
����������
�������

Citation: Gasparetto, A.; Marcuzzo,

M.; Zangari, A.; Albarelli, A. A

Survey on Text Classification

Algorithms: From Text to Predictions.

Information 2022, 13, 83. https://

doi.org/10.3390/info13020083

Academic Editor: Gennady Agre

Received: 10 January 2022

Accepted: 9 February 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Review

A Survey on Text Classification Algorithms: From Text
to Predictions
Andrea Gasparetto 1,* , Matteo Marcuzzo 1 , Alessandro Zangari 1 and Andrea Albarelli 2

1 Department of Management, Ca’ Foscari University, 30123 Venice, Italy; matteo.marcuzzo@unive.it (M.M.);
alessandro.zangari@unive.it (A.Z.)

2 Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University, 30123 Venice, Italy;
albarelli@unive.it

* Correspondence: andrea.gasparetto@unive.it

Abstract: In recent years, the exponential growth of digital documents has been met by rapid progress
in text classification techniques. Newly proposed machine learning algorithms leverage the latest
advancements in deep learning methods, allowing for the automatic extraction of expressive features.
The swift development of these methods has led to a plethora of strategies to encode natural language
into machine-interpretable data. The latest language modelling algorithms are used in conjunction
with ad hoc preprocessing procedures, of which the description is often omitted in favour of a
more detailed explanation of the classification step. This paper offers a concise review of recent
text classification models, with emphasis on the flow of data, from raw text to output labels. We
highlight the differences between earlier methods and more recent, deep learning-based methods
in both their functioning and in how they transform input data. To give a better perspective on the
text classification landscape, we provide an overview of datasets for the English language, as well
as supplying instructions for the synthesis of two new multilabel datasets, which we found to be
particularly scarce in this setting. Finally, we provide an outline of new experimental results and
discuss the open research challenges posed by deep learning-based language models.

Keywords: text classification; tokenisation; topic labelling; news classification; transformer; shallow
learning; deep learning; multilabel corpora

1. Introduction

Text classification (TC) is a task of fundamental importance, and it has been gaining
traction thanks to recent developments in the fields of text mining and natural language
processing (NLP). Text classification methods share the common goal of designating a
predefined label for a given input text, though this denomination can refer to a variety of
specialised methods applied to different domains.

Classic examples of TC include information retrieval, topic labelling, sentiment analy-
sis, and news classification. However, TC has practical applications that extend beyond
simple categorisation, such as extractive question answering and summarisation systems.
In this case, the intuitive notion of “label” is substituted with a choice between candidates
(e.g., an answer or a sentence to include in a summary).

The speed at which textual information is currently being created has long out-
classed manual solutions to these tasks, meaning that TC methods are not only useful, but
also strictly necessary. Accordingly, developing accurate and unbiased TC systems is of
paramount importance.

1.1. Text Classification Tasks

A variety of standard definitions for TC tasks exist in the NLP research area, often
used as benchmarks to evaluate new methods. We outline the main representatives,
approximately following the taxonomy proposed by Li et al. [1]:

Information 2022, 13, 83. https://doi.org/10.3390/info13020083 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13020083
https://doi.org/10.3390/info13020083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-4986-0442
https://orcid.org/0000-0002-0451-4899
https://orcid.org/0000-0002-3634-6607
https://orcid.org/0000-0002-3659-5099
https://doi.org/10.3390/info13020083
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13020083?type=check_update&version=2

Information 2022, 13, 83 2 of 39

• Sentiment analysis (SA): the task of understanding affective states and subjective
information contained in a piece of text, often categorised in terms of stirred emotions;

• Topic labelling (TL): the task of recognising one or more themes for a piece of text (i.e.,
its topics);

• News classification (NC): the task of assigning categories to news pieces, such as
topics or user interests;

• Question answering (QA): the task of selecting an answer to a question, selecting from
potential candidate sentences (usually extracted from a context document). This task
is usually framed as binary or multiclass classification;

• Natural language inference (NLI): the task of determining whether two sentences
entail one another (classifying if the entailment occurs in one of the two directions,
or neither);

• Named entity recognition (NER): the task of locating named entities within unstruc-
tured text, labelling them with predefined categories;

• Syntactic parsing (SP): a series of tasks related to predicting morpho-syntactic proper-
ties of words, such as part-of-speech (PoS) tagging, speech dependencies and semantic
role labelling.

It is worth noting that these are generic formulations, meaning that specific tasks will
present themselves with slight differences as contextualized to a specific domain.

1.2. Text Representation

An important step required by any TC procedure is the projection of text features in a
chosen feature space. Because of its lack of structure (from a computational point of view),
it is necessary to apply a number of operations, in order to gradually transform it into a
form that is digestible for a computer. Preprocessing must be mindful of the models that
are intended to be used in the later stages of the classification pipeline, since there is no
“silver bullet” solution.

Most notably, earlier methods rely heavily on a manual feature engineering step,
which necessitates considerate treatment and domain expertise. Later methods based on
deep learning, on the other hand, are notably different because of the automatic extraction
of features. As we will explore, preprocessing is still important for these methods, though
it may be applied differently because of the assumptions that they make.

1.3. Broad Categorization of Text Classification Methods

In this work, machine learning methods are divided into the two broad categories of
“shallow” and “deep” approaches, which we proceed to define.

1.3.1. Shallow Learning Approaches

Earlier methods are frequently defined as “shallow learning” approaches. However,
since this definition is not one that is particularly standardised or agreed upon, we clarify
that, with this term, we refer to all those traditional or classical methods related to conven-
tional machine learning. That is, this group encompasses all of those methods preceding
neural networks of which the prediction is based on hand-engineered features. In addition,
this category also includes neural networks with very few (0–2) hidden layers, which
are themselves referred to as “shallow” and which bridge the gap between this group of
methods and their deep learning-based successors.

Shallow learning approaches are the successors of rule-based approaches, which they
surpassed in both accuracy and stability. Shallow learning methods are still popular in many
practical contexts, or as strong baselines. While they do not scale well to large amounts
of data, they shine when resources are too scarce for deep methods to be effective. These
classical approaches require a feature engineering step that may be costly, depending on
the complexity of the domain. While the computational side of this cost can be significant,
the domain knowledge requirements that are necessary for the correct application of
appropriate feature extraction techniques may be more difficult to achieve in practice.

Information 2022, 13, 83 3 of 39

1.3.2. Deep Learning Approaches

The advent of deep learning models has affected all fields of artificial intelligence,
including text classification. These methods have gained traction because of their ability to
model complex features without the necessity of hand engineering them, removing part
of the domain knowledge requirement. Instead, work has gone towards the development
of neural network architectures able to extract effective representations for textual units.
Recent developments have been particularly successful in this, giving birth to semantically
meaningful and contextual representations. Automatic feature extraction is particularly
advantageous in modelling textual data, as it is capable of leveraging the underlying
linguistic structure of a document. This structure is intuitive to us if we understand the
language, but is usually incomprehensible to a machine.

1.4. Major Differences and Contributions

Recent publications have explored text classification methods from a generic perspec-
tive. Among them, we cite the work by Li et al. [1], which provides a complete investigation
of models, ranging from shallow to deep. Kowsari et al.’s [2] survey provides an excellent
exploration of preprocessing steps, such as feature extraction and dimensionality reduction.
Minaee et al.’s [3] work, on the other hand, focuses solely on a thorough exploration of
deep approaches, though it also provides quantitative results for classical methods in its
experimental performance analysis.

This work aims to enrich the landscape of text classification surveys by giving an
outlook of each step involved in the development of a classifier for textual data. Therefore,
we provide a detailed description of the most important data preparation operations utilised
in conjunction with text classification algorithms. These passages of the TC pipeline are
often overlooked, yet understanding their usage and the motivation behind their choices
can prove fundamental in building an effective framework for this task. We continue by
summarising information about primary English TC datasets and a general benchmark
of state-of-the-art approaches in various sub-tasks. Moreover, we provide results on two
newly synthesized multilabel TC datasets, laying out the process to reproduce them. We
believe this to be an important contribution, as the sub-tasks that they address (namely
multilabel TL and NC) are underrepresented.

In summary, this study’s main contributions are as follows:

• We present an analysis of TC procedures, with emphasis on each step of the TC pipeline;
• We showcase a variety of datasets in English, and provide the code for synthesising

two multilabel classification datasets;
• We present an overview of quantitative results for main methods in the literature, as well

as for the datasets that we presented, complete with an analysis of evaluation metrics.

The rest of the survey is organised as follows. Section 2 explores preprocessing opera-
tions in TC pipelines, going through standard operations as well as common tokenisation
strategies for more recent, deep learning-based models. Section 3 describes methodolo-
gies utilised to project preprocessed data into feature space, starting again from earlier
approaches, while also describing word embeddings based on shallow neural networks.
Section 4 gives a brief overview of generic classifiers commonly used with such features,
while Section 5 goes more in depth into explaining the current landscape of deep learning-
based classification methods. We move towards the experimental part of the survey in
Section 6, showcasing prominent datasets (as well as two newly synthesised ones) and
quantitative results. Finally, we discuss future research directions in Section 7 and conclude
in Section 8.

Code and datasets used for experiments in this work are published and available
(when legally possible) at https://gitlab.com/distration/dsi-nlp-publib (accessed on 28
December 2021).

https://gitlab.com/distration/dsi-nlp-publib

Information 2022, 13, 83 4 of 39

2. Preprocessing

Input data for natural language tasks like TC consist of raw, unstructured text. Textual
information, unlike other types of data such as images or temporal series, does not possess
an intrinsic numerical representation; before feeding it to any classifier, then, it must
be projected into an appropriate feature space. Preprocessing procedures are therefore
of particular importance, as without them, there is no foundation for feature extraction
procedures nor classification algorithms.

In this section, we will provide an overview of the preprocessing operations frequently
utilised in TC methods. In the first part, we will cover standard methodologies, most
frequently utilised in preparation of manual feature extraction techniques (which are
explained in Section 3). We instead reserve the second part of this section to preprocessing
operations as contextualized to deep models. By providing an overview of these approaches,
we aim to highlight differences and innovations utilised by more recent models, thus
offering a more thorough and transparent outlook on how textual data representation is
done by state-of-the-art approaches.

2.1. Standard Preprocessing Operations

Preprocessing operations clean and normalise input data in order to improve the
results of the feature extraction stage, regardless of whether it is manually built (in earlier
methods) or automatically learnt (in deep learning methods). In this section, we outline the
most prominent preprocessing techniques.

2.1.1. Tokenisation

The most basic preprocessing operation that must be applied to text is that of tokeni-
sation. This procedure is what determines the level of granularity at which we analyse
and generate textual data, and may be generally described as the process of breaking a
stream of text into smaller chunks (historically called tokens). Until recently, most NLP
models have utilised words as their atomic unit of choice, but recent approaches have been
decomposing text into smaller units (such as character n-grams or even more maximal
forms of decomposition, such as underlying bytes [4]).

Tokenisation [5], while often taken for granted, is a complex matter in itself and has
been widely researched. Conventional methods are rule-based, and may be as simple as
separating by space, punctuation and contractions. Clearly, much more refined knowledge-
based approaches have been developed, still based on linguistic concepts. However, recent
developments have moved strongly in the direction of data-driven tokenisers, which yield
better results, but in which tokens no longer correspond to the traditional definition of a
typographic unit. In other words, the modern meaning of “tokenisation” refers to the task
of segmenting a sentence into units that, crucially, do not have a linguistic motivation or
explanation. Because some of these methods still utilise traditional tokenisers as an initial
step, conventional approaches are now often called “pre-tokenisers”.

An in-depth exploration of this topic is outside the scope of this survey, and we point
to Mielke et al.’s work [6] for an excellent historical review of the evolution of tokenisers
over recent years. As both tokenisation and classification approaches evolved in parallel,
it is more common to associate conventional methods with pre-tokenisers. On the other
hand, deep learning methods tend to approach tokenisation with the more recent and
sophisticated methods, as will be outlined in Section 2.2.

2.1.2. Stopword and Noise Removal

The set of tokens produced by the tokenisation procedure may contain unnecessary
or misleading elements. Textual noise such as special characters or superfluous symbols
should be removed. It can be useful to remove stopwords [7], i.e., non-informative words
that appear in large numbers but carry no semantic importance. Other normalisation
procedures, such as lowercasing, misspelling correction, and the standardisation of slang

Information 2022, 13, 83 5 of 39

words and abbreviations, may be useful in reducing the number of different elements in
the feature space.

These processes, however, may cause interpretation issues (e.g., in English, “US”
could be used as an acronym for the “United States”, but lowercasing would make it
indistinguishable from “us” as a pronoun) [2]. Furthermore, the removal of stopwords
and other pieces of text can be detrimental to more recent approaches. Deep models are
trained to understand natural language; elements that constitute the syntax of a sentence
may be fundamental to the model for it to understand the context of a piece of text. As
such, destructive operations should not be applied indiscriminately.

2.1.3. Further Standardisation of Text

On the other hand, classical approaches may benefit from a further simplification of
the feature space. Such methods are unable to capture significant semantic information
about words; two inflections of the same word, then, cannot be distinguished (e.g., child
vs. children), and will be treated as completely different pieces of information. Because
of this, simplifying words by reducing inflections to a common form may be beneficial.
This is achieved through the process of stemming (deriving a root form for a word) [8] or
lemmatisation (deriving the lemma/canonical form for a word) [9]. These procedures can
improve the performance of the overall classification, but at the same time, are not devoid
of issues. Most notably, words with different meanings might have the same root or lemma,
and these approaches will make them indistinguishable.

There are other useful operations that could help towards the improvement of a TC
algorithm. An example of this is part-of-speech tagging; a “part of speech” is a category
of words with similar grammatical properties, such as noun, verb, and adjective. This is
sometimes included as a preprocessing step whenever the task could benefit from limiting
the vocabulary to one or a subset of these parts of speech (for example, one might be
interested in only nouns and adjectives). PoS tagging is a classification task in itself, and it
is easy to recognise how misclassifications can result in worse overall performance by the
models employing this procedure. An error of this kind can either introduce unwanted
words or seclude important ones by mistake.

2.2. Preprocessing for Deep Models

As briefly mentioned, preprocessing operations should not be applied without con-
sideration of the method being used. Recent models based on deep neural network archi-
tectures usually include similar steps for removing special characters, lowercasing and
stripping letters of accents and apostrophes. Additionally, tokenised documents are also
truncated or padded to a specified number of tokens to ensure that the model receives
input samples of uniform size (i.e., with the same number of tokens).

Most of the attention, however, is shifted towards the effective tokenisation of text.
Modern tokenisation approaches must strike a balance between a sufficiently large and
expressive vocabulary and one that is too expensive in terms of memory. Therefore,
different approaches have been proposed, of which we highlight the most prominent. As a
side note, it is fairly common for modern tokenisers to also apply normalisation operations
within their procedures [6].

2.2.1. Tokenisation in Deep Models

Deep models learn a vectorial representation for each token seen in training data.
Learnt vectors are stored inside an embedding matrix, a data structure that maps recognised
vocabulary terms to corresponding embeddings. The matrix size is hence dependent on the
number of vocabulary terms and the embedding dimensionality. As mentioned, limited
time and available memory imply the inability to deal with arbitrarily large vocabularies.
These considerations motivate the development of different tokenisation techniques aimed
at reducing the vocabulary size, minimising, at the same time, the number of unrepresented
words. The latter are denoted as out-of-vocabulary (OOV) words, and are the central

Information 2022, 13, 83 6 of 39

weakness of word-level models; these lead to unknown tokens at test time, which are not
acceptable for most NLP tasks.

In pre-tokenisers, due to the fact that a representation is learnt for every word in the
training corpus, related words like derivations and inflections (e.g., “snowboarding” and
“snowboard”) are considered distinct, forcing the model to learn redundant encodings
for each of them. Considering that the number of learnable parameters of such models
is linearly dependent on the number of distinct words in the corpus, this issue may lead
to unmanageable space and time requirements. Conversely, character-level tokenisation
would imply a vocabulary set composed of all single characters in the corpus; this results in
a minimal vocabulary, at least for alphabetical languages. While this strategy reduces mem-
ory and time complexity with respect to word-level tokenisation, it makes it much harder
for the model to learn meaningful token representations. For instance, it is much harder to
learn meaningful representation for the character “s” than it is for the word “snow”.

Since both of these simple strategies are not entirely satisfactory, most models employ
hybrid techniques that segment words in sub-words. The general principle is that frequently
used words should not be split into smaller words, but rare words should be decomposed
into more meaningful segments. Table 1 summarises the main features of tokenisers
commonly paired with deep neural models, which are presented in the next sections.

Table 1. Overview of modern tokenisation approaches. SentencePiece is included, but should not be
mistaken as a separate algorithm.

Tokeniser Pre-Tokenisation Inference Procedure Language Support

BPE Yes Merge incrementally, keeping
merge if in vocabulary Whitespaced only

WordPiece Yes
Decrementally search for
longest first substring of
words within vocabulary

Whitespaced only

UnigramLM No (instead, creates
common sub-strings)

Uses Viterbi Algorithm to find
which substrings maximise
likelihood

All languages

SentencePiece
(sw package)

Depends on method
utilised

Fast optimised methods for in-
ternal algorithms All languages

2.2.2. Byte Pair Encoding

The strategy that is now considered the breakthrough for sub-word tokenisation is
Byte Pair Encoding (BPE). Originally proposed as a data compression algorithm [10], it was
later adapted for sub-word segmentation (e.g., segmenting “snowboarding” as “snow”-
“board”-“ing”) [11]. When learning a tokenisation, this algorithm iteratively computes the
occurrences of consecutive pairs of vocabulary terms and merges the most frequent one into
a new vocabulary word. When presented with unseen text to tokenise, the same merging
procedure is performed by executing all recorded merges in the order in which they were
performed during training. BPE’s vocabulary is initialised with the set of characters that
appears in the training corpus.

A recent variation of this strategy is used with the GPT-2 [12] and RoBERTa [13]
language models (see Section 5.4.4). In particular, these models utilise byte-level BPE [14],
which applies this procedure to raw bytes rather than characters.

2.2.3. WordPiece

The WordPiece tokeniser [15], initially devised as a solution to Japanese text segmen-
tation problems, implements a data-driven approach for splitting words into sub-words.
It relies on the creation of n-gram-based language models (see Section 3.2) to recognise
recurring syllables, prefixes and word segments in a corpus. Referring to the previous
“snowboarding” example, the tokeniser must learn that “-ing” is a common ending for

Information 2022, 13, 83 7 of 39

verbs, and a word should be likely split before and not after it. Hence, the goal of the model
is the creation of a vocabulary of sub-words, such that the size of the training corpus is
minimal when segmented according to the selected vocabulary. A greedy algorithm is
used to solve this optimisation problem. Again, the initial vocabulary is composed of all
single characters appearing in the input documents. Every successive iteration increases
the vocabulary size by one, selecting the pair of sub-words that maximises the language
model likelihood (hence the greedy nature) and merging them into a new vocabulary term.

The algorithm is stopped when the expected likelihood given by merging falls below a
predefined threshold, or the maximum vocabulary size is reached. Recent approaches such
as BERT [16] use tokenisers based on WordPiece; BERT, in particular, utilises a vocabulary
of 30,000 tokens calibrated on English text.

2.2.4. UnigramLM

Similar to WordPiece, UnigramLM [17] is also based on the usage of language models
to judge sub-word candidates (the name is derived from the fact that it utilises a simple
unigram LM). Differently from Wordpiece, however, UnigramLM goes in the opposite
direction, by initialising to a vocabulary size that is much larger than the count of sub-
words desired (such as all pre-tokenised words and common sub-strings), and proceeds
to iteratively remove them. In every iteration, the expectation–maximization algorithm is
used to prune the lowest probability items, cycling until the vocabulary has reached the
desired size.

Most interestingly, this sort of probabilistic setup results in different possible segmen-
tations, all of which are consistent with the given strings. While the algorithm chooses the
most likely segmentation in practice, it allows a sampling of different tokenisations based
on their probabilities (which are recorded during training), allowing for what is defined
as “sub-word regularisation”, which has been shown to improve results on some tasks.
While UnigramLM is not commonly utilised by itself, it has seen use as a component of
SentencePiece, which we now describe.

2.2.5. SentencePiece

Kudo and Richardson [18] propose some improvements over the previously described
algorithms in a software package called SentencePiece, which contains optimised versions
of the above approaches (though it is often mistakenly assumed to be a separate algorithm).
In particular, all the tokenisers described so far depend on knowing which characters act as
word separators in the corpus; these characters can be language-dependent, and specific
pre-tokenisation procedures can be used to create rules for recognising word boundaries.
SentencePiece removes the dependence on this step by considering text as a raw stream of
characters, including word separators. Additionally, it implements sub-word regularisation
techniques, mainly to improve segmentation for machine translation tasks. XLNet [19] and
XLM-R [20] use SentencePiece to tokenise input data.

3. Projecting into Feature Space

Generally speaking, preprocessing pipelines transform bodies of text into lists of
separated, standardised tokens. From a technical perspective, words are mapped to an
index-based vocabulary, such as to simplify the internal representation of the tokens.
However, tokens (or their index) must still be represented in a form that is digestible by
a machine, i.e., a vectorial form. Many have been proposed over the years; this section
provides an overview of the most popular and effective ones.

3.1. Bag-of-Words

The most intuitive representation can be found in the bag-of-words (BoW). This
approach simplifies bodies of text by considering them as unordered collections of words.
Clearly, this has the disadvantage of ignoring sentence structure and semantic relationships
between sentence elements (as if shuffled inside of a “bag” of words). Nonetheless, despite

Information 2022, 13, 83 8 of 39

its strong assumptions, it has been shown to obtain good results and has seen wide use. In
general, efficient feature extraction can usually lead to strong performances, even when
discarding important but difficult to encapsulate information, which is why this approach
has been utilised extensively in NLP as well as other machine learning fields (where it is
referred to as “bag-of-features”) [21–23].

The original idea behind BoW models is to represent each word as a one-hot-encoded
vector with the same size as the vocabulary. It is immediate to see that this may lead
to size issues, since the vocabulary itself may have a cardinality in the order of millions.
As such, BoW models are usually implemented in conjunction with feature extraction
techniques based on the multiplicity of words, which allows one to maintain a single vector
per document rather than one for each word. For this purpose, term frequency (TF) counts
the number of times that a word occurs within a body of text. When applied to a corpus of
texts, rather than the explicit count, it is common practice to utilise the relative frequency
of a term in the text in relation to other documents. One may also observe that, in very
large corpora, common words, in particular, are inherently less useful (as they appear in all
documents, hence do not help in distinguishing them). Consequently, TF is often weighted
by inverse document frequency (IDF) [24], which lessens the effect of common words by
penalising their overall score (and boosting the one of rarer words).

Depending on the size of the vocabulary, the size of TF-IDF representations may still be
excessively large. To alleviate issues related to time complexity and memory consumption,
it is possible to set a limit to the maximum number of features in the vectors (effectively
pruning low-score words from the vocabulary). Alternatively, it is also possible to utilise a
dimensionality reduction algorithm on the full-sized representations. Although a detailed
description is outside the scope of this review, the general aim of these algorithms is
to find a mapping between these representations and a lower-dimensional, compressed
feature space. Popular methods include Principal Components Analysis (PCA) [25], Linear
Discriminant Analysis (LDA) [26], and non-negative matrix factorization (NMF) [27]. See
Kowsari et al.’s [2] survey for an introduction of these methods.

3.2. Language Models

Language modelling is the task of predicting the likelihood of a string given a sequence
of preceding or surrounding context words—at its simplest, guess the next word in a
sentence. Language models play an important part in more recent, deep learning-based
developments, but their inception much precedes neural networks. N-gram models [28]
are some of the earliest implementations of language models, and work by assigning
probabilities to sequences of words (i.e., sentences). The specific interpretation of this
probability value is task-dependent; intuitively, a higher score is associated with a better-
structured sentence (e.g., a good translation).

While the goal is to assign probabilities to whole sentences, the task is related to
the computation of the probability of an upcoming word, and is framed as such. These
models usually make a simplifying assumption (the Markov assumption): it is assumed
that the probability of an upcoming word only depends on the last n words before it.
The probability value itself can be computed with methods such as Maximum Likelihood
Estimation (MLE) [29], a robust estimation approach used thoroughly in probabilistic
approaches. Notably, the BoW model can be seen as an n-Gram model with n = 1.

3.3. Word Embeddings

While previous methods have focused on capturing the syntactic representations
of words and, in some cases, a small subset of the syntactic relationships that tie them
together in sentences, they critically still lack the capability of capturing their semantic
meaning. A classic example of this issue is represented by word synonyms; though they
are—semantically speaking—the same, these models cannot capture their similarity. When
looking at the feature space, this translates into representations that are orthogonal to each
other, meaning that they are seen as completely different and separate.

Information 2022, 13, 83 9 of 39

In the last decade, researchers have proposed word embeddings as a solution to this
problem. Intuitively, this self-supervised feature learning technique is aimed at learning
a mapping between each piece of text (most commonly words, hence the name) to a n-
dimensional vector of real numbers. An embedding is therefore a vectorial representation,
which is digestible by a machine, but also encodes part of the underlying meaning of
the words. These approaches are based on neural networks, which learn these mappings
through different learning procedures; in general, they are based on the assumption that a
word’s meaning can be extracted from its surrounding words in a sentence (similarly to
language modelling, but focused on the embeddings as individual entities).

Earlier word embeddings are often informally defined as “static”, which can be
attributed to how, in their basic form, they encode words outside of context. Practically
speaking, this means that they do not model polysemy [30] (where an individual word
can have different meanings). The embedding for a word is just one, regardless of how
many meanings it could have; if a word token is particularly polysemous, it is likely that
its embedding will be a combination of its multiple senses.

As an example, consider the word “sound”; as a noun, we may associate this with
something that can be heard, whereas, as an adjective, we can associate it with a description
of something in good condition. However, these are just two of the almost 50 different
meanings that this word can have; based on this consideration, it appears obvious that a
single representation can hardly be effective at representing them all at once. As will be fur-
ther discussed in Section 5.4.7, recent developments have proposed to utilise surrounding
context words in order to differentiate a word’s meaning.

3.3.1. Word2Vec

One of the first popular families of word embedding architectures is to be attributed to
Mikolov et al.’s Word2Vec [31,32]. Their approach utilises shallow neural networks in order
to create a high dimensional vector for each word (though they are much smaller and denser
than, for example, TF-IDF vectors). Word2Vec was first proposed with two architectural
variants: the Continuous-bag-of-words (CBOW) and the continuous skip-gram.

The way in which the CBOW approach learns word representations is to try to predict
a middle word based on its surrounding context words. The reference to bag-of-words
derives from the fact that the order of the context elements is not actually taken into account.
The continuous skip-gram model instead flips the task on its head, as it attempts to predict
the neighbours of a word, given the word itself.

These tasks are clearly hard, and the model is not meant to learn perfectly how to
guess these words; the true aim is not that of predicting the words correctly, but to create
meaningful mappings for words to embeddings [31].

3.3.2. GloVe

Global Vectors for Word Representations (GloVe) [33] represent another popular word
embedding technique. The approach is similar to Word2Vec, though it differs fundamen-
tally by being a count-based model, whereas standard Word2Vec is a predictive model.
While predictive models learn word vectors by minimising the loss between target and
prediction given context words and vector representations, a count-based model essentially
learns semantic similarity between words by explicitly probing the underlying statistics
of the corpus, such as words co-occurrence [34]. The key difference is that Word2Vec only
leverages local information (the context of each word) to obtain word vectors, while GloVe
embeddings are trained by also considering global co-occurrence statistics. Something
that should also be noted is that GloVe models utilise a dimensionality reduction step in
order to handle the large dimensions of the word co-occurrence matrix that it uses in its
calculations. Although compressing representations can arguably lead to a more robust
representation (as it theoretically forces the model to try to preserve the most significant
pieces of information), a bigger advantage comes from the fact that this approach is more
suitable for parallelisation, making it easier to train on more data.

Information 2022, 13, 83 10 of 39

3.3.3. FastText

In the context of static word embeddings, FastText is one of the most novel techniques,
developed by Bojanowski et al. [35]. The main concern addressed by this method is the fact
that its predecessors ignore the morphology of words by assigning a distinct vector to each
word. In FastText, each word is represented instead by a “bag-of-characters n-gram”. For
example, the word “where”, with n = 3 would be represented as:

< wh, whe, her, ere, re >

as well as the complete word as a special sequence.
In terms of architecture, FastText embeddings are trained using a skip-gram architec-

ture. Due to the way in which words are represented, however, the final vector for a word
will be constituted by the sum of its character n-grams. This is beneficial, as it allows it
to generate good word embeddings for rare words—their n-grams will also be shared by
more common words. Most importantly, this also means that FastText is able to handle
OOV words, as long as it has seen its composing n-grams during training. Both GloVe and
Word2Vec are instead unable to handle the case of OOV words.

4. Overview of Shallow Learning Classification Methods

Shallow learning models were, up until recently, the go-to approach for text classifi-
cation. In terms of actual classification algorithms, these methods mostly rely on general-
purpose classifiers that are not specific to this context. The particular challenges presented by
textual data are somewhat “offloaded” to the preceding steps of the TC pipeline (Figure 1),
which consist in the extraction of machine-interpretable features and representations from
documents (i.e., text interpretation).

Figure 1. An overview of the two-step procedure adopted by shallow learning methods.

In this section, we provide a brief overview of TC classification algorithms, which
are usually categorised as shallow learning-based. These methods are built on generic
classification approaches; as highlighted, a large amount of focus is placed on scrupulous
data preparation and feature engineering in order to obtain competitive results. As such,
we only provide high-level concepts for these approaches, and refer to Kowsari et al.’s
work [2] for a more in-depth exploration. Table 2 provides an overview of these methods.

Information 2022, 13, 83 11 of 39

Table 2. Conventional shallow classification techniques.

Model Advantages Disadvantages

PGM

• Methods like Naïve Bayes are easy to im-
plement and train, and faster than most
conventional methods

• Methods like CRFs increase flexibility and
expressive power

• Naïve Bayes has strong assumptions that
do not always work out

• CRFs have higher computational complex-
ity as well as issues with online learning

K-NN
• Non-parametric and fast under the right

conditions
• Formulation easily adapts to multiclass

• Scales unfavorably with high-dimensional
spaces

• The value of k is hard to choose
• Distance function is hard to define for text

SVM

• Can model non-linear decision boundaries
effectively

• Effective in high dimensional spaces
• Robust against overfitting

• Does not produce probabilities, which
must be obtained with expensive cross-
validation procedures

• High number of dimension causes loss of
transparency

• High memory complexity
• Choosing a kernel function is difficult

DT

• Easily models categorical features
• Particularly effective if the decision bound-

aries are parallel to the feature axis
• Fast and easily interpretable

• Extremely susceptible to noise
• Very easily overfits
• Has issues with diagonal decision bound-

aries

LR
• Easy to implement and train
• Does not necessitate re-scaling of features

or fine-tuning

• Can only solve linear problems
• Strong assumption of data points as inde-

pendent

RF
• Fast in comparison to other ensembles
• Reduces the variance of single decision

trees

• Still prone to overfitting
• Difficult to interpret
• Slower inference when compared to single

trees

Ensembles
• Improve robustness and accuracy
• Reduce overfitting

• Training multiple classifiers is expensive
• Difficult to interpret
• Requires careful fine-tuning

4.1. Probabilistic Classification

Probabilistic graphical models (PGMs) have seen broad use thanks to their effective-
ness. Models like Naïve Bayes (NB) [36] are especially popular because of their simplicity,
both in structure and calculation process. The simplicity is derived from its independence
assumption—that is, each feature is assumed to have no influence on the others. The
essence of the Naïve Bayes approach stands in utilising the prior probability of a class
given the features—as observed in the training set—to calculate its posterior probability.
Other PGM models such as hidden Markov models [37] (HMMs) and conditional random
fields (CRFs) [38] have been proposed to encapsulate the sequential nature of textual data
(ignored by the independence assumption of NB).

4.2. K-NN-Based Classification

Text classification based on k-nearest neighbours (k-NN) algorithms [39,40] tackles
the problem differently, by finding the k most similar labelled instances and, in its simplest
iteration, assigning the most common category to the unlabelled instance being classified.
This non-parametric method can be quite fast, since it only needs to calculate the distances
between data points. However, its performance greatly depends on the chosen distance
function, and different functions or even approximations may be needed to deal with large
datasets, where k-NN-based methods’ performance may suffer [41]. Furthermore, the
crucial assumption that similar instances are close in the feature space gradually falters as
the number of dimensions in this space becomes larger and larger (i.e., the infamous “curse
of dimensionality” [42]).

4.3. Support Vector Machines

Support vector machines (SVMs) [43,44] have been historically robust prediction meth-
ods, and have seen success by turning TC tasks into (possibly multiple) binary classification

Information 2022, 13, 83 12 of 39

tasks. In short, SVMs construct an optimal hyperplane in a simple one-dimensional fea-
ture space, such as to separate the two categories belonging to the binary classification
sub-task. To extend to multi-dimensional, non-linear classification, SVMs map their inputs
to a higher-dimensional space, so that they may be able to better separate training cate-
gories. This procedure is referred to as the kernel trick, since the function that maps to this
higher-dimensional space is called a kernel function. Choosing its form and parameters is
fundamental to achieving good performance.

4.4. Decision Trees and Random Forests

Decision trees [45] are some of the earliest and most popular classifiers, based on an
intuitive tree structure learning method that hierarchically decomposes the data space. The
desired result is a tree in which each internal node serves to examine a feature, sending
unlabelled instances towards one of its children, depending on the feature value found.
Leaf nodes will represent specific categories. Although very intuitive, their basic form
can be sensitive to small perturbations in data and overfitting. Random forests [46,47],
collections of decision trees trained using random subsets of features, have achieved much
better performance and are more used in practice.

4.5. Logistic Regression

One of the earliest methods for classification worth citing is that of logistic regression
(LR) [48]. LR is a linear classifier, which predicts probabilities over classes by attempting to
discern which features are most useful to discriminate examples. Its base formulation is
best suited to binary classification tasks, but it can be extended to the multinomial case [49]
by utilizing a formulation that includes (usually) the softmax function, or by creating an
ensemble of multiple binary classifiers in a one-vs.-rest scheme.

4.6. Ensemble Learning

Integration-based (or ensemble learning) methods are also another noteworthy men-
tion; these approaches aggregate the results of multiple algorithms, such as to obtain better
performance and interpretation. These include various subcategories, the most popular
of which consist of bagging and boosting. Bagging [50] (also referred to as bootstrap
aggregation methods) averages the output of multiple classifiers without strong depen-
dencies, training each of them separately on a subset of the training data (sampling with
replacement). This procedure improves accuracy and stability, and random forests are
the most common example of such an approach. Boosting [51] instead sequentially trains
weak classifiers in order to obtain a strong ensemble. Each weak classifier “re-weights” the
data points based on its own accuracy, giving greater weight to misclassified examples and
lower ones to correct predictions. Thus, its successors will know to focus on the “hard”
data points that were previously wrongly classified. A classical example of boosting is
given by AdaBoost [52].

4.7. Neural-Based Methods

Even though, with regards to neural networks, deep learning methods are undoubt-
edly the most popular approaches in the NLP field as of now, shallow architectures have
been used for TC tasks with competitive results. As an example, the FastText classifier is
based on one such architecture; this method extracts n-gram features (based on the embed-
dings extracted as previously explained in Section 3.3.3), averages them, and then feeds
them to a linear classifier (e.g., with a softmax output, if we are in a multiclass scenario) [53].
Another domain-specific shallow neural method is GHS-NET [54], which combines a CNN
and GRU layer to classify biomedical texts into a predefined set of disease codes. The
model achieved competitive results on several multilabel biomedical benchmark datasets.

Information 2022, 13, 83 13 of 39

4.8. Summary

While it covers the most popular approaches, the list of methods showcased in the
previous subsections is not an exhaustive representation of all existing conventional clas-
sification models. What is perhaps most notable about these methods, however, is that
they have arguably received the most attention in terms of improvements and updated
iterations even in recent years, which is why we chose to highlight them. In particular,
ensemble meta-algorithms provide an excellent way of utilising “weaker” classifiers and
still obtain good results.

5. Deep Learning Methods

One of the limiting factors of classical models is their reliance on explicit feature
extraction procedures. Good feature engineering requires extensive domain knowledge,
which in turn, makes it difficult to generalise approaches to new tasks. Furthermore,
manual feature crafting does not utilise the full potential of large amounts of training data
because of how features are predefined rather than discovered.

As a consequence, the development of word embeddings marks the beginning of a
paradigm shift towards approaches able to leverage vast amounts of data. Deep learning
approaches have gained popularity thanks to their ability to capture meaningful latent
information in the training data (depicted in Figure 2); in the case of NLP, such architectures
are able to create semantically meaningful representations of text. Recently developed
contextualized versions of word embeddings have obtained outstanding results in classifi-
cation, even when paired with very simple classifiers. An informal yet intuitive explanation
of this result is that understanding the content of a body of text is the most important step
in the classification pipeline, much like a person would likely be able to label a piece of text
if they understood what it meant.

Figure 2. Overview of the training procedure used with deep learning methods.

5.1. Multilayer Perceptrons

Simpler architectures, such as multilayer perceptrons (MLPs), bridge the gap between
shallow and deep methods. These are some of the most basic neural network designs,
yet they are the foundation of the first word embedding techniques, while also obtaining
excellent results as stand-alone classifiers. MLP models such as these usually treat input
text as an unordered bag-of-words, where input words are represented through some fea-
ture extraction technique (like TF-IDF or word embeddings). For example, deep averaging
networks (DAN) [55] are able to perform comparably or better than much more sophisti-
cated methods [3], despite ignoring the syntactic ordering of words. Paragraph-Vec [56]
tries instead to incorporate such ordering and the contextual information of paragraphs by
utilising an approach that is comparable with CBOW [57], leading to better performances
than previous methods.

Information 2022, 13, 83 14 of 39

5.2. Recurrent Neural Networks

The most influential architectures of this period of time were, however, recurrent
neural networks (RNNs). RNNs are a popular choice for any type of sequential data;
these architectures are aimed at extracting information regarding the structure of sentences,
thus capturing latent relationships between context words. The input of an RNN model
is usually a sentence represented by a sequence of word embeddings, with its words
entering the model one at a time. Long short-term memory networks (LSTMs) are the
most popular variant of RNNs, as they address the gradient vanishing or exploding
issues faced by standard RNN architectures [58]. Many TC approaches using LSTMs
have been proposed, and we mention a few. Tree-LSTM [59] extends LSTMs to tree
structures, rather than sequential chain structures, arguing that trees provide a more
suitable representation for phrases. TopicRNN [60] integrates the capabilities of latent topic
models to overcome the difficulties of RNNs on long-range dependencies. Both of these
approaches exhibit improvements on baselines when applied to TC tasks (in particular,
sentiment analysis). Howard and Ruder [61] propose the Universal Language Model
Fine-tuning (ULMFiT), a recurrent architecture based on an LSTM network trained using
discriminative fine-tuning, which allows the tuning of LSTMs using different learning
rates in each layer. The Disconnected Recurrent Neural Network (DRNN), introduced by
Wang [62], demonstrates the benefits of boosting the feature extraction capabilities of RNNs
by incorporating position–invariance—a property attributed to CNNs—into a network
based on gated recurrent units (GRU) [63]. In both cases, the proposed enhancements
allow surpassing state-of-the-art results on several benchmark datasets. The introduction
of bidirectionality in RNNs has also been proven beneficial [64], and has been applied
to LSTMs, with notable results such as ELMo [65], a language modelling approach that
relies on bidirectional LSTMs, and is one of the first milestones in the development of
contextualized word embeddings.

5.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) are commonly associated with computer
vision applications, yet they have also seen applications in the context of NLP and TC
specifically [66]. The easiest way to understand these approaches in this context is to
examine their input, which also relies on word embeddings. While, generally speaking,
RNNs input the words of a sentence sequentially, sentences in CNNs are instead presented
as a matrix in which each row is the embedding of a word (therefore, the number of
columns corresponds to the size of the embeddings). To make a comparison, in image-
related tasks, convolutional filters usually slide over local patches of an image across two
directions. Instead, filters in text-related tasks are most commonly made as wide as the
embedding size, so that this operation only moves in directions that make sense sentence-
wise, always considering the entire embedding for each word. In general, the main upside
associated with CNNs is their speed and how efficient their latent representations are.
Conversely, other properties that could be exploited while working with images, such as
location invariance and local compositionality [67,68], make little sense when analysing
text. Many approaches have been proposed, one of the most popular being TextCNN [69],
a comparatively simple CNN-based model with a one layer convolution structure that is
placed on top of word embeddings. More recently, the interest in CNN applications to TC
tasks has been renewed thanks to the introduction of temporal convolutional networks
(TCN) [70–72], which enhances CNNs with the ability to capture high-level temporal
information. For instance, Conneau et al. [73] propose the Very Deep CNN classifier, a 29-
layer CNN with skip connections, alternating temporal convolutional blocks to max pooling
operations. They achieve state-of-the-art performance on reported TL and SA datasets.
Duque et al. [74] modify the VDCNN architecture to lessen the resource requirements and
fit mobile platform constraints, while retaining most of its performance.

Information 2022, 13, 83 15 of 39

5.4. Deep Language Models for Classification

In this section, we outline the theoretical notions that lead to the development of
current deep language model-based approaches. Then, we proceed to discuss some of these
models in more detail. Currently, very few other models are able to compete performance-
wise with such classifiers (among them, we discuss the particularly interesting graph-
based models).

5.4.1. RNN Encoder–Decoders

For many years, networks based on RNN-like architectures have dominated sequence
transduction approaches. Researchers started pushing the boundaries of TC through
recurrent language models (evolutions of classic word embedding techniques) and RNN-
based encoder–decoder architectures [63,75] (Figure 3).

RNN encoder–decoder architectures are particularly important in this regard. As
an example, consider a machine translation task; the input sequence may be a sentence
in English, and the output sequences its translation in a different language. In this case,
each word of the input sentence is fed to the encoder sequentially, such that at time step
t, the model receives the new input word and the hidden state at time step t − 1. The
input is hence consumed sequentially, and the dependence on the output of the previous
step should, in theory, allow RNNs to learn long- and short-term dependencies between
words. The output of the encoder is the compressed representation of the input sequence,
called “context”. The decoder then proceeds to interpret the context and produce a new
sequence of words (e.g., a translation in a different language) in a sequential manner,
where every word depends on the output of the previous time step. With encoder–decoder
networks, semantically and syntactically meaningful information is implicitly captured
during the encoding phase (the context), which can then potentially be used for tasks such
as text classification.

The main issue with this approach is that the encoder needs to compress all relevant
information in a fixed-length vector. This was found to be problematic, especially for
longer sentences, and it was reported that the performance of a basic encoder–decoder
deteriorates rapidly as the length of an input sentence increases [76]. In addition, recurrent
models have inherent limitations due to their sequential nature. Sequentiality precludes
parallelisation, which means higher computational complexity. Longer sentences can run
into memory constraints and, more crucially, are seen as RNNs’ true bottleneck because of
how the network tends to forget earlier parts of the sequence, making for an incomplete
representation (an issue linked to the vanishing gradient problem) [77].

One of the solutions devised to solve the limitations of recurrent architectures was that
of the attention mechanism [76,78]. This mechanism would eventually become an integral
part of the Transformer architecture, which represents one of the most important milestones
in the field of NLP. We denote the particularly effective language models of this era as
“Deep” (deep language models, DLM for short), such as to distinguish them from earlier
approaches and highlight their reliance on deep architectures. As a matter of fact, depth in
these architectures has been proven to be extremely beneficial to their performance, while
LSTM-based models were unable to gain much from a large increase in their size [79].

5.4.2. The Attention Mechanism

Attention was initially utilised as an enhancement to various architectures, and was
meant to allow the learning process to focus on more relevant parts of input sentences
(i.e., give them “attention”). As previously stated, seq2seq tasks have been traditionally
approached with RNN-based encoder–decoder architectures, where both the encoder and
the decoder are stacked RNN layers.

Information 2022, 13, 83 16 of 39

Figure 3. Unfolding of encoder–decoder architecture based on RNN.

The concept of attention was introduced by Bahdanau et al. [76] to mitigate this
problem in neural machine translation tasks. The authors argued that, by propagating
information about the complete input sequence, the decoder can discern between input
words and learn which of them are relevant for generating the next target word. Formally,
the attention mechanism relies on enriching the input context (zi) of each decoder unit, with
the hidden state of the encoder hi (also called “annotation”) that carries information on the
whole input sequence. Figure 4 highlights the architecture of a simple encoder–decoder
recurrent model enhanced with the attention mechanism. Equation (1) describes the
computation of the attention score between the input word at position j and the generated
word i. This score can be seen as an alignment score, measuring how well the two words
match. In the equation, si−1 denotes the previously generated word.

αij = so f tmax(attention(si−1, hj)) (1)

The context of each decoder unit is then computed as in Equation (2), by multiplying
the annotations of every word position (hj) with the attention score generated by the
attention model.

zi =
N

∑
j=1

αijhj (2)

The mechanism described here is generally addressed as “additive attention”. While
there are different approaches to the integration of the attention mechanism in seq2seq
architectures (content-based, dot-product, etc.), the goal remains to learn an alignment score
that measures the relative importance between words in the input and output sequence.

Applications of attentive neural networks are now widespread, even beyond the bound-
aries of natural language processing, where attention initially proved its value. Notable
examples of application in the text classification domain are hierarchical attention networks
(HAN) [71,80]. These methods rely on the application of attention both at the word level, while
encoding document sentences, and at the sentence level, roughly encoding the importance of
each sentence with respect to the target sequence. Recently, Abreu et al. [71] have proposed a
hybrid model (HAHNN) resorting to attention, along with temporal convolutional layers
and GRUs.

Information 2022, 13, 83 17 of 39

Figure 4. Unfolding of encoder–decoder architecture with attention mechanism.

However, attention has been since used as a strong foundational basis rather than just
an added augmentation. The Transformer architecture is based on this idea, retaining a
well-known encoder–decoder structure, but making no use of recurrence; instead, depen-
dencies are drawn between input and output through the attention mechanism alone [81].
Transformers have been shown to lead to better results, while also gaining much in speed
because of them being highly parallelisable.

5.4.3. The Transformer Architecture

Vaswani et al. [81] introduced the Transformer architecture, a novel encoder–decoder
model that allows one to process all input tokens (e.g., words) simultaneously, rather than
sequentially. Input sequences in Transformers are presented as a bag of tokens, without
any notion of order. To learn dependencies between tokens, the Transformer relies on
what is defined as a “self-attention” mechanism. Additionally, a special encoding step
performed before the first layer of the encoder ensures that the embeddings for the same
word appearing at a different position in the sentence will have a different representation.
This step is called positional encoding, and its purpose is injecting information about the
relative positioning between words, which would otherwise be lost.

The key component of this architecture is the self-attention layer, which intuitively
allows the encoder to look at other words in the input sentence whenever processing one
of its words. Stacking multiple layers of this type creates a multi-head attention (MHA)
layer, as shown in Figure 5. The individual outputs are then condensed in a single matrix
by concatenating the head outputs and passing the result through a linear layer.

Encoder

In the encoding part, the input embeddings are multiplied by three separate weight
matrices (Equation (3)) to generate different word representations, which the authors
name Q (queries), K (keys) and V (values), following the naming convention used in
information retrieval.

Q = X ·WQ, K = X ·WK, V = X ·WV (3)

Information 2022, 13, 83 18 of 39

WQ, WK, WV ∈ Rdim×dk are the learned weight matrices, X ∈ RN×dim are the word
embeddings for the input sequence and Q, V, K ∈ RN×dk contain the word representations.
The product of the query and key matrices (Q and K) is taken to compute the self-attention
score. With respect to the general attention mechanism introduced in the previous section,
this can be seen as the alignment score between each word and the other word in the
sentence, which depends on the relative importance between them. Moreover, the authors
decided to use scaled dot-product attention instead of additive attention, mainly for effi-
ciency reasons. In order to improve gradient stability, the score is divided by the square root
of the representation length for each word, and a softmax is used to obtain a probability
distribution. Eventually, the representation of each word is obtained by multiplying the
scaled term with the V matrix containing the input representation. This operation is defined
in Equation (4).

Z = Attention(Q, K, V) = so f tmax
(

Q · KT
√

dk

)
·V (4)

The Transformer multi-head self-attention layer performs these operations multiple
times in parallel. According to the authors, this was done to extend the diversity of
representation sub-spaces that the model can attend to. The output of the attention heads
is concatenated and passed through a linear layer to obtain the final representation that
condenses information from all the attention heads. This representation is then summed
with residual input, normalised and passed to a feed-forward linear layer.

Figure 5. The multi-head attention layer used in the Transformer architecture.

Decoder

During the decoding phase, every decoder layer receives the output of the encoder
(the K and V matrices) and the output of the previous decoder layer (or the target sequence
for the first one). The key difference between the encoder and decoder layers is the
presence, in the latter, of an additional MHA layer, applied to the K and V matrices from
the encoder. Additionally, self-attention layers are modified into what are defined as
“Masked” self-attention layers. During training, the Transformer decoder is initially fed
the real target sequence—this is done to remove the necessity of having to be trained in
an autoregressive fashion, hence becoming subject to the same bottleneck as RNNs (a
procedure called “teacher forcing”). On the other hand, at inference time, the decoder is
indeed autoregressive, since there are no target data and the generation of the next word
necessarily depends only on the previously generated sequence. While predicting the token
at position i, the masked MH self-attention layer ensures that only the self-attention scores
between words at position [1, i− 1] are used. This is done by adding a factor M to the word
embeddings in Equation (5). M is set to -inf for masked positions, and 0 otherwise. The
exponential in the softmax operation will zero the attention scores for masked tokens.

Z = MaskedAttention(Q, K, V) = so f tmax
(

Q · KT + M√
dk

)
·V (5)

Information 2022, 13, 83 19 of 39

This allows one to train the model in a parallel fashion, while ensuring that the model
behaves consistently between training and inference time (without “cheating” at training
time by looking ahead). The additional MHA layer of the decoder works like the one
previously described, with the only exception being that the query matrix Q is the output
of the preceding masked MHA layer. Residual connections and layer normalisation are
also used in the decoder after each attention and feed-forward layer.

5.4.4. BERT and GPT

Recent DLMs are built upon and expand the Transformer architecture. The perfor-
mance achievable on various NLP tasks, such as TC subtypes, has been boosted by what
is considered the new standard in NLP transfer learning. This consists of utilising a
pre-trained language model developed on generic textual data, which are subsequently
specialised for the task at hand through a “fine-tuning” process.

The fine-tuning process consists of the adaptation of a model to a downstream task
(i.e., classification). Classifiers are often just a small segment of the overall algorithm, yet its
training procedure usually affects the pre-trained representation of the DLM as well. This is
meant to specialise the overarching pipeline on the domain of the task, and usually leads to
better results. Technically speaking, the internal representation of the pre-trained language
model receives minimal changes from the fine-tuning process, which is a desirable outcome,
as otherwise the DLM would incur an excessive loss of generality.

GPT

Although the original Transformer architecture is well suited for language modelling,
researchers have argued that, for some tasks, it may learn redundant information in its
encoding and decoding phases. It has been suggested that limiting the architecture to
either encoders or decoders may result in equivalent performance and lighter models [82].
According to this principle, the Generative Pre-trained Transformer (GPT) [83] utilises a
decoder-only architecture, which stacks multiple Transformer–decoder layers. The decoder
block of a Transformer is autoregressive (AR), as it defines the conditional probability
distribution of a target sequence, given the previous one. Simply put, GPT’s pre-training
task is that of next word prediction. Precisely because it is an autoregressive model, the
GPT architecture produces a language model of which the predictions are only conditioned
by either its left or right context (GPT’s original architecture is left-to-right). This means
that it is not bidirectional (a property that, for instance, BiLSTMs possess).

The decoder-only architecture has the additional benefit of performing better than
traditional encoder–decoder models when dealing with longer sequences of text, making it
particularly suitable for generative tasks (e.g., abstractive text summarisation and genera-
tive question answering). The authors of GPT provide adaptations for it to be used in a
variety of downstream tasks, including classification.

BERT

Bidirectional Encoder Representations from Transformers (BERT) [16] closely followed
the GPT model, and traded its auto-regressive properties in exchange for bidirectional
conditioning. BERT’s architecture is, in contrast with GPT, a multi-layer bidirectional
Transformer encoder. BERT’s training objective is also different, as it follows a “masked
language model” (MLM) procedure. A percentage of the input is masked and, rather
than predicting the next word, the network tries to predict masked tokens. This training
strategy is crucial to achieving bidirectional conditioning, and allows the model to learn
the relationship between masked words and their left and right context [84]. BERT is also
trained on a secondary task, namely next sentence prediction (NSP), in which it is presented
with two sentences and must guess in a binary fashion whether the second sentence follows
the first. This task is meant to allow the model to better learn sentence relationships.

Most interestingly, the adaptation of BERT to downstream tasks is very simple. In fact,
outstanding results have been obtained in classification by simply fine-tuning a model that

Information 2022, 13, 83 20 of 39

passes the representations obtained by the encoders through a single-layer, feed-forward
neural network [16].

5.4.5. Recent Transformer Language Models

Since the NLP landscape is constantly evolving, we deem it useful to provide a
selection of a few recently proposed language models, and outline their main contributions
and differences with previous methods. Most recent models build on the Transformer
architecture or introduce variations on the BERT and GPT training approaches. Many are
general language models jointly trained on multiple NLP tasks, and are evaluated on the
GLUE [85] multi-task benchmark.

Direct Successors

BERT and GPT were just the starting point for the development of many variations and
improvements, of which we cite the most influential. Robustly Optimised BERT Pretraining
Approach (RoBERTa) [13] was introduced by Liu et al. as a successor of BERT. It improves
the training procedure by introducing dynamic masking (masked tokens are changed
during training epochs), while also removing the next sentence prediction task. The GPT
model has also had successors, the most popular being the GPT-2 [12]. The development of
GPT-2 models was mostly in terms of data utilised and the scale of the models (a trend that
continued in GPT-3 [86]).

XLNet

As with GPT, XLNet [19] is an autoregressive model. More specifically, it is a gener-
alised autoregressive pre-training approach, which calculates the probability of a word
token conditioned on all permutations of word tokens in a sentence. To maintain infor-
mation about the original relative ordering of words in the midst of all the permutations,
XLNet borrows the idea of attention masking, by which, during context calculations, it
masks tokens outside of the current context. As an example, consider an input sequence
with four tokens and its permutation P([1, 2, 3, 4]) = [3, 2, 4, 1]. The first element has no
contextual knowledge, and, to reflect this, the attention mask should forbid looking at the
other sequence positions (producing mask [0, 0, 0, 0]), while the second element should
know about the first (namely, that it should be in position 3, giving mask [0, 0, 1, 0]). XLNet
also introduces a two-stream self-attention schema to allow position-aware word prediction.
In other words, this grants the model the ability for token probabilities to be conditioned
on their position index without trivially knowing if the word should be part of the sentence
or not. XLNet’s approach allows it to overcome the lack of bidirectionality of previous
autoregressive models. Furthermore, this approach addresses the downsides of masked
language modelling (namely, the discrepancy between pre-training and fine-tuning tasks),
as it does not rely on data corruption. XLNet has achieved state-of-the-art performance on
many TC benchmarks in English, as will be showcased in Section 6.3.

T5

The Text-To-Text Transfer Transformer (T5) [87] is a unified text-to-text model trained
to solve a variety of NLP tasks. While general multi-task language models are mostly
trained using task-specific architectural components and loss functions, T5’s authors build
a unified learning framework that casts every NLP problem as a text-to-text problem. This
allows them to use the exact same model, loss function and hyperparameters to produce a
single, unified multi-task model. The architecture of T5 closely follows the original Trans-
former architecture. Differences from the original implementation are limited to the layer
normalisation (simplified by not using additive bias), the usage of dropout on the linear
and attention layers, and a relative positional encoding strategy. Here, word embeddings
are altered depending on the alignment between the “key” and “query” matrices computed
by the multi-head attention layer, instead of using a fixed embedding for every position. T5
is pre-trained on the C4 English corpus—the Colossal Clean Crawled Corpus, derived from

Information 2022, 13, 83 21 of 39

the Common Crawl—using a masked language modelling objective (similarly to BERT) that
masks 15% of the tokens in every sentence. Fine-tuning is performed on all tasks at once:
all datasets—including the ones for translation, question answering, and classification—are
concatenated in a single dataset using a sampling strategy to ensure a balance between
samples from each tasks. Differently from BERT, which has an encoder-only architecture, T5
uses the same causal masking strategy used in the Transformer decoder, where the attention
output is masked to prevent the model from attending to subsequent positions. T5 has had
a recent successor, T0 [88], which utilises the same model, but pushes the boundaries of
transfer learning towards zero-shot generalisation further.

DeBERTa

The Decoding-Enhanced BERT with Disentangled Attention [89] is another language
model based on the Transformer architecture. As with BERT, the model is pre-trained using
a MLM objective, and it is fine-tuned using adversarial training. This strategy improves its
generalisation ability and its robustness to adversarial examples. The architecture intro-
duces a disentangled attention layer. Unlike the Transformer, where positional encoding
is added to the word content embeddings to create the input representation, DeBERTa
encodes words and positions separately. Attention scores for every position are computed
using disentangled matrices and explicitly depend on the word content and the word
relative position in the sentence. The decoder is also modified to consider word absolute
positions when predicting a masked token.

ByT5

ByT5 is an adaptation of the T5 model able to process raw bytes of text, instead of
tokens. Models like BERT rely on a separate tokenisation step to chunk documents into
a vocabulary of sub-words. This translates into heightened memory constraints, since
large vocabularies require massive embedding matrices with a large number of parameters.
Additionally, the authors argue that sub-word tokenisation is not robust in handling typos
and lexical variants, and reducing all unknown words to the same out-of-vocabulary
token prevents the model from distinguishing between different OOV situations. Instead
of processing words or sub-words, ByT5 is fed UTF-8 bytes without any preprocessing
operation. To represent byte-level embeddings, the model only needs a dense matrix of
256 embeddings with additional embeddings for the special tokens used to pad sequences
and to signal the end of a sentence. In this case, there is no need to handle the OOV
case, since all possible bytes are represented. Furthermore, removing the dependency on
tokenisation allows for the simpler training of the model on multilingual corpora, since
there is no need for language-specific tokenisation strategies. ByT5 uses a slightly modified
T5 architecture with a heavier encoder, which is three times the size of the decoder. The
authors empirically find that a bigger encoder works better for byte-level language models.
The model is pre-trained with a “span corruption” self-supervised objective, where the
model learns to reconstruct sequences of 20 bytes that are masked in the input sentences.

ERNIE 3.0

ERNIE [90] enhances the language models pre-training phase integrating knowledge-
graph information. As with other language models, ERNIE is trained using different
unsupervised tasks, including MLM, sentence reordering, and sentence distance. The
latter is a variation of the NSP task, where the model is asked to predict whether two
sentences are adjacent, within the same document (but not adjacent), or from different
documents altogether. In order to integrate knowledge graph information in the training
phase, the tasks of knowledge masked language modelling and universal knowledge–text
prediction are added. The former objective is used to let the model learn higher-level entity
representations, for instance by masking the name of a character (e.g., “Harry Potter”).
The latter strategy extends the former by explicitly embedding a knowledge graph. The
model is provided with a knowledge graph representation of the sentence (in the shape

Information 2022, 13, 83 22 of 39

of a triple) and a sentence, both with masked tokens, and must use this information to
fill in the blanks. According to the authors, these tasks allow the model to gain a lexical
understanding of words, while traditional language models only capture more global
syntactical and semantic knowledge. ERNIE is composed of two modules: a universal
representation module, meant to capture shared word representations, and a task-specific
module pair, one for natural language understanding tasks, and the other for natural
language generation tasks. Both modules use the Transformer-XL architecture [91], which
differs from the original Transformer, mainly for the addition of an auxiliary recurrence
module to aid in the modelling of long sequences.

FLAN

The Fine-tuned Language Net (FLAN) [92] explores the usage of instruction fine-
tuning to enhance the zero-shot generalisation ability of a general pre-trained language
model (similarly to T0). Zero-shot learning aims at giving models the ability to solve novel
tasks—unseen during training—at inference time. To do so, the authors gathered data from
62 NLP datasets and 12 different tasks—including language inference, translation, question
answering, text classification—and aggregated them in a mixed multi-task dataset. A maxi-
mum of 30,000 samples are selected from each dataset in order to limit task imbalance. From
the final dataset, samples are enriched with instruction templates, defined as descriptions
of the task that the model should solve expressed in natural language. For instance, the
sentence “classify this movie review as positive or negative” can be used to ask the model
to perform binary classification. To increase diversity, 10 different templates are manually
created for each dataset, some of them asking the model to perform collateral-derived
tasks (e.g., asking for a movie classification from an SA task). FLAN uses a Transformer
decoder-only architecture, similarly to GPT, with 137 billion parameters. The model is
pre-trained on a collection of English documents that includes a wide variety of textual
data, ranging from Wikipedia articles to computer code. This pre-trained model is then
used for the instruction-tuning procedure.

5.4.6. Graph Neural Networks

Recent developments in the field of AI are exploring the application of neural networks
to graph representations [93]. In this context, graph neural networks (GNNs) [94,95] are
architectures that utilise such structures to capture the dependencies and relations between
nodes. Well-established approaches are being generalised to arbitrarily structured graphs,
most notably CNNs [96,97].

Successful Approaches

Representations are based on heterogeneous graphs in which nodes are both words
and documents have seen wide success; TC is thus cast as a node classification task for
document nodes. TextGCN [98] utilises a graph convolutional network (GCN) on text
mapped onto a graph structure. Words are connected to other words as well as documents,
but there are no inter-document relations (documents are able to indirectly exchange
information through multiple convolutional layers). Weights of document–word edges
are based on word occurrence measurements (usually TF-IDF), while word–word edges
are weighted on word co-occurrence in the whole corpus (usually variations of point-wise
mutual information [99]). The training procedure learns word and document embeddings,
and is therefore connected to text embedding techniques (such embeddings are learnt
simultaneously in this case). On this account, it is easy to see how graph architectures can
also be integrated with deep language models. BertGCN [100], for example, trains a GCN
jointly with a BERT-like model, in order to leverage the advantages of both pre-trained
language models and graph-based approaches. Document nodes are initialised through
BERT-style embeddings and updated iteratively by the GCN layers. Another example is
the MPAD (Message Passing Attention Network for Document Classification) [101], which
proposes the application of the message passing framework to TC. The nodes represent

Information 2022, 13, 83 23 of 39

unique words and the directed edges encode the text flow and word co-occurrence statistics.
Nodes and edges information is iteratively aggregated and combined using GRUs to update
word representations.

Transductive Nature

Many GNN architectures include unlabelled test document nodes in the training
procedure, making them inherently transductive. Transductive learning [102] can be
useful because of how it can allow label influence to be propagated to unlabelled test data
during training, notably removing the need for modelling the relation between data and
target labels. Often, the data required for comparable performances are fewer than that
for traditional inductive learning approaches. However, this also has the downside of
not being able to quickly generate predictions for unseen test documents that were not
included in the training procedure (i.e., online testing). Furthermore, building a GNN for a
large-scale text corpus can be costly due to memory limitations [103].

Weaknesses and Solutions

Reducing the modelling cost has been an important topic of discussion. Huang et al. [103],
for example, change the model training strategy, opting to build graphs for each input text
and utilizing global parameter sharing to reduce the burden, while maintaining global
information. Methods such as SGC [104] work instead on reducing model complexity;
in particular, SGC repeatedly removes nonlinearities between consecutive layers in deep
GCNs, collapsing the resulting function into a single linear transformation. The authors
argue that the expressive power of GCNs originates from graph propagation rather than
nonlinear feature extraction, and exhibit comparable or even superior performances to
other methods. Related to such nonlinearities is the phenomenon of over-smoothing, which
suggests that increasing the number of layers in GCNs causes the node representations to
converge to a same value (and become hence indistinguishable) [105]. While removing such
non-linearities may certainly help in this regard, recent research has developed techniques
aimed directly at combatting this phenomenon. For example, GCNII [106] extends the
vanilla GCN model with initial residual and identity mapping. Initial residual connections
are related to the idea of residual connections in residual networks, but modify this concept
by adding a skip connection to the input layer instead (i.e., the initial representation), while
identity mapping (also borrowing from residual networks) adds an identity matrix to
the weight matrix. They show great improvements on the over-smoothing problems and
state-of-the-art results in TC tasks. SSGC [107] also addresses this problem, by combin-
ing techniques from previous works—namely, SGC and a specialised graph convolution
filter [108,109].

Summary

While this section is merely a brief introduction to GNNs with a few notable exam-
ples, they are among the few architectures able to compete with deep language models in
recent years. They are of particular interest both, because of their excellent performance—
sometimes even achieving state-of-the-art results—but also because of how they can per-
form quite well in low label rate datasets [98], a characteristic which can be attributed to
their transductive nature.

5.4.7. Contextualisation of Word Embeddings

As anticipated previously, recent language models have the extremely valuable ca-
pability of incorporating context into their representations of text. This means that these
representations, in principle, are effectively able to understand and distinguish polysemous
words by looking at the body of text that they appear in, as well as containing complex
characteristics of word use (its syntax and semantics). A practical difference with the earlier
word embeddings described in Section 3.3 is that, while older embeddings were “static”
and could therefore be extracted as individual entities, contextualised embeddings require

Information 2022, 13, 83 24 of 39

their originating language model to be generated. Such language models are only able to
understand words in context—they are not meant or suited for isolated words.

Contextualised embeddings have been proven to be “very contextual”, meaning that
they can adapt well to the different semantic significance of words [110]. Furthermore,
researchers have extracted word representations from the lower hidden states of BERT-
like language models, and managed to create static embeddings of much higher quality
than the ones created by static embedding procedures, further proving the benefits of this
learning process.

Contextualised embeddings were not a novelty introduced by Transformers; multi-
ple research contributions pushed on their development [111,112]. As a prime example,
ELMo [65] introduced a bidirectional LSTM architecture trained for language modelling
(i.e., next word prediction) that also produced contextualised embeddings. Due to its
recurrent structure, however, it struggled with long-term dependencies.

5.4.8. Challenges of Language Models

One of the main challenges posed by very deep language models is their size. This
depth incurs a huge number of parameters that must be loaded into memory, an operation
that is not exclusive to the training phase. In practice, this might be an issue when pre-
trained models are used for inference under low-latency constraints, or fine-tuning in lower
resource settings.

Solutions to this problem have been devised in order to create more compact models
(i.e., with fewer parameters). A successful approach to this end is knowledge distilla-
tion [113]. In this process, the larger, original model is utilised as a “teacher” in the creation
of the more manageable “student” sub-model. The key idea of distillation is that it should
be easier to train a student model to mimic the output distribution (i.e., the knowledge) of
a bigger teacher model, with enough capacity to learn a concise knowledge representation
from raw data. Thus, the probability scores assigned by the teacher to input samples are
used as predictive targets for the student, allowing it to encode the teacher knowledge in
a compressed form, without having to learn it from scratch. DistilBERT [114] leverages
this to reduce the size of BERT models by up to 40%, while retaining 97% of its effective-
ness. Much in the same way, TinyBERT [115] is also based on knowledge distillation, but
extends it to the task-specific learning stage. This model is also able to retain most of its
teacher’s performance.

On the other hand, seeing that such approaches still require a teacher model, there
have been methods that propose tackling the issue from a different angle. ALBERT [116], for
example, introduces parameter reduction techniques to reduce memory consumption and
increase the training speed of BERT models. ELECTRA [117] introduces token detection, a
more sample-efficient pre-training task, in place of masked language modelling. This task
corrupts the input by replacing tokens with plausible alternatives rather than masks, and
changing the learning task to a discriminative one, where the model must identify whether
each token in the corrupted input had been artificially replaced or not. In particular,
this reframing has proven to be effective in models with fewer parameters, increasing
their viability.

In summary, downsized models such as these are essential in practical applications
of DLMs. It is worth noting that, whenever these alternatives are not available, it may
be possible to perform a fine-tuning procedure without involving the language model in
the learning process (i.e., “freezing” the base model’s weights). This would be similar to
utilising the word embeddings contained in the LM in their agnostic state (contextualised,
but not specialised). The resource requirements are hence reduced, though this shrinks the
learning capacity of the system.

6. Experimental Performance Analysis

We report, in this section, the performance metrics of a selection of machine learning
models on a number of TC tasks among those introduced in Section 1.1. Moreover, we

Information 2022, 13, 83 25 of 39

introduce two new multilabel datasets and showcase results for a selection of TC approaches
on them. To test models on a TL task, we introduce a new public dataset based on Wikipedia
articles labelled with their topics. We also perform tests on the RCV1 dataset as a NC
representative, which is available freely for research purposes upon request.

6.1. Datasets

We researched the most popular TC datasets utilised in recent works. We focused on the
document-level tasks; hence, we excluded from our search the NLI, SP, and NER tasks. The
list of datasets is shown in Table 3, and we refer to the reviews by Li et al. [1], Minaee et al. [3]
for a description of each one.

Most datasets with document-level annotations have a single target label for each
sample, and are hence used in binary or multiclass classification tasks. For the development
of models for TL and NC tasks, we found a limiting unavailability of multilabel datasets.
Despite this, real-world applications of supervised topic extraction methods for documents
and news are likely to require the assignment of multiple topics to pieces of text, rather than
just one. For the evaluation of methods on TL tasks, Wikipedia articles provide a source
of semi-structured text labelled with multiple categories (topics) assigned by contributors.
Such data can be extracted by accessing the DBpedia https://www.dbpedia.org (accessed
on 28 December 2021) project, or from the articles’ raw files available in Wikipedia dumps
https://dumps.wikimedia.org (accessed on 28 December 2021). Although these corpora
have already seen use in various works [118,119], there is no consistent set of annotations
to be used as reference for a multilabel formulation. For news classification, we synthesised
a new multilabel dataset from RCV1 [120], a collection of English news articles from the
Reuters agency. Statistics for both datasets are appended to Table 3.

6.1.1. New Datasets Distillation
EnWiki-100

The synthesised EnWiki-100 dataset contains the text of more than 300,000 English
Wikipedia pages, along with a variable number of topics related to the page content. While
categories assigned to Wikipedia pages by contributors are often used as predictive targets,
we found that these frequently contain too generic or too specific categories that are not
informative of the page’s main topics. Therefore, extracted articles are annotated with
the name of their respective Wikipedia portals. In support of this decision, one should
consider that English Wikipedia contains roughly 500 portals, while categories are more
than 500,000. Portals themselves are stated to be “entry points” for articles belonging to the
same broad subject [121]. Consequently, they are better suited as targets for a TL task.

Articles are extracted from the September 2021 Wikipedia dump, using a customised
version of the WikiExtractor https://github.com/attardi/wikiextractor (accessed on 28
December 2021) tool, modified for the extraction of the portal names from the page meta-
data. Only the 100 most populous portals are kept for the final dataset. In addition, article
frequency has been limited to a maximum of 50,000 per label, such as to reduce the size of
the already large dataset, as well as to limit class imbalance.

RCV1-57

The RCV1-57 dataset is extracted from the RCV1 (version 1) collection of English news.
Articles are labelled with a variety of tags that describe their content in different manners.
The most consistent and appropriate were topic codes, which describe the general subject
of the news piece. Such codes have a hierarchical structure, with the higher levels being
more abstract, and the lowest being the most specific. We decide to cut off the codes at
the second level of specificity, since they were the most complete and descriptive overall.
We clean up labels by stripping tags from other levels, and discard topics with fewer than
500 representatives. If articles contain only scrapped topics, they are also discarded.

https://www.dbpedia.org
https://dumps.wikimedia.org
https://github.com/attardi/wikiextractor

Information 2022, 13, 83 26 of 39

Table 3. English TC datasets.

Name Task Classes Multilabel Samples

AG News [122] NC 4 7 127,600

20 News (20 Newsgroup) [123] NC 20 7 18,846

R52 [124] NC 52 7 9100

R8 [124] NC 8 7 7674

Yelp2 (Yelp Polarity) [125,126] SA 2 7 598,000

Yelp5 (Yelp Full) [125,126] SA 5 7 700,000

Amz2 (Amazon Polarity) [125] SA 2 7 4,000,000

Amz5 (Amazon Full) [125] SA 5 7 3,650,000

IMDb [127] SA 2 7 50,000

IMDb10 [127] SA 10 7 50,000

MR (Movie Review) [128] SA 2 7 10,662

Yah!A (Yahoo! Answers) [125] TL 10 7 1,450,000

TREC [129] TL 6 7 5952

Ohs (Ohsumed) [130,131] TL 23 3 13,929

DBP (DBpedia-14) [125] TL 14 7 630,000

EnWiki-100 1 TL 100 3 329,600

RCV1-57 1 NC 57 3 758,100
1 Datasets presented in this paper.

6.2. Evaluation Metrics

Accuracy is the most adopted evaluation metric for TC tasks. This metric is a simple
and interpretable way of measuring the overall fraction of correct predictions. It is defined
as the number of correct predictions over the total number of samples (N), as in Equation (6).
The equations use standard notations for evaluation metrics, namely true positive (TP),
true negative (TN), false positive (FP), and false negative (FN).

Accuracy =
TP + TN

N
(6)

In a multilabel setting, the definition of this metric can change depending on the
definition of true positives and negatives. A prediction may be considered correct when
the predicted labels exactly match the ground truth (referred to as “subset accuracy”).
Alternatively, predictions can be flattened and reduced to a single-label task before the
accuracy computation.

Precision and recall are other popular metrics, especially for multilabel classification.
The former is the fraction of correct predictions among all the ones that have been predicted
as true (TP + TN), while the latter is the fraction of correct predictions over all the ones
that should have been predicted (TP + FN). F-score, and in particular F1-score, is a popular
combination of these two; it is defined as the harmonic mean of precision and recall, as in
Equation (7).

Precision =
TP

TP + FP
Recall =

TP
TP + FN

F1 = 2 ·
Precision · Recall

Precision + Recall
(7)

For multilabel and multiclass problems, these metrics can be computed separately for
each class and then averaged, obtaining the macro-averaged metrics. In such a case, every
class contributes equally to the final score, and hence provides a more challenging metric

Information 2022, 13, 83 27 of 39

for unbalanced datasets. On the other hand, a micro-average reduction strategy is used
when computing the metric globally with no weighting.

6.3. Quantitative Results

The accuracy score for several previously introduced algorithms on prominent bench-
marks are shown in Tables 4 and 5. We report only accuracy, since it is the most consistently
used metric across different studies. GLUE and RACE benchmarks are popular choices
for the evaluation of NLP methods on a variety of tasks, hence we report results on these
datasets in Table 6, whenever available. We evaluated a selection of deep and shallow
methods on our new synthesised datasets. Since our datasets are multilabel, we report
the F1-score with macro-averaging across all categories, along with the subset accuracy,
computed on the test set. Tables 4 and 5 showcases our results, averaged on four differ-
ent evaluation splits. The following section provides additional details on the training
procedure.

Table 4. Test accuracy score (%) on SA benchmark datasets (best results in bold).

Model Yelp2 Yelp5 Amz2 Amz5 IMDb IMDb10 MR

XLNet [19] 98.63 72.95 97.89 68.33 96.80 - -

BERT-base [100,132,133] 98.13 70.80 - - 95.63 54.20 85.70

BERT-large [132–134] 98.19 71.38 97.37 65.83 95.79 55.60 -

L-MIXED [135] - - - - 95.68 - -

DNC + CUW [136] 96.40 65.60 - - 91.30 - -

SVDCNN [74] 95.26 63.20 - - - - -

ULMFiT (small-data) [137] 97.10 67.60 96.10 64.10 - - -

BERT-large-UDA (ft) [134] 97.95 67.92 96.50 62.88 95.80 - -

USE_T + CNN [138] - - - - - - 81.59

MPAD [101] - 66.80 - - 91.87 - -

STM + TSED + PT + 2L [139] - - - - - - 80.09

VLAWE [140] - - - - - - 93.30

TM [141] - - - - - - 77.51

ErnieDoc-large [142] - - - - 97.10 - -

BigBird [143] - 72.16 - - 95.20 - -

NB-weight-BON + CS [144] - - - - 97.42 - -

HAHNN (CNN) [71] - 73.28 - - 92.26 - -

HAHNN (TCN) [71] - 72.63 - - 95.17 - -

RoBERTa + ODPT [145] - - - - 96.60 - -

HAN [80] - 71.00 - 63.60 - 49.40 -

SSGC [107] - - - - - - 76.70

SGCN [104] - - - - - - 75.90

TextGCN [98] - - - - - - 76.74

GCN [98] - - - - - - 76.30

RMDL (15 m) [146] - - - - 90.79 - -

GraphStar [147] - - - - - - 76.60

Information 2022, 13, 83 28 of 39

Table 4. Cont.

Model Yelp2 Yelp5 Amz2 Amz5 IMDb IMDb10 MR

BertGCN [100] - - - - - - 86.00

RoBERTaGCN [100] - - - - - - 89.70

DRNN [62] 97.27 69.15 96.49 64.43 - - -

ULMFiT [61] 97.84 70.02 - - 95.40 - -

DPCNN [148] 97.36 69.42 96.68 65.19 - - -

LSTM-reg [149] - 68.70 - - - 52.80 -

KD-LSTM-reg [133] - 69.40 - - - 53.70 -

CCCapsNet [150] 96.48 65.85 94.96 60.95 - - -

CharCNN [125] 95.40 62.05 95.07 59.57 - - -

EFL [151] - 64.90 - - 96.10 - 92.50

byte mLSTM [152] - - - - 92.20 - 86.80

BLSTM-2DCNN [153] - - - - - - 82.30

oh-2LSTMp [154] - - - - 91.86 - -

VDCNN [73] 95.72 64.72 95.72 63.00 - - -

RoBERTa [100,143] - 71.75 - - 95.00 - 89.40

Table 5. Test accuracy score (%) on NC and TL benchmark datasets (best results in bold).

NC TL

Model AG 20N R52 R8 Yah!A TREC Ohs DBP

XLNet [19] 95.55 - - - - - - 99.40

BERT-base [100,132] 95.20 85.30 96.40 97.80 78.14 98.20 70.50 99.35

BERT-large [132] 95.34 - - - - - - 99.39

L-MIXED [135] 95.05 - - - - - - 99.30

DNC + CUW [136] 93.90 - - - 74.30 - - 99.00

SVDCNN [74] 90.55 - - - - - - -

ULMFiT (small-data) [137] 93.70 - - - 74.30 - - 99.20

USE_T + CNN [138] - - - - - 97.44 - -

MPAD [101] - - - 97.57 - 95.60 - -

STM + TSED + PT + 2L [139] - - - - - 93.48 - -

DELTA [155] - - - - 75.10 92.20 -

VLAWE [140] - - - 89.30 - 94.20 - -

TM [141] - - 89.14 97.50 - 90.04 - -

HAN [80] - - - - 75.80 - - -

SSGC [107] - 88.60 94.50 97.40 - - 68.50 -

SGCN [104] - 88.50 94.00 97.20 - - 68.50 -

TextGCN [98] - 86.34 93.56 97.07 - - 68.36 -

GCN [98] - 87.90 93.80 97.00 - - 68.20 -

NABoE-full - 86.80 - 97.10 - - - -

RMDL (15 m) [146] - 87.91 - - - - - -

Information 2022, 13, 83 29 of 39

Table 5. Cont.

NC TL

Model AG 20N R52 R8 Yah!A TREC Ohs DBP

GraphStar [147] - 86.90 95.00 97.40 - - 64.20 -

SCDV-MS [156] - 86.19 - - - - - -

STC-Q [157] - 87.30 - - - - - -

BertGCN [100] - 89.30 96.60 98.10 - - 72.80 -

RoBERTaGCN [100] - 89.50 96.10 98.20 - - 72.80 -

RepSet - 77.02 - 96.85 - - 66.12 -

Rel-RWMD kNN - 74.78 - 95.61 - - 58.74 -

DRNN [62] 94.47 - - - - - - 99.19

ULMFiT [61] 94.99 - - - - 96.40 - 99.20

DPCNN [148] 93.13 - - - 76.10 - - 99.12

CCCapsNet [150] 92.39 - - - 73.85 - - 98.72

CharCNN [125] 91.45 - - - 71.20 - - 98.63

EFL [151] 86.10 - - - - 80.90 - -

byte mLSTM [152] - - - - - 90.40 - -

BLSTM-2DCNN [153] - - - - - 96.10 - -

oh-2LSTMp [154] - 86.68 - - - - - -

VDCNN [73] 91.33 - - - 73.43 - - 98.71

RoBERTa [100] - 83.80 96.20 97.80 - - 70.70 -

Table 6. GLUE and RACE score updated to latest results (best ones in bold).

GLUE RACE

Model Reported Latest Latest

BERT (base) [16] 79.60 - 65.00

BERT (large) 82.10 80.50 67.90

RoBERTa [13] 88.50 88.10 83.20

XLNet (large) [13,19] 88.40 88.28 81.75

ALBERT (ensemble) [116] 89.40 88.16 89.40

ELECTRA (large) [117] 89.40 89.40 -

ELECTRA (base) [117] 85.10 - -

T5 [87] 90.30 90.30 87.10

GPT [83] 72.80 - 59.00

DeBERTa (large) [89] 90.00 90.80 -

ERNIE [90] - 91.10 -

6.3.1. Custom Experimental Setup

We selected seven algorithms (Table 7) that either were recently, or have been, state-
of-the-art approaches in TC tasks, and we test their performances on the EnWiki-100 and
RCV1-57 datasets to showcase their performances on new multilabel datasets. As strong
baseline representatives for classical methods, we present the results of Naïve Bayes and
linear support vector classifiers, both using TF-IDF features. These methods are utilised in a
one-vs.-rest ensemble fashion, as is common in multilabel applications. We then present the

Information 2022, 13, 83 30 of 39

results of FastText [53], a re-implementation of XML-CNN [118,133] and a BiLSTM-based
classifier as representatives of those methods bridging the gap between earlier methods
and DLMs. Lastly, we fine-tuned and tested Transformer-based language models utilising
the pre-trained open-source models, published in the Hugging Face library [158].

Datasets are split into training, validation, and test set: 40% of the data are reserved
for testing, and 20% of the remaining samples are used for validation. Splits are produced
in a way to preserve the distribution of labels, through a stratification strategy [159,160].
Final metrics reported in Table 7 are obtained by averaging results on the test set over
all runs (four runs of each method, except for XLM-R, due to computational complexity).
Hyperparameters for the Naïve Bayes and SVM classifiers are tuned using a grid search
with 10 fold cross-validation. FastText hyperparameters are selected using the auto-tuning
procedure provided in the Python package. Due to resource constraints, only a limited
tuning of the most impactful parameters is performed on the bidirectional LSTM and
Transformer-based models.

Table 7. Test set Macro-F1 and Subset Accuracy (%) on synthesized datasets (best results in bold).

F1-Score Accuracy

Model EnWiki-100 RCV1-57 EnWiki-100 RCV1-57

Naïve Bayes (OVA) 63.64 56.30 39.24 47.27

Linear SVM (OVA) 80.29 71.73 66.93 67.67

FastText Classifier 74.45 69.65 68.23 67.02

BiLSTM (GloVe) 81.22 76.62 68.05 72.48

XML-CNN (FastText) 78.19 73.02 66.64 70.98

BERT (base) 85.52 78.07 75.28 73.48

XLM-R (base) 84.60 77.19 74.25 74.01

6.3.2. Discussion on Results

Tables 4 and 5 show the dominance of Transformer-based language models in all TC
tasks. Specifically, BERT and XLNet reach state-of-the-art performances on most datasets.
Moreover, TC using graph representation for documents, paired with graph convolutional
networks, proves to be an effective approach for the extraction of useful features, especially
when node embeddings are initialized with contextual representations generated by BERT-
like models (BertGCN, RoBERTaGCN). Notably, Thongtan and Phienthrakul [144] propose
to learn document-level embeddings by minimising cosine similarity, and combining
features extracted from a Naïve Bayes model before the classification step. The model
architecture is very simple in comparison with BERT and other deeper language models,
but manages to achieve the best accuracy on a binary SA dataset. The authors argue that,
for this kind of task, tailored document representations are more important than the choice
of classifier. Abreu et al. [71] achieve state-of-the-art results on the Yelp5 dataset, by using a
CNN to extract features from word vectors and using the attention mechanism twice, first
at the word level, to generate a sentence representation, and then at the sentence level, to
weight the importance of sentences in the document embedding used for classification. This
model makes use of recurrent blocks (GRU) and reiterates the importance of the attention
mechanism to enhance seq2seq architectures.

The latest trend for the evaluation of deep language models is the leveraging of general
multi-task benchmarks. Table 6 showcases the results of two of them. These benchmarks
measure the model ability to generalise to multiple tasks, and are not specific for TC. The
reported score averages the performance metrics of the model across all tasks.

Finally, Table 7 lists the results that we obtained on the new synthesised multilabel
datasets. Since these are new datasets, we use them to test the classification performance of a
few notable language models, within the limits of our resources. Unsurprisingly, BERT and
XML-R achieved the best results over the two new corpora, with accuracy values aligned

Information 2022, 13, 83 31 of 39

with the respective scores of similar multilabel TL datasets (e.g., Ohsumed). We clarify that,
since these datasets are different, metrics should not be directly compared, but we expected
classification accuracy to fall in a range of values that are reasonably comparable to the
other TL datasets. Interestingly, XML-R performed only slightly worse than BERT, despite
being a multilingual model which was not specifically trained to understand the English
language. On the one side, this is interesting, as the curse of multilinguality—which states
that the per-language capacity decreases as the number of languages grows—suggests that
BERT should be able to understand much better the single language that it was trained
on. On the other hand, one should consider that the smaller XML-R model has more than
2.5 times the parameters of the BERT base, and the two models are pre-trained on different
corpora. XML-R is pre-trained on the Common Crawl in 100 languages, while our BERT
model is pre-trained on the combination of BookCorpus and Wikipedia dumps. While the
former corpus amounts to 2.5 TB of data, the latter does not exceed one hundred GB. The
BiLSTM also performed better than other non-Transformer methods, as expected, since its
architecture makes it suitable to model dependencies between adjacent chunks of text.

7. Future Research Directions

Despite achieving state-of-the-art results throughout NLP literature, large-scale lan-
guage models are not infallible. For example, recent studies [161,162] reported that BERT
models show considerable performance pitfalls when faced with adversarial text examples
generated by adversarial networks. These text sequences are subtly altered with word-
level replacements or sentence rephrasings that do not change their meaning (as far as
human understanding is concerned), but are enough to fool these language models. This
phenomenon raises questions about the ability of these models to make decisions based
on the actual meaning carried by a portion of text. Particularly interesting is therefore the
development of robustness benchmarks such as AdvGLUE [163], which aim to quantita-
tively and thoroughly explore the vulnerabilities of modern large-scale language models.
Such benchmarks are carefully filtered and validated by human annotators, such as to
ensure that adversarial examples are valid and unambiguous. Benchmarks like these will
be fundamental in the development of more sophisticated adversarial attacks, as well as
more robust language models able to withstand them.

The current trend of proposing deeper and deeper models with an ever-increasing
number of parameters has led some scientists to warn against the creation of so-called
“stochastic parrots” that effectively emulate language understanding by memorising large
training datasets, but with very limited actual generalisation ability, let alone the abil-
ity to comprehend human language. Furthermore, the black-box nature of deep neural
networks adds to these concerns, as learnt features are hardly interpretable, while some
computational linguists also bring legitimate concern about harmful and dangerous biases
learnt from the data [79]. As a consequence, future research should put the robustness of
large-scale language models under mindful scrutiny and provide tools to lessen the inter-
pretability issues which currently afflict deep learning. The former problem is addressed
by Wang et al. [164], who propose a framework for a more robust fine-tuning of BERT
language models.

Finally, recent developments have gone against the trend of scaling larger and larger
models, proposing that smaller generative LMs can perform competitively with mas-
sively larger models when augmented with search/query information from a retrieval
database [165,166]. For example, Retrieval-Enhanced Transformer (RETRO) performs on
par with GPT-3, despite being 4% its size. Pursuing more reasonably sized models is
certainly a research direction that will be worth exploring.

8. Conclusions

In this manuscript, we provide an overview of existing models for text classification
(TC), highlighting the steps necessary to encode textual data into a feature space for
classification. We presented an analysis of preprocessing operations for both shallow and

Information 2022, 13, 83 32 of 39

deep learning methods, exploring procedures that are often taken for granted. We outlined
the development in the approaches to NLP tasks and TC in particular, showcasing how they
have evolved, up to the very recent Transformer-based methods. We provided an overview
of English datasets, while also laying out instructions to synthesise two new multilabel
classification datasets. We move towards the conclusion by presenting experimental results
for methods as researched in the literature, as well as new results on our datasets for
a choice of methods. Finally, we explore future research challenges, mainly tied to the
robustness of DLMs and what is being done to address their weaknesses.

Author Contributions: Conceptualization, A.G., A.Z. and M.M.; methodology, A.Z.; software, A.Z.
and M.M.; validation, A.G., A.Z. and M.M.; formal analysis, M.M.; investigation, A.Z. and M.M.;
resources, A.Z.; data curation, A.Z.; writing—original draft preparation, A.Z. and M.M.; writing—
review and editing, A.G., A.Z. and M.M.; visualization, A.Z. and M.M.; supervision, A.G. and A.A.;
project administration, A.G. and A.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analysed in this study. These data,
along with all the code produced, can be found here: https://gitlab.com/distration/dsi-nlp-publib
(accessed on 28 December 2021).

Acknowledgments: We would like to thank NIST for allowing us to utilise the RCV1 dataset in
our experiments.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

TC Text Classification
NLP Natural Language Processing
DLM Deep Language Model
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory (Network)
GRU Gated Recurrent Units
OOV Out-of-Vocabulary (word)
BERT Bidirectional Encoder Representations from Transformers
GPT Generative Pre-trained Transformer
GNN Graph Neural Network
MHA Multi-Head Attention

References
1. Li, Q.; Peng, H.; Li, J.; Xia, C.; Yang, R.; Sun, L.; Yu, P.S.; He, L. A Survey on Text Classification: From Shallow to Deep Learning.

arXiv 2020, arXiv:2008.00364.
2. Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text Classification Algorithms: A Survey.

Information 2019, 10, 150. [CrossRef]
3. Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep Learning–Based Text Classification: A

Comprehensive Review. Acm Comput. Surv. 2021, 54, 1–40. [CrossRef]
4. Graves, A. Generating Sequences With Recurrent Neural Networks. arXiv 2013, arXiv:1308.0850.
5. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008.

[CrossRef]
6. Mielke, S.J.; Alyafeai, Z.; Salesky, E.; Raffel, C.; Dey, M.; Gallé, M.; Raja, A.; Si, C.; Lee, W.Y.; Sagot, B.; et al. Between words and

characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP. arXiv 2021, arXiv:2112.10508.

https://gitlab.com/distration/dsi-nlp-publib
http://doi.org/10.3390/info10040150
http://dx.doi.org/10.1145/3439726
http://dx.doi.org/10.1017/CBO9780511809071

Information 2022, 13, 83 33 of 39

7. Saif, H.; Fernandez, M.; He, Y.; Alani, H. On Stopwords, Filtering and Data Sparsity for Sentiment Analysis of Twitter. In
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14), Reykjavik, Iceland, 26–31
May 2014; pp. 810–817.

8. Jivani, A. A Comparative Study of Stemming Algorithms. Int. J. Comput. Technol. Appl. 2011, 2, 1930–1938.
9. Plisson, J.; Lavrac, N.; Mladenic, D. A rule based approach to word lemmatization. In Proceedings of the 7th International

Multiconference on Information Society (IS04), Ljubljana, Slovenia, 11–15 October 2004.
10. Gage, P. A New Algorithm for Data Compression. C Users J. 1994, 12, 23–38.
11. Sennrich, R.; Haddow, B.; Birch, A. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 1715–1725. [CrossRef]
12. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models are Unsupervised Multitask Learners. OpenAI

Blog 2019, 1, 9.
13. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly

Optimized BERT Pretraining Approach. arXiv 2019, arXiv:1907.11692.
14. Wang, C.; Cho, K.; Gu, J. Neural Machine Translation with Byte-Level Subwords. Proc. AAAI Conf. Artif. Intell. 2020, 34, 9154–9160.

[CrossRef]
15. Schuster, M.; Nakajima, K. Japanese and Korean voice search. In Proceedings of the 2012 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 5149–5152.
16. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-

ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minnesota, MN, USA, 2–7 June 2019; pp. 4171–4186.

17. Kudo, T. Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne,
Australia, 15–20 July 2018; pp. 66–75. [CrossRef]

18. Kudo, T.; Richardson, J. SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural
Text Processing. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, Brussels, Belgium, 31 October–4 November 2018; pp. 66–71. [CrossRef]

19. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q.V. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC,
Canada, 8–14 December 2019.

20. Conneau, A.; Khandelwal, K.; Goyal, N.; Chaudhary, V.; Wenzek, G.; Guzmán, F.; Grave, E.; Ott, M.; Zettlemoyer, L.; Stoyanov, V.
Unsupervised Cross-lingual Representation Learning at Scale. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, Online event, 5–10 July 2020; pp. 8440–8451. [CrossRef]

21. Rodolà, E.; Cosmo, L.; Litany, O.; Bronstein, M.M.; Bronstein, A.M.; Audebert, N.; Hamza, A.B.; Boulch, A.; Castellani, U.;
Do, M.N.; et al. Deformable Shape Retrieval with Missing Parts. In Proceedings of the Eurographics Workshop on 3D Object
Retrieval, Lyon, France, 23–24 April 2017; Pratikakis, I., Dupont, F., Ovsjanikov, M., Eds.; Eurographics Association: Geneva,
Switzerland, 2017. [CrossRef]

22. Gasparetto, A.; Minello, G.; Torsello, A. Non-parametric Spectral Model for Shape Retrieval. In Proceedings of the 2015
International Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 344–352. [CrossRef]

23. Pistellato, M.; Bergamasco, F.; Albarelli, A.; Cosmo, L.; Gasparetto, A.; Torsello, A. Robust phase unwrapping by probabilistic
consensus. Opt. Lasers Eng. 2019, 121, 428–440. [CrossRef]

24. Jones, K.S. A statistical interpretation of term specificity and its application in retrieval. J. Doc. 1972, 28, 11–21. [CrossRef]
25. Maćkiewicz, A.; Ratajczak, W. Principal components analysis (PCA). Comput. Geosci. 1993, 19, 303–342. [CrossRef]
26. Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. Ai Commun. 2017,

30, 169–190. [CrossRef]
27. Tsuge, S.; Shishibori, M.; Kuroiwa, S.; Kita, K. Dimensionality reduction using non-negative matrix factorization for information

retrieval. In Proceedings of the 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for
Cybernetics in Cyberspace (Cat.No.01CH37236), Tucson, AZ, USA, 7–10 October 2001; Volume 2, pp. 960–965. [CrossRef]

28. Rosenfeld, R. Two decades of statistical language modeling: Where do we go from here? Proc. IEEE 2000, 88, 1270–1278.
[CrossRef]

29. Jurafsky, D.; Martin, J. Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, 3rd ed. (draft) Unpublished. 2021; pp. 30–35. Available online: https://web.stanford.edu/~jurafsky/slp3/ed3
book.pdf (accessed on 28 December 2021).

30. Huang, E.H.; Socher, R.; Manning, C.D.; Ng, A.Y. Improving Word Representations via Global Context and Multiple Word
Prototypes. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, Korea, 8–14
July 2012; Volume 1, pp. 873–882.

31. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the
1st International Conference on Learning Representations (ICLR 2013), Scottsdale, AZ, USA, 2–4 May 2013.

http://dx.doi.org/10.18653/v1/P16-1162
http://dx.doi.org/10.1609/aaai.v34i05.6451
http://dx.doi.org/10.18653/v1/P18-1007
http://dx.doi.org/10.18653/v1/D18-2012
http://dx.doi.org/10.18653/v1/2020.acl-main.747
http://dx.doi.org/10.2312/3dor.20171057.
http://dx.doi.org/10.1109/3DV.2015.46
http://dx.doi.org/10.1016/j.optlaseng.2019.05.006
http://dx.doi.org/10.1108/eb026526
http://dx.doi.org/10.1016/0098-3004(93)90090-R
http://dx.doi.org/10.3233/AIC-170729
http://dx.doi.org/10.1109/ICSMC.2001.973042
http://dx.doi.org/10.1109/5.880083
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf

Information 2022, 13, 83 34 of 39

32. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their
Compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Lake Tahoe,
NV, USA, 5–10 December 2013; Volume 2, pp. 3111–3119.

33. Pennington, J.; Socher, R.; Manning, C. GloVe: Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543. [CrossRef]

34. Baroni, M.; Dinu, G.; Kruszewski, G. Don’t count, predict! A systematic comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD,
USA, 22–27 June 2014; Volume 1, pp. 238–247. [CrossRef]

35. Bojanowski, P.; Grave, E.; Joulin, A.; Mikolov, T. Enriching Word Vectors with Subword Information. Trans. Assoc. Comput.
Linguist. 2017, 5, 135–146. [CrossRef]

36. Xu, S.; Li, Y.; Wang, Z. Bayesian Multinomial Naïve Bayes Classifier to Text Classification. In Advanced Multimedia and Ubiquitous
Engineering; Springer: Singapore, 2017; pp. 347–352. [CrossRef]

37. van den Bosch, A. Hidden Markov Models. In Encyclopedia of Machine Learning and Data Mining; Springer: Boston, MA, USA,
2017; pp. 609–611. [CrossRef]

38. Sutton, C.; McCallum, A. An Introduction to Conditional Random Fields. Found. Trends® Mach. Learn. 2012, 4, 267–373.
[CrossRef]

39. Cover, T.; Hart, P. Nearest Neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
40. Li, B.; Yu, S.; Lu, Q. An Improved k-Nearest Neighbor Algorithm for Text Categorization. arXiv 2003, arXiv:cs/0306099.
41. Ali, N.; Neagu, D.; Trundle, P. Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets. SN Appl. Sci.

2019, 1, 1–15. [CrossRef]
42. Bellman, R. Dynamic Programming. Science 1966, 153, 34–37. [CrossRef] [PubMed]
43. Cortes, C.; Vapnik, V.N. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
44. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [CrossRef]
45. Safavian, S.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674.

[CrossRef]
46. Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,

Montreal, QC, Canada, 14–15 August 1995; Volume 1, pp. 278–282. [CrossRef]
47. Islam, M.Z.; Liu, J.; Li, J.; Liu, L.; Kang, W. A Semantics Aware Random Forest for Text Classification. In Proceedings of the 28th

ACM International Conference on Information and Knowledge Management (CIKM ’19), Beijing, China, 3–7 November 2019;
pp. 1061–1070. [CrossRef]

48. Genkin, A.; Lewis, D.; Madigan, D. Large-Scale Bayesian Logistic Regression for Text Categorization. Technometrics 2007, 49,
291–304. [CrossRef]

49. Krishnapuram, B.; Carin, L.; Figueiredo, M.; Hartemink, A. Sparse multinomial logistic regression: Fast algorithms and
generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 957–968. [CrossRef]

50. Breiman, L. Bagging predictors. Mach. Learn. 2004, 24, 123–140. [CrossRef]
51. Schapire, R.E. The Strength of Weak Learnability. Mach. Learn. 1990, 5, 197–227. [CrossRef]
52. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.

Syst. Sci. 1997, 55, 119–139. [CrossRef]
53. Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. In Proceedings of the 15th

Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017; Volume 2,
pp. 427–431.

54. Ibrahim, M.A.; Ghani Khan, M.U.; Mehmood, F.; Asim, M.N.; Mahmood, W. GHS-NET a generic hybridized shallow neural
network for multi-label biomedical text classification. J. Biomed. Inform. 2021, 116, 103699. [CrossRef]

55. Iyyer, M.; Manjunatha, V.; Boyd-Graber, J.; Daumé, H., III Deep Unordered Composition Rivals Syntactic Methods for Text
Classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, Beijing, China, 27–31 July 2015; Volume 1, pp. 1681–1691. [CrossRef]

56. Le, Q.; Mikolov, T. Distributed Representations of Sentences and Documents. In Proceedings of the 31st International Conference
on Machine Learning, Beijing, China, 21–26 June 2014; Volume 32, pp. 1188–1196.

57. Mikolov, T.; Le, Q.V.; Sutskever, I. Exploiting Similarities among Languages for Machine Translation. arXiv 2013, arXiv:1309.4168.
58. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
59. Tai, K.S.; Socher, R.; Manning, C.D. Improved Semantic Representations From Tree-Structured Long Short-Term Memory

Networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, Beijing, China, 27–31 July 2015; Volume 1, pp. 1556–1566. [CrossRef]

60. Dieng, A.B.; Wang, C.; Gao, J.; Paisley, J. TopicRNN: A Recurrent Neural Network with Long-Range Semantic Dependency. arXiv
2016, arXiv:1611.01702.

61. Howard, J.; Ruder, S. Universal Language Model Fine-tuning for Text Classification. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 328–339. [CrossRef]

http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/P14-1023
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1007/978-981-10-5041-1_57
http://dx.doi.org/10.1007/978-1-4899-7687-1_124
http://dx.doi.org/10.1561/2200000013
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.1007/s42452-019-1356-9
http://dx.doi.org/10.1126/science.153.3731.34
http://www.ncbi.nlm.nih.gov/pubmed/17730601
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1109/21.97458
http://dx.doi.org/10.1109/ICDAR.1995.598994
http://dx.doi.org/10.1145/3357384.3357891
http://dx.doi.org/10.1198/004017007000000245
http://dx.doi.org/10.1109/TPAMI.2005.127
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00116037
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1016/j.jbi.2021.103699
http://dx.doi.org/10.3115/v1/P15-1162
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.3115/v1/P15-1150
http://dx.doi.org/10.18653/v1/P18-1031

Information 2022, 13, 83 35 of 39

62. Wang, B. Disconnected Recurrent Neural Networks for Text Categorization. In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 2311–2320. [CrossRef]

63. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [CrossRef]

64. Schuster, M.; Paliwal, K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
65. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep Contextualized Word Representations.

In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, New Orleans, LA, USA, 1–6 June 2018; Volume 1, pp. 2227–2237. [CrossRef]

66. Zhang, Y.; Wallace, B.C. A Sensitivity Analysis of (and Practitioners’ Guide to) Convolutional Neural Networks for Sentence
Classification. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (IJCNLP), Taipei,
Taiwan, 27–30 November 2017; Volume 1, pp. 253–263.

67. Stone, A.; Wang, H.; Stark, M.; Liu, Y.; Phoenix, D.; George, D. Teaching Compositionality to CNNs. In Proceedings of the
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 732–741.
[CrossRef]

68. Pistellato, M.; Cosmo, L.; Bergamasco, F.; Gasparetto, A.; Albarelli, A. Adaptive Albedo Compensation for Accurate Phase-Shift
Coding. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August
2018; pp. 2450–2455. [CrossRef]

69. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1746–1751. [CrossRef]

70. Lea, C.; Flynn, M.D.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal Convolutional Networks for Action Segmentation and Detection.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 1003–1012. [CrossRef]

71. Abreu, J.; Fred, L.; Macêdo, D.; Zanchettin, C. Hierarchical Attentional Hybrid Neural Networks for Document Classification. In
Artificial Neural Networks and Machine Learning—ICANN 2019: Workshop and Special Sessions; Springer International Publishing:
Cham, Switzerland, 2019; pp. 396–402. [CrossRef]

72. Yan, J.; Mu, L.; Wang, L.; Ranjan, R.; Zomaya, A.Y. Temporal Convolutional Networks for the Advance Prediction of ENSO. Sci.
Rep. 2020, 10, 8055. [CrossRef]

73. Conneau, A.; Schwenk, H.; Barrault, L.; Lecun, Y. Very Deep Convolutional Networks for Text Classification. In Proceedings of
the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, 3–7 April 2017;
Volume 1, pp. 1107–1116.

74. Duque, A.B.; Santos, L.L.J.; Macêdo, D.; Zanchettin, C. Squeezed Very Deep Convolutional Neural Networks for Text Classification.
In Artificial Neural Networks and Machine Learning—ICANN 2019: Theoretical Neural Computation; Springer International Publishing:
Cham, Switzerland, 2019; pp. 193–207. [CrossRef]

75. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; MIT Press: Cambridge, MA,
USA, 2014; Volume 2, pp. 3104–3112.

76. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2015,
arXiv:1409.0473.

77. Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International
Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; Dasgupta, S., McAllester, D., Eds.; PMLR: Atlanta, GA,
USA, 2013; Volume 28, pp. 1310–1318.

78. Luong, T.; Pham, H.; Manning, C.D. Effective Approaches to Attention-based Neural Machine Translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1412–1421.
[CrossRef]

79. Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too
Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Online event, 3–10 March 2021;
pp. 610–623. [CrossRef]

80. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical Attention Networks for Document Classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego, CA, USA, 12–17 June 2016; pp. 1480–1489. [CrossRef]

81. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 6000–6010.

82. Liu, P.J.; Saleh, M.; Pot, E.; Goodrich, B.; Sepassi, R.; Kaiser, L.; Shazeer, N. Generating Wikipedia by Summarizing Long
Sequences. arXiv 2018, arXiv:1801.10198.

83. Radford, A.; Narasimhan, K. Improving Language Understanding by Generative Pre-Training. OpenAI Blog 2018. Available
online: https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf (accessed on 28 December 2021).

http://dx.doi.org/10.18653/v1/P18-1215
http://dx.doi.org/10.3115/v1/D14-1179
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.18653/v1/N18-1202
http://dx.doi.org/10.1109/CVPR.2017.85
http://dx.doi.org/10.1109/ICPR.2018.8545465
http://dx.doi.org/10.3115/v1/D14-1181
http://dx.doi.org/10.1109/CVPR.2017.113
http://dx.doi.org/10.1007/978-3-030-30493-5_39
http://dx.doi.org/10.1038/s41598-020-65070-5
http://dx.doi.org/10.1007/978-3-030-30487-4_16
http://dx.doi.org/10.18653/v1/D15-1166
http://dx.doi.org/10.1145/3442188.3445922
http://dx.doi.org/10.18653/v1/N16-1174
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Information 2022, 13, 83 36 of 39

84. Von Platen, P. Transformers-Based Encoder-Decoder Models. Available online: https://huggingface.co/blog/encoder-decoder
(accessed on 28 December 2021).

85. Wang, A.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP, Brussels, Belgium, 31 October–4 November 2018; pp. 353–355. [CrossRef]

86. Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.
Language Models are Few-Shot Learners. In Proceedings of the 34th Annual Conference on Neural Information Processing
Systems, Online event, 6–12 December 2020; Volume 33, pp. 1877–1901.

87. Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer. J. Mach. Learn. Res. 2020, 21, 1–67.

88. Sanh, V.; Webson, A.; Raffel, C.; Bach, S.H.; Sutawika, L.; Alyafeai, Z.; Chaffin, A.; Stiegler, A.; Scao, T.L.; Raja, A.; et al. Multitask
Prompted Training Enables Zero-Shot Task Generalization. arXiv 2021, arXiv:2110.08207.

89. He, P.; Liu, X.; Gao, J.; Chen, W. DeBERTa: Decoding-Enhanced BERT with Disentangled Attention. In Proceedings of the 2021
International Conference on Learning Representations (ICLR 2021), Vienna, Austria, 4–8 May 2021.

90. Sun, Y.; Wang, S.; Feng, S.; Ding, S.; Pang, C.; Shang, J.; Liu, J.; Chen, X.; Zhao, Y.; Lu, Y.; et al. ERNIE 3.0: Large-scale Knowledge
Enhanced Pre-training for Language Understanding and Generation. arXiv 2021, arXiv:2107.02137.

91. Dai, Z.; Yang, Z.; Yang, Y.; Carbonell, J.; Le, Q.; Salakhutdinov, R. Transformer-XL: Attentive Language Models beyond a
Fixed-Length Context. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence,
Italy, 28 July–2 August 2019; pp. 2978–2988. [CrossRef]

92. Wei, J.; Bosma, M.; Zhao, V.Y.; Guu, K.; Yu, A.W.; Lester, B.; Du, N.; Dai, A.M.; Le, Q.V. Finetuned Language Models Are Zero-Shot
Learners. arXiv 2021, arXiv:2109.01652.

93. Schiavinato, M.; Gasparetto, A.; Torsello, A. Transitive assignment kernels for structural classification. Lect. Notes Comput. Sci.
2015, 9370, 146–159. [CrossRef]

94. Cai, H.; Zheng, V.W.; Chang, K. A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications. IEEE
Trans. Knowl. Data Eng. 2018, 30, 1616–1637. [CrossRef]

95. Battaglia, P.W.; Hamrick, J.B.; Bapst, V.; Sanchez-Gonzalez, A.; Zambaldi, V.F.; Malinowski, M.; Tacchetti, A.; Raposo, D.; Santoro,
A.; Faulkner, R.; et al. Relational inductive biases, deep learning, and graph networks. arXiv 2018, arXiv:1806.01261.

96. Bruna, J.; Zaremba, W.; Szlam, A.; Lecun, Y. Spectral networks and locally connected networks on graphs. In Proceedings of the
International Conference on Learning Representations (ICLR 2014), Banff, AB, Canada, 14–16 April 2014.

97. Torsello, A.; Gasparetto, A.; Rossi, L.; Bai, L.; Hancock, E. Transitive State Alignment for the Quantum Jensen-Shannon Kernel.
Lect. Notes Comput. Sci. 2014, 8621, 22–31. [CrossRef]

98. Yao, L.; Mao, C.; Luo, Y. Graph Convolutional Networks for Text Classification. Proc. AAAI Conf. Artif. Intell. 2019, 33, 7370–7377.
[CrossRef]

99. Church, K.W.; Hanks, P. Word Association Norms, Mutual Information, and Lexicography. In Proceedings of the 27th Annual
Meeting on Association for Computational Linguistics, Vancouver, BC, Canada, 26–29 June 1989; pp. 76–83. [CrossRef]

100. Lin, Y.; Meng, Y.; Sun, X.; Han, Q.; Kuang, K.; Li, J.; Wu, F. BertGCN: Transductive Text Classification by Combining GNN and
BERT. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2021; pp. 1456–1462. [CrossRef]

101. Nikolentzos, G.; Tixier, A.; Vazirgiannis, M. Message Passing Attention Networks for Document Understanding. Proc. AAAI
Conf. Artif. Intell. 2020, 34, 8544–8551. [CrossRef]

102. Gammerman, A.; Vovk, V.; Vapnik, V. Learning by Transduction. In Proceedings of the Fourteenth Conference on Uncertainty in
Artificial Intelligence, Madison, WI, USA, 24–26 July 1998; pp. 148–155.

103. Huang, L.; Ma, D.; Li, S.; Zhang, X.; Wang, H. Text Level Graph Neural Network for Text Classification. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 3444–3450. [CrossRef]

104. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks. In Proceedings of the
36th International Conference on Machine Learning, Irvine, CA, USA, 13–16 November 2019; Volume 9, pp. 6861–6871.

105. Li, Q.; Han, Z.; Wu, X.M. Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.

106. Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and Deep Graph Convolutional Networks. In Proceedings of the 37th
International Conference on Machine Learning, Online event, 13–18 July 2020; Volume 119, pp. 1725–1735.

107. Zhu, H.; Koniusz, P. Simple Spectral Graph Convolution. In Proceedings of the 2021 International Conference on Learning
Representations (ICLR 2021), Vienna, Austria, 4–8 May 2021.

108. Klicpera, J.; Bojchevski, A.; Günnemann, S. Predict then Propagate: Graph Neural Networks meet Personalized PageRank. arXiv,
2019, arXiv:1810.05997.

109. Gasparetto, A.; Cosmo, L.; Rodola, E.; Bronstein, M.; Torsello, A. Spatial Maps: From low rank spectral to sparse spatial functional
representations. In Proceedings of the 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017;
pp. 477–485. [CrossRef]

https://huggingface.co/blog/encoder-decoder
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/P19-1285
http://dx.doi.org/10.1007/978-3-319-24261-3_12
http://dx.doi.org/10.1109/TKDE.2018.2807452
http://dx.doi.org/10.1007/978-3-662-44415-3_3
http://dx.doi.org/10.1609/aaai.v33i01.33017370
http://dx.doi.org/10.3115/981623.981633
http://dx.doi.org/10.18653/v1/2021.findings-acl.126
http://dx.doi.org/10.1609/aaai.v34i05.6376
http://dx.doi.org/10.18653/v1/D19-1345
http://dx.doi.org/10.1109/3DV.2017.00061

Information 2022, 13, 83 37 of 39

110. Ethayarajh, K. How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and
GPT-2 Embeddings. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019;
pp. 55–65. [CrossRef]

111. Peters, M.E.; Ammar, W.; Bhagavatula, C.; Power, R. Semi-supervised sequence tagging with bidirectional language models. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 31 July–4
August 2017; Volume 1, pp. 1756–1765. [CrossRef]

112. McCann, B.; Bradbury, J.; Xiong, C.; Socher, R. Learned in Translation: Contextualized Word Vectors. In Proceedings of the
31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran
Associates Inc.: Red Hook, NY, USA, 2017; pp. 6297–6308.

113. Hinton, G.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531.
114. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv 2019,

arXiv:1910.01108.
115. Jiao, X.; Yin, Y.; Shang, L.; Jiang, X.; Chen, X.; Li, L.; Wang, F.; Liu, Q. TinyBERT: Distilling BERT for Natural Language

Understanding. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2020, Online event,
16–20 November 2020; pp. 4163–4174. [CrossRef]

116. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations. arXiv 2019, arXiv:1909.11942.

117. Clark, K.; Luong, M.T.; Le, Q.V.; Manning, C.D. ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.
In Proceedings of the ICLR 2020: Eighth International Conference on Learning Representations, Online event, 26 April–1
May 2020.

118. Liu, J.; Chang, W.C.; Wu, Y.; Yang, Y. Deep Learning for Extreme Multi-Label Text Classification. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku Tokyo, Japan, 7–11
August 2017; SIGIR ’17, pp. 115–124. [CrossRef]

119. Zhang, W.; Yan, J.; Wang, X.; Zha, H. Deep Extreme Multi-Label Learning. In Proceedings of the 2018 ACM on International
Conference on Multimedia Retrieval, Yokohama, Japan, 11–14 June 2018; pp. 100–107. [CrossRef]

120. Lewis, D.D.; Yang, Y.; Rose, T.G.; Li, F. RCV1: A New Benchmark Collection for Text Categorization Research. J. Mach. Learn. Res.
2004, 5, 361–397.

121. Wikipedia:Portal. Available online: https://en.wikipedia.org/wiki/Wikipedia:Portal (accessed on 28 December 2021).
122. AG’s Corpus of News Articles. Available online: http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html (accessed

on 28 December 2021).
123. The 20 Newsgroups Data Set. Available online: http://qwone.com/~jason/20Newsgroups (accessed on 28 December 2021).
124. Ohsumed-R8-R52. Available online: https://www.kaggle.com/weipengfei/ohr8r52 (accessed on 28 December 2021).
125. Zhang, X.; Zhao, J.; LeCun, Y. Character-Level Convolutional Networks for Text Classification. In Proceedings of the 28th

International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015; Volume 1,
pp. 649–657.

126. Yelp Open Dataset: An all-Purpose Dataset for Learning. Available online: https://www.yelp.com/dataset (accessed on 28
December 2021).

127. Maas, A.L.; Daly, R.E.; Pham, P.T.; Huang, D.; Ng, A.Y.; Potts, C. Learning Word Vectors for Sentiment Analysis. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, OR,
USA, 19–24 June 2011; pp. 142–150.

128. Pang, B.; Lee, L.; Vaithyanathan, S. Thumbs up? Sentiment Classification Using Machine Learning Techniques. In Proceedings of
the ACL-02 Conference on Empirical Methods in Natural Language Processing, Philadelphia, PA, USA, 6–7 July 2002; Volume 10,
pp. 79–86. [CrossRef]

129. Li, X.; Roth, D. Learning Question Classifiers. In Proceedings of the 19th International Conference on Computational Linguistics,
Taipei, Taiwan, 24 August–1 September 2002; Volume 1, pp. 1–7. [CrossRef]

130. Joachims, T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In Proceedings of the
10th European Conference on Machine Learning, Chemnitz, Germany, 21–23 April 1998; pp. 137–142. [CrossRef]

131. Text Categorization Corpora. Available online: https://disi.unitn.it/moschitti/corpora.htm (accessed on 28 December 2021).
132. Sun, C.; Qiu, X.; Xu, Y.; Huang, X. How to Fine-Tune BERT for Text Classification? In Chinese Computational Linguistics; Springer

International Publishing: Cham, Switzerland, 2019; pp. 194–206. [CrossRef]
133. Adhikari, A.; Ram, A.; Tang, R.; Lin, J. DocBERT: BERT for Document Classification. arXiv 2019, arXiv:1904.08398.
134. Xie, Q.; Dai, Z.; Hovy, E.; Luong, M.T.; Le, Q.V. Unsupervised Data Augmentation for Consistency Training. arXiv 2020,

arXiv:1904.12848.
135. Sachan, D.S.; Zaheer, M.; Salakhutdinov, R. Revisiting LSTM Networks for Semi-Supervised Text Classification via Mixed

Objective Function. Proc. AAAI Conf. Artif. Intell. 2019, 33, 6940–6948. [CrossRef]
136. Le, H.; Tran, T.; Venkatesh, S. Learning to Remember More with Less Memorization. arXiv 2019, arXiv:1901.01347.

http://dx.doi.org/10.18653/v1/D19-1006
http://dx.doi.org/10.18653/v1/P17-1161
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.372
http://dx.doi.org/10.1145/3077136.3080834
http://dx.doi.org/10.1145/3206025.3206030
https://en.wikipedia.org/wiki/Wikipedia:Portal
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://qwone.com/~jason/20Newsgroups
https://www.kaggle.com/weipengfei/ohr8r52
https://www.yelp.com/dataset
http://dx.doi.org/10.3115/1118693.1118704
http://dx.doi.org/10.3115/1072228.1072378
http://dx.doi.org/10.1007/BFb0026683
https://disi.unitn.it/moschitti/corpora.htm
http://dx.doi.org/10.1007/978-3-030-32381-3_16
http://dx.doi.org/10.1609/aaai.v33i01.33016940

Information 2022, 13, 83 38 of 39

137. Prabhu, A.; Dognin, C.; Singh, M. Sampling Bias in Deep Active Classification: An Empirical Study. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019; pp. 4058–4068. [CrossRef]

138. Cer, D.; Yang, Y.; Kong, S.-y.; Hua, N.; Limtiaco, N.; John, R.S.; Constant, N.; Guajardo-Cespedes, M.; Yuan, S.; Tar, C.; et al.
Universal Sentence Encoder. arXiv 2018, arXiv:1803.11175.

139. Shin, B.; Yang, H.; Choi, J.D. The Pupil Has Become the Master: Teacher-Student Model-Based Word Embedding Distillation
with Ensemble Learning. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19,
Macao, China, 10–16 August 2019; pp. 3439–3445. [CrossRef]

140. Ionescu, R.T.; Butnaru, A. Vector of Locally-Aggregated Word Embeddings (VLAWE): A Novel Document-level Representation.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 363–369. [CrossRef]

141. Yadav, R.K.; Jiao, L.; Granmo, O.C.; Goodwin, M. Enhancing Interpretable Clauses Semantically using Pretrained Word
Representation. In Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP,
Punta Cana, Dominican Republic, 11 November 2021; pp. 265–274.

142. Ding, S.; Shang, J.; Wang, S.; Sun, Y.; Tian, H.; Wu, H.; Wang, H. ERNIE-Doc: A Retrospective Long-Document Modeling
Transformer. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online event, 1–6 August 2021;
Volume 1, pp. 2914–2927. [CrossRef]

143. Zaheer, M.; Guruganesh, G.; Dubey, A.; Ainslie, J.; Alberti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang, L.; et al. Big
Bird: Transformers for Longer Sequences. arXiv 2020, arXiv:2007.14062.

144. Thongtan, T.; Phienthrakul, T. Sentiment Classification Using Document Embeddings Trained with Cosine Similarity. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, Florence,
Italy, 28 July–2 August 2019; pp. 407–414. [CrossRef]

145. Sun, Z.; Fan, C.; Sun, X.; Meng, Y.; Wu, F.; Li, J. Neural Semi-supervised Learning for Text Classification Under Large-Scale
Pretraining. arXiv 2020, arXiv:2011.08626.

146. Kowsari, K.; Heidarysafa, M.; Brown, D.E.; Meimandi, K.J.; Barnes, L.E. RMDL: Random Multimodel Deep Learning for
Classification. In Proceedings of the 2nd International Conference on Information System and Data Mining, Lakeland, FL, USA,
9–11 April 2018; pp. 19–28. [CrossRef]

147. Lu, H.; Huang, S.H.; Ye, T.; Guo, X. Graph Star Net for Generalized Multi-Task Learning. arXiv 2019, arXiv:1906.12330.
148. Johnson, R.; Zhang, T. Deep Pyramid Convolutional Neural Networks for Text Categorization. In Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 31 July–4 August 2017; Volume 1, pp. 562–570.
[CrossRef]

149. Adhikari, A.; Ram, A.; Tang, R.; Lin, J. Rethinking Complex Neural Network Architectures for Document Classification. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4046–4051. [CrossRef]

150. Ren, H.; Lu, H. Compositional coding capsule network with k-means routing for text classification. arXiv 2018, arXiv:1810.09177.
151. Wang, S.; Fang, H.; Khabsa, M.; Mao, H.; Ma, H. Entailment as Few-Shot Learner. arXiv 2021, arXiv:2104.14690.
152. Khodak, M.; Saunshi, N.; Liang, Y.; Ma, T.; Stewart, B.M.; Arora, S. A La Carte Embedding: Cheap but Effective Induction

of Semantic Feature Vectors. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,
Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 12–22. [CrossRef]

153. Zhou, P.; Qi, Z.; Zheng, S.; Xu, J.; Bao, H.; Xu, B. Text Classification Improved by Integrating Bidirectional LSTM with Two-
dimensional Max Pooling. In Proceedings of the COLING 2016, the 26th International Conference on Computational: Technical
Papers, Osaka, Japan, 11–16 December; Technical Papers. The COLING 2016 Organizing Committee: Osaka, Japan, 2016;
pp. 3485–3495.

154. Johnson, R.; Zhang, T. Supervised and Semi-Supervised Text Categorization Using LSTM for Region Embeddings. In Proceedings
of the 33rd International Conference on International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016;
Volume 48, pp. 526–534.

155. Han, K.; Chen, J.; Zhang, H.; Xu, H.; Peng, Y.; Wang, Y.; Ding, N.; Deng, H.; Gao, Y.; Guo, T.; et al. DELTA: A DEep learning based
Language Technology plAtform. arXiv 2019, arXiv:1908.01853.

156. Gupta, V.; Kumar, A.; Nokhiz, P.; Gupta, H.; Talukdar, P.P. Improving Document Classification with Multi-Sense Embeddings.
Front. Artif. Intell. Appl. 2020, 325, 2030–2037. [CrossRef]

157. Guidotti, E.; Ferrara, A. An Explainable Probabilistic Classifier for Categorical Data Inspired to Quantum Physics. arXiv 2021,
arXiv:cs.LG/2105.13988.

158. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M.; et al. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, Online event, 16–20 November 2020; pp. 38–45. [CrossRef]

159. Sechidis, K.; Tsoumakas, G.; Vlahavas, I. On the Stratification of Multi-label Data. In Machine Learning and Knowledge Discovery in
Databases; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6913, pp. 145–158. [CrossRef]

http://dx.doi.org/10.18653/v1/D19-1417
http://dx.doi.org/10.24963/ijcai.2019/477
http://dx.doi.org/10.18653/v1/N19-1033
http://dx.doi.org/10.18653/v1/2021.acl-long.227
http://dx.doi.org/10.18653/v1/P19-2057
http://dx.doi.org/10.1145/3206098.3206111
http://dx.doi.org/10.18653/v1/P17-1052
http://dx.doi.org/10.18653/v1/N19-1408
http://dx.doi.org/10.18653/v1/P18-1002
http://dx.doi.org/10.3233/FAIA200324
http://dx.doi.org/10.18653/v1/2020.emnlp-demos
http://dx.doi.org/10.1007/978-3-642-23808-6_10.

Information 2022, 13, 83 39 of 39

160. Szymański, P.; Kajdanowicz, T. A Network Perspective on Stratification of Multi-Label Data. In Proceedings of the First
International Workshop on Learning with Imbalanced Domains: Theory and Applications, Skopje, Macedonia, 22 September
2017; Luís Torgo, P.B., Moniz, N., Eds.; Volume 74, pp. 22–35.

161. Jin, D.; Jin, Z.; Zhou, J.T.; Szolovits, P. Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Classification
and Entailment. Proc. AAAI Conf. Artif. Intell. 2020, 34, 8018–8025. [CrossRef]

162. Wang, B.; Pan, B.; Li, X.; Li, B. Towards Evaluating the Robustness of Chinese BERT Classifiers. arXiv 2020, arXiv:cs.CL/2004.03742.
163. Wang, B.; Xu, C.; Wang, S.; Gan, Z.; Cheng, Y.; Gao, J.; Awadallah, A.H.; Li, B. Adversarial GLUE: A Multi-Task Benchmark for

Robustness Evaluation of Language Models. In Proceedings of the 35th Annual Conference on Neural Information Processing
System (NeurIPS 2021), Online event, 6–14 December 2021.

164. Wang, B.; Wang, S.; Cheng, Y.; Gan, Z.; Jia, R.; Li, B.; Liu, J. InfoBERT: Improving Robustness of Language Models from an
Information Theoretic Perspective. arXiv 2020, arXiv:2010.02329.

165. Borgeaud, S.; Mensch, A.; Hoffmann, J.; Cai, T.; Rutherford, E.; Millican, K.; van den Driessche, G.; Lespiau, J.; Damoc, B.; Clark,
A.; et al. Improving language models by retrieving from trillions of tokens. arXiv 2021, arXiv:2112.04426.

166. Nakano, R.; Hilton, J.; Balaji, S.; Wu, J.; Ouyang, L.; Kim, C.; Hesse, C.; Jain, S.; Kosaraju, V.; Saunders, W.; et al. WebGPT:
Browser-assisted question-answering with human feedback. arXiv 2021, arXiv:2112.09332.

http://dx.doi.org/10.1609/aaai.v34i05.6311

	Introduction
	Text Classification Tasks
	Text Representation
	Broad Categorization of Text Classification Methods
	Shallow Learning Approaches
	Deep Learning Approaches

	Major Differences and Contributions

	Preprocessing
	Standard Preprocessing Operations
	Tokenisation
	Stopword and Noise Removal
	Further Standardisation of Text

	Preprocessing for Deep Models
	Tokenisation in Deep Models
	Byte Pair Encoding
	WordPiece
	UnigramLM
	SentencePiece

	Projecting into Feature Space
	Bag-of-Words
	Language Models
	Word Embeddings
	Word2Vec
	GloVe
	FastText

	Overview of Shallow Learning Classification Methods
	Probabilistic Classification
	K-NN-Based Classification
	Support Vector Machines
	Decision Trees and Random Forests
	Logistic Regression
	Ensemble Learning
	Neural-Based Methods
	Summary

	Deep Learning Methods
	Multilayer Perceptrons
	Recurrent Neural Networks
	Convolutional Neural Networks
	Deep Language Models for Classification
	RNN Encoder–Decoders
	The Attention Mechanism
	The Transformer Architecture
	BERT and GPT
	Recent Transformer Language Models
	Graph Neural Networks
	Contextualisation of Word Embeddings
	Challenges of Language Models

	Experimental Performance Analysis
	Datasets
	New Datasets Distillation

	Evaluation Metrics
	Quantitative Results
	Custom Experimental Setup
	Discussion on Results

	Future Research Directions
	Conclusions
	References

