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Abstract: Neural machine translation (NMT) systems have greatly improved the quality available
from machine translation (MT) compared to statistical machine translation (SMT) systems. However,
these state-of-the-art NMT models need much more computing power and data than SMT models, a
requirement that is unsustainable in the long run and of very limited benefit in low-resource scenar-
ios. To some extent, model compression—more specifically state-of-the-art knowledge distillation
techniques—can remedy this. In this work, we investigate knowledge distillation on a simulated
low-resource German-to-English translation task. We show that sequence-level knowledge distillation
can be used to train small student models on knowledge distilled from large teacher models. Part of
this work examines the influence of hyperparameter tuning on model performance when lowering
the number of Transformer heads or limiting the vocabulary size. Interestingly, the accuracy of these
student models is higher than that of the teachers in some cases even though the student model
training times are shorter in some cases. In a novel contribution, we demonstrate for a specific MT
service provider that in the post-deployment phase, distilled student models can reduce emissions,
as well as cost purely in monetary terms, by almost 50%.

Keywords: NMT; Green AI; knowledge distillation; CO2 savings

1. Introduction

Deep neural networks (DNN) underpin state-of-the-art applications of artificial intel-
ligence (AI) in almost all fields, such as image, speech and natural language processing
(NLP). However, DNN architectures [1] are often data-, compute-, space-, power- and
energy-hungry, typically requiring powerful graphic processing units (GPUs) or large-scale
clusters to train and deploy, which has been viewed as a “non-green” technology [2].

As a result of the European Green Deal https://ec.europa.eu/info/strategy/priorities-
2019-2024/european-green-deal_en (accessed on 2 December 2021) and the Horizon Europe
Work Programme for 2021–2022 adopted on 15 June 2021, the European Commission has
committed to making Europe the world’s first climate-neutral continent by 2050. If this
important goal is to be achieved, more efficient AI models have to play their part in helping
to reduce the amounts of energy that are required for data storage and algorithm training.

The concept of ‘green labs’ in the natural sciences is nowadays quite well-known
https://www.mygreenlab.org/ (accessed on 2 December 2021). Ultimately, researchers
could no longer avoid the issue, given the amount of plastic waste right in front of their eyes
in the lab at the end of any given day. In contrast, in computing, the GPUs on which we
build our models and run our experiments are hidden away in the cloud or in a refrigerated
machine room somewhere out of sight. Accordingly, most AI practitioners fail to consider
the amount of electricity consumed and CO2 generated by the machine learning models
that they (we!) build. That is starting to change https://datacenters.lbl.gov/ (accessed on 2
December 2021) but much more can—and needs to—be done.

In MT, shared tasks focusing on efficiency http://www.statmt.org/wmt21/efficiency-
task.html (accessed on 2 December 2021) are helping in this regard. A recent paper by Yusuf
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et al. [3] tracks the energy consumption of training translation models across different
language pairs, but this was met with a somewhat mixed reaction on Twitter, but at least it
turned the topic into a discussion point and provoked a response.

While the current paper concentrates on how smaller, greener models of MT might be
built, the seemingly inexorable drive towards larger DNNs has received attention in the area
of image classification, where Thompson et al. [4] gathered data from more than a thousand
research papers on deep learning and discussed their findings in detail. After analysing the
data they found that, in practice, in order to halve the error rate, approximately 500 times
the amount of resources used nowadays are required. If the gains obtained in recent years
continue, by 2025 the error level in the best AI systems designed for recognising objects in
the ImageNet [5] dataset might be reduced to just 5%. Figure 1 shows the infeasible amount
of computing resources required to achieve such a small error rate, and the concomitant
amount of CO2 emitted. In the same vein, Table 1 shows the estimated CO2 emissions
from training common NLP models as calculated by Strubell et al. [2], compared to how
much CO2 is emitted over the lifetime of the average human, the average American, and a
typical car.

Figure 1. Comparing the computing resources and energy required to train a DNN system to
recognise objects in the ImageNet dataset with an error rate of 5%. The amount of CO2 emitted would
be as much as New York City generates in one month. Figure courtesy of Thompson et al. [4].

Table 1. Estimated CO2 emissions from training common NLP models, compared to familiar
consumption. Table courtesy of Strubell et al. [2], with original sources for air travel and per-
capita consumption: https://bit.ly/2Hw0xWc (accessed on 2 December 2021), and car lifetime:
https://bit.ly/2Qbr0w1 (accessed on 2 December 2021).

Consumption CO2e (lbs)

Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156

Car, avg incl. fuel, 1 lifetime 126,000

NLP pipeline (parsing, SRL) 39
w/ tuning and experimentation 78,468

Transformer (big) 192
w/ neural architecture search 626,155

The main idea behind model compression is to “compress” an ensemble of large
models into a smaller model with minimal performance loss. This is generally done by
using a small, fast model to approximate the function learned by a much larger and slower
model with better performance [6]. Hinton et al. [7] show that compressing the knowledge
from a cumbersome model into a smaller model can be seen as a mapping from input
vectors to output vectors, and the relative probabilities of incorrect outputs can provide

 https://bit.ly/2Hw0xWc
https://bit.ly/2Qbr0w1
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insight into how the cumbersome model tends to generalise. The work mentioned so far
mainly investigated non-recurrent models used for classification tasks.

Knowledge distillation [6] can be used to transfer the knowledge from a teacher
network (a large, slow model) to a student network (a small, fast model). This is a promising
technique to disrupt the current situation for NLP tasks where almost all systems tend to
use cumbersome DNN architectures.

The methods described by Bucilua et al. [6] and Hinton et al. [7] can be used for
word-level knowledge distillation, since NMT models make use of multi-class prediction
at the word-level. These models, however, need to predict complete sequences that are
dependent on previous predictions as well.

Kim and Rush [8] proposed sequence-level knowledge distillation, where a new
training set is generated by translating a dataset with the teacher model using beam search.
The newly generated training set is then used to train a smaller student model. They show
how the usual training criteria for multi-class classifiers can be used to develop a function
for knowledge distillation, which can be expanded even further to be used for word-level
knowledge distillation and finally sequence-level knowledge distillation.

Assume we want to classify the data in the set (x, y) into a set of classes V. The aim
is to minimise the cross-entropy between the data distribution and model distribution p
parameterised by θ. This can be done by minimising the negative log-likelihood (NLL) for
each training example, as in (1):

LNLL(θ) = −
|V|

∑
k=1

1{y = k} log p(y = k|x; θ), (1)

where 1{·} is the indicator function. In terms of knowledge distillation, we have a model
distribution q(y = k|x, θT), learned by the teacher, so Equation (1) can be rewritten as (2):

LKD(θ, θT) = −
|V|

∑
k=1

q(y = k|x, θT) log p(y = k|x; θ). (2)

We can now useLKD to define functions for knowledge distillation for NMT. First, stan-
dard knowledge distillation can be applied to NMT models since word NLL is minimised
during training. The standard function becomes (3):

LWORD−KD(θ, θT) = −
J

∑
j=1

|V|

∑
k=1

q(tj = k|s, t<j) log p(y = k|s, t<j), (3)

where V is the target vocabulary and t and s the target and source sentences, respectively.
Finally, a loss function for sequence-level knowledge will be derived, since word-level
knowledge distillations can easily lead to the forward propagation of incorrect predictions.
Once again, we can use a probability distribution derived from the teacher model to define
a loss function. Sequence distributions from the teacher model are used instead of word
distributions and Equation (2) can thus be rewritten as (4):

LSEQ−KD(θ, θT) = − ∑
t∈T

q(t|s) log p(t|s), (4)

where q(t|s) represents the sequence distribution over all possible sequences. This loss
function, however, is complex to handle since it sums over an exponential number of terms.
Kim and Rush [8] suggest the use of beam search to approximate Equation (4), which
reduces the complexity of LSEQ−KD. It is worth noting that this method of knowledge
distillation is difficult to apply when the domain of the training data is not well defined.

Currey et al. [9] introduce generalised sequence-level knowledge distillation to distil
translations from domain-specific teacher models, and the knowledge distilled in their
approach is then used to train a smaller, multi-domain student model. This approach is
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referred to as ‘multi-domain knowledge distillation’ (cf. Figure 2). It is worth noting that
this method of knowledge distillation is difficult to apply when the domain of the training
data is not well defined.

Teacher trained on multi-domain
data (all in-domain data)

Teacher II fine-tuned
on in-domain data

Teacher I fine-tuned
on in-domain data

Teacher III fine-tuned
on in-domain data

Student trained on knowledge
distilled from all domains

Figure 2. Flowchart of the process of distilling multiple domains as in Currey et al. [9] to create a
general domain student model.

Both Currey et al. [9] and Gordon and Duh [10] use similar architectures for their
models, that is, teacher models with 12 encoder and decoder layers and student models
with six encoder and decoder layers. Training teacher models with this type of architecture
requires a large amount of memory and GPUs.

Zhang et al. [11] propose an adapted method of sequence-level knowledge distillation
named ’dual knowledge distillation’. This method utilises bidirectional translation models
to significantly improve translation in both directions.

Wang et al. [12] propose two strategies to select distilled knowledge for training
student models, namely batch-level selection and global-level selection. The authors show
the impact that different words and sentences have as carriers of knowledge, and how
consistent improvements on various datasets can be achieved using these strategies.

Passban et al. [13] describe a new approach called ‘attention-based layer projection’
for knowledge distillation. In this approach, the output of each layer of the student
model is compared to that of the teacher model, in order to help the student to produce
better outputs.

Dakwale [14] uses knowledge distillation to address the problem of catastrophic
degradation during domain adaptation. This was applied using an in-house NMT system
rather than a recurrent neural network [15].

We take inspiration from this body of work, and summarise the main contributions of
this paper as follows:

• We use sequence-level knowledge distillation and show that small student models
can outperform large teacher models;

• We show that small student models prove to be very useful in the case where MT mod-
els need to be deployed in environments where constraining the available hardware
is important;

• We demonstrate a translation industry scenario where knowledge distillation in NMT
is used for translating sentences in large-scale projects. For a real, current provider,
we focus on three parameters of translation projects which are of crucial importance
in industrial settings, namely translation time, translation cost, and carbon emissions,
and demonstrate that savings of almost 50% can be achieved;

• As our investigation focuses on the performance evaluation of small and large NMT
models in a low-resource set-up, the findings in this paper add value to the current
research on sustainable MT development;
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• Our research provides an alternative, realistic solution to SMEs who are currently
unable to provide MT solutions to their clients due to the huge deployment costs
associated with large-scale NMT models;

• Our findings help to demonstrate that the sort of energy reductions required to achieve
climate neutrality may be achieved.

When discussing our results in terms of the carbon emissions generated by these
models, we use the framework of Henderson et al. [16] for tracking energy consumption
and carbon emissions.

2. Experimental Setup

We use the Europarl https://opus.nlpl.eu/Europarl-v3.php (accessed on 2 December
2021) [17] corpus with parallel sentences in German and English for our NMT simulation
experiments described in this section for the language direction German to English. The
corpus is randomly divided into three subsets, namely the training set, validation set and
test set. The training set consists of roughly 2 million sentences and the validation and test
sets of 3000 sentences, respectively.

As for the preprocessing of the data, the Moses [18] toolkit was used to tokenize
and clean the three datasets mentioned above by removing all sentences with a length
greater than 100. The toolkit was also used to decase all sentences before training and after
training, we used a pretrained truecaser to recase all translated sentences. Furthermore,
SubwordNMT https://github.com/rsennrich/subword-nmt (accessed on 2 December
2021) was used to segment the sentences in the corpus into subword units as described by
Sennrich et al. [19]. More specifically, the Byte Pair Encoding (BPE) vocabularies were set
to 32k words.

The performance of all our models was measured with three evaluation metrics,
namely BLEU [20], TER [21] and chrF https://github.com/m-popovic/chrF (accessed on 2
December 2021) [22], using the MultEval toolkit [23] https://github.com/jhclark/multeval
(accessed on 2 December 2021). Of course, these metrics provide an indication of the quality
of the translations produced by our NMT systems, but do not provide insight into the
efficiency of our systems in terms of model size, number of parameters and training times.

The training set size, number of GPUs, time taken, electricity consumption and CO2
production and the balance between these constraints and performance need to be taken
into account if we are to report on the efficiency of our systems. Electricity consumption
and CO2 emissions can be estimated by taking training time and GPU specifications into
account. In addition, human evaluation methods can provide better insight into the optimal
balance of these factors, as automatic evaluation methods do not give an accurate indication
of any deterioration in quality seen when smaller models are used. By the same token,
continuing to train our DNN models for further epochs may result in gains according to
automatic metrics which are not discernible to humans.

We use the MarianNMT https://github.com/marian-nmt/marian (accessed on 2
December 2021) toolkit [24] and Transformer [25] architecture to train the models for our
experiments. All models were trained for a maximum of 20 epochs, since that was the
lowest number of epochs needed to finish training for one of our models. Listing 1 shows
an example training setup with most notable parameters for one of our baseline models.

The same script is used to train the student models, where the only difference is
the training datasets used for training. The baseline and student models have the same
architectures, since we want to determine the impact of the knowledge distilled from the
teacher models on the efficiency of our systems.

Furthermore, we experimented with the hyperparameters of the student models by
training these models with four Transformer heads, compared to eight heads, as shown in
line 6 of Listing 1. We also tested the performance of our student models by limiting the
vocabulary sizes to 8k and 16k tokens. The results of this set of experiments are presented
in Section 3.4.

https://opus.nlpl.eu/Europarl-v3.php
https://github.com/rsennrich/subword-nmt
https://github.com/m-popovic/chrF
https://github.com/jhclark/multeval
https://github.com/marian-nmt/marian
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Listing 1. Baseline model parameters.

Information 2022, 1, 0 6 of 14

Listing 1: Baseline model parameters

--mini -batch -fit -w 9000 --mini -batch 1000 --maxi -batch 1000 \
--valid -mini -batch 64 \
--cost -type=ce -mean -words \
--beam -size 12 --normalize 1 \
--enc -depth 3 --dec -depth 3 \
--transformer -heads 8 \
--transformer -postprocess -emb d \
--transformer -postprocess dan \
--transformer -dropout 0.1 --label -smoothing 0.1 \
--learn -rate 0.0003 \
--lr-warmup 16000 --lr-decay -inv -sqrt 16000 --lr -report \
--optimizer -params 0.9 0.98 1e-09 --clip -norm 5 \
--tied -embeddings --exponential -smoothing

The same script is used to train the student models, where the only difference is
the training datasets used for training. The baseline and student models have the same
architectures, since we want to determine the impact of the knowledge distilled from the
teacher models on the efficiency of our systems.

Furthermore, we experimented with the hyperparameters of the student models by
training these models with four Transformer heads, compared to eight heads, as shown in
line 6 of Listing 1. We also tested the performance of our student models by limiting the
vocabulary sizes to 8k and 16k tokens. The results of this set of experiments are presented
in Section 3.4.

As for the teacher models, the --enc-depth and --dec-depth parameters were set to
6, instead of 3. Other than the difference in encoder and decoder layers, the script remains
the same and the teacher models are trained on the same training sets as the baseline
models. Table 2 summarises the three types of models that were used in our experiments
and changes in their architectures.

Table 2. Comparison of baseline, teacher and student models. (KD is the knowledge-distilled
training set).

Model Type Corpus # of enc/dec Layers

Baseline EuroParl 3
Teacher EuroParl 6

Student I KD 3
Student II KD + EuroParl 3

3. Results
3.1. Baseline Models

All three baseline models have the same parameters as in the example shown above.
The difference between these models relates to the number of GPUs used during training
time. Baseline 1 was trained using one GPU, Baseline 2 using two GPUs and Baseline 3
using four GPUs. For each of these models, the training time and translation accuracy is
compared in Table 3. As expected, the training time goes down as the number of GPUs
increases. Interestingly, Baseline-2GPU has the best BLEU score when training is limited
to 20 epochs, although the differences in the scores of all the baseline models are not
significant. After further investigation, the reason behind Baseline-2GPU performing better
than Baseline-4GPU has to do with the way in which the MarianNMT toolkit saves model
weights and run-time parameters.

For our experiments the save- and validation-frequency is set to 5000 iterations,
whereas for Baseline-2GPU the model was saved during epoch 19 (iteration 50,000), and
Baseline-4GPU was saved during epoch 18 (iteration 25,000). Iteration 50, 000 only occurred
during epoch 36. Further investigation needs to be done on the method in which these

As for the teacher models, the --enc-depth and --dec-depth parameters were set to
6, instead of 3. Other than the difference in encoder and decoder layers, the script remains
the same and the teacher models are trained on the same training sets as the baseline
models. Table 2 summarises the three types of models that were used in our experiments
and changes in their architectures.

Table 2. Comparison of baseline, teacher and student models. (KD is the knowledge-distilled
training set).

Model Type Corpus # of enc/dec Layers

Baseline EuroParl 3
Teacher EuroParl 6

Student I KD 3
Student II KD + EuroParl 3

3. Results
3.1. Baseline Models

All three baseline models have the same parameters as in the example shown above.
The difference between these models relates to the number of GPUs used during training
time. Baseline 1 was trained using one GPU, Baseline 2 using two GPUs and Baseline 3
using four GPUs. For each of these models, the training time and translation accuracy is
compared in Table 3. As expected, the training time goes down as the number of GPUs
increases. Interestingly, Baseline-2GPU has the best BLEU score when training is limited
to 20 epochs, although the differences in the scores of all the baseline models are not
significant. After further investigation, the reason behind Baseline-2GPU performing better
than Baseline-4GPU has to do with the way in which the MarianNMT toolkit saves model
weights and run-time parameters.

For our experiments the save- and validation-frequency is set to 5000 iterations,
whereas for Baseline-2GPU the model was saved during epoch 19 (iteration 50,000), and
Baseline-4GPU was saved during epoch 18 (iteration 25,000). Iteration 50, 000 only occurred
during epoch 36. Further investigation needs to be done on the method in which these
iterations are saved in order to change these parameters so they are more efficient; in
Section 4 where we discuss Table 2, note that the same behaviour ensues.
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Table 3. Comparison of the performance of the baseline models.

Baseline # of GPUs Training Time BLEU TER chrF

1 1 07:50:13 26.39 48.3 60.37
2 2 05:07:48 26.68 48.2 60.46
3 4 03:50:52 26.39 48.4 60.32

3.2. Teacher Models

Three teacher models were also trained using the Europarl corpus and the number of
GPUs used during training was the same as for the baseline models. However, these models
have six encoder and decoder layers, which contrasts with the baseline and student models
which have only three encoder and decoder layers. The results for the teacher models are
shown in Table 4. Once again, the difference in accuracy is not very significant across all the
metrics. The difference in training time of Teacher-GPU2 and Teacher-GPU4 is only 20 min,
so in our future work we aim to track the energy usage of 2 GPUs compared to 4 GPUs
in order to see which setup leaves a smaller carbon footprint. This is especially important
given the only very slight improvements in translation quality, albeit demonstrated by all
three metrics.

Table 4. Comparison of the performance of the teacher models.

Teacher # of GPUs Training Time BLEU TER chrF

1 1 13:25:46 26.60 48.1 60.52
2 2 08:05:38 26.71 47.7 60.98
3 4 07:48:01 26.76 47.5 61.11

3.3. Student Models

Similar to the baseline models, the student models have just three encoder and decoder
layers. However, the student models are trained on new training sets created by translating
the German sentences in the training set into English using each teacher model with a beam
size of 12. The original German sentences and the newly translated English sentences were
then used to create the new parallel training corpus. This corpus is referred to as the ‘KD
training set’.

The first three student models were trained on the KD set only, and the following three
student models were trained on the original training set appended to the KD set [26]. Each
student model’s training set has a KD set that was translated by a teacher model with a
corresponding number of GPUs used during training. The training sets used, number of
GPUs used, training time and evaluation scores are shown in Table 5.

Table 5. Comparison of the performance of the student models.

Student Training Set # of GPUs Training Time BLEU TER chrF

1 KD 1 07:07:56 26.66 49.5 59.35
2 KD 2 04:46:34 26.49 49.3 59.51
3 KD 4 04:21:48 26.22 50.1 59.11

4 EuroParl+KD 1 16:48:06 26.68 48.8 59.58
5 EuroParl+KD 2 10:25:41 26.87 48.6 60.11
6 EuroParl+KD 4 08:44:18 26.81 49.0 59.85

3.4. Hyperparameter Tuning

The performance of the experimental student models is shown in Tables 6 and 7. While
it is interesting to see the exact scores for all set-ups, in order to help the reader more easily
see the overall picture, we encapsulate this information in Figures 3–5. Figure 3 presents
the average accuracy of the student models when limiting the vocabulary sizes at training.
Since the training sets and number of GPUs used are consistent for student models 1 to
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6, they are not shown. In Figure 4, we see the performance of the student models when
the number of Transformer heads is reduced from 8 to 4. The vocabulary size was left at
32k. Once again the training sets and number of GPUs used are consistent. In future work,
further experimentation will be done on combining smaller vocabulary sizes with a smaller
number of Transformer heads. Figure 5 shows the average training time comparison of the
various models. We discuss all these results in the next section.

Table 6. Comparison of the performance of the student models with varying vocabulary sizes.

Student Vocabulary Size Training Time BLEU TER chrF

1 8k 05:10:08 22.63 55.63 52.44
2 8k 02:49:39 22.83 55.21 52.95
3 8k 03:05:43 21.72 57.06 51.23
4 8k 11:03:00 23.55 54.03 53.79
5 8k 06:00:09 23.41 53.61 54.04
6 8k 06:07:55 23.17 54.14 53.46

1 16k 06:08:42 25.30 51.42 57.10
2 16k 03:22:43 25.23 51.29 57.28
3 16k 03:18:20 24.36 52.87 56.01
4 16k 13:03:38 25.93 50.59 57.89
5 16k 07:08:26 25.74 50.41 57.89
6 16k 07:22:54 25.73 50.83 57.58

Table 7. Performance of the student models with 4 Transformer heads.

Student Transformer Heads Training Time BLEU TER chrF

1 4 06:46:49 26.27 50.10 58.93
2 4 04:55:52 26.52 49.56 59.37
3 4 03:11:03 25.92 50.61 58.64
4 4 15:32:27 26.69 49.04 59.65
5 4 10:15:02 26.90 48.49 60.14
6 4 07:42:52 26.83 49.05 59.72

BLEU TER chrF

20

30

40

50

60

Sc
or

es

32k 16k 8k

Figure 3. Average score comparison of student models with varying vocabulary sizes, including the
standard deviations. Note that BLEU and chrF are precision-based metrics, so the higher the score
the better, whereas TER is an error metric, so lower scores indicate better quality.
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BLEU TER chrF

30

40

50

60

Sc
or

es

8 heads 4 heads

Figure 4. Average score comparison of student models with varying numbers of Transformer heads,
including the standard deviations.

32k 16k 8k 4 heads

6

7

8

9

H
ou

rs

Figure 5. Average time comparison of student models with varying vocabulary sizes and Transformer
heads. Where the vocabularies are specified, the number of Transformer heads is equal to 8, while for
4 Transformer heads the vocabulary size is set to 32k.

4. Discussion

When comparing the results of the baseline models to the results of the teacher models,
as can be seen from Tables 3 and 4, the teacher models perform better than the baseline
models as far as all three automatic metrics are concerned. When the vocabulary size is
varied, as shown in Figure 3, the performance of the student models decreases consistently
with each halving of vocabulary size, for all three evaluation metrics. However, lowering
the number of Transformer heads does not seem to significantly affect quality, as Figure 4
shows.

In terms of the training times for the baseline models compared to the teacher models,
the scores improve marginally, but the training times are longer than those of the baseline
models. In fact, the best scores are obtained with Teacher-4GPU. Figure 5 shows the average
training time for the various student models and it is clear that the models with smaller
vocabularies (16k and 8k) trained faster on average, albeit with lower quality in terms of
runtime performance as we have just seen. In comparison, the models with 4 Transformer
heads (and a vocabulary size of 32k) trained slightly faster than the original student models,
and with no significant deterioration in quality.
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As for Baseline-4GPU and Teacher-4GPU, we compared translations and observed
that even though there is a statistically significant difference in BLEU scores (calculated
via approximate randomisation using the MultEval tool), the actual translations produced
by both models do not differ significantly in quality from a human perspective. Example
translations produced by the MT systems are shown in Table 8, where from a human point
of view, the translations produced by the two systems are equally valid. Accordingly, it
appears that training a model with only three encoder and decoder layers is justifiable in
the case of limited computing resources, since the sentences in both cases remain accurate
and fluent, and no worse than a model using twice the amount of layers.

Table 8. Comparison of original English reference translations to MT outputs.

Source Sentence

EuroParl And with this extension, when the decisions are legislative, will there
always be codecision with Parliamemnt?

Baseline-4GPU And when it comes to legislative decisions, will Parliament always have
codecision?

Teacher-4GPU And will Parliament always have codecision when it comes to legislative
decisions?

EuroParl Almost all the speakers in this debate have mentioned credit rating
agencies.

Baseline-4GPU Almost every speaker spoke today about credit rating agencies.
Teacher-4GPU Almost every speaker has spoken today about credit rating agencies.

If we compare Student-KD and Teacher models, training time is almost half the amount
of time for all Student models. For Student-KD-1GPU, the BLEU score is nearly identical to
that of the corresponding Teacher model, but the TER and chrF scores show it to be a little
worse. If we compare the Student-KD models to the Student-KD+EP models, the latter
takes longer to train and leads to better scores for all automatic metrics.

From Figure 3, it is clear that limiting the size of the vocabulary causes the experimental
student models to train faster than the original student models (by up to 2 h). The accuracy,
however, is lower (by about 2.5 BLEU points, or 10% relative), especially for models trained
only on the KD set. The anomaly when using 2 GPUs appears in Table 6 for both vocabulary
sizes too, and it again occurs when the model iteration is not saved during the last epoch.

Interestingly, the model with the best accuracy was trained on the EuroParl+KD
training set using 2 GPUs and only 4 Transformer heads. In some cases the student models
with 4 Transformer heads were slightly quicker to train and more accurate than the original
student models with 8 Transformer heads. Figure 4 shows that the accuracy is on average
very similar when using the different number of Transformer heads during training, but
the average training time for models trained using only 4 Transformer heads is 7 h less
than when using 8 Transformer heads.

Kim and Rush [8] showed that when using a long short-term memory architecture,
some smaller student MT models outperformed large teacher models. This is also the case
for our Transformer models when using the original (Europarl) and KD training set as
shown in Table 9.

Table 9. Difference in BLEU scores between teacher and student models.

# of GPUs Teacher Student-KD+EP Difference

1 26.60 26.68 +0.08
2 26.71 26.87 +0.16
4 26.76 26.81 +0.05
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Impact

In this section, we consider a number of matters which are important industry concerns
in the post-deployment phase, where only the translation process itself is taken into account
and not the preceding training process. To the best of our knowledge, this study is the
first of its type to take a realistic scenario from an actual service provider and estimate the
savings that can be achieved from distilling larger models into small ones.

Table 10 shows the time (in seconds) it took for our models to translate the test
set we used for evaluation, as described in Section 2. Figure 6 shows some of the site
statistics available on the KantanMT Platform https://www.kantanmt.com/ (accessed on
2 December 2021). It is clear from Table 10 that the student models translate the source
sentences much faster than the teacher models. Somewhat more interestingly, we observe
that using 2 GPUs for translation yields the fastest translation time; more specifically, model
Student-KD+EP-2GPU takes 29.49 s to translate 3000 sentences. Furthermore, there are
69,543 German words in the test file that was translated, so model Student-KD+EP-2GPU
translated on average 2358 words per second.

Table 10. Comparison of time taken to translate the test set in seconds.

# of GPUs Teacher Student-KD+EP

1 84.10 45.20
2 54.09 29.49
4 69.80 37.05

Taking the statistics in Figure 6 as an example of where MT is used in the translation
industry, an average of 255,546,342 words are translated per month. This average is
denoted as Mavg. We based our calculations of the cost and carbon emissions on using an
NMT model to translate this average amount of words per month. These results are only
estimates, and in the future we aim to track these variables more precisely, but they are
quite insightful nonetheless. Schwartz et al. [27] point out that tracking these variables
is very dependable on the deployment environment since carbon emissions are highly
dependable both on the local electricity infrastructure and the type of hardware that is used.
Thus, we will need to repeat these experiments in a controlled environment in future work.

Figure 6. Total number of words translated per month on the KantanMT Platform. The statistics
provided are from 1 August 2018 and are updated every 2 h.

Estimates of the carbon emissions were conducted using the Machine Learning Impact
Calculator presented by Lacoste et al. [28].

As for the cost, we used the AWS Pricing Calculator. The AWS Pricing Calculator
(https://calculator.aws/#/) (accessed on 2 December 2021) provides only an estimate of
one’s AWS fees to estimate the cost of using AWS GPUs for a given amount of hours per
month. We use the p3.8xlarge https://aws.amazon.com/ec2/instance-types/p3/ (accessed
on 2 December 2021) instance for pricing calculations which provides access to 4 NVIDIA

https://www.kantanmt.com/
https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute
https://calculator.aws/#/
https://aws.amazon.com/ec2/instance-types/p3/
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https://www.nvidia.com/en-us/ (accessed on 2 December 2021) Tesla V100 GPUs, as well
as 32 GB EBS Storage. The On-Demand Instances pricing is used.

In order to estimate a translation time for the cost and carbon emissions, we first
calculated the average number of words translated per second by each model and then
estimated the time it would take to translate Mavg words. These estimates are shown in
Table 11. They show pretty clearly that the student models are much more efficient in
terms of cost and CO2 emissions when a model is deployed by industry to provide MT as a
service. While the results are preliminary, and further investigation is required, we believe
them to be encouraging, and a tentative endorsement of the role that distilled models can
play in reducing the carbon footprint of the AI models that we build.

Table 11. Comparison of Cost in USD and CO2 emissions of each model when translating Mavg

amount of words per month. The Translation time in hours is an estimate only.

Model Mavg (Translation
Time) Cost (USD) CO2 Emissions

(kgCO2-eq)

Teacher-1GPU 85.84 1,140.44 13.31
Student-KD+EP-

1GPU 46.14 624.86 7.15

Teacher-2GPU 55.21 743.84 8.56
Student-KD+EP-

2GPU 30.10 413.34 4.67

Teacher-4GPU 71.24 955.36 11.04
Student-KD+EP-

4GPU 37.82 505.88 5.87

5. Conclusions

In this work, we showed that sequence-level knowledge distillation can be used to
reduce model size and training time, without significant loss in performance; in some
instances, it even leads to performance gains. It is also clear from our investigation that
smaller models can be used when time and space constraints apply without a notable loss
in performance. We also showed how changing hyperparameters can impact the training
time and accuracy of the student models. Smaller vocabulary sizes lead to faster training
times, but the accuracy of these models is quite a bit lower. Using only 4 Transformer heads
caused training time to be only slightly faster but, interestingly, with little deterioration in
terms of quality; again, in some cases the accuracy actually improved.

An important finding of this work is that student models are much more efficient
in terms of cost and CO2 emissions as far as offering MT as a service in the translation
industry is concerned.

In the future, we plan to calculate the uncertainty score of each sentence translated by
our teacher model. The idea is not to consider or undersample those sentences for which
our teacher model is quite uncertain. Those sentences having low uncertainty scores can
also be upsampled in the training sets of the student models so that the student models
better mimic the characteristics of the teacher models.

In extensions to our hyperparameter experiments, we plan to combine the vocabulary
size and Transformer head parameter modifications to obtain better insight into the impact
of these changes. The size of these models also needs to be taken into account and compared
to the original student and teacher models.

Furthermore, we aim to experiment on a bigger variety of training parameters when
distilling knowledge from the teacher model. We also want to carry out these experiments
on different domains and language-pairs, especially those in real resource-constrained
environments as opposed to the simulations used here.

In follow-on work, we intend to use the framework of [16] in order to generate more
accurate estimates of carbon emissions. This will be a crucial component of our overall aim
to come up with a composite metric which takes all the parameters at play into account,

https://www.nvidia.com/en-us/
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so as to indicate what system configuration can best deliver on a client’s wishlist for the
lowest cost, while being as kind as possible to the environment.
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