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Abstract: The task of summarization can be categorized into two methods, extractive and abstractive.
Extractive summarization selects the salient sentences from the original document to form a summary
while abstractive summarization interprets the original document and generates the summary in
its own words. The task of generating a summary, whether extractive or abstractive, has been
studied with different approaches in the literature, including statistical-, graph-, and deep learning-
based approaches. Deep learning has achieved promising performances in comparison to the
classical approaches, and with the advancement of different neural architectures such as the attention
network (commonly known as the transformer), there are potential areas of improvement for the
summarization task. The introduction of transformer architecture and its encoder model “BERT”
produced an improved performance in downstream tasks in NLP. BERT is a bidirectional encoder
representation from a transformer modeled as a stack of encoders. There are different sizes for
BERT, such as BERT-base with 12 encoders and BERT-larger with 24 encoders, but we focus on the
BERT-base for the purpose of this study. The objective of this paper is to produce a study on the
performance of variants of BERT-based models on text summarization through a series of experiments,
and propose “SqueezeBERTSum”, a trained summarization model fine-tuned with the SqueezeBERT
encoder variant, which achieved competitive ROUGE scores retaining the BERTSum baseline model
performance by 98%, with 49% fewer trainable parameters.

Keywords: extractive summarization; deep learning models; recurrent neural networks; supervised
learning; transformers; BERT; DistilBERT; SqueezeBERT

1. Introduction

Automatic text summarization is an active research area that can be defined as the
process of extracting important sentences or snippets of a large document and combining
them into a short version of the document. Summarizing a text can be both time-efficient
and cost-efficient. In terms of time efficiency, the human reader can spend less time reading
a document by reading a summarized version that grasps the key points of the document.
Newsgroups can use a document summarization tool on several documents to gather the
important information of each document that discusses the same topic in a shorter version.
In terms of cost efficiency, summarization can be used for compressing the amount of
textual data being transferred from a device to another device. It would be beneficial for
the user to have the choice of reading a summarized version of a document or an article
before deciding to download the whole document or article to read. With the current rate of
data growth, it will soon become a necessity to have a tool that generates shorter versions
of textual data as a service to the human reader.

The task of automatic text summarization is composed of mainly three phases: the
data pre-processing phase, algorithmic processing phase, and post-processing phase.
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1.1. Data Pre-Processing Phase

It is the process of cleaning and transforming the raw source document to a more com-
patible data format prior to summarization. Examples of data pre-processing techniques are:

(1) Removal of noise data found in the document;
(2) Sentence and word tokenization;
(3) Removal of punctuation marks;
(4) Removal of stop words to remove frequently occurring words, such as (a), (an), (the), etc.;
(5) Word stemming, which is the removal of suffixes and prefixes;
(6) Word lemmatization, which is the transformation of a word to its base structure, such

as transforming the word “playing” to “play”;
(7) Part-of-speech tagging.

1.2. Algorithmic Processing Phase

It is the process of applying an algorithmic approach when generating a summary
from the pre-processed document. Algorithmic processing includes either extractive or
abstractive summarization, which will be further discussed later in this paper; however,
extractive techniques are favored rather than abstractive techniques [1], since the former
has shown better performance and is relatively easier to implement.

1.3. Post-Processing Phase

It is the process of applying any data transformation when generating the target
summary. This phase can be optional to some approaches as we will cover in the literature.

The objective of this paper is to study the performance of BERT-based models for
the extractive summarization task, which will be further explained in Section 3. Section 2
covers the literature of automatic text summarization, including the different approaches
used. Section 3 discusses the methodology, which describes our experiments in fine-
tuning BERT-based variants, such as DistilBERT and SqueezeBERT, for summarization
tasks. Section 4 describes our observations and the results of the experiments conducted.
Section 5 concludes our work and describes the possible next steps.

2. Literature Review

Text summarization can be split into two types of summaries: extractive and abstrac-
tive. An extractive summary is formed by reusing portions of the original document, such
as sentences, and combining them into a summary. To generate an extractive summary,
each sentence is ranked based on the most salient information and then reordered together
into a summary while preserving the grammatical rules. SumaRuNNer [2] is one of sev-
eral studies that perform extractive summarization. An abstractive summary is formed
by interpreting the original document and generating meaningful sentences in a shorter
version. This approach involves more semantic understanding of the document by the
model to write a summary in a human-understandable form. An example of such an
approach was proposed by Summarist paper which has modules that perform that type
of summarization [3].

Throughout the literature, there have been different approaches applied to generate an
extractive summary, such as the frequency count-based approach by Luhn [4], or the graph-
based approach by TextRank [5], which represents a document as a graph of sentences
where the edges between the sentences are connected based on a similarity measurement.
LexRank [6] is another graph-based approach based on the concept of eigenvectors. Latent
Semantic Analysis, or LSA [7], is a statistical-based approach that tries to find sentences in
the document by applying Singular Value Decomposition over document matrix D of size
m × n, where m is the number of sentences and n is the number of terms. SumBasic [8] is
a greedy search approximation approach that uses a frequency-based sentence to set the
weights of word probabilities to minimize redundancy.
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2.1. Summarization Approaches

In 2016, Cheng and Lapata proposed an attentional encoder–decoder architecture for
an extractive single-document summarization trained on the CNN/DailyMail corpus [9].
Their model is based on an encoder–decoder approach, where the encoder learns the rep-
resentation of sentences and documents while the decoder classifies each sentence based
on the encoder’s representation using an attention mechanism [10]. They first obtained
representation vectors at the sentence level using a single-layer convolutional neural net-
work effectively without long-term dependencies. Afterwards, they built representations
for documents using a recurrent neural network that recursively composes sentences [9].
The first step is called the Convolutional Sentence Encoder and the second step is called
the Recurrent Document Encoder. The third step is the Sentence Extractor, which is another
recurrent neural network that applies the attention mechanism to directly extract salient
sentences after reading them. The labeling decision is made with both the encoded docu-
ment and the previously labeled sentences in mind. After this sequence labeling task, the
fourth step is the Word Extractor. This task is responsible for generating the next word in
the summary using a hierarchical attention architecture and computes the probability of
the next word to be included in the summary [9].

In 2019, Joshi, Eduardo, Enrique, and Laura proposed SummCoder [11], an unsuper-
vised framework for extractive text summarization based on deep auto-encoders.

In their approach, the extractive summarization problem was defined as a sentence
selection problem given a document. The determination of which sentence should be
included in the summary was based on three metrics:

1. Sentence Content Relevance Metric;
2. Sentence Novelty Metric;
3. Sentence Position Relevance Metric.

This proposed framework ranks the sentences based on the three metrics above, and
formulates the problem as follows: given a document D with N sentences D = (S1, S2,
. . . , SN), the sentence I is embedded into a vector VSi, which is the encoder representation
computed with the three metrics mentioned before, and then decoded afterwards.

In 2019, Yue Dong et al. proposed a novel method for training neural networks
to perform single-document extractive summarization without heuristically generated
extractive labels. They call their approach BanditSum, as it treats extractive summarization
as a contextual bandit problem where the model receives a document to summarize,
referred to as the context, and then chooses a sequence of sentences to include in the
summary, referred to as the action [12]. Their paper applies extractive summarization
using the policy-gradient reinforcement learning approach. A bandit is a decision-making
formalization in which an agent repeatedly chooses one of several actions and receives a
reward based on this choice. For the extractive summarization, each document is labeled
as the context and each ordered subset of the document’s sentences is a different action.
The agent is required to learn from a series of actions, determining which one will generate
the highest reward. This approach was trained on a CNN/DM dataset, and the authors
concluded in their work that BanditSum performs significantly better than other competing
approaches when good summary sentences appear late in the source document.

W.S. El-Kassas et al. proposed a graph-based framework in 2020, combining four
extractive algorithms called EdgeSumm [13]. EdgeSumm includes graph-based, statistical-
based, semantic-based, and centrality-based approaches, which has been reported to
achieve performance scores higher than state-of-the-art systems in ROUGE-1 and ROUGE-2.
Their proposed approach is meant to solve the summarization problem by introducing a
generic framework for summarizing domain-independent documents. It first constructs
a text graph model based on the output of the pre-processing step, and then calculates
the weights for each node in the graph, which is based on the word frequency besides
the occurrence of the word in the title and other important factors. Afterwards, a search
graph algorithm is applied to try to find the phrases or edges that link the most frequent
words or topics together, and the output of the algorithm is a list of selected edges for each
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sentence. Afterwards, a candidate summary algorithm is applied, which selects sentences
to be included in the summary based on which sentence has at least one edge selected
from the candidate edge list from the search graph algorithm output. EdgeSumm was
applied on standard datasets, such as DUC2001 and DUC2002, and it outperformed the
state-of-the-art text summarization systems for the ROUGE-1 and ROUGE-L metrics in the
DUC2002 dataset.

In 2019, Yang Liu proposed a fine-tuned BERT summarization approach called BERT-
Sum [14]. BERT is a stack of pre-trained transformer encoders that can better understand
the textual data through attention mechanisms, making it a contextualized language model
that can be used for various downstream tasks. In his methodology, he used BERT to output
representation for each sentence, since BERT was trained as a masked-language model,
and then he modified the input sequence and embeddings of BERT to make extractive
summarization possible. Figure 1 shows the complete architecture of BERTSum model, in
which he inserted a classification token [CLS] before each sentence and a [SEP] token after
each sentence, and then introduced interval segment embedding to distinguish between
different sentences in the segment embedding layer.
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The output of the BERT layer is the contextualized embeddings, which steps into
several summarization-specific layers to capture document-level features for extracting
summaries. The author calculates the final predicted score Y for each sentence Si from 1 to
N, where N is the number of sentences, and then computes the binary classification entropy
as the loss function to classify whether Si should be included in the summary or not [14].

In 2020, Ming Zhong et al. presented a paper that tackled extractive text summariza-
tion as a text matching problem, called MatchSum [15]. Their approach formulated the
problem as a semantic text matching problem in which a source document and candidate
summaries will be matched in a semantic space, and the candidate summary closest to
the reference summary in that space will be selected as the output summary. The authors
have conducted experiments on five datasets which demonstrate the effectiveness of the
matching framework, and they believe the power of this matching-based summarization
framework has not been fully exploited yet.

2.2. ROUGE Evaluation Algorithm

Generating a summary does not have an absolute correct answer. Each summary
generated by a human reader differs from another human reader based on what he or she
perceives as important information to include. In text summarization, an evaluation metric
to use is Recall-Oriented Understudy for Gisting Evaluation, or in short, ROUGE [16].
Rouge-N is an N-gram recall measure between the human summary and the generated
summary. It measures the overlap between the golden or human summary and the gen-
erated summary. There are different variants of ROUGE metric depending on how many
overlapped words are measured. Examples are, unigram (ROUGE-1), bigram (ROUGE-2),
trigram (ROUGE-3), or longest common sequence of words (ROUGE-L).
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3. Methodology

This section describes the objective of each experiment to study the summarization
performance when fine-tuning the model with variants of the BERT encoder [17]. This
section also discusses the different architectures that have been trained and evaluated
for extractive summarization. We use BERTSum as our baseline model and modified
the source code, which is available in the BERTSum paper [18]. Here is our modified
source code, used for conducting the following experiments below, which can be found at
https://github.com/ShehabMMohamed/PreSumm, accessed on 25 November 2021.

3.1. Experiment: Exploring DistilBERT Model

The objective of this experiment is to explore DistilBERT, a compressed variant of
BERT [16], which is used to reduce the computation cost of training an extractive summa-
rizer, and produce a summary while maintaining the model’s performance to be deployed
on low-resource devices. The objective is to modify BERTSum architecture to replace the
BERT-base encoder with the DistilBERT encoder, re-train the model, and record the ROUGE
scores. This experiment ran on the available GPU resource on Google Colab notebook.

DistilBERT aims to leverage knowledge distillation during the pre-training phase and
show that it is possible to reduce the size of a BERT model by 40% while retaining 97%
of its language understanding capabilities and being 60% faster. Knowledge distillation
was first introduced by Bucila et al. in 2006 [19–21], which is a compression technique in
which a compact model called “the student” is trained to reproduce the behavior of a larger
model called “the teacher”.

The architecture of DistilBERT is introduced as the student that has the same general
architecture as BERT the teacher, except for the following changes:

1. The token-type embeddings and the pooler are moved;
2. The number of layers is reduced by a factor of 2.

3.2. Experiment: Exploring SqueezeBERT Model

The objective of this experiment is to explore SqueezeBERT, a model proposed as an
efficient network [22,23] that reduces the computationally expensive training of complex
architectures, such as BERT. The SqueezeBERT architecture uses grouped convolutions as a
computation replacement instead of the fully connected layers for the Q, K, V, and FFN
layers in the BERT encoder. This paper discusses an observation that grouped convolutions
have yielded significant speedups for computer vision networks. They demonstrate a
replacement of several operations in self-attention layers with grouped convolutions and
proposed this novel network architecture called SqueezeBERT which reportedly runs
4.3× faster than BERT-base. In this experiment, we modify BERTSum to replace the BERT-
base encoder with SqueezeBERT, train the model, and record the ROUGE scores. This
experiment runs on the available GPU resource by Google Colab notebooks.

4. Experiments & Results
4.1. Training Fine-Tuned DistilBERT Summarizer

This experiment shows an effort to explore the DistilBERT model for extractive sum-
marization tasks. The model was trained using the adam optimizer with a learning rate
2 × 10−3, with a batch size of 3000, and a 10% dropout. Table 1 shows the ROUGE scores
of the fine-tuned summarizer trained on 30,000 epochs on the CNN/DM dataset. Every
10,000 epochs, we save the model weights and generate the ROUGE-1, ROUGE-2, and
ROUGE-L validation scores. The performance of the model before 10,000 epochs was
relatively low, so we limited saving the model weights by starting with the 10,000 as our
first checkpoint. The results in Table 1 record the output of the evaluation algorithm, where
the summary is evaluated by computing the value of precision, recall, and F-score. Average
R represents the average weight of recall, Average P represents the average weight of
precision, and Average F represents the average weight of the F-measure. The training time

https://github.com/ShehabMMohamed/PreSumm
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taken for a DistilBERT summarizer was around 25 min per 1000 checkpoints on a Google
GPU session.

Table 1. Training DistilBERT on 3 checkpoints.

DistilBERT Summarizer

Average R
Average P
Average F

ROUGE-1 ROUGE-2 ROUGE-L

Model at 10,000
0.54046 0.24811 0.49321
0.37102 0.17079 0.33920
0.42535 0.19527 0.38856

Model at 20,000
0.52756 0.24105 0.48198
0.37355 0.17152 0.34193
0.42238 0.19324 0.38631

Model at 30,000
0.50242 0.22208 0.45819
0.36837 0.16356 0.33656
0.41015 0.18153 0.37443

During the training phase, the model generated a relatively higher score at checkpoint
10,000 when compared to the same model of different checkpoints. By computing the
average of ROUGE-1, ROUGE-2, and ROUGE-L, the DistilBERT summarizer generated
competitive results that are slightly less when compared with the BERT-base model in
Table 2. DistilBERT has a ROUGE-1 score lower than BERT-base by 1.6%, a ROUGE-2
score lower than BERT-base by 3.5%, and ROUGE-L score lower than BERT-base by 1.9%.
However, the number of parameters with the DistilBERT model is less than the BERT
model by ~36%, which is directly proportional to the training time needed for these models.
The DistilBERT summarizer was trained on a single GPU for almost 3 days and was
able to retain approximately 98% of the baseline model in terms of summary generation
performance, with a decrease of ~36% in size.

Table 2. DistilBERT Performance with BERT-baseline.

BERT Models
ROUGE Scores

Params
ROUGE-1 ROUGE-2 ROUGE-L

BERT-base 43.23 20.24 39.63 120.5 M

DistilBERT 42.54 19.53 38.86 77.4 M

4.2. Training Fine-Tuned SqueezeBERT Summarizer

This experiment shows an effort to explore the SqueezeBERT model, a recently devel-
oped model based on grouped convolutions instead of attention networks, as an inspiration
from the CV research. To run this experiment, I have used the publicly available single GPU
provided by Google Colab to train this model, which has taken around ~60 h to complete.
Table 3 shows the output of training the model on a total of 30,000 epochs. The hyperpa-
rameters of this model training is identical to the DistilBERT experiment using the adam
optimizer with a learning rate 2e-3, with a batch size of 3000, and a 10% dropout. The train-
ing time taken for a SqueezeBERT summarizer was around 20 min per 1000 checkpoints
on a Google GPU session.

By computing the average of ROUGE-1, ROUGE-2, and ROUGE-L, the SqueezeBERT
summarizer generated competitive results that were slightly less when compared with
the BERT-base model. By observing the SqueezeBERT experiment, the model generated
ROUGE scores nearly identical or slightly better than the previous experiment with the
DistilBERT model. This will be further discussed in the overall discussion. In Table 4 below,
SqueezeBERT has a ROUGE-1 score lower than BERT-base by 1.6%, a ROUGE-2 score lower
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than BERT-base by 3.35%, and a ROUGE-L score lower than BERT-base by 1.8%. However,
the number of parameters with the SqueezeBERT model is less than the BERT model by
~49%, which is directly proportional to the training time needed for these models. One key
finding here to notice is that SqueezeBERT summarizer was able to retain approximately
98% of the baseline model in terms of summarization performance, with a decrease of ~49%
in size. This experiment has demonstrated high-performance retention when training a
summarizer with an architectural size that is almost half the size of the BERT-base model.

Table 3. Training SqueezeBERT on three checkpoints.

SqueezeBERT Summarizer

Average R
Average P
Average F

ROUGE-1 ROUGE-2 ROUGE-L

Model at 10,000
0.52760 0.24278 0.48227
0.37796 0.17427 0.34612
0.42538 0.19563 0.38922

Model at 20,000
0.50638 0.22715 0.46294
0.37708 0.16975 0.34537
0.41699 0.18717 0.38162

Model at 30,000
0.48312 0.20655 0.43988
0.36130 0.15517 0.32963
0.39832 0.17044 0.36306

Table 4. SqueezeBERT Performance with BERT-baseline.

BERT Models
ROUGE Scores

Params
ROUGE-1 ROUGE-2 ROUGE-L

BERT-base 43.23 20.24 39.63 120.5 M

SqueezeBERT 42.54 19.56 38.92 62.13 M

5. Conclusions

This section covers the conclusion of the experiments conducted in this paper, as well
as the contribution of this paper, and the possible next steps for future work.

5.1. Experiment Conclusions

Given the results of the experiments, there is great potential to further adopt computer
vision-based techniques on NLP tasks given the performance of the SqueezeBERT sum-
marization model. Given the summarization performance and reduction of the trainable
parameters in Table 5, the SqueezeBERT summarizer can be productionized and deployed
for real-time summary generation given the compression of the architecture, instead of
deploying the original BERT-base summarizer which consists of ~120 million parameters,
whereas the proposed model consists of ~62 million parameters.

Table 5. Comprehensive extractive summarization performance.

BERT Models
ROUGE Scores

Params
ROUGE-1 ROUGE-2 ROUGE-L

BERT-base 43.23 20.24 39.63 120.5 M

DistilBERT 42.54 19.53 38.86 77.4 M

SqueezeBERT 42.54 19.56 38.92 62.13 M

We have trained the BERT-baseline and used it as a benchmark for what are known as
“compressed models”, such as DistilBERT and SqueezeBERT. Post-training, these summa-
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rization models all retain performance levels above >90% of the baseline model, which has
around 120.5 million parameters to train. The first experiment was an attempt to introduce
a distillation-based BERT model that has a lower number of parameters by ~35%, and
when testing the model it retained ~98% of the BERT model. The second experiment was
to train a more efficient model called SqueezeBERT, which replaced all the attention layers
with grouped convolutional layers for efficient computation. This experiment yielded
an interesting observation, namely that SqueezeBERT maintains the same performance
as DistilBERT with unigrams, and has slightly better performances with bi-grams and
longest common sequences. SqueezeBERT retains 98% of the performance of the baseline
model, with 49% fewer parameters (consisting of 62.13 million parameters instead of the
baseline model which has 120.5 million parameters). SqueezeBERT is a good candidate
for training a summarizer nearly half the size of the original model with minimal down-
grades in summarization performance. It also gave a key observation, namely that by
using efficient networks inspired by computer vision literature [24–26], such as grouped
convolutional layers, it can improve NLP downstream tasks, and for this paper, it improved
the summarization task by reducing the training time while retaining performance. This
observation concludes the result of the performance study of BERT-based variants that is
aimed at expanding the literature in the summarization task.

5.2. Contribution

Given the outcomes of the experiments in the methodology, there is a potential pro-
ductionized version of the SqueezeBERT extractive summarizer from the results recorded
above. SqueezeBERT has fewer parameters than DistilBERT by approximately 20% and
yields the same ROUGE-1 score, while yielding slightly higher ROUGE-2 and ROUGE-L
scores. Although SqueezeBERT and DistilBERT produce slightly lower scores in the BERT-
baseline model, SqueezeBERT has an advantage of having less training time and fewer
parameters than the baseline model by ~48.44%, which is close to half of the BERT-baseline
model’s trained parameters. Table 6 shows the comprehensive comparison of the two
compressed models with the BERT-baseline model by recording the performance reten-
tion of each ROUGE metric and the decrease percentage of the total parameters of the
baseline model.

Table 6. Performance comparison with BERTSum baseline model.

Performance Retention %
ROUGE-1

Performance Retention %
ROUGE-2

Performance Retention %
ROUGE-L Parameters Reduction %

DistilBERT 98.4 96.49 98.05 35.77

SqueezeBERT 98.4 96.64 98.2 48.44

5.3. Future Work

These experiments were conducted on a single GPU resource from Google Colab, and
although it was sufficient for the experiments above, there is some room for additional work,
such as hyperparameter tuning these fine-tuned models, to generate better summarization
performance. Another possible future work is to train these models on domain-specific
datasets and produce an extractive summarizer dedicated to specific use cases, such as
a medical or academic extractive summarizer. Further possible future work is exploring
the potential of fine tuning the SqueezeBERT model for abstractive summarization instead
of extractive summarization, and reporting on the performance results if there are any
significant findings. To further reduce the size of the pre-trained model, there is also room
for adopting model compression techniques, such as quantization and pruning.

Quantization is a family of techniques which aims to reduce the number of bits
required to store each parameter and/or activation in a neural network, while at the same
time maintaining the accuracy of that network. This technique has been applied in different
NLP studies [27,28].
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Pruning aims to directly eliminate certain parameters from the network while also
maintaining accuracy, thereby reducing the storage and potentially computational cost of
that network; for an application of this NLP, this research demonstrates an application of
pruning [28].
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