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Abstract: Conventional approaches to modelling driver risk have incorporated measures such as
driver gender, age, place of residence, vehicle model, and annual miles driven. However, in the last
decade, research has shown that assessing a driver’s crash risk based on these variables does not go far
enough—especially as advanced technology changes today’s vehicles, as well as the role and behavior
of the driver. There is growing recognition that actual driver usage patterns and driving behavior,
when it can be properly captured in modelling risk, offers higher accuracy and more individually
tailored projections. However, several challenges make this difficult. These challenges include
accessing the right types of data, dealing with high-dimensional data, and identifying the underlying
structure of the variance in driving behavior. There is also the challenge of how to identify key
variables for detecting and predicting risk, and how to combine them in predictive algorithms. This
paper proposes a systematic feature extraction and selection framework for building Comprehensive
Driver Profiles that serves as a foundation for driver behavior analysis and building whole driver
profiles. Features are extracted from raw data using statistical feature extraction techniques, and
a hybrid feature selection algorithm is used to select the best driver profile feature set based on
outcomes of interest such as crash risk. It can give rise to individualized detection and prediction of
risk, and can also be used to identify types of drivers who exhibit similar patterns of driving and
vehicle/technology usage. The developed framework is applied to a naturalistic driving dataset—
NEST, derived from the larger SHRP2 naturalistic driving study to illustrate the types of information
about driver behavior that can be harnessed—as well as some of the important applications that can
be derived from it.

Keywords: driver profile framework; individual differences; naturalistic driving; crash risk; profile
stability; driver behavior analysis; driver support systems; insurance telematics

1. Introduction

Driver profiles are commonly defined as profiles that represent the overall characteris-
tics of a driver, which can include multiple driver traits such as demographics, personality,
and lifestyle; and driving behaviors such as on- and off-road glances, secondary driving
tasks, technology usage associated with the vehicle; as well as personal electronics carried
into the vehicle [1]. A driver profile is different from driving behavior profiles, driving style
profiles, and driver types. Driving behavior profiles are descriptions of different behavioral
characterization processes where the approach focuses on behavior classification. Driving
behavior profiles can be composed of behaviors ranging from few to many, and may or
may not reflect the entire observed variability across a representative sample of a driver’s
trips [2]. Driving styles represent a stable aspect of driving behavior, and refer to the habit-
ual way of driving, which is characteristic for a driver or a group of drivers [3]. Whereas
driver types, often used interchangeably with driving styles, refer to driving behaviors
that represent a stable personality trait [4]. From a hierarchy perspective, driving styles
and types are considered subcategories of driving behavior profiles, and driving behavior
profiles are considered building blocks of a driver profile [2,3].

A major drawback for building driver profiles is the lack of a consensus on the set of
driver characteristics and behaviors that are considered consistently useful in developing
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reliable and representative profiles of the driver relative to the outcome of interest. For
example, in naturalistic driving studies, there has been a concerted effort to build profiles
specifically related to a driver’s crash risk. Early studies showed that the most important
behaviors associated with predicting risk were measures of speeding, acceleration, braking
events, and lane changing [5–7]. However, recent studies have suggested that along with
these measures, temporal factors such as time of day, and spatial factors such as speed limit
and weather conditions are also strong predictors of crash risk, and should be included
in a driver’s profile model [8]. Other studies have found that factors such as lead vehicle
following distance, braking response time, driver experience and exposure, along with
non-driving behaviors such as alcohol consumption, socioeconomic, psychological, and
lifestyle also influence a driver’s behavior, and thus, are also important for building more
complete driver risk profiles [9–12]. In all these studies, the most valuable conclusion is
that while at least five predictors are often needed for building driver risk profiles; the
predictors are not always the same, and the degree to which the unique predictors relate to
crash risk are not consistently significant.

To address the challenge of building reliable and whole driver profile models, studies
have turned to machine learning (ML) algorithms. Several ML algorithms such as fuzzy
control theory, Dynamic Time Warping, artificial neural networks (ANN), support vector
machines (SVM), and Bayesian Networks have been used to build driver profiles using
a wide range of driving behaviors [13]. These ML algorithms are powerful and widely
used in designing intelligent driver identification, support, and safety systems because
they demonstrate high accuracies for driver classification [14,15]. Despite these approaches
offering robust processing, above average classification, and a high rejection ratio for noise,
they come with their own set of challenges.

A major challenge when applying ML algorithms toward driver profiling and identifi-
cation is the complexity involved in extracting the underlying models. ML algorithms are
not all black boxes, but understanding the underlying model architecture, hyperparameters,
and decision boundaries that relate the accuracy of the driver identification models to driv-
ing behaviors and context is complex. While reverse engineering these ML algorithms has
gained traction [16], and can be implemented to extract the main effects of many of these
approaches, it is impossible to test for all the interaction effects, wherein lie the unknown
elements that influence the underlying model behavior. Thus, while ML algorithms provide
high accuracy, their high degree of complexity makes it challenging to interpret the model
outcomes, and relate them back to the driver as useful feedback.

Developing comprehensive driver profiles with high accuracy is a goal that can be
obtained at the level desired without requiring the use of ML algorithms that have a
high degree of complexity. While there have been a number of notable studies that have
reportedly developed reliable driver scoring and profiling metrics for crash risk prediction,
driver distraction, etc., these efforts, despite using complex ML algorithms, have not
established driver profiles that incorporate a wide range of driving behaviors and driving
contexts [17]. Instead, they have used only three to four variables to develop driver profiles,
and have suggested that the frameworks can be extended to encompass more variables [2].

With the growing availability of large naturalistic driving datasets, there is an acute
need for an approach to build reliable driver profiles that are capable of synthesizing as
much of the salient data as possible into meaningful profiles and useful generalizations
without using complex ML algorithms. While ML approaches with feature selection
techniques have been implemented to compress large naturalistic driving study (NDS)
datasets to find the most informative driving behavior and driver profile, few studies have
focused on the intersection of feature extraction and feature selection from NDS datasets for
building whole and comprehensive driver profiles. This paper proposes a systematic feature
extraction and selection framework for building Comprehensive Driver Profiles (CDPs)
that serve as a foundation for driver behavior analysis and building whole driver profiles.
The proposed Comprehensive Driver Profile framework is applied to an NDS dataset NEST,
to demonstrate the importance of a systematic feature extraction and selection process, and
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to provide examples on the usefulness and insights that can be extracted from building
such comprehensive driver profiles that can provide opportunities for personalizing HMI
design and application, driver identification, driver behavior profiling, driver behavior
modification programs, and usage-based insurance (Pay-How-You-Drive).

2. A Framework for Building Comprehensive Driver Profiles

In this section, a methodology for building Comprehensive Driver Profiles (CDPs) is
outlined. Under this framework, Comprehensive Driver Profiles (CDPs) are defined as
the minimum set of features that identify and represent a driver within a specified degree
of accuracy for an outcome of interest such as risk, attention, distraction, etc. Within this
definition, features are simply variables representing observable phenomena that can be
quantified and recorded, or derived properties of instances in a model’s domain. Whereas
accuracy refers to model accuracy, which is the measurement used to determine which
model is best at identifying relationships and patterns between features in a dataset. The
better a model can generalize to ‘unseen’ data, the better detection, prediction, and insights
it can produce.

The framework for building Comprehensive Driver Profiles (CDPs) consists of three
stages: Data Management, Feature Selection, and Utilization, Strategy, and Insights
(Figure 1). The Data Management stage provides guidelines for structuring and orga-
nizing the data so that it can be appropriately implemented for dimension reduction before
the CDPs are built. The Feature Selection stage is used to select the relevant features for
driver profile model construction using an iterative approach. Additionally, the Utilization,
Strategy, and Insights stage provides a suite of approaches to compare the CDPs both at the
population as well as individual level, and garner insights that have applications toward
customizable driver support system feedback and risk management. The cyclical nature of
the framework allows the driver profiles to be constantly updated as more trips are driven
and more behaviors and context are recorded. This enables continuous improvement of
the CDPs by monitoring when there is a dramatic change in one or more driver profiles,
and identifying what behaviors and driving context had an effect. The following sections
detail the methodology of the framework, with relevant examples of how to implement the
CDP framework on datasets such as NEST (Naturalistic Engagement in Secondary Tasks)
as an illustration.
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2.1. Naturalistic Engagement in Secondary Tasks (NEST) Dataset

The Naturalistic Engagement in Secondary Tasks (NEST) dataset is used to illustrate
the steps of the CDP framework for the purpose of developing comprehensive driver crash
risk profiles. NEST is a dataset from drivers who experienced a safety critical event (SCE)
with secondary task activity as a contributing factor and contains crash-involved drivers.
The dataset does not contain drivers that did not experience a secondary task-related SCE.
The NEST dataset is used only as an example in this paper to show how large naturalistic
driving datasets can be analyzed using the proposed CDP framework. Therefore, issues
and complexities associated with using the NEST dataset—such as the fixed set of randomly
selected baselines (drawn from separate trips of the drivers—which might result in biased
exposure rates, or derivation of EDKs without video-validation, etc.—are not addressed).

The NEST dataset consists of naturalistic data for 204 drivers that were drawn from
full trips that ended in a distraction-related crash. The NEST dataset was created to provide
the research community with a dataset tailored for the study of secondary task engagement
and its role in distraction and crash risk—and contains data from epochs of driving that
immediately preceded crash, as well as baseline epochs (free from safety-critical events)
that could be used for comparison [18]. NEST is a subset of the SHRP2 dataset [19,20],
created by Virginia Tech Transportation Institute (VTTI) under funding from the Toyota
Collaborative Safety Research Center (CSRC). Thus, NEST consists of epoch-based data,
with 236 SCE epochs and four baseline driving epochs for each driver who contributed
an SCE epoch. For all the SCE epochs, continuous frame-by-frame coding of glances,
secondary task activities, and hands-on/off wheel activity was available for 20 s before the
crash occurred from the precipitating event, and extended forward from the precipitating
event for 10 s after. Thus, each SCE epoch in NEST is 30 s long, with matched lengths of
comparison baseline driving epochs for each driver.

In NEST, speed, glances, secondary task activity, and hands-on/off wheel variables
were available at the 10 Hz rate for the 30 s epochs. Whereas environment and driving
factors, along with other trip and crash event details were coded periodically at 10 s
intervals within the 30 s epochs. Crashes were classified as an event if there was any contact
between the subject vehicle and an object, either moving or fixed, at any speed, in which
kinetic energy was measurably transferred or dissipated. Additionally, glances in the NEST
dataset were assessed as the proportion of time within the epoch that the driver’s eyes
were directed to a given glance location. All the NEST variables used for implementing the
CDP framework are shown in Figure 2. Detailed review of the dataset and definitions of
each of the variables can be found in [18].
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2.2. CDP Step 1: Data Management

The Data Management stage involves three main steps: data structuring, data or-
ganization, and dimension reduction (Figure 1) that serve as guidelines for data setup
prior to feature selection. The data structuring process involves organizing the data into
matrices to reflect the different levels of granularity. For the NEST dataset, the matrices that
represent different levels of granularity are denoted as M, S, T, and D datasets (Table 1)
where the segment level (S dataset) refers to matrices where only parts of a trip are available
such as epochs.

Table 1. Example of matrices built for different levels of granularity: sample, segment, trip, and driver.

Levels

Variables Varies at Sample
(M Dataset)

Varies at Segment
(S Dataset)

Varies at Trip
(T Dataset)

Varies at Driver
(D Dataset)

Elevated driving kinematics (EDKs) x
Glances x
non-driving related tasks (NDRTs) x
Hands-off-wheel x
Environmental factors x
Driver demographics x

MMr xM f = Data set at the sample level with Mr rows and M f f eatures
SSr xS f = Data set at the segment level with Sr rows and S f f eatures

TTr xTf = Data set at the trip level with Tr rows and Tf f eatures
DDr xD f = Data set at the driver level with Dr rows and D f f eatures

Determining the level of aggregation is an important next step. At the sample level,
aggregation is performed with respect to the unit of measure. A very granular unit of
measure at the sample level will result in computational issues and diminish the ability to
capture relevant information to assess the driving situation. Whereas highly aggregated
data will afford computational ease but can suffer from loss of quality of information [21].
Additionally, highly aggregated data reduce variation and updates very slowly, making it
less reliable for real-time application. For datasets similar in structure to NEST, aggregation
between 1–3 s is preferred for implementing the framework. Thus, the NEST dataset was
assessed at the sample level and aggregated to 1 s.

After aggregation, the number of raw features were reduced and adjusted. In NEST,
raw features were removed if they had no relationship with driving-related outcomes, and
if features had perfect or near perfect collinearity. Since many of the methods leveraged
for creating profiles require quantitative features, adjustments to any of the qualitative
(categorical) features were also made.

One of the goals of the CDP framework is to limit the amount of manual processing
of the data. Manual processing involves using heuristic knowledge and ad-hoc data
analysis to reduce raw features of the data before any modelling. Most of the driver profile
frameworks in the literature conduct manual processing to filter out unrepresentative data.
With datasets of high-dimensionality, there is a need for raw feature reduction to make
modelling feasible. Too many raw features, especially if loosely related to the driving
outcomes, will increase type II error rates and vastly increase computation time.

An important step for creating meaningful driver profiles is leveraging the raw data
to create features. Feature construction approaches involve variables that are aggregated,
lagged, have memory, and other types of feature derivations. While a number of features
can be created, for illustration purposes, only aggregated features are detailed in this
section. Aggregated features are from datasets that vary with time, but can also arise from
features that vary by a qualitative category. Focusing on time first and starting with the
most granular time-varying dataset is the easiest method to follow. Each feature within
the sample level data has two metrics derived from it: the mean and standard deviation.
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These metrics are obtained at each level of increasing granularity, from segment level to the
driver level (1).

Mean Aggregated Feature M(I)std =
∑

M(std)r
m=1 Im

std
M(std)r

(1)

In (1), M(I)std is the ith feature in the sample level data, and s, t, and d are the
corresponding segment, trip, and driver key identification references associated with each
of the M(std)r rows. Each of the M f features in the sample level dataset will now have a
mean aggregated feature (MAF) at the segment level, which in turn can be joined into the
segment level data S. This step can also be repeated for the standard deviation, creating
standard deviation aggregated features (STAF) (2). The MAFs and STAFs are then joined
into the driver level dataset, D.

Mean Aggregated Feature M(I)d =
∑

M(d)r
m=1 Im

d
M(d)r

(2)

After conducting the time aggregation, other aggregates based on categorical features
are created in a similar manner. For NEST, the action was performed at the epoch (segment)
level as it is the next level of granularity after the sample level. In NEST, a key categorical
variable used at the epoch level was whether the recorded epoch was a baseline or crash
epoch. Along with the aggregated features, features were also lagged by 1 s and 2 s. Thus,
the final NEST dataset (M) consisted of aggregated and lagged variables.

The last step in the Data Management stage is dimension reduction. Dimension
reduction algorithms are used to obtain compact, accurate representations of multivariate
data by maintaining the breadth of information. These algorithms help reduce noise by
eliminating statistically redundant components, thereby creating a better platform for
interpreting a large number of features [22,23]. While there are a number of dimension
reduction techniques such as t-SNE and Isomap that can be implemented, the approach
recommended for building CDPs is Principal Component Analysis (PCA) because it allows
reconstruction of the original features.

PCA is an unsupervised dimension reduction approach that allows mapping of data
from a high-dimensional space to a low-dimensional space while retaining the relevant
data structure [21]. PCA was applied to dataset M, which consisted of 141 features (Table 2).
Results from the PCA produced principal components (PC), where the first component
PC1 accounted for 22% of the total variance, followed by PC2 and PC3 with variances of
19% and 15%, respectively. An inspection of the features within each of the PCs revealed
that PC1 and PC3 produced the most interpretable results related to the outcome of interest–
crash risk (Figure 3).

Table 2. Principal component analysis (PCA) on the NEST dataset.

M Dataset
Feature Groups Glances Hands on

Wheel Tasks

M Dataset
Features (n = 141)

Forward
Road Glance

Glance to
Cell Phone

. . .

Glances to
the Left
Window

One Hand
on One

Hand Off

Talking to
Passenger

. . .

Center
Stack

Controls

Aggregated to 1 s
(sample level)

5 s 0.72 0.12 0.15 0.06 0.00 0.00
6 s 0.76 0.09 0.10 0.26 0.00 0.00
7 s 0.84 0.06 0.00 0.46 0.00 0.00

Each feature Group Sums to 1. Each data point on the PCA plot represents 1 row of this table.
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Figure 3 shows the distribution of the features that had the strongest contributions
to PC1 and PC3. In Figure 3, features along PC1 (horizontal axis) and PC3 (vertical axis)
were interpreted to represent ‘attentional focus’ and ’type of driver task activity’, respectively.
PC1 and PC3 also divided the PCA plot into four interpretable quadrants, where features
in each quadrant were positively correlated (Table 3). Results from the PCA successfully
provide an insightful assessment of the structure of the NEST data. For example, Figure 3
shows that when NEST drivers were primarily conducting scanning behaviors and glances
(quadrant 1), they were less likely to be driving at higher speeds (quadrant 3). Whereas
when drivers were primarily focused on the road (quadrant 2), they were less likely to be
conducting non-driving related tasks such as using their phone (quadrant 4).

Table 3. PCA results: description of the 4 quadrants.

PCA Quadrant Quadrant Description

Quadrant 1:
Scanning

Data show glance behavior in which the eyes were actively scanning (from the road
ahead to the vehicle interior and back to the road, as well as moving to check mirrors
(right, left, and inside rear-view mirrors), moving to view right and left peripheral
areas of the road (through the windshield, etc.). These glance behaviors were
associated with one-hand-off-steering-wheel, reaching for devices that are not
installed (e.g., handheld phones), and also three types of talking (to self, passenger,
and handheld phone). Additionally, when talking on a handheld phone, drivers may
be holding it with one hand. It is also possible that when talking to passengers, drivers
might be gesturing with one hand.

Quadrant 2:
Road Focus

Shows glance behavior in which the eyes were “focused on the road”. This tended to
be associated with road-focused driving in the absence of other maneuvers and
non-driving related tasks.

Quadrant 3:
Driving-Related Control Task

In this quadrant, drivers tended to have both hands-on-the-wheel, checked the
speedometer, were doing no other tasks (and this quadrant fell on the same horizontal
side of the coordinate system as glances that were focused forward on the road in
Quadrant 2).

Quadrant 4:
Non-Driving-Related Tasks (NDRTs)

In this quadrant, drivers tended to take both hands off the wheel, tended to
manipulate their cell phone (not dial or talk, perhaps texting or browsing), and
manipulate other objects.
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2.3. CDP Step 2: Feature Selection

The Feature Selection stage involves three main steps: selecting the outcome of interest,
profile feature iteration, and building CDPs (Figure 2). The goal of the Feature Selection
stage is to eliminate features that are irrelevant or redundant for building profiles for
the outcome of interest. The advantages of conducting feature selection at this stage are
that it reduces the computational costs associated with high-dimensional data that would
otherwise be required to extract features; makes it easier to relate the reduced feature set
for profile building to the outcome of interest [24], and reduce over-fitting [22].

In NEST, the risk of crashing was selected as the outcome of interest. The fact that
an epoch was a crash was encoded at the sample level (in the variable called ‘Epoch Type’
shown in Figure 2). This means that for each second of driving, the probability of a crash in
that same second was computed. Each second of the sample level consisted of 10 samples
aggregated into a single value. To determine crash instances, each second was scored by
how many 100 ms samples within that second occurred during the actual crash event itself,
and was represented fractionally as a proportion between 0 and 1. Since the goal of this
paper is to provide an example of how to implement the CDP framework on datasets such
as NEST, the central focus is not on the fraction of time that contained the crash but on
whether a crash occurred. Therefore, each second of driving that contained any portion of
a crash event was rounded up to 1, creating a binary indicator of whether a crash occurred
or not. This enables the setup for any basic ML algorithm to determine the probability of a
crash using common classification and binary outcome routines [22].

A tenet of the CDP framework is the notion that for driver profiles to be comprehen-
sive, they should be feature-complete. Thus, feature iteration in the CDP framework is
conducted to obtain feature-complete driver profiles, where feature-complete is defined
as the minimum set of features necessary to explain or predict a driving-related outcome
of interest with a desired degree of accuracy. Before addressing considerations for the
accuracy threshold, it is important to first establish the goal of developing CDPs. If CDPs
are needed for real-time assessment of a potential crash or safety-critical event, then pre-
diction is the preferred metric to set for feature-complete. Conversely, if the profiles are
for long-term planning, strategy, or post-trip driver feedback; then detection would likely
be the preferred metric set for feature-complete. In this paper, the illustration of the CDP
framework using NEST is focused on long-term planning and strategy around a driver’s
crash risk. Hence, detection (explanation) of crash incidents is used instead of prediction as
the outcome of interest.

To establish an appropriate measure of accuracy for the feature-complete driver pro-
files, an a priori desired degree of accuracy was defined to be an Area Under the Receiver
Operating Characteristic Curve (AUC) of 75%. Here, AUC is a measure of the ability of
the profile to differentiate between a crash and non-crash driving event [23]. Prior to con-
ducting the feature iteration step, datasets M, S, T, and D are merged to create a modeling
dataset, X on which to obtain the features that satisfy the criteria for feature-complete
profiles. Modeling is conducted at the sample level because detection of crashes is used as
the outcome of interest.

To reduce over-fitting and to check for robustness, the dataset X (features = 120,
which includes glance and behavior PCA features) was split into training (Xtrain) and
test (Xtest) datasets, with the test comprised of 20% of the data. Random Forest (RF)
was used to find the minimum set of features involved by conducting a pre-screening
of variables [25,26]. Although literature on RF depicts and treats it as a black box, node
analysis can be conducted on the decision paths in RF, to extract and understand the
underlying interaction effects and individual decisions that contribute to the final outcome.
The use of RF in the CDP framework to compute feature importance makes the framework
versatile because RF can be applied to a wide range of prediction problems, even if they
are nonlinear, and involve complex high-order interaction effects, which makes it highly
applicable for naturalistic driving data [27].
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For the Feature Selection stage, permutation was considered the most appropriate
importance measure for running RF [25]. The permutation feature importance measure is a
model inspection technique that is used to determine the decrease in model score when a
single feature is randomly shuffled [28]. This technique breaks the relationship between
the feature and the target. Additionally, the change in the model score represents how
much the model depends on the feature. For the dataset X, RF was run using the R Ranger
package [29]. For the RF analysis, the number of trees were 1500, the number of variables
to sample at each split was set to be the square root of the number of columns in dataset X,
and the minimum node size was 6. The importance method was set to be ‘permutation’,
and the scale permutation importance factor was set to ‘false’. Results of the RF are shown
in Table 4. These results were used to determine the number of necessary variables for
constructing interpretable feature-complete driver risk profiles.

Table 4. Random forest importance table. Any feature with a relative importance < 0.015 was
removed from consideration for building the profiles. Only the top 10 features are shown in this table.

NEST Driving Behaviour Features Rank
Relative Importance
(Scaled to 0–1, with 1

Most Important)

Absolute
Importance

1 s Lagged Glances in Principal Component 1 1 1.00 0.0066
2 s Lagged Glances in Principal Component 1 2 0.84 0.0055
Glances in Principal Component 1 3 0.72 0.0047
Speed 4 0.68 0.0045
2 s Lagged Glances in Principal Component 3 5 0.59 0.0039
2 s Lagged Road Glances 6 0.51 0.0033
1 s Lagged Glances in Principal Component 3 7 0.49 0.0032
1 s Lagged Road Glances 8 0.49 0.0032
3 s Lagged Road Glances 9 0.43 0.0028
Glances in Principal Component 3 10 0.41 0.0027

Before extracting the feature-complete set for building driver profiles, some statistical
analyses, data visualizations, and goodness of fit analyses were conducted on the RF model
output. Visual analyses and preliminary models using the top features from the model
output (Table 4) were built using a class of regression models—Generalized Additive
Models (GAMs) [30]. GAMs are a type of regression that specializes in estimating non-
linear effects, and are unique in their flexibility to estimate unbiased effects [30]. For the
NEST dataset, assessment on the importance table output (Table 4) of the RF model revealed
a high degree of interaction between the top features and their effect on crash detection.
An example of this type of interaction is shown in Figure 4. In Figure 4, the top of the
cube is associated with higher crash risk, and the bottom of the cube with lower crash risk.
The axes PC1 and lagged PC1 represent the principal component loading from the PCA
analyses that is associated with glances on and off the road and their respective 1 s lags,
whereas the axis representing the linear predictor is the risk of crashing.
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Figure 4. Example of the interaction effects between the driving glances and behaviors in the
NEST data.

In Figure 4, higher values (direction of the arrow along each axis) indicate attention
being diverted from the road. The interaction effect shows low risk at the near and far
corners, and higher risk at the left and right corners, and along the ridge in between them.
This suggests that risk increases when the glance location remains fixed, and decreases
when it moves around. This is true even when there is a large amount of attention away
from the road in the current second, which means that as long as attention returns to the
road within the next second, much of the risk is averted. It is interesting to note that this
is also true for staring only at the road (top left corner in Figure 4), suggesting that an
element of ‘zoning-out’ on the road (possibly capturing mind wandering) is associated
with a higher risk of crashing. These effects were pervasive in many of the glance and
behavior PCA features. Hence the next step uses these features to build the baseline model
for profile building. Since the goal of this paper is to demonstrate the CDP framework
methodology, the interpretation of results for each process of the CDP framework using
NEST is limited to maintain the scope of this paper.

Starting from the baseline model (Equation (3)) and using the RF importance scoring—a
forward and backward stepwise regression method was used for adding variables [31]. A
list of candidate models was set aside, to be used in the final cross-validation on Xtest.
It is important to build a complete set of candidate models before attempting any cross-
validation on the test set, as this helps reduce over-fitting and data mining, thereby reducing
the chance of building driver profiles that do not generalize well [32]. For the development
of the driver profile models using the NEST dataset, nine candidate models were created
during the forward and backward stepwise model building process. These models were
selected based on goodness of fit measures: adjusted R-squared and generalized cross-
validation criterion. In Equation (3), te() refers to a tensor plate spline method used
in GAM [30].

P(crash) ∼ te(pc1, pc1.lag) + te(pc3, pc3.lag) + te(pc1, pc3) (3)

It should be noted that the number of candidate models is not of vital importance,
especially if they are derived from the method outlined above. More important is that the
models have some variation between them in how they describe the outcome of interest,
i.e., they do not share too many of the same features and have a varying number of features.
To account for additional type II error rates when using a set of candidate models, the
Bonferroni correction was applied for significance testing [33]. The full setup for the NEST
feature-complete model testing requirements is shown in Table 5. In Table 5, the selected
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criteria for success AUC ≥ 0.75 means that for the driver profiles to be ‘useful’ or for
detection to be considered ‘successful’, the profile has to have at least a 75% chance of
ranking a segment of driving with a crash higher than one without a crash, and that the
approach will determine a profile with this property at least 95% of the time. With this
information criteria, cost-benefit decisions can be made on how to employ the profiles, and
what the expected benefits will be once these profiles are applied.

Table 5. Feature-complete model testing requirements.

Model Testing Requirements Settings

Metric for determining quality of profile AUC
Desired level of metric AUC ≥ 0.75

Lowest acceptable AUC level for statistical type I and type II errors AUC > 0.70
Significance level for determining metric that satisfies desired goal 0.10

Number of candidate models 9
Bonferroni corrected significance level 0.011

Values in Table 5 provide an example of how to evaluate whether there exists a profile
that meets the a priori expectations of a useful profile. Users of the profiles (e.g., insurance
and car companies) can determine these values based on the intended application and
risk-to-benefit ratios. Table 5 also illuminates that Power testing should be conducted when
determining the desired values and significance thresholds. For NEST, Xtrain had a crash
prevalence of 1.29% (Xtrain (ncrash = 154), Xtrain (nnon−crash = 11,765)). These data can be
used to evaluate the expected power of the profiles on Xtest as shown in (Equation (4)).

Crash AUC Statistic = Utest ∼ Normal

(
ncrashnnon−crash

2
,

√
ncrashnnon−crash(ncrash + nnon−crash + 1)

12

)
(4)

Standard Deviation(Utest) =

√
39 × 2941 × (39 + 2941 + 1)

12
= 5337.897

Mean(U_test) = (39 × 2941) /2 = 57349.5

The null hypothesis based on Table 5,

H0 : AUC ≤ 0.75, H1 : AUC > 0.75

Using standard Z-test methods, this gives rise to the following rejection region,

P(AUC ≤ 0.75) = 1 − P(AUC > 0.75) = 1 − P
(

Utest

ncrashnnon−crash
> 0.75

)

1 − P
(

Utest

ncrashnnon−crash
> 0.75

)
= 1 − P(Utest > 0.75 × 39 × 2941) = 1 − P(Utest > 86024.25)

Application of these methods produced the following power values (Table 6). The first
column shows the dilemma faced: If a low chance of choosing a model with AUC is less
than 0.75, there will be less than a 50% chance of accepting a model even if the true AUC is
as high as 0.85. The second column again shows a more prudent route, where lowering the
minimum acceptable model to 0.70 and relaxing the significance requirement gives at least
a chance of accepting models that are as good as or better than the ideal profile.
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Table 6. Power table for acceptable profile models.

IF the TRUE AUC of the
Profile Model Is:

Power Using 0.75 and 0.05 for
the Minimal Accepted AUC

and Significance Level

Power Using 0.70 and 0.10 for
the Minimal Accepted AUC

and Significance Level

0.75 1% 15%
0.76 1% 21%
0.77 2% 29%
0.78 4% 38%
0.79 6% 48%
0.8 10% 58%

0.81 15% 67%
0.82 21% 75%
0.83 29% 82%
0.84 38% 88%
0.85 47% 92%
0.86 57% 95%
0.87 67% 97%
0.88 75% 98%
0.89 82% 99%
0.9 88% 100%

The results in Table 7 on the NEST crash risk driver profiles allows appropriate grading
of the output of the nine candidate models, with the highlighted row identifying the model
that satisfied the criteria of minimum set of features that described crashes with an AUC
of at least 0.70. Although there are better models from an observed AUC perspective,
since they have more features, they were passed over in favor of the qualifying model
with the least number of features. This adheres to the notion that a choice can be made
deeming performance above the threshold unnecessary, and the trade-off of more succinct
and leverageable profiles preferred.

Table 7. Ability of the nine candidate driver profile models to distinguish crash vs. no-crash epochs.
The winning GAM candidate model that best satisfied the feature-complete requirements consisted
of 8 features—model rank 4.

Model Rank Observed
AUC on Xtest

Number of
Features in

Model

Profile
Model Class p-Value Qualifies

1 0.954 40 Random
Forest 0.0000 Yes

2 0.864 25 GAM 0.0024 Yes
3 0.853 15 GAM 0.0054 Yes
4 0.847 8 GAM 0.0080 Yes
5 0.838 24 GAM 0.0145 No
6 0.819 13 GAM 0.0440 No
7 0.807 20 GAM 0.0788 No
8 0.785 17 GAM 0.1943 No
9 0.599 15 GAM 0.9999 No

The winning GAM candidate model (Table 7) that best satisfied the feature-complete
requirements consisted of eight features (Equation (5)). The GAM model results are shown
in Table 8. Because the dependent variable is the probability of a crash in the current
1 s window, positive coefficients in the model (Table 8) indicate that an increase in the
features are associated with increased crash risk, and vice-versa. An interesting finding
from Table 8 is that driving in heavier traffic and rain both increased the risk of a crash by
nearly equivalent amounts (odds increase by exp(0.509) = 1.66).
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P(crash) ∼ te(pc1) +te(pc3) + te(pc1, pc3) + te(pc1.lag.1s) + te(pc3.lag.1s)
+te(pc1.lag.1s, pc3.lag.1s) + te(pc1.lag.2s) + te(pc3.lag.2s)
+(driving related glances and behaviors) + (non − driving related tasks)
+(o f f − road glances) + (scanning glances) + te(age)
+(tra f f ic f low − moderate) + (tra f f ic f low − heavy) + (weather − rain)

(5)

Table 8. Winning candidate model for representing the minimum set of features to represent CDPs of
the NEST drivers had an adjusted R2 = 0.081 and explained deviance = 18.4%, n = 11,919.

Parametric Coefficients

Features
Estimated
Degrees of
Freedom

Standard
Error Z-Value p-Value

Intercept −5.18 0.16 −31.47 <0.0001
Driving related glances and behaviors −0.09 0.08 −1.26 0.21

Off-road glances −0.39 0.09 −4.40 <0.0001
Non-driving related tasks −0.14 0.10 −1.33 0.18

Scanning glances 0.14 0.30 −0.48 0.63
Driving in moderate traffic 0.13 0.20 0.70 0.49

Driving in heavy traffic 0.51 0.23 2.26 <0.05
Driving in rain 0.52 0.29 1.83 <0.1

Smooth Terms

Features Estimated
Degrees of Freedom Standard Error

PC1 2.90 <0.0001
PC3 3.11 <0.05

PC1, PC3 3.43 <0.0001
PC1.lag.1 s 2.64 <0.0001
PC3.lag.1 s 2.13 0.59

PC1.lag.1 s, PC3.lag.1 s 1.00 <0.0001
PC1.lag.2 s 1.00 0.06
PC3.lag.2 s 3.62 <0.05

3. Results: CDP Step 3: Utilization, Strategy, and Insights

While most profile frameworks are limited to the feature selection and profile devel-
opment stages, the CDP framework includes an additional step. This is because, with large
sets of data involving thousands of drivers and their relevant driver profiles, there is a
need to make sense of these profiles. Thus, the Utilization, Strategy, and Insights stage
involves recommended steps for extracting relevant results through application of the CDP
framework such as building driver profiles cards, and comparing driver profiles through
clustering and matching techniques.

3.1. Driver Profile Cards

For each driver in the NEST dataset, their feature-complete variables (X f c) were used
to develop and visualize their driver profiles through driver profile cards. Driver profile cards
represent the minimum information required to associate a driver with their characteristics
and behaviors that best explains their risk of crashing. Using driver profile cards, comparisons
can be made by calculating relational CDP Scores for each driving behavior, determined
by the standard deviations above and below the mean relative to the rest of the driving
sample (Figure 5). The driver profiles can then be ranked by any of the features in the
driver’s profile card or ranked in terms of the driver’s average risk as provided by the model.
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Figure 5. Example of a driver profile card using a radial plot and a profile value table to represent the
14 features (including the feature-complete set that was significantly associated with a driver’s risk of
crashing). The radial plot shows 5 features (from the feature-complete set that best represented their
risk of crashing), and the profile card had 9 additional variables representing their driving history
behavior in general.

3.2. Comprehensive Driver Profile (CDP) Clusters

Drivers can also be clustered into profile groups as a means of exploring whether
drivers can be grouped together into driver types based on their similarity to one another in
their vehicle- and technology-usage patterns (as well as on their glance and task activity
patterns). If so, a clustering of driver profiles may yield a typology of drivers. A driver
typology could aid in developing strategies for customizing real-time driver support
around common and uncommon types of drivers.

k-means clustering [34] was used to determine the range of the number of unique
crash risk profile clusters among the NEST drivers. Cluster analyses revealed a total of six
risky driver profile groups based on the top 14 significant feature contributors to crash risk.
The six risky profile cluster types represented young and cautious drivers (38%, cluster 1),
older and road focused (13%, cluster 2), simply average drivers (30%, cluster 3), young and busy
(6%, cluster 4), constant scanners (3%, cluster 5), and traffic multi-taskers (20%, cluster 6)
shown in Figure 6. The cluster names served as descriptors for understanding the key
attributes that characterized the different types of risky driver groups. Based on these
clusters, crash risk trends and individual commonalities can be uncovered. For example,
cluster analysis showed that drivers in clusters 5 and 6 had traffic and driving situation that
dominated these risk groups suggesting that these drivers had their crash risk influenced
primarily by situational factors compared to drivers in the other clusters where their
inherent driving behaviors most likely increased their risk of crashing.
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3.3. Driver Profile Stability

In addition to assessing driver profile clusters, the driver’s goodness of matching with
each cluster or driver profile ’type’ can also be determined. The underlying premise for
this lies in both data and theory: Drivers do not always behave typically and, depending
on the day, their behaviors, circumstances, and more driving- and non-driving-related
variables may deviate from their typical or baseline style of driving or lifestyle [35]. Because
of these differences, the CDPs and related CDP Scores can be used to understand how
well a driver matches with any one cluster group. A driver’s goodness of matching
to a cluster was determined by bootstrapping [36] and clustering of each driver to the
original observed profile centers—each time recording which cluster/s the driver belongs
to. Since bootstrapping allows simulation of a variety of trips the drivers take, it gives a
notion of how often the driver moves from one cluster type to the other—representing
their profile stability. Results of the bootstrapping are shown in Table 9 for a sample of
15 NEST drivers after conducting 100 bootstrap samples. In Table 9, the winning cluster
column (Win Cluster) refers to the clusters the drivers most commonly belonged to, and the
winning cluster percentage column (Win %) represents how often they landed in a cluster.

Table 9. Bootstrapping example for 15 (out of 204) NEST drivers.

Driver Win Cluster Win %
Clusters

1 2 3 4 5 6

1 1 38% 38 0 38 0 24 0
2 5 79% 0 0 9 12 79 0
3 1 68% 68 24 2 0 2 4
4 1 61% 61 31 0 0 8 0
5 1 66% 66 0 23 0 11 0
6 3 75% 17 0 75 7 1 10
7 1 37% 37 4 33 0 26 0
8 5 59% 7 9 22 2 59 1
9 5 36% 33 20 11 0 36 0
10 2 80% 20 80 0 0 0 0
11 1 70% 70 0 21 0 9 0
12 3 32% 19 16 32 7 21 5
13 2 77% 13 77 0 1 8 1
14 1 55% 56 33 10 0 0 2
15 2 100% 0 100 0 0 0 0



Information 2022, 13, 61 16 of 22

Results from the bootstrapping show that there are certain drivers that have high crash
risk profile stability. For example, driver 15 in Cluster 2 (Table 9) had a 100% match to their
profile cluster. These results indicate that even with limited data driver 15 might have a
consistent crash risk profile associated with their older age and limited glances away from
the road—suggesting that they do not conduct enough scanning glances to assess their
driving environment. Whereas others that have lower crash risk profile stability, such as
driver 1 in cluster 1 who had only a 38% match to their profile cluster. This result suggests
that more data might be needed to better understand why their crash risk profile is not
consistent and causes them to jump clusters. Thus, if this type of information could be
fed into vehicle driver support and monitoring systems, it could help such systems more
effectively adapt and tailor its warnings and cues to the individual, instead of adhering
only to triggers and thresholds based on average behavior patterns across all drivers.

4. Discussion

The Comprehensive Driver Profile (CDP) framework proposed in this paper was used
to develop driver profiles related to a driver’s risk of crashing and has many advantages
that make it uniquely robust, flexible, and generalizable for different datasets. First, the
approach used in the CDP framework outlines an approach to use all the driving behaviors
and driving context as well as driver demographics to calculate a composite measure of
risk—the CDP risk scores. The flexibility of the framework also enables the CDP scores
to be calculated at different levels of granularity ranging from the driver level, trip level,
epoch level, behavior level, to the moment-to-moment level for any outcome of interest.
Thus, the framework enables profiles to be developed at the population level (which most
driver profiles studies implement); but can also be adapted to the individual driver as well
to account for and extract the relevant individual differences. Only one other study has
implemented a driver profile framework that is adaptive to the individual driver, but the
framework only focuses on pedal control behavior in its profiles [37].

Secondly, the CDP framework provides a detailed approach for including the associ-
ated interaction effects to build the driver profiles. This is important to highlight as a review
of the current literature on driver profiles suggests limited work in the area of accounting
for interaction effects within the driver profile and behavior frameworks, despite these
studies showing that interaction effects, especially due to the driving environment and
situation have a significant impact on the driving behavior [2,38].

Thirdly, there are a number of ‘driver type’ identification problems, wherein the re-
search in this area has revealed fewer than 10 distinct classes of drivers due to the difficulty
of developing discriminative group feature definitions [39,40]. The CDP framework pro-
vides a detailed approach on how to use the driver profiles and CDP scores for extracting
insights and visualizations of driver types and individual differences. When dealing with
a large population of drivers, generating not hundreds but thousands of driver profiles
require there to be a methodology in place to make meaningful comparisons both at the
population and individual level, which the CDP framework provides.

While this paper presents an improvement on current methods of building reliable
and complete driver profiles, there are steps recommended in the framework that merit
discussion—with opportunities for further improvement. For example, in the framework,
dimension reduction using PCA is a necessary step for the effective analysis, visualization,
and pre-processing of any driving dataset for building CDPs. However, for any high-
dimensional naturalistic driving data, it is highly likely that the principle components
(PC) from PCA will only have medium to low variance. This is because data sparseness
for some of the glances and behaviors will result in a sparse matrix that increases the
likelihood of requiring multiple PCs to maintain a majority of the variance. Additionally,
the physiological nature of glances where more than one glance cannot occur at a time
means that driving data at the sample level will always have inherent negative correlations
resulting in PCA having weaker components.



Information 2022, 13, 61 17 of 22

In the CDP framework, a unique aspect of the Feature Selection stage is that the
Random Forest is not used to create driver profiles, but instead used to identify which
features may be removed, and which may be retained. However, an argument can be made
that the Random Forest model should be used to create driver profiles because the model is
likely to have very good accuracy, and potentially be better than the final model setup for
constructing the driver profiles [41]. Although this was considered and is recommended in
other driver profile frameworks, it is important to note that if the Random Forest model is
implemented at the Feature Selection stage to develop driver profiles, a major drawback is
that the list of features will be very long, and interpretation of the profiles is likely to be
very difficult. Clustering driver profiles will also suffer drawbacks because a longer list of
variables will result in sparse data that are difficult to segment. Future work will involve an
in-depth analysis on the application of the CDP framework on larger datasets; assessing the
robustness and generalizability of the CDP framework; and comparing the CDP framework
against other established driver profile frameworks for real-time application and prediction.
Despite its limitations at this early stage of development, and the many opportunities for its
further development, the implementation of the CDP framework in its current form already
holds a number of interesting and useful implications—and offers application possibilities
that are highlighted below.

Implications for government and policy: There have been a number of government strate-
gies aimed at improving road safety. Driver education and safety programs, along with
traffic safety enforcement, strict penalties, changes to legislation, advertising campaigns,
and graduated licensing schemes have been used to influence driving behaviors [42,43].
However, studies have found a weak relationship between the broad communication of
risk and improvements in driving behavior, requiring the design of more targeted strategies
to change how drivers perceive risk [44]. In this regard, comprehensive driver profiles can be
used to assess the effectiveness of changes to infrastructure and legislation on road safety
outcomes, both at the population level as well as the individual level, which could then
be used to better understand the societal impacts of policy changes, and develop more
effective road safety measures. Additionally, the ability to assess the full range of a driver’s
profile (CDPs) within the specific spatial and temporal context of driving provides a unique
opportunity to use these temporal and spatial factors for establishing ‘hard’ traffic calming
measures [45] such as speed bumps—especially within specific areas of policy interest such
as school zones, urban areas, and night time driving.

Implications for automotive manufacturers and automation: Despite significant efforts by
government and road safety organizations to reduce risky driving, global statistics on
road crashes, accidents, and injuries have shown that drivers continue to engage in risky
driving behavior [46]. To improve road safety, driver support systems have much to offer
by providing targeted feedback in real-time to reduce risky driving behavior [47]. However,
the greatest difficulty in improving driver support system technologies is the lack of under-
standing regarding how to harness knowledge about different forms and patterns of safe
and risky driving behaviors—along with a driver’s demographics, psychological profiles,
risk perceptions, driving history, etc., to adequately target and customize feedback and
support for that driver [48]. The CDP framework has enormous potential for contributing
to the tailoring of driver support in real-time because it takes into consideration a particular
driver’s needs in particular contexts.

The use of such comprehensive driver profiles are also becoming more relevant in the
field of automation as companies move toward driver-out-of-the-loop automation system
capabilities [49]. The ability to understand the driver provides opportunities for driverless
cars to drive like humans, thereby improving the trust, adherence, and comfort that humans
have with the automation [50]. Additionally, as the field of automation moves into the
human-machine collaborative space, comprehensive driver profiles can not only be used for
a wide variety of applications to support the driver and their collaborative role with the
automation, but also by helping the automation determine the role of the driver during
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different situations, such as when to accede and secede driving control based on the
driver’s ability.

Implications for insurance telematics: Insurance companies use varying amounts of driver
profile scoring models, mainly focused on variables such as acceleration and braking, and
the degree to which they are rapid or harsh—as well as absolute and relative speeding,
swerving, and cornering; along with trip-related factors such as trip duration, distance,
time of day, and location as the best predictors of risk [51–53]. While developing profile
scores using these types of measures has been useful in determining the differences between
demographic groups that are over- and under-represented in crashes, the domain has two
important challenges. First, many current driver risk profiles are based on population
models and ignore the heterogeneity of driving behaviors among individual drivers [1],
which is important for usage-based-insurance (UBI) and pay-as-you-drive (PAYD) plans.
Second, the high dimensionality of naturalistic driving data and inherent heterogeneity of
driving behaviors requires establishing methodologies to ensure robustness and flexibility
in generating reliable driver risk profiles that correlate with the actual risk of the driver [54].
Preliminary results from implementing the CDP framework suggest that it would be useful
for addressing these challenges—especially for assessing individual differences. The CDP
framework could be used to gain more accurate insights on what programs work best for
certain types of drivers or individuals, providing financial incentives for improving risky
driving behaviors, and rewarding drivers with good driving scores. Using CDP should also
lead to more accurate pricing for usage-based insurance, given the broader set of variables
upon which it is based.

In spite of many improvements in safety technology over the last several decades,
automotive crashes continue to claim thousands of lives per year, for example, an average
of 36,475 fatalities per year between 2005 and 2018 [55]. Additionally, NHTSA has reported
that driver-related critical factors may account for 92% to 96% of crashes [56] based on
data from the US National Motor Vehicle Crash Causation Survey (NMVCCS). Thus, the
substantial role played by human behaviors and errors in crashes has been well established
for many years. Yet models of crash risk have struggled to account for a preponderance of
the variance in the data. Indeed, even efforts to account for crash risk in more-specifically
focused areas such as distraction-related crash risk have foundered because of wide differ-
ences between behaviors of individual drivers—and an inability of models to account for,
explain, or harness individualized patterns of behavior in accounting for driving styles and
risk-related outcomes. An early naturalistic study showed that a small percentage of drivers
accounted for a very large proportion of the observed safety-critical events—and noted that
the driving behaviors of this small segment of drivers were different from other drivers, in-
sofar as they were characterized by more hard decelerations, hard accelerations and swerve
maneuvers [57]. When the full sample of drivers was divided into three groups by [57] into
unsafe, moderately safe, and safe drivers based on number of crashes-and-near-crashes ob-
served for each, the 15 drivers placed in the unsafe group made 2112.8 safety-critical-events
per million vehicle miles traveled (MVMT) during the 100-Car study (vs. 460.0 events per
MVMT for the moderately safe group of 47 drivers, and 63.1 events per MVMT observed
for the safe group of 39 drivers). Yet, in spite of wide and acknowledged differences of
this sort between drivers, it has often been the case that in analyses of risk ratios—as well
as in approaches to modeling risk—differences between drivers have either been ignored
(and all safety-critical events pooled in analyses)—or driver differences have often tended
to be treated as “noise” or “error” variance that obscures the “true” effects of important
underlying variables (which are believed to be, for example, driving experience variables,
vehicle design variables, roadway context, or weather variables).

However, the work described herein takes a different approach. Drawing from re-
search traditions in adjoining fields—the notion explored here is that the very essence of
understanding crash risk lies in the variance between individuals. In other words, it is
this variance between individual drivers in their driving behavior and driving style that
embodies the very information about crash risk from which meaning and understanding
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must be drawn. This variance is not “noise” or “error”—to be apportioned into a statistical
error term for a group of drivers, nor for an individual driver. Rather, it is the central
object of study. It is by applying techniques that have the power to extract “behavioral
patterns over time,” along with techniques for identifying or selecting those that are most
important in accounting for specific outcomes (such as crashes vs. successful crash-free
driving)—and techniques which enable these “patterns” to be treated as “features” that can
be attributed to different types of drivers—that there is a chance to advance and deepen
the scientific understanding of crash risk (or other outcomes), and begin to account for it.
There may even be an opportunity, using these methods, to predict crash risk for individual
drivers—or for groups of drivers. This paper therefore suggests an initial framework for use
in exploring whether a deeper understanding of risk in driving can be extracted from this
variance—the differences between individual drivers—and systematically understanding
its underlying structure.

5. Conclusions

Driving is a complex task, and drivers are constantly confronted with situations
in which they must make a decision about their reaction to the environment or driving
situation or both. Those daily situations such as changing lanes to make an exit are
reflections of a driver’s inherent driving style and behavior. Additionally, the ability to
record these behaviors over time, and to extract the information and patterns within them,
provides the foundation upon which driver support systems can be tailored to better
support the driver and provide targeted safety benefits, but an important challenge when
dealing with such vast and granular temporospatial driving behavior data is the proper
analyses and interpretation of the data to understand the driver’s choice, preferences,
comfort, trust in technology, risk aversion, etc., which, when successfully extracted, would
allow for more meaningful tailoring of the driver support system to the individual.

To address this challenge, this paper has proposed a practical, novel, data-driven
framework for developing comprehensive driver profiles. The framework is composed of
three steps which allows for cleaning, enriching, profiling, scoring, visualization, analyses,
and interpretation of a wide range of driving behaviors, context, and interaction effects,
which can be used to calculate any outcome of interest (risk, inattention, fatigue, etc.).
The main advantage of such a framework is its adaptive approach that considers the
environmental and situational conditions and continuously updates the driver’s profile
based on these inputs. This has important implications for personalizing real-time feedback,
support, and safety measures that is adaptable to the individual driver.
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