
Copenhagen Dependency Treebank proposed by [34]. The Danish dependency was con-
verted to the UD standard by [35]. The source is texts from the Danish PAROLE corpus [36],
which comprises a range of textual domains, both written and spoken, from the years
1983–1992. This dataset consists of 474 texts with 5512 sentences and contains PER, LOC,
ORG, and MISC as its named entities.

4.1.3. Finnish

Turku NER [16] is a Finnish NER dataset. The grammars are presented in [37]. We
selected six NER labels: PER, ORG, LOC, GPE, PROD, and EVT. The texts consist of
754 documents representing ten different genres of text with 15,136 sentences in total.

The division of the sentences into training, validation, and testing sentences in the
four languages is shown in Table 6.

Table 6. Training, validation and testing sentences.

Dataset Train Val Test

NorNE (Bokmål) 15,696 2410 1939
NorNE (Nynorsk) 14,174 1890 1511

DaNE (Danish) 4383 564 565
Turku NER (Finish) 12,217 1364 1555

Each word in the four languages is naturally space-segmented, and the texts were
carefully cleaned to ensure that each word is correct. The embeddings of word tokens were
pretrained using the FastText model (abbreviated as cbow) [38] and fixed during training.
In the experiments, the pretrained cbow embedding showed a greater capability than the
initialized embedding (abbreviated as ie).

We did not employ other segments on the NorG network because word-level tokens
can align with grammar information. In the experiments, we still compared our results
with recent works that utilize fine-grained segments, such as Byte Pair Encoding (BPE)
and character-level segments. The NorG network is good enough to recognize entities
compared with the recent works.

The number of word tokens in the corpora of Bokmål, Nynorsk, Danish, and Finnish
languages is 301.9 k, 292.3 k, 100.7 k, and 202.1 k, respectively. The number of Bokmål
entities, Nynorsk entities, Danish entities, and Finnish entities is 14.4 k, 13.9 k, 5.0 k,
and 11.4 k, respectively. The cbow embeddings were pretrained on Common Crawl and
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Wikipedia, with a dimension of 300, character n-grams of length 5, a window of size 5,
and 10 negatives, using cbow300 released by [38]. The cased vocabulary lists of cbow300
embeddings in Bokmål, Nynorsk, Danish, and Finnish languages contain 35.2 k, 33.7 k,
19.1 k, and 55.4 k words, respectively.

4.2. Baselines

We applied recent NER models corresponding to each language and three general
deep neural networks for comparison. The general baselines used were convolution
neural network (CNN), Bi-LSTM, and bidirectional Gated Recurrent Unit (Bi-GRU). In the
general baselines, we compared the pretrained cbow300 embeddings and the initialized
embeddings.

The CNN method: This model has a word-level convolutional layer after the embed-
ding layer. A CRF layer is used in the convolutional encoding.

The Bi-LSTM method: This model has a Bi-LSTM layer after the embedding layer.
We concatenated the hidden vectors of the forward LSTM and the backward LSTM, and a
standard CRF layer was used.

The Bi-GRU method: GRU is a simplified version of LSTM. Compared with LSTM, it
reduces the model’s complexity and maintains the efficacy of memories in long sequences.
We employed Bi-GRU to replace the Bi-LSTM units.

4.3. Hyperparameters of the NorG Network

We set the four language models with the same hyperparameter configuration. We
used Adam as the optimizer, with a default learning rate of 0.001 for the four languages.
A dense layer was applied, which refined and specified the POS tag into 300 dimensions.
We utilized bidirectional LSTM with 100 hidden states to composite the word embedding,
POS tag, and lemma information. The number of heads for multi-head attention was 8. To
further reduce overfitting, we employed Dropout with a rate of 0.5 after the embeddings
and a rate of 0.6 after the GAT layer. ELU was applied as an activating function. The batch
size was set to 32. The standard Precision (P), Recall (R), and F1-score (F1) were used as
evaluation metrics.

5. Results

In this section, we present the main results of the NorG network on the four Nordic-
language NER tasks. The model achieving the best results on the development set was
chosen for the final evaluation on the test set. We also probed the effectiveness and
interpretability of the NorG network by explanatory experiments.

5.1. Main Results

Table 7 shows the results of the NorG network and baselines on the Bokmål language.
NCRF++ [39] is a popular NER toolkit that combines a character-level CNN and a word-
level Bi-LSTM, which feed into a CRF inference layer. The authors of [11] found that, based
on NCRF++, combining Bokmål and Nynorsk in the training set (i.e., BM + NN) can achieve
a better F1 score. Ref. [6] is the Norwegian version of BERT and is known to be one of the
best language models evaluated in most English benchmark tasks.

Our proposed NorG network incorporates grammars that enabled it to outperform the
best baseline by 3.23% in terms of F1 score and provide an apparent increase in Precision and
Recall. Finally, it had a precision of 98.10%, a recall of 94.76%, and an F1 score of 96.28%. We
also found that the Bi-LSTM and bi-GRU models can better perceive the features compared
with the CNN model in the Bokmål NER model.
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Table 7. Main results on Norwegian–Bokmål NER.

Baseline P R F1

NCRF++ (2018) [39] - - 89.47
BM + NN (2020) [11] - - 90.92
NorBERT (2021) [6] - - 85.50

cbow300 + CNN + crf 95.84 68.37 79.22
ie + CNN + crf 80.24 71.41 75.05
cbow300 + biLSTM + crf 96.27 90.20 92.97
ie + CNN + crf 83.74 74.20 78.19
cbow300 + biGRU + crf 96.28 89.42 92.55
ie + biGRU + crf 87.07 73.77 79.39

NorG network 98.10 94.76 96.28

Table 8 shows the results of the NorG network and baselines on the Nynorsk lan-
guage. The NorG network obtained 98.72, 88.22, 92.92 in Precision, Recall, and F1 score,
respectively, leading all the Nynorsk-language NER models.

Table 8. Main results on Norwegian–Nynorsk NER.

Baseline P R F1

NCRF++ (2018) [39] - - 86.53
BM + NN (2020) [11] - - 88.03
NorBERT (2021) [6] - - 82.80

cbow300 + CNN + crf 95.24 44.94 59.74
ie + CNN + crf 83.49 67.90 73.96
cbow300 + biLSTM + crf 94.49 76.39 83.99
ie + CNN + crf 83.00 69.36 74.56
cbow300 + biGRU + crf 93.70 72.71 81.32
ie + biGRU + crf 90.21 63.58 73.72

NorG network 98.72 88.22 92.92

Table 9 shows the results of the NorG network and baselines on the Danish language.
FLAIR is a toolkit that contains several pretrained NER models. The framework is Bi-
LSTM + CRF with the option of passing concatenated embeddings of different types.
FLAIR in Table 9 uses a concatenation of Word-Level FastText embeddings and FLAIR
embeddings, which are 1024-dimensional hidden states extracted from a Bi-LSTM character-
level language model. FLAIR + BPE uses FastText with BPE embeddings and pretrained
FLAIR embeddings. BERT is a transformer-based architecture that was shown to obtain
higher performance on NER. DanishBERT was pretrained on data from Common Crawl,
Danish Wikipedia, OpenSubtitles, and various online forums. The experimental results on
DaNE were obtained by [12].

Compared with the current methods and our baselines, the NorG network gave the
best P, R, and F1 in Danish. The grammars are well integrated into the network and helped
NorG network obtain a precision of 98.07, a recall of 80.80, and an F1 score of 88.33 F1,
outperforming the other methods by a large margin.
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Table 9. Main results on Danish NER.

Baseline P R F1

FLAIR (2019) [19] - - 79.70
FLAIR + BPE (2020) [12] - - 78.05
DanishBERT (2020) [40] - - 83.76

cbow300 + CNN + crf 96.06 56.61 70.82
ie + CNN + crf 70.93 68.96 69.38
cbow300 + biLSTM + crf 95.22 78.60 85.97
ie + CNN + crf 84.58 65.48 73.56
cbow300 + biGRU + crf 94.87 77.79 85.19
ie + biGRU + crf 76.19 67.64 71.53

NorG network 98.07 80.80 88.33

Table 10 shows the results of the NorG network and baselines on the Finnish language.
CRFsuite [41] is an implementation of simple CRF. NCRF++ [39] has the same structure
as in Bokmål and Nynorsk. FiNER tagger [17] is a dictionary- and rule-based system that
detects named entities based on known words. FinBERT [28], i.e., BERT in Finnish, is a
state-of-the-art deep transfer learning model based on Transformer. Moreover, we applied
the CNN/Bi-LSTM/Bi-GRU baselines on Finnish languages with two types of embedding.

Table 10. Main results on Finnish NER.

Baseline P R F1

CRFsuite (2007) [41] 74.53 63.18 68.39
NCRF++ (2018) [38] 82.92 80.20 81.54
FiNER tagger (2017) [17] 77.16 71.24 74.08
FinnishBERT (2019) [28] 90.87 92.44 91.65

cbow300 + CNN + crf 96.93 51.20 66.23
ie + CNN + crf 77.00 54.43 63.09
cbow300 + biLSTM + crf 90.61 78.51 83.78
ie + CNN + crf 82.98 52.45 63.27
cbow300 + biGRU + crf 91.18 77.45 83.49
ie + biGRU + crf 86.27 52.90 64.57

NorG network 96.06 87.25 91.24

The NorG network shows the best precision of all the methods, but the F1 score is
slightly (0.41%) lower than that of the FinBERT model. One intuition is that the word-level
segmentation is insufficient in the Finnish language because Finnish words contain more
characters and the Finnish vocabulary is much larger (55.4 k). However, FinBERT is a very
large architecture and has numerous hyperparameters. The NorG network still showed
a good capability to utilize the morphological and syntactic grammars. It significantly
outperformed the other word-level models. It had a precision of 96.06, a recall of 87.25, and
an F1 score of 91.24 on the testing dataset.

5.2. Ablation Experiments

To study the contribution of each component, we conducted ablation experiments on
the four language datasets. The results are displayed in Table 11. In the NorG network, we
used the Bi-GAT layer to present syntactic dependency information. If the GAT layer is
replaced with another graph layer to perceive the syntactic grammar (Graph Convolutional
Network (GCN) [42], GCN + Skip Connection (GCS) [43], or GCN + Localized Spectral
Filter (Chebnet) [44]), the model performances generally degrade. Among the models, GCN
totally collapses when representing the dependency grammar. GCS slightly improves the
Finnish language results but hurts the other languages’ results. Overall, Chebnet showed
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lower performance than GAT in the four languages. Therefore, Table 11 indicates that GAT
is the best graph neural network for integrating the dependency grammar.

Table 11. Ablation study on the validation dataset.

Model Bokmål Nynorsk Danish Finnish

NorG 96.48 93.35 92.01 89.96
Use Initialized Embedding 94.00 92.03 89.40 87.72
Remove POS Tag 75.73 61.29 74.43 71.37
Remove Capitalization 94.04 88.42 85.27 89.11
Remove Lemma 94.38 90.28 85.65 88.51
Use Unidirectional Dependency 95.06 93.29 85.18 89.11
Use a Bi-GCN layer for Dependency 49.90 47.63 38.68 41.32
Use a Bi-GCS layer for Dependency 95.84 92.87 85.12 91.05
Use a Bi-Cheb layer for Dependency 94.23 91.94 85.58 89.25

Suppose we substitute cbow300 embedding with initialized embedding. The F1 scores
decrease by 2.0% on average in the four languages. The decrease shown in Tables 7–10
is very slight (decreasing by 10% on average when using initialized embedding), which
indicates that embedding will influence but not determine the performance when consider-
ing morphological and syntactic grammars. We found that the POS tag strongly positively
impacted the NER performance. It caused more than a 20% decline in Bokmål, Danish, and
Finnish and a 32.06% decline in Nynorsk. Using lowercase words or deleting the lemma
token marks will also cause some errors. The NorG network showed better F1 performance
with bidirectional dependency. The F1 score of the Danish language was 92.01% with
bidirectional dependency and 85.18% with unidirectional dependency.

5.3. Performance against Sentence Length

Figure 4 shows the performance of the NorG network and baseline models on the
Bokmål dataset. We split the dataset into five parts according to the sentence length. The
results show that our proposed network outperforms the other word-level baselines over
both short and long sentences. Moreover, the performance of each baseline is influenced by
the sentence length and exhibits a general decrease when the sentences are short or long.
In contrast, the NorG network yields better results than the baselines and demonstrates
effectiveness and robustness when the sentence length changes. The F1 scores are stable at
about 94%.
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To sum up, the morphological and syntactic grammars are only slightly affected by
different sentence lengths. The results indicate that the NorG network utilizes grammars well,
yields a higher F1 score than the baselines, and is not disturbed by different sentence lengths.

5.4. Training Step

To investigate the influence of step numbers during the update process, we analyzed
the performance of baselines and NorG networks on the Bokmål language under different
training steps. Figure 5 illustrates the variation of the F1 score on the development sets
when the step number increases. As used in [45], we applied D-F1 to represent the F1 scores
at different steps minus the best results.
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Figure 5 indicates that the NorG network can extract some entities in the early stage,
while the number of update steps has a greater influence on the baseline models. The best
results occur at the 8th step on the CNN, the 11th step on Bi-LSTM and Bi-GRU, and the
10th step on the NorG network. However, at the baselines, the F1 score decreases by more
than 5.00% compared with the best results when the step number is less than 5, while the
NorG network has less of an influence. The NorG curve is stable after the model training.
The results indicate that morphological and syntactic grammars can help the NER model
recognize entities at an early training step and do not influence the model learning process.

5.5. Performance on Automatically Obtained Grammars

Currently, linguistic features can be automatically obtained. Some grammars can be
directly observed by a lexical search, while some grammars, such as Pos Tagging and
Dependency Parsing, can be acquired using existing intelligent algorithms. In this section,
we evaluate the performance of the NorG network on the Norwegian-Bokmål language to
compare the performance under the condition of gold-standard and automatically obtained
linguistic structures. Gold-standard linguistic structures are based on the abovementioned
treebank, which was applied in previous experiments of this work. Automatically ob-
tained linguistic structures are based on spaCy [46], a capable toolkit that contains various
pretrained language models. The comparison is shown in Figure 6.
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Automatically obtained grammars are preferable for industry-oriented research. As
illustrated in the spaCy toolkit, POS Tagging achieved 97% accuracy and Dependency
Parsing reached 89% accuracy in the Norwegian-Bokmål language. Figure 6 indicates that
using automatically obtained grammars will cause a slight decrease in the evaluation, but
the results are still satisfactory. The precision is about 95%, the recall is about 90%, and
the F1 score is over 90%. In conclusion, the results of the automatically obtained grammar
show that the NorG network can be used when the model receives a sentence so that it
could be developed in an industrial environment.

6. Conclusions

The complex linguistic structure will hinder data-driven models from understanding
the text’s meaning accurately. This work investigated morphological and syntactic gram-
mars and proposed a grammar-based model for named entity recognition. The proposed
model is named the NorG network. Experimental results indicate that the NorG network
can take advantage of morphological and syntactic grammars and help to identify named
entities. In summary, the benefits of the NorG network are as follows.

(1) The results of the NorG network are the best results to be obtained in recent research.
(2) The NorG network is able to perceive the grammar features from each component.
(3) The NorG network shows good robustness and was only slightly influenced by

sentence length.
(4) The NorG network can extract some entities during early training and shows good

stability during training.

In the future, we will supplement the model with more linguistic structures to increase
the model’s performance. We will also improve the fusion structure so that knowledge
of grammar can be better integrated into the NER models. Moreover, we will explore
industrial applications by using the proposed method.
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