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Abstract: The use of the mel spectrogram as a signal parameterization for voice generation is quite
recent and linked to the development of neural vocoders. These are deep neural networks that
allow reconstructing high-quality speech from a given mel spectrogram. While initially developed
for speech synthesis, now neural vocoders have also been studied in the context of voice attribute
manipulation, opening new means for voice processing in audio production. However, to be able
to apply neural vocoders in real-world applications, two problems need to be addressed: (1) To sup-
port use in professional audio workstations, the computational complexity should be small, (2)
the vocoder needs to support a large variety of speakers, differences in voice qualities, and a wide
range of intensities potentially encountered during audio production. In this context, the present
study will provide a detailed description of the Multi-band Excited WaveNet, a fully convolutional
neural vocoder built around signal processing blocks. It will evaluate the performance of the vocoder
when trained on a variety of multi-speaker and multi-singer databases, including an experimental
evaluation of the neural vocoder trained on speech and singing voices. Addressing the problem
of intensity variation, the study will introduce a new adaptive signal normalization scheme that
allows for robust compensation for dynamic and static gain variations. Evaluations are performed
using objective measures and a number of perceptual tests including different neural vocoder algo-
rithms known from the literature. The results confirm that the proposed vocoder compares favorably
to the state-of-the-art in its capacity to generalize to unseen voices and voice qualities. The remaining
challenges will be discussed.

Keywords: neural vocoder; mel spectrogram; speech synthesis; singing synthesis; singing transfor-
mation; speech transformation; adversarial training

1. Introduction

A Vocoder is a parametric model of speech or singing voice signals that allows re-
production of a speech signal from parameters following an analysis/synthesis proce-
dure. In the case of voice synthesis, the analysis procedure may be replaced by means
of a generator that directly produces the vocoder parameters for synthesis. Research into
vocoders has a long history. While initial systems were built using electrical circuits [1],
most of the known vocoders were implemented in software. Early implementations
were the phase vocoder [2], sinusoidal models [3], and pitch-synchronous overlap-add
(PSOLA) [4]. Later, a large number of vocoders employing various techniques have been
proposed [5–11]. Most of these systems rely, in one form or another, on the source-filter
model of voice production [12,13]. While splitting a voice model into source and filter
parts simplifies analysis and representation, it comes with the problem that in the physical
world source and filter are strongly coupled [14,15]. As a result, a change in pitch will
generally be accompanied by changes in glottal pulse form, formant positions, intensity
and noise level. While the precise and robust estimation of these parameters was already
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a challenging research problem, the formulation of voice models that represent the relevant
interactions did remain elusive.

Recently, it has been shown that autoregressive deep neural networks (DNN) can
be trained to invert mel spectrograms into high-quality speech signals [16]. By means
of a perceptual test, the Ref. [16] demonstrated that compared to natural speech, the speech
signals generated by means of the DNN are not perceived as significantly different. Be-
cause the mel spectrogram is a parametric representation of speech, the DNN inverting
the mel spectrogram is denoted as a neural vocoder. The particular autoregressive structure
of the DNN used in the Ref. [16] is called the WaveNet.

The very high quality of the synthesis obtained in the Ref. [16] has triggered strong
research activities related to neural vocoders. Initial research into neural vocoders did focus
on the problem of the high computational costs for training and running the WaveNet,
and on the question of the size of the data sets required for training individual speaker
models [17–21]. More recent research activities have begun to investigate multi-speaker
models [22–24]. Initial results have demonstrated that multi-speaker neural vocoders can
generalize not only to unseen speakers, but also to unseen languages and expressivity [23].
In this article, we will follow the Ref. [22] in denoting a neural vocoder that supports
multiple voices a universal neural vocoder, noting for clarity that such a vocoder is not
as universal as an analysis/resynthesis with a short-time Fourier transform. The quest for a
truly universal neural vocoder is one of the motivations of the present work.

Producing a neural vocoder that supports multiple—or even arbitrary—voices can
be seen as an enabling technology. For synthesis, a universal neural vocoder not only
simplifies the creation of new voices, but also allows building TTS systems with front ends
containing a speaker identity control [25]. Such speaker control can be used to switch
between existing speakers. However, it may also be used to produce speakers with a combi-
nation of features that do not exist in the training database. For speech processing, it allows
for the development of DNN systems for voice transformation, for example, for speaker
identity conversion [26], pitch transformation [27,28], and gender transformation [29]. At
IRCAM, for example, we are currently developing technology that aims to reproduce an ar-
tificial singing voice spanning three octaves of vocal range, a capability that is attributed
to the voice of Farinelli [30]. As soon as voice transformation becomes creative, the mel
spectrograms will almost certainly contain features that cannot be observed in a single
original voice, and therefore, a universal neural vocoder is required.

A universal neural vocoder would also allow for the development of versatile real-
world applications for classical voice transformation, for example, for cinema and music
production, where precise control of speech parameters for arbitrary speakers/singers is
desired. For film production, precise modification of speech duration may be necessary.
For music production, one may need to globally or locally correct or manipulate the pitch
in a singing voice recording. In these cases, modifications need to be precise and the content
needs to be preserved as much as possible. The changes should be limited to the attribute
modifications that are required to keep the signal coherent overall. This kind of precise
attribute editing is the subject of active research for image manipulation [31–33] but has
not received much attention for voice processing.

The large potential of a universal neural vocoder motivated our research presented
in the following. In the long term, this work aims to develop a neural vocoder supporting
perceptually transparent analysis/resynthesis for arbitrary speakers and arbitrary voice
qualities, notably, the spoken and singing voice.
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1.1. Related Work

The neural vocoders mentioned so far all rely exclusively on DNN for signal genera-
tion. There are no signal processing components integrated into the generator. Another line
of research, more inline with the present study, aims to compose DNN with classical signal
modeling techniques to avoid having the DNN learn correlations that can be expressed eas-
ily using signal models. A prominent example is DDSP, a python package for differentiable
digital signal processing [34,35]. The Ref. [34] proposes to implement a classical additive
sinusoidal model [36] using the differentiable operators of a deep learning framework
as the signal processing back-end and uses a DNN as the front-end to control the parame-
ters of the additive model. The fact that the signal processing operators are differentiable
allows training the whole system as an auto-encoder. The model receives control param-
eters (F0, instrument type, . . . ) extracted from a given signal that it has to reconstruct
by means of choosing the various parameters of the signal model. Interestingly, during
inference, the signal parameters obtained from an input signal can be manipulated before
being sent to the front-end. Ideally, if the DNN controller was learned with sufficient
examples, and if the input parameter combinations remain in realistic ranges, the DNN
controller will be able to translate the input parameters into the most appropriate param-
eters of the signal model. This setup has two benefits: First, it solves the long-standing
problem of high-level control of advanced signal processing models, and second, by means
of imposing some structure into the DNN training of the model can be done with fewer
data. The key problem is to find a structure that is properly adapted to the target domain
not limiting the expressivity of the model.

A prominent candidate for structuring a vocoder into signal processing operators and
DNN modules is the source-filter model [12,13]. Adding a filter component into a neural
vocoder does not in itself imply any limitations for the signals that may be represented
by the vocoder. One of the most basic source-filter models—linear predictive coding
(LPC) [12]—can be applied to arbitrary input signals. As mentioned above, a fundamental
problem of the classical vocoders is the missing interaction between source and filter, other
problems are the linearity assumption and various constraints imposed on the source or
filter components. In a DDSP type setup these problems can be solved. The DNN based
controller can establish interaction and non linearity, and if either source or filter is a DNN,
then the model’s expressivity can also be easily adapted to fit the signals. A particular
problem that arises with the introduction of source and filter components is gain ambiguity.
If no constraints are established, the source and filter can be modified transparently by
means of applying a filter to the source and the inverse filter to the filter. This problem
needs to be addressed to achieve a robust parameter estimation.

Indeed, there exist numerous studies [19,37–40] investigating combinations of DNN
and signal processing components for training neural speech vocoders. In most cases,
a WaveNet [16] acts as source, which is passed through a filter obtained either from the in-
put signal [40] or by means of a separate DNN [39]. The Refs. [37,38] conditioned a WaveNet
on classical acoustic features (e.g., F0, Voice/Unvoiced, . . . ) to generate an excitation sig-
nal and make use of an autoregressive (AR) vocal tract filter (VTF) to construct a speech
signal. The Ref. [39] uses a mel spectrogram as input and conditions a model resembling
the WaveNet on features derived from the mel spectrogram. The VTF is obtained directly
from the mel spectrogram by means of straightforward mathematical operations. Most
of these systems are using a multi-resolution spectral loss as objective function. A particu-
larity of [39] is the incorporation of an adversarial loss. The Ref. [40] did not use a WaveNet
for the excitation generation, but instead relies on WaveGlow [18]. Finally, the Ref. [19]
did not use a classical VTF component, but a neural filter module to modify an excitation
consisting of the output of a sinusoids-plus-noise model with seven partials. The neural
filter module then took care of completing the missing parts of the excitation and creating
the formant structure.
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1.2. Contributions

In the Ref. [41], we presented our first results concerning the Multi-Band Excited WaveNet
(MBExWN), a neural vocoder performing a perceptually nearly transparent analysis/resynthesis
for seen and unseen voice identities, as well as seen and unseen voice qualities. In Ref. [41]
we were using two different models, one for speech and the other for singing voice. The
present paper introduces the following innovations compared to the Ref. [41]:

Automatic and adaptive signal normalization: A universal neural vocoder should work
independently from the signal energy. The existing normalization strategies standardize
either the full training database, individual speakers, or individual phrases. In all cases,
the standardization poses the problem that the maximum amplitude will depend on the dis-
tribution of signal amplitudes. Practically, this means that the amplitude of the same
content of a signal will depend on the number and length of pauses. Correctly handling
these irrelevant amplitude variations will waste resources in the neural vocoder. To address
this problem we will introduce a fully adaptive, time-varying signal normalization strategy
for neural vocoders conditioned on mel spectrograms that eases the practical use of a neural
vocoder in signal processing applications. We discuss our results in an experimental evalua-
tion comparing the adaptive normalization with a more straightforward gain augmentation
of the training dataset. To our knowledge, this is the first time the impact of a variation
of signal gain has been studied for a neural vocoder working in an analysis/synthesis setup.

Ablation study motivating the MBExWN model topology: [41] does not provide an objec-
tive evaluation of the various model components. We provide explicit parameter settings
for the pseudo quadrature mirror filterbank (PQMF) and evaluate a few model configu-
rations in form of an ablation study. The results support the effectiveness of the model
structure proposed in the Ref. [41].

Investigation of model deficiencies: [41] proposes to use two distinct models for speech
and singing voices. This is unfortunate, notably for practical applications. The present
study will investigate the performance of the MBExWN model when trained on both
singing and speaking voices. Furthermore, the Ref. [41] found that the synthesis of rough
voices does not work well. The present study confirms this result and provides some
theoretical insights into their origin.

The rest of the paper is organized as follows. In Section 2.1 we will describe and
motivate the model topology, in Section 2.2 we will discuss the loss functions that are used
for training, in Section 2.3 we will introduce the signal adaptive normalization strategy, and
in Section 3 will describe the data sets and discuss our experimental results. In Section 4
we will discuss our findings and put them into perspective.

2. Materials and Methods

As an introduction into the following analysis, we present the MBExWN model, which
due to space constraint, was introduced rather briefly in the Ref. [41]. The overall structure
of the neural vocoder is shown in Figure 1. All green blocks are DNN submodules and
yellow blocks represent signal processing operators. Red ovals represent loss functions
which will be described in Section 2.2. Please note that for the experiments discussed
in the following the input mel frame rate of the vocoder is 80 Hz, and the vocoder generates
an output sample rate of 24 kHz.
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Figure 1. MBExWN schematic generator: Green boxes are DNN models, yellow boxes are differ-
entiable DSP operators, red ovals are losses. The numbers below the boxes designate the output
dimension of the respective box in the format time × channels (batch dimension not shown) for a sin-
gle mel frame as input (dimensions 1× 80). In the present study, the mel frame hop size is 300 samples
@ 24 kHz and therefore the model needs to achieve an overall upsampling factor of 300.

2.1. Model Topology

For constructing the various submodules of the MBExWN generator, we use three
variants of convolutional layers together with a few activation functions and the reshape
operator. The convolutional layers to be used will be denoted as follows:

Conv1D: The classic one-dimensional convolutional layer.
Conv1D-Up: A Conv1D layer followed by a reshape operator. Conv1D-UP is used

to perform upsampling using sub-pixel convolution and is initialized
with checkerboard free initialization following [42].

LinConv1D-Up: A Conv1D-Up layer with fixed, pre-computed weights followed by a re-
shape operation. The weights are pre-computed such that the layer
performs upsampling by means of linear interpolation.

Note that the Conv1D and Conv1D-UP layers use weight normalization according to
the Ref. [43]. The model uses the following three activation functions: leaky ReLU with
the slope for the negative part of the input set to 0.2, fast sigmoid defined as

y = 0.5 + 0.5
x

1 + |x| , (1)

and finally, for the WaveNet, gated activations as proposed in the Ref. [44]. As a motivation
for using fast sigmoids we note that we do not expect the network to require the hard
saturation provided by a standard sigmoid function, and therefore selected the fast variant
for its lower computational complexity.

2.1.1. VTF Generation

In line with the discussion from the Ref. [37], we decided to use an STFT-based VTF
module such that the internal vocoder only needs to produce an excitation signal, and
does not need to deal with the rather narrow vocal tract resonances. The VTF network
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translates the input mel spectrogram into 240 causal cepstral filter coefficients. These
coefficients are then converted into a spectral envelope by means of applying a DFT. Note
that the use of causal cepstral coefficients implies that the resulting filter is minimum
phase [45]. Furthermore, the limitation of the number of cepstral coefficients provides
efficient control over the minimum formant bandwidth [46], which allows for avoiding
extreme resonances that may arise with autoregressive filters in case that a pole comes too
close to the unit circle. The VTF network is very simple as it does not need to perform any
upsampling. The details of the VTF-Net are shown in Table A1 in Appendix A.1.

The output of the VTF-Net needs to be converted further into a complex STFT so that
it can be used for spectral domain filtering. This conversion is not straightforward due
to two problems: First, the gain ambiguity that was mentioned in the introduction, and
second, the limited range of the representation of the floating point variables that may
lead to NaN notably for the gradient calculation of the VTF. To solve these two problems
we constrain the filter to a limited range in dB and normalize the energy of the final filter
transfer function to force the filter to preserve frame energy. Accordingly, for each frame m
the causal cepstral coefficients cm,k are converted into a complex spectrum Sm as follows:

Lm = RFFT(cm,k) (2)

S′m = exp(rmax tanh(Re(Lm)) + i Im(Lm)) (3)

Sm =

√
N · S′m
||S′m||2

for m = 0, 1, . . . , (4)

where RFFT is the FFT of a real-valued signal (discarding the negative frequency axis, due
to symmetry), rmax is a the maximum filter gain or attenuation, Re and Im are the real-
and imaginary parts respectively, and N is the number of frequency bands. For all models
discussed in the following, we have rmax = 40 dB.

The application of the VTF by means of spectral-domain filtering requires a spec-
ification of the STFT window and FFT size for the STFT blocks in Figure 1. To allow
an appropriate representation of the formant structure the STFT window needs to be longer
than the filter impulse response of the formants. Using fundamental relations between
bandwidth and decay rate for individual poles [47], one can conclude that a Hanning win-
dow of 50 ms should allow for a reasonable approximation of formants with bandwidths
above 40 Hz. We note that according to the Ref. [46] a cepstral filter with 240 coefficients
achieves a frequency resolution of about 50 Hz. If a better VFT precision is desired the STFT
window should be increased together with the number of cepstral coefficients.

2.1.2. Excitation Generation

A crucial element of a neural vocoder is the generation of the quasi-periodic excitation.
In our own initial investigations, we found that notably for the singing voice, the existing
approaches like multi-band MelGAN [21] and WaveGlow [18] had problems generating
long stable pitch contours for the voiced segments. Therefore, similar to the Ref. [19], we
decided to generate a periodic excitation. However, because the F0 is not used as input
feature, we needed to generate the F0 contour from the mel spectrogram. For this we
used the F0-Net in Figure 1. The F0-Net is a rather straightforward multi-layer CNN with
a topology specified in Table A2 in Appendix A.2.

The F0-Net has an upsampling factor of 100, which means that for a 80 Hz mel frame
rate the F0 sequence is generated with a sample rate of 8000 Hz. For the next stage, we
need to convert the F0 into a quasi-periodic excitation. In a first step, we will translate
the output of the F0-Net, denoted as yn, into a phase contour. This is achieved as follows:

F0n = F0min + (F0max − F0min)yn (5)

φn = (
n

∑
k=0

F0k/R) mod 1, (6)
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where F0min and F0max denote the minimal and maximal f0 we want to be able to generate,
and R denotes the sample rate. In the following experiments we use F0min = 45 Hz and
F0max = 1400 Hz. The result φn is a normalized phase that can be used as an index into
a wavetable or as an argument for a trigonometric function.

For transforming the phase function into an excitation signal, the Ref. [19] proposed
to use a sinusoidal model with seven harmonics. Unfortunately, for very high-pitch singing
(note that for specific productions we are currently working on our training database
containing soprano singers’ singing with F0 = 1400 Hz), the upper sinusoids will produce
aliasing. To avoid aliasing, we have experimented with two approaches. The first is
a sinusoidal model containing only one harmonic given by:

en = 0.5 sin(2πφn)(1− cos(2πφn)), (7)

where φn is the phase contour described above. This excitation signal is always band
limited to 2F0 and therefore does not produce aliasing in our setup. The second approach
is using a set of 13 wavetables with a properly selected number of harmonics such that
band-limited synthesis can be performed for a limited F0 range. Notably, the upper F0
in Hz for each wavetable is given by

Wi = 125× 1.25i. (8)

Thus, the first wavetable will be used for F0 < 125 Hz and contains 30 harmonics,
where the last one for F0 > 1800 Hz contains only two harmonics. For intermediate F0, we
sample with a weighted sum of the two closest wavetables. The two excitation generators
will be compared in the ablation study in Section 3.2.3.

The output of the wavetable operator is then reduced in sample rate by means of time
to channel folding with factor 5 and concatenated with a white noise signal. This in-
termediate signal therefore has a sample rate of only 1600 Hz, which allows to operate
the pulse-forming WaveNet efficiently. The WaveNet is conditioned on the mel spectrogram
that is upsampled to match the internal sample rate of 1600 Hz. As the WaveNet does
not need to produce any oscillation, we can greatly reduce its computational complexity
and run it without recursion. We use two WaveNet blocks with five layers each. The
WaveNet is run with padding SAME, kernel size 3, and a dilation factor that increases by
factor 2 with each layer. The number of channels of the WaveNet blocks will be denoted
CW in the following. Our default setup is CW = 320, but for the model that represents
singing and spoken voices, we use CW = 340. The last layer of each WaveNet block uses
a Conv1D layer with filter size 1 and 30 channels. With this configuration, each WaveNet
block has a receptive field of 41 ms. Note that in the present setup, each WaveNet block is
designed to have a receptive field that covers about two periods of the lowest F0 supported
by the model. Given the WaveNet only acts as a pulse former and not as an oscillator,
longer receptive fields are not required. The output of the second WaveNet is then fed into
a PostNet with a single Conv1D layer with filter size 1 that produces a 15-channel version
of the excitation signal with 1.6 kHz.

2.1.3. The PQMF Synthesis Filter

The final stage performs the upsampling of the 1.6 kHz PostNet output with 15 chan-
nels to the final rate of 24 kHz. Here, we have experimented with two options; notably,
the sub-pixel convolution that is also used for the F0 prediction, and a PQMF synthesis filter.

The use of a PQMF synthesis filter as an upsampling operator within a DNN was
proposed in the Ref. [48] with a four-band PQMF. The same PQMF was later used in the
Ref. [21] for the multi-band MelGAN. The general argument is that the PQMF synthesis
filter allows generating channels with considerably reduced redundancy, leading to a re-
duction in computational complexity. As will be shown in the experimental evaluation
in Section 3.2.3, the PQMF approach indeed leads to a slightly lower reconstruction error.
In our setup, we need a 15-band PQMF synthesis filter that we have designed using the pro-
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cedure described in the Ref. [49] using the Kaiser window with shape parameter β = 9.
This allows achieving a stopband attenuation of approximately 90 dB. We selected a filter
with 120 coefficients and pass-band transition starting at 0.042 π. The filter transfer func-
tion is displayed in Figure 2. The limitation to 120 coefficients does not allow a very steep
transition, but the stopband suppression with 90 dB effectively suppresses any cross-talk
over more than two neighboring bands.

0 2 4 6 8 10 12Freq. [kHz]
120

100

80

60

40

20

0

At
t. 

[d
B]

PQMF 15 band synthesis filter

Figure 2. The 15-band PQMF filter transfer function used in the study. The figure shows the individual
filter transfer functions and the sum of all individual transfer functions (the sum is in brown).

2.2. Loss Functions

As objective functions, we use the following loss functions. The first loss is the F0
prediction loss given by

LF0 = (∑
k∈K
|Fk − F̂k|)/ ∑

k
1. (9)

Fk is the target F0 and F̂k are the predicted value at time sample position k ∈ K, and K is
the set of points that are voiced and sufficiently far away from any voiced/unvoiced bound-
ary such that we can assume the ground truth F0 is correct. In the present study, we used
points k that are annotated as voiced and further than 50 ms away from a voiced/unvoiced
boundary. For these unambiguously voiced sections, the F0 predictor can be optimized
using only the prediction error.

The second loss is a multi-resolution spectral reconstruction loss similar to the Ref. [23].
It is composed of two terms—the first one is calculated as normalized RMSE magnitude
differences, and the second as log amplitude differences.

LA = ‖S− Ŝ‖F/‖S‖F, and (10)

LL =
1

KM
‖ log(S)− log(Ŝ)‖1. (11)

Here, S and Ŝ are the magnitudes of the STFT of the target and generated signals, K,
and M are the number of frames and the number of bins in S, and ‖.‖1 and ‖.‖F are the L1
and Frobenius norm, respectively.

The final reconstruction loss is then the mean of the reconstruction losses obtained
for the different resolutions

LR = (∑
j
(LA,j + LL,j))/ ∑

j
1, (12)

where j runs over the resolutions. For the following experiments, we used STFT with win-
dow sizes 15 ms, 37.5 ms, 75 ms and hop sizes 3.125 ms, 7.5 ms, 15 ms. The reconstruction
loss is used as an objective function for the pulse shaping WaveNet and the VTF-Net.
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Finally, when training with the discriminator loss LD, we use nearly the same discrim-
inator configuration and loss as the Ref. [23]. The only difference is that instead of using
three discriminator rates, we only use two. The first one works on the original sample rate,
and the second on a reduced sample rate obtained by means of average pooling of factor
4. We motivate the decision to drop the last discriminator with the fact that the stability
of the periodic oscillations is already ensured by the excitation model and therefore the dis-
criminator is only needed to evaluate the pulse form and the balance between deterministic
and stochastic signal components.

2.3. Signal Adaptive Data Normalization

Due to the internal nonlinearities, a neural network is sensitive to data scaling. There-
fore, for any real-world application, proper scaling of the input data needs to be ensured.
The problem is not straightforward to solve for a neural vocoder that should work for voice
processing in a digital audio workstation. Data standardization [50], which means that
the input data is standardized, is no solution because the standard deviation of an audio
signal strongly depends on the presence of pauses. In the following, we will investigate
two other solutions. The first is based on data augmentation. In this case, training will
be performed on data sets with a random constant gain applied to the audio files. Af-
ter training, the network should be able to handle mel spectra in an amplitude range that
was covered by the augmented data set. The problem with this approach might be that
training with augmented data will bind network resources such that performance degrades.
The second solution is based on a new, adaptive signal normalization that tries to ensure
that any given signal content always appears to the network with the same level. This
is achieved by means of a pair of gains—the first being applied to the mel spectrogram,
and the second, compensating the first is applied as a gain contour on the synthesized
signal. In the following, we will introduce the proposed adaptive signal normalization
scheme. The experimental evaluation of both strategies will be performed in Section 3. The
proposed adaptive normalization proceeds in four steps:

1. Derive an appropriate pair of gain sequences (Gl , gn) from the sequence of log ampli-
tude mel spectra, Ml .

2. Shift the log amplitude mel spectrum Ml by means of −log Gl .
3. Apply the neural vocoder on the normalized mel spectrogram; and
4. Multiply the generated signal by means of gn.

In the above list and in the following discussion, the subscript l indicates the frame
index of a mel- or STFT spectrogram, and the subscript n indicates the sample index
of a time signal. Ideally, the pair (Gl , gn) is selected such that for arbitrary signals xn
with mel spectrogram frames Ml , the signal xngn has a mel spectrogram with frames
Ml + log Gl . Accordingly, the selection of an appropriate pair (Gl , gn) is the key to the nor-
malization strategy.

Estimation of Normalization Gain Contours from the Log Amplitude Mel Spectrogram

We start by acknowledging that there is only one solution that creates perfect coherence
between gain changes applied via Gl and gn. This ideal solution is Gl = gn = c, which
means the gain is constant. This solution seems sub-optimal for the normalization problem
described above where we want local segments to have approximately constant energy. We
therefore search for a sufficiently smooth gn such that the incoherence which is produced as
a result of the differences between the scaling operations has a negligible perceptual impact.

Because the signal xn is given to the vocoder only in form of the frames of the mel
spectrogram Ml , the gain sequences need to be derived from Ml . As the initial step, we
need to estimate the signal energy that is present in the analysis frame described by a mel
spectrum. For this, we make use of Parseval’s theorem, which states
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∑(wa,lh−nxn)
2 =

1
N

N

∑
k
|Xl,k|2, (13)

where Xl,k is the bin k frame l in the N-point STFT of the frame l of signal x windowed
with analysis window wa,n and h the step size between the STFT frames. We denote as Xl
the vector containing the magnitudes of all bins of frame l. Now the question is: How do we
get an estimate of the energy of frame Xl given only the log amplitude mel spectrogram Ml
of the corresponding frame? Clearly, the answer depends on the way the mel spectrogram
is calculated. In our study, we used yh python package librosa [51] to generate the mel
filter bank B using filters that individually sum to one. Using this filter matrix the mel
spectrogram is calculated by means of

Ml = log(|Xl |B). (14)

This means that Ml is a vector containing the average bin amplitude over each mel
band for frame l. We tested two approaches to estimate the frame energy. The first uses
the pseudo-inverse of the mel filter bank B+ and can be written as

X̂l = max(exp(Ml)B+, 0), (15)

ÊP,l =
1
N

N

∑
k
|X̂l,k|2, (16)

and the second directly uses the average amplitudes present in the mel spectrum

ÊM,l =
1
N ∑

k
(0.5bk exp(Ml,k))

2, (17)

where bk is the number of bins in mel band k and the factor 0.5 is to compensate the fact that
the mel band filters overlap so that each bin counts twice in the sum Equation (17). Note that
Equation (17) is correct if the energy in each band would be concentrated in the center
of the band, which is quite obviously not the case. The value EM therefore overestimates
the energy of all bands that contain more than a single bin, and the greater the width
of the band, the more this will happen. Interestingly, as will be demonstrated below, this
systematic error will not have a negative effect when training with the normalized signals.

Given the energy estimates of the individual frames, we can now calculate the L
individual frame scaling factors that will produce signal frames with approximately equal
energy. The gain factors are

Gl =
1√
ÊM,l

. (18)

Note that here, we have used the result from Equation (17) as an example but that
the same procedure applies for Equation (16). To find a gain function gn that approxi-
mately results in gain changes Gl for the signal frames, we employ an iterative smoothing
procedure inspired by the Ref. [52]. We denote by (G(i)

l , g(i)n ) the state of the pair of gain se-

quences at iteration i and set G(0)
l = Gl as a start value. From G(i)

l , we produce a smoothed
gain function by means of overlap, adding a gain synthesis window ws that has a length
of α times the length of the mel spectrum analysis window and that are scaled with the G(i)

l
as follows

g(i)n = ∑
l

G(i)
l ws,lh−n. (19)

From this g(i)n , we can produce a new G(i+1)
l by means of windowing with the analysis

window wa,n

G(i+1)
n = ∑

n
g(i)n wa,lh−n. (20)
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With increasing i, the differences between neighboring frames will decrease, and
the coherence between the gain changes applied in the time and the spectral domain will
increase. We can measure the incoherence using the difference

D(i)
l = M+(i)

l −M−(i)l (21)

δ(i) =
1

LN

L

∑
l
|D(i)

l | (22)

∆(i) = maxl,k|D
(i)
l,k |, (23)

where M+(i)
l is the mel frame after subtracting log(G(i)

l ), and M−(i)l is the mel spectro-

gram computed from the normalized signal xn/g(i)n . As an example, we use the sig-
nal segment shown in Figure 3a. The mean and absolute error values according to
Equations (22) and (23) for an the STFT analysis with wa,n a Hanning window of length
50 ms, a hop size of h = 12.5 ms, and a mel analysis with 80 bands distributed between 0
and 8 kHz and α = 2 are shown in Table 1. As expected, we observe that the maximum
and mean error decreases with the number of smoothing iterations that is performed. The
average error is rather small already after one iteration. On the other hand, the maximum
error in dB remains quite large.

Table 1. Inconsistency measures δ(i) and ∆(i) between the normalized mel spectrogram and mel
spectrogram calculated from the audio signal normalized time.

Diff Measure/Iteration i = 0 i = 1 i = 2 i = 3 i = 4 i = 5

Normalization using Equation (17)
δ(i) [dB] 1.14 0.59 0.43 0.36 0.31 0.28
∆(i) [dB] 21.70 11.15 7.23 6.03 5.56 4.91

Normalization using Equation (16)
δ(i) [dB] 1.18 0.63 0.47 0.39 0.34 0.30
∆(i) [dB] 20.86 8.98 6.49 5.55 4.88 4.50

For a further study of the effect and the inconsistency, we refer to Figure 3. The first
row displays the effect of the normalization using the two different energy estimates, that is,
Equations (16) and (17). A short segment of a speech signal is shown in Figure 3a. The same
segment after applying the smoothed time-domain gain g(2)n obtained with the two different
energy estimation methods are displayed in Figure 3b,c. Figure 3b displays the result
obtained by estimating the energy without applying the pseudo inverse. Comparison
of images Figure 3b,c reveals as expected that the energy estimate ÊM is systematically too
high, and therefore the normalized signal ends up with a smaller amplitude compared
to Figure 3c. More interesting is the comparison of the normalization in the unvoiced and
voiced segments that can be clearly distinguished in the mel spectrogram in Figure 3d.
Notably, the fricatives are located around 2.3 s and 2.8 s. While the stronger over-estimation
of the energy in the higher mel bands leads to the fricatives in Figure 3b to be smaller
in amplitude compared to the voiced segments (2.5 s), the gain function computed from
the spectrogram obtained by means of the pseudo-inverse produces higher amplitudes
for the fricatives than for the voiced segments. The image Figure 3e displays the mel
spectrogram M−(2) of the normalized segment shown in Figure 3b. One can clearly note
an overall shift to higher amplitude levels. Finally, the visualization of the time-frequency
distribution of the difference calculated in Equation (21) are shown in image Figure 3f. The
largest differences are concentrated in the part where the signal transitions into silence. This
is reassuring because it means that the perceptual effect of the relatively large incoherence
in that segment remains limited.
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Figure 3. Adaptive normalization applied to a short segment of a speech signal. (a) Short seg-

ment of original speech signal. (b) Signal after normalization using g(2)n with ÊM obtained from
Equation (17) (note the change in vertical axis limits). (c) The same as in (b) but using energy estima-
tion from Equation (16). (d) Mel spectrogram of original sound for the segment displayed in (a). (e)
Mel spectrogram M−(2) of sound segment in (b). (f) Visualization of the incoherence as the difference
between the mel spectrogram from (e) and the mel spectrogram M+(2) obtained by means of shifting
mel frames in (d).

3. Results

The following experiments use the same four databases and a similar experimental
design as the Ref. [41]. However, the focus of the perceptual evaluation has changed.
While in the Ref. [41] the objective was to compare multi-speaker and multi-singer MBExWN
models to models trained on individual speakers and singers, here the focus is comparing
the multi-speaker and multi-singer models to a single multi-voice model trained on speech
and singing databases. Compared to the Ref. [41] the changes in the following evaluation
are the following:

• An objective evaluation of the adaptive normalization strategy has been added.
• Training the vocoder with random gain augmentation has been added as an alternative

strategy to avoid problems with gain variations during inference.
• A new voice model trained jointly on singing and speech database has been added

to study the effect of increasing diversity in the training set.
• To not overcharge the perceptual tests the single singer and single speaker MBExWN

models are no longer used in the test.
• Training parameters have been changed slightly to use smaller and longer batches.
• Two bugs in the implementation of the reconstruction loss have been fixed, and the set

of resolutions used for the reconstruction loss has been adapted slightly.

For all optimizations, we use the Adam optimizer [53] with learning rate lr = 1× 10−4.
The decay rate parameters are β1 = 0.9 and β2 = 0.999, for training without discriminator
and β1 = 0.5 and β2 = 0.5 for training with discriminator. Batch size is always 20, and
the segment length is approximately 400 ms.
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3.1. Databases and Annotations

There are four databases used for training. The first is the LJSpeech single speaker
dataset [54] denoted as LJ in the following. The second denoted as SP, is a multi-speaker
dataset composed of the VCTK [55], PTDB [56], and AttHack [57] data sets. The SP data
set contains approximately 45 h of speech recorded from 150 speakers. For singing voice
experiments we used a single singer data set containing a Greek byzantine singer [58]
denoted as DI and for the multi-singer model a database composed of the NUS [59],
SVDB [60], PJS [61], JVS, [62] and Tohoku [63] data sets, as well as an internal data set
composed of 2 pop, and 6 classical singers. This data set contains about 27 h of singing
recordings from 136 singers. The last data set will be denoted as SI. A final data set used
for training is constructed by means of joining the SI and SP data sets to form what will be
denoted as the voice data set VO. The VO data set will be used to study the effect of joining
speech and singing data in a single model. For evaluation purposes we use further audio
samples that were collected from various sources. Further details will be given in the text.

For completeness, we mention the LibriTTS data set [64] that has been used to train
the baseline Universal Mel GAN model that is used in the perceptual evaluation. The Lib-
riTTS data set will be denoted as LT. We stress that we did not use the LT data set for training
our own models.

All samples in the data sets were resampled to 24 kHz. All voice files were annotated
automatically with F0 contours using the FCN estimator [65] set-up to use an analysis hop
size of 2 ms. The F0 contours were then extended to include voiced/unvoiced information.
To obtain the voiced/unvoiced segmentation we employ the confidence value CFCN that is
output by the FCN estimator together with a harmonicity estimate calculated by IRCAM’s
SuperVP software [66] to calculate a harmonicity value HF0 for the given F0. For all F0
values existing in the annotation, we set the voiced/unvoiced flag to unvoiced whenever
min(HF0, CFCN) < 0.5. While the harmonicity estimation in SuperVP is not available
as an isolated piece of software, it performs similarly to the noise separation algorithm
described in the Ref. [67] that separates deterministic and noise components and then
calculates HF0 as the noise/total energy balance over four periods of the F0.

3.2. Evaluation

The following section will compare different variants of the MBExWN model using
first objective measures and later subjective tests.

3.2.1. Training

For each model, we first pre-train the F0 prediction model over 100 k batches using
only the Equation (9) as objective function. As a next step, we pre-train the full generator
without discriminator loss for 200 k batches with the pre-trained F0 model loaded. Fine-
tuning of the pre-trained models is then performed in two configurations. For evaluation
purposes, we reload the pre-trained models and train generators for 600 k more batches
without using adversarial loss. The full models are also initialized from the pre-trained
generators and are fine-tuned with the additional adversarial loss for 800 k batches.

The models that are evaluated will be denoted using a code structured like: T-D-
C. Here, T is a placeholder for the model type using the following shortcuts: MW: The
Multi-band Excited WaveNet introduced here, MMG: the multi-band MelGAN from the
Ref. [21], UMG universal MelGAN vocoder from the Ref. [23]. D will be replaced by
the data set that was used for training using two symbol sequences introduced above
in Section 3.1. The letter C is a placeholder for the way the model was trained. We will
distinguish PR for pre-training with prediction and reconstruction error, as well as FD
for fine tuning with discriminator loss and FR for fine tuning with only F0 prediction error
and reconstruction error.
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3.2.2. Evaluation of the Adaptive Normalization Strategy

We start the study with an objective evaluation of the adaptive signal normalization
presented in Section 2.3. We will compare the result obtained using the adaptive signal
normalization with a simpler approach consisting of training the MBExWN models with
different degrees of gain augmentation. The objective of this study is to find the optimal
configuration for training the models that will be used in the subsequent perceptive test.
This evaluation will be run with five different random initializations of the network weights
to assess of the variability of the results. To avoid an excessive amount of training time
we limit the evaluation for this case to model configurations MW-SP-PR and MW-SI-PR.
The evaluation uses a total of 315 phrases of dedicated test data collected from both training
data sets. That means the test data contains speakers that were used during training, but
the phrases used for validation have not been used for training. The evaluation is performed
with with signals multiplied by gain factors taken from the list S = [1, 0.5, 0.1, 0.01]. These
gain variations are meant to evaluate the robustness of the model against gain changes.

We have compared 16 different normalization strategies with varying smoothing
window size (parameter α), the number of smoothing iterations and the initial energy
estimate (Equations (17) or (16)). With respect to gain augmentation we train three different
models with gain values randomly drawn from intervals Ra = [γ, 1]. The three models
are using γ = 0.5, γ = 0.1, and γ = 0.01, respectively. Finally a model trained with
γ = 1 constitutes the baseline, which is not taking care of the problem. As a performance
indicator we will use the mean absolute difference of the log amplitude mel spectrograms
of the input M, and the resynthesized sound M̂ computed as follows:

Vj,l,k = max(Mj,l,k, T) (24)

V̂j,l,k = max(M̂j,l,k, T) (25)

RM =
1
J ∑

j

1
Lj · K ∑

l,k
|Vj,l,k − V̂j,l,k|. (26)

Here, j, l, and k are the file index, frame index, and mel bin index respectively, and J,
Lj, and K are the number of files used for evaluation, the number of frames for file j, and
the number of bins in the mel spectrograms, respectively. We note that we do not claim
that this performance measure reflects the perceptual performance of the various config-
urations. On the other hand, it will provide insight into the impact of the gain changes
on the model’s performance given different choices. We prefer evaluating the reconstruc-
tion error on the mel spectrogram instead of the STFT because the mel frequency scale
appears to be perceptually more relevant than the linear frequency scale that puts too much
weight on the frequency bands that are perceptually less important. The lower bound T
allows avoiding a strong impact of the perceptually irrelevant small values that may arise
in the noise sections. For the present evaluation T = log(10−5). Besides Equation (26) we
also calculate the F0 prediction error using Equation (9) which will provide another point
of view on the way the MBExWN model reacts to gain changes.

We will not show the results of all the configurations here, but refer to Tables A3 and A4
in Appendix B. We will describe a conclusion of the results in the following. Considering
the mel reconstruction error in Table A3, a first observation is that there are two clearly
separated outliers. The models using adaptive signal normalization without smoothing
obtain a mel reconstruction error RM > 8 dB. They clearly do not work. In the second
group, when ordered according to Equation (26), three different variants are grouped
together. The best performance is observed for the models using adaptive normalization
with smoothing based on the simplified energy estimator given by Equation (17). The
second group is constituted by the models using adaptive normalization with smoothing
based on the energy estimator using the pseudo inverse given by Equation (16). The
worst performance is achieved by models trained with random gain augmentation. Within
the two groups with adaptive normalization, a general trend is that smoothing with
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the longest smoothing windows performs worse. Overall the degradation due to gain
mismatch in the mel reconstruction error remains quite small. The best model trained
with gain augmentation is the model trained with random attenuation in the range Ra ∈
[0.1, 1]. It achieves an average mel reconstruction error of 1.758 dB. On the other hand,
the best model trained with adaptive normalization achieves 1.52 dB. Given the confidence
intervals are in the order of 0.01 dB the difference is statistically significant. On the other
hand, depending n the distribution of these errors the perceptual importance of this small
difference may be negligible.

Interestingly, when looking into the F0 estimation error evaluated using Equation (9),
we find one of the reasons for the increase of the mel reconstruction error. Again all
models using adaptive signal normalization obtain the smallest F0 prediction error. While
the F0 prediction error is independent of the gain factors and below 1.7 Hz for all but one
configuration using the simple energy model in Equation (17), the best model using random
gain augmentation achieves an average F0 error of 2.7 Hz. Moreover, we can see that
the models trained with gain augmentation suffer from a strong increase in the F0 prediction
error for the smallest gain of 0.01. Here, the best-performing model has an average F0
prediction error of 4 Hz.

The effect of the F0 prediction degradation is visualized in the Figure 4. The figure
shows a segment of the original mel spectrogram in Figure 4a and mel spectrograms recre-
ated from resynthesized signals together with the difference of those mel spectrograms
compared to the original. The resynthesized mel spectrogram and its difference to the orig-
inal in Figure 4b,c are related to the model trained with adaptive signal normalization with
smoothing window size α = 2 and 1 smoothing iteration.

Figure 4d,e show the same content for the model trained with gain augmentation
Ra ∈ [0.1, 1]. To avoid cluttering the images with noise all images are displayed using
a lower amplitude bound T = 50 dB. Comparing the mel spectrograms in Figure 4b,d, it is
hard to see any differences. Comparing the differences in Figure 4c,e, one can easily detect
the effect of an F0 error in Figure 4e around 0.5 s.
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Figure 4. Comparison of mel spectrogram reconstruction errors for models trained with adaptive
mel normalization and random gain augmentation on a short segment of a speech signal. (a) Mel
spectrogram of original speech signal in dB. (b) Mel spectrogram after reconstruction with MBExWn
model trained with adaptive normalization with smoothing window size α = 2 and one smoothing
iteration. (c) Difference between (a,b). (d) Mel spectrogram after reconstruction with MBExWN
model trained with random gain attenuation under gain augmentation with γ = 0.1. (e) Difference
between (a,d).
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The evaluation of the different normalization strategies leads us to conjecture that
the normalization based on the simpler energy estimate Equation (17) is a better choice
for F0 prediction error and mel spectrogram reconstruction error. Accordingly, we will
use Equation (17) in the following. Furthermore, even if larger incoherence remains when
smoothing is performed over smaller segments the reconstruction error does not degrade.
The model seems to be able to compensate for the incoherence winning on the other
hand from a more stable signal representation. Accordingly, smoothing can be performed
over a short range of about 2–3 analysis windows. To minimize the computational cost
of the normalization operation we select α = 2 and perform mel spectrogram normalization
after a single smoothing iteration with G(1). The synthesized signal is then re-scaled by
means of multiplying with 1/g(1)n .

3.2.3. Ablation Study

As a next step, again using networks after the pre-training stage, we perform an ab-
lation study. The objective here is to compare a few variants of the model configuration
to determine the effectiveness of the model shown in Figure 1. The different variants are
denoted as follows:

Default The configuration as displayed in Figure 1 using 13 wavetables as described
in Section 2.1.2.

Default-2S Default configuration using only two sinusoids as shown in Equation (7)
instead of the 13 wavetables. This should validate the use of the wavetable.

WT+PQMF Default configuration with a PQMF analysis filter replacing the reshape
operator after the wavetable.

NO VTF Default configuration without the VTF Generator using the output of the
PQMF synthesis filter as the output signal.

NO PQMF Default configuration with the PQMF synthesis filter is replaced by a reshape
operator.

For each of these variants a MW-VO-PR model has been trained with three different
initializations with random weights. The evaluation has then been performed over a total
of 315 test files from the SI and SP data sets. The results of the ablation study are shown
in Table 2.

Table 2. Results of the ablation study. The mel reconstruction error is shown together with the 95%
confidence intervals.

MBExWN Configuration Mel Error [dB]

Default 1.392± 0.015
WT+PQMF 1.419± 0.014
Default-2S 1.434± 0.011
No PQMF 1.481± 0.017

No VTF 1.731± 0.021

Table 2 shows that the configuration adding a PQMF analysis filter after the wavetable
leads to a marginal degradation. Further investigation reveals that the PQMF analysis filter
at that place is better for the SI model but less good for the SP model. Due to the fact
that the PWMF analysis filter is computationally more complex the simpler reshaping
operation is used after the wavetable. Building the excitation with two sinusoids instead
of the 13 wavetables leads to a slight but significant degradation when evaluated over
the VO dataset. Because the computational cost of the use of the 13 wavetables remains
negligible compared to the rest of the network, we selected the wavetable-based excitation
in our default setup. Concerning the PQMF synthesis filter after the PostNet we find
that disabling the PQMF produces on average a consistent increase of the reconstruction
error. As can be seen from the confidence interval the increase is clearly significant and
therefore the PQMF synthesis filter has been included in the default configuration. Finally,
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removing the VTF-Net and the STFT filter at the output results in a quite noticeable increase
in the reconstruction error. The performance degradation is clearly significant, and there-
fore, the VTF component is included in the MBExWN default configuration. We note that
the rather strong positive effect of the VTF Generator motivates a further investigation into
the role of the VTF in the overall system. The detailed inspection presented in Appendix C
reveals that the source generated after the PQMF synthesis filter is approximately white. On
the other hand, the VTF Generator does not only help with creating the formant structure
but also contributes to the harmonic structure. Therefore, in contrast to a classical source
filter model, it cannot not be understood only as a representation of a VTF.

3.3. Perceptual Tests

The following section describes the three perceptual tests we have conducted to eval-
uate the perceived quality of the proposed MBExWN model. In contrast to perceptual
tests performed in other studies, and due to the intended use of our model for signal
manipulation, our main interest is the perceptually transparent resynthesis of the original
voice signal. Therefore, we chose to perform MUSHRA tests containing the reference
signal and a group of resynthesized signals that the participants can play as they like.
The task given was to concentrate on any differences that might be perceived between
the original and the resynthesis and to rate the perceived differences on a scale from 0
to 100 with categories imperceptible (80–100), perceptible, not annoying (60–80), slightly
annoying (40–60), annoying (20–40), very annoying/no similarity (0–20). All tests have
been performed online using the prolific platform (https://www.prolific.co/, accessed on
28 December 2021).

Using an online platform for perceptual tests comes with an increased risk that in-
dividual participants do make random choices. To detect such cases we added a hidden
reference to all our MUSHRA tests. The hidden reference is denoted HREF in the tables
below. As this signal is identical to the reference the result should be high receiving at least
a ranking of 80 on the scale described above. To avoid too much impact from participants
selecting random results we remove all experiments where the hidden reference receives
a ranking lower than 80. Furthermore, there were submissions with people reporting
0. The online form had a dedicated checkbox for technical problems. Participants were
instructed to check this box when the sound did not play properly or did not play at
all. Now some of the participants selected between 0–20 without selecting the problem
checkbox. Still, as none of the examples can reasonably be qualified to have no similarity at
all with the reference, these submissions were discarded as well. The number of discarded
submissions will be reported for each test.

The first perceptual test compares the generalized voice model MW-VO-FD, to the ded-
icated singing or speech models MW-SI-FD and MW-SP-FD. We add the model MW-VO-
FR trained without discriminator as a lower quality anchor and as well to measure the effect
of the adversarial loss. The evaluations are performed on a subset of the test data of the SI
and SP data sets respectively. Note that the MW-VO models work with an increased
number of WaveNet channels (CW = 340) compared to the specialized models MW-SI-FD
and MW-SP-FD for which we use CW = 320. For this test, we received a total of 100
submissions, 50 for each of the two data sets. We had to discard five submissions consider-
ing the quality criteria described before. The test results are displayed in Table 3. Model
results displayed slanted indicate the model had seen the tested voice identities during
training. The best-performing model is always marked in bold. The evaluation results
shown in Tables 3–5, represent the average rating of the model. The standard deviation is
shown in parenthesis.

https://www.prolific.co/


Information 2022, 13, 103 18 of 29

Table 3. Average rating and standard deviation for the perceptual evaluation of the perceived
difference between original and resynthesis using different variants of the MBExWN model. The test
data contains unseen phrases from voice identities (speakers/singers) that were used during training.

Data\Model HREF MW-SP-FD MW-SI-FD MW-VO-FD MW-VO-FR

SP 96 (1.7) 86 (5.0) - 82 (5.9) 62 (7.4)
SI 95 (1.8) - 82 (6.1) 91 (3.3) 80 (6.0)

The first column indicates the data source the data is taken from. The second column
marked HREF represents the results for the hidden reference. In the next two columns,
we find the MBExWN models that were trained on either speech or singing data set, and
in the two subsequent columns we find the all-purpose voice models trained either with or
without discriminator.

First, it is quite reassuring, even considering that we removed outliers below 80, that
participants ranked the hidden reference best with a similarity rating of 96 and 95 for both
domains. Reassuring as well is the fact that the model trained without a discriminator
is perceived as the least similar to the reference from all four candidates. A little bit
unexpected is the fact that the MW-VO-FR model is perceived as less annoying for singing
than for speech. This may be due to the fact that the participants are more used to listening
to spoken voices than to singing voices. Another explanation may be that the MW-VO-FR
model has more problems with fricatives and breathing noises that are less strong in the
singing database. Now the interesting aspect of the test is the comparison of the dedicated
speech and singing voice models MW-SP-FD and MW-SI-FD to the general-purpose voice
model MW-VO-FD. The question here would be whether the use of data from the other
domain will improve the model compared to the concurrent that is trained only on the target
domain. The answer seems to depend on the domain. While for singing voice re-synthesis
the general-purpose voice model performs better than the specialized model, for the speech
voice synthesis the opposite is true. This result may be explained as follows. The singing
voice databases contain rather clean singing with very few noises, while for the models
the voiced/unvoiced transitions with perturbations and rather strong noises are more
problematic. Having seen these in the speech database can help the general-purpose voice
model to better deal with the few noises that exist in the singing voice evaluation while
the other way around the general-purpose model is less prepared to deal with these noises
than the specific speech model. Note that this does not mean that we can use the MW-SP-
FD model for singing because the singing voices may contain pitches for that no examples
exist in the speech training database. On the other hand, the perceptual test performed in
Ref. [41] has shown that for singing voice with pitches in the range covered by the speech
training data base, the speaking and singing voice models performs quite similar.

In the second and third tests, we evaluate the generalization performance of the three
MBExWN models with full fine-tuning MW-VO-FD, MW-SI-FD and MW-SP-FD on un-
seen voice identities. Note that besides the modifications and bug fixes mentioned above,
the MW-SI-FD and MW-SP-FD models are retrained variants of the models that have
been tested in the Ref. [41]. The new aspect here is the performance of the multi-voice
MW-VO-FD model.

Concerning speech we use as the first baseline a single speaker Multi-band Mel-
GAN [21] that we trained on the LJSpeech data set. For training the model we used an
implementation from https://github.com/TensorSpeech/TensorflowTTS (accessed on 18
December 2021). In the following this model will be denoted MMG-LJ-FD. As a second
baseline we compare our speaking voice models to the Universal MelGAN [23] trained on a
data set containing the LJSpeech data set [54] and the Libri-TTS data set [64]. This model
will be denoted UMG-LJ+LT-FD. Note, that due to the very large size of the Universal
MelGAN (90 M parameters) we could not retrain this model ourselves. We are grateful
to Won Jang for allowing us for the purpose of this evaluation to gather his results from
the demo page of the Universal MelGAN (https://kallavinka8045.github.io/icassp202

https://github.com/TensorSpeech/TensorflowTTS
https://kallavinka8045.github.io/icassp2021/#unseen-domains-speaker-emotion-language-1
https://kallavinka8045.github.io/icassp2021/#unseen-domains-speaker-emotion-language-1
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1/#unseen-domains-speaker-emotion-language-1, accessed on 18 December 2021). The
results of the second test on speech are displayed in Table 4. There were 140 submis-
sions in total for the evaluation. 18 of these had to be discarded from the evaluation due
to the quality constraints mentioned above.

Table 4. Average rating and standard deviation for the perceptual evaluation of the perceived
difference between original and resynthesis for the speech and all-purpose variants of the MBExWN
model. The test data is taken from data sets containing voice identities that where never seen by
the MBExWN models. For the base line models UMG-LJ+LT-FD and MMG-LJ-FD the voice identity
LJ was part of the training data set.

Data\Model HREF MW-SP-FD MW-VO-FD UMG-LJ+LT-FD MMG-LJ-FD

LJ 94 (1.9) 85 (4.3) 82 (5.2) - 86 (4.1)
UMG(LJ) 93 (3.7) 86 (6.8) 77 (11.4) 80 (10.6) -

UMG(others) 94 (2.2) 78 (6.4) 74 (7.5) 81 (6.3) -

Looking into the individual experiments we find that the single speaker Multi-band
MelGAN model trained exclusively on the LJ data set is selected as only marginally better
than our multi-speaker model for that the LJ speaker was not part of the training data set.
The second row uses again examples from the LJ data set this time taken from the Universal
MelGAN demo page. We display this separately to compare with the results of the Univer-
sal MelGAN also downloaded from the demo page. Note again that the Universal MelGAN
training database contains the LJ speaker together with over 900 other speakers. Therefore
the LJ speaker is a known speaker for the UMG-LJ+LT-FD model. This speaker is an unseen
speaker for the MW-SP-FD model. Still, the perceptual evaluation ranks the MW-SP-FD
model more similar to the reference. Finally, for the out-of-domain examples from the demo
website of the Universal MelGAN, the UMG-LJ+LT-FD model performs best. These exam-
ples contain languages not seen by any model (Chinese, Japanese, Spanish, and German),
an unseen speaker with slightly expressive reading, and other unseen speakers. We note
that a more detailed analysis reveals that MW-SP-FD and UMG-LJ+LT-FD perform very
similarly for all but the expressive reading examples in the UMG(others) evaluation. Here,
UMG-LJ+LT-FD receives a rating of close to 90, while MW-SP-FD receives a ranking of
78 consistent with the results for the other sounds from the UMG web page. This out-
standing performance on one of the unseen cases is intriguing. It should be noted that
UMG-LJ+LT-FD is trained on the LibriTTS corpus that itself contains audiobook record-
ings. It may well be that there are similar expressive reading examples in the LibriTTS
corpus, which in turn would explain the very good performance of the UMG-LJ+LT-FD
model for that case. Finally, concerning the MW-VO-FD model we find again that mix-
ing the singing data into the training database does slightly degrade the performance
of the MBExWN model when applied to speech synthesis. As a result, the model performs
consistently less well than the model trained only on SP.

The final test concerns the study of the performance on unseen singing voices.
Here again, one of the baselines is a single singer multi-band MelGAN [21] that we trained
on the Dimitrios data set [58]. The model will be denoted MMG-DI-FD. Further, we evalu-
ate our two MBExWN singing voice models on various unseen singers, singing styles, and
voice types that have been extracted from the MUSDB18 data set [68]. With the objective
to demonstrate the limitations of the singing models when applied to rough singing voices,
we collected a few recordings containing creaky and other irregular singing examples from
the internet. All these results are displayed in Table 5. During the test, we collected three
times 30 submissions, five of which were discarded due to quality problems.

https://kallavinka8045.github.io/icassp2021/#unseen-domains-speaker-emotion-language-1
https://kallavinka8045.github.io/icassp2021/#unseen-domains-speaker-emotion-language-1
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Table 5. Average rating and standard deviation for the perceptual evaluation of the perceived
difference between original and resynthesis for different variants of the MBExWN model and a multi-
band MelGAN baseline.

Data\Model HREF MW-SI-FD MW-VO-FD MMG-DI-FD

DI 94 (2.7) 83 (8.4) 86 (6.2) 85 (5.5)
Pop(MusDB) 93 (2.7) 73 (8.3) 79 (8.1) -

Rough 96 (2.7) 60 (12.7) 68 (11.3) -

As before the submissions after cleaning the inconsistent responses shows a high level
of similarity for the hidden reference. The test confirms the results we observed already
in the first test. The multi-voice MBExWN model trained on speaking and singing voices
performs consistently better than the singing-voice model MW-SI-FD. The MW-VO-FD is
ranked best in all cases, including for the evaluation with the rough singing voices. This
confirms that added spoken voices to the training data can be beneficial even for a model
used only for singing synthesis. We note that the evaluation on the Pop data extracted
from the MusDB shows some degradation. This can be explained with a rather strong
amount of reverberation that remains in these solo singing examples. The models cannot
reproduce those which is consistent with a weaker similarity rating. The data set with
rough voices is an obvious problem. There are creaky, growl, and metal singing voices
including a wide variety of cases with strong subharmonics. A detailed analysis of some
of these cases reveals that the octave jumps that are required for the MBExWN model
to create an excitation with a fading subharmonic poses a problem that can not be solved
by the current model setup. Due to the limitation to an excitation with a single periodicity
and a rather short receptive field the model has currently no means to prepare an excitation
where the singer produces a soft octave jump by means of fading out the fundamental
and all even harmonics. It is very likely that the excitation model needs to be changed
to be prepared to handle this kind of excitation. On the other hand, for the moment we do
not have a sufficient number of examples to be able to train a modified model to properly
handle these cases that exist in various configurations.

3.4. Computational Complexity

The MBExWN models MW-SP-FD and MW-SI-FD have CW = 320 WaveNet channels
and about 10M parameters. The model achieves inference rate of 50 kHz when running on a
single core of an Intel i7 laptop CPU. For the 24 kHz model, this inference rate corresponds
to a generation that is two times faster than real-time. On a NVidia V100 GPU the inference
rate is 2.4 kHz, which means on such a high-performance GPU the model is about 100 times
faster than real-time. These measures have been obtained using a model that was exported
into a configuration that does no longer allow optimization. The sounds used for the test
had a duration of at least 20 s of audio. Each sound was processed individually using batch
size 1. We note that the MW-VO-FD model has CW = 340 WaveNet channels and about
11 M parameters. For this case, the inference speed decreases by about 10%. The model
compares favorably with the Universal MelGAN [23] that has been used in the perceptual
evaluation above. The Universal MelGAN has 90M parameters and, according to the
Ref. [23], achieves an inference speed of 860 kHz on a V100 NVidia GPU.

4. Discussion

Neural vocoders are an emerging technology opening new perspectives for voice
signal processing. The majority of the literature considers the neural vocoders under
the perspective of using them for speech synthesis and covers single speaker models
vocoders. In contrast to this, the present study investigates neural vocoders from the per-
spective of general voice processing backends. The mel spectrogram is seen as a low
dimensional yet feature-complete representation of voice signals that has the potential
to be used as an internal representation for a wide variety of voice attribute manipulation
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systems. This kind of attribute manipulation with DNN is an established line of research
for image processing. We believe that the research activities related to attribute manip-
ulation for images are facilitated by the fact that image manipulation can be performed
directly on the images. For voice signals, attribute manipulation is hindered by the fact
that reconstruction of a voice signal from an encoding is in itself already a difficult problem.
This is due to the fact that the reconstruction loss operating directly on the voice signal does
not provide a meaningful loss. Accordingly, the existing voice transformation algorithms
are often trained using objectives that require reconstructing mel spectrograms [26–28], and
in turn, require a solution for the mel inversion problem.

The present paper aims to support these research activities by means of establishing
a neural vocoder that allows generating high-quality voice signals from mel spectrogram
representations of voice signals covering a wide variety of languages, voice qualities, and
speakers or singers. In contrast to all existing research activities, we chose to not evalu-
ate our neural vocoder using a perceptual test using MOS grades but instead performed
a MUSHRA test evaluating the degree of transparent reconstruction of the original. This re-
flects the objective to develop an algorithm that does not only produce high-quality voice
signals; instead, the algorithm should reproduce the original voice transparently, such that
it can be used to precisely manipulate individual attributes [32].

The present study translates ideas introduced in the DDSP package [34,35] to the prob-
lem of neural vocoding. It demonstrates that a multi-voice neural vocoder achieving
efficient and near-transparent resynthesis can be constructed by means of appropriately
combining classical signal processing components with DNN modules. The signal process-
ing modules are a wavetable, a pseudo-quadrature mirror filterbank, and a cepstrum-based
frequency domain VTF generator followed by a spectral domain filter. The vocoder achieves
real-time processing using only a single core of a laptop CPU. The perceptual evaluation
demonstrates that compared to a state-of-the-art multi-speaker neural vocoder, the Uni-
versal MelGAN [23], the proposed multi-speaker model achieves approximately the same
performance using 9 times fewer parameters. The model was trained with about 5 times
fewer examples and is approximately three times more efficient. This comparison seems
to confirm the beneficial impact of the dedicated signal processing blocks.

The study has demonstrated two approaches to create robust performance even when
applied to voice signals that vary by about 40 dB in signal intensity. This is achieved by
means of an adaptive normalization that remains computationally negligible compared
to the rest of the vocoder components. Combining efficiency, high quality, and robustness
against intensity changes is an essential step towards integrating neural vocoders into
professional audio production software and for manipulation of speaking and singing
voice attributes [69].

The study has demonstrated a few deficiencies of the present implementation. Inte-
grating speech and singing voice into a single vocoder improves the results for singing
voice but degrades the performance for speech. Here, further research is clearly required.
Increasing the number of parameters is a possible option, but would increase computational
costs. We are currently investigating architectural changes that hopefully will improve
expressivity without increasing computational costs such that the vocoder allows better
coverage of voice qualities in the same model. A further problem for the current neural
vocoder are rough and saturated voices that are rather important for singing applications,
but for that, hardly any signal processing algorithms exist.

Demonstration Material

To facilitate research into voice attribute manipulation using the mel spectrogram
as voice representation, the trained models MW-SI-FD, MW-SP-FD, and MW-VO-FD
together with a Python/Tensorflow package that allows inference with these models is
available online (https://github.com/roebel/MBExWN_Vocoder, accessed on 1 February
2022). The same page provides also access to sound examples from the perceptual tests
in Section 3.3.

https://github.com/roebel/MBExWN_Vocoder
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5. Conclusions

In this paper, we have extended a previous study concerning the Multi-band Ex-
cited WaveNet: a neural vocoder containing a wavetable-based generator coupled with
a WaveNet as the excitation source. We have proposed a new adaptive signal normalization
algorithm that is performed on the fly and improves the robustness of the vocoder against
intensity changes of up to 40 dB. A perceptual test has shown that the proposed model
achieves near-transparent resynthesis quality even for out-of-domain data. The signal
degrades when confronted with rough and saturated voices. Further research will be
conducted to solve these cases.
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Appendix A. Model Topology

The present section regroups detailed specifications concerning the layers of the VTF-
Net and the F0-Net displayed in Figure 1.

https://www.prolific.co/
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Appendix A.1. VTF-Net

Table A1. Layers of the VTF-Net. For layer type notation see Section 2.1.

Layer Filter Size # Filters Activation

Conv1D 3 400 leaky ReLU
Conv1D 1 600 leaky ReLU
Conv1D 1 400 leaky ReLU
Conv1D 1 400 leaky ReLU
Conv1D 1 240 -

Appendix A.2. F0-Net

Table A2. Layers of the F0-Net. For layer type notation see Section 2.1.

Layer Filter Size # Output Features Up-Sampling Activation

Conv1D 3 150 leaky ReLU
Conv1D-Up 3 150 2 leaky ReLU
Conv1D 5 150 leaky ReLU
Conv1D 3 120 leaky ReLU
Conv1D-Up 3 120 5 leaky ReLU
Conv1D 1 120 leaky ReLU
Conv1D-Up 3 100 5 leaky ReLU
Conv1D 1 100 leaky ReLU
Conv1D 3 50 leaky ReLU
LinConv1D-Up 2 fast sigmoid

Appendix B. Adaptive Normalization

The tables below contain the mel reconstruction errors Equation (26) and F0 prediction
errors Equation (9) discussed in Section 2.3.

Table A3. Mean mel reconstruction errors on for mel spectrograms rescaled by the factor S. All errors
in dB with a 95% confidence interval.

Normalization Average S = 1 S = 0.5 S = 0.1 S = 0.01

norm_M(3, 1) 1.520± 0.007 1.403± 0.008 1.410± 0.009 1.534± 0.012 1.734± 0.014
norm_M(2, 1) 1.525± 0.007 1.393± 0.008 1.410± 0.009 1.555± 0.012 1.742± 0.014
norm_M(3, 3) 1.527± 0.007 1.392± 0.009 1.406± 0.010 1.549± 0.013 1.763± 0.014
norm_M(1, 3) 1.531± 0.006 1.423± 0.008 1.433± 0.009 1.556± 0.012 1.712± 0.014
norm_M(1, 2) 1.531± 0.007 1.406± 0.008 1.421± 0.010 1.559± 0.013 1.738± 0.014
norm_M(1, 1) 1.534± 0.007 1.403± 0.008 1.421± 0.010 1.570± 0.013 1.743± 0.014
norm_M(2, 2) 1.535± 0.007 1.411± 0.008 1.423± 0.010 1.559± 0.013 1.747± 0.014
norm_M(10, 3) 1.556± 0.007 1.430± 0.009 1.438± 0.011 1.559± 0.013 1.798± 0.015
norm_P(1, 3) 1.585± 0.007 1.469± 0.008 1.478± 0.009 1.605± 0.013 1.791± 0.013
norm_P(1, 1) 1.593± 0.007 1.459± 0.009 1.479± 0.010 1.625± 0.013 1.811± 0.013
norm_P(3, 1) 1.599± 0.008 1.444± 0.008 1.463± 0.010 1.623± 0.013 1.871± 0.014
norm_P(3, 3) 1.618± 0.008 1.473± 0.009 1.491± 0.010 1.644± 0.014 1.865± 0.015
norm_P(10, 3) 1.627± 0.007 1.502± 0.010 1.511± 0.011 1.623± 0.013 1.870± 0.014
rand_att(0.1) 1.758± 0.006 1.651± 0.010 1.691± 0.011 1.812± 0.012 1.880± 0.014
rand_att(0.01) 1.772± 0.007 1.669± 0.011 1.719± 0.012 1.847± 0.013 1.850± 0.016
rand_att(0.5) 1.797± 0.009 1.601± 0.011 1.646± 0.012 1.835± 0.012 2.119± 0.014
rand_att(1) 1.875± 0.011 1.604± 0.010 1.667± 0.012 1.919± 0.014 2.341± 0.017
norm_M(1, 0) 8.500± 0.134 9.563± 0.297 9.397± 0.286 8.634± 0.251 6.390± 0.182
norm_P(1, 0) 8.646± 0.139 9.749± 0.307 9.569± 0.295 8.779± 0.259 6.488± 0.191
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Table A4. Mean F0 errors on mel spectrograms rescaled by the factor S. All errors in Hz with a 95%
confidence interval.

Normalization Average S = 1 S = 0.5 S = 0.1 S = 0.01

norm_M(3, 1) 1.333± 0.047 1.343± 0.094 1.339± 0.094 1.332± 0.093 1.318± 0.093
norm_M(1, 2) 1.385± 0.051 1.384± 0.101 1.384± 0.101 1.379± 0.101 1.393± 0.104
norm_M(2, 1) 1.426± 0.049 1.433± 0.101 1.433± 0.101 1.421± 0.099 1.417± 0.095
norm_M(3, 3) 1.515± 0.050 1.532± 0.102 1.529± 0.102 1.511± 0.099 1.489± 0.098
norm_M(1, 1) 1.568± 0.053 1.585± 0.107 1.597± 0.111 1.575± 0.107 1.532± 0.103
norm_M(1, 3) 1.593± 0.052 1.619± 0.108 1.601± 0.104 1.598± 0.105 1.565± 0.099
norm_M(10, 3) 1.657± 0.054 1.673± 0.109 1.670± 0.108 1.653± 0.107 1.632± 0.105
norm_M(2, 2) 2.006± 0.063 2.012± 0.126 2.023± 0.128 2.007± 0.126 1.980± 0.124
rand_att(0.01) 2.763± 0.119 1.838± 0.100 1.936± 0.113 2.509± 0.181 5.355± 0.591
rand_att(0.1) 2.922± 0.090 2.379± 0.133 2.421± 0.134 2.775± 0.161 4.236± 0.277
norm_M(1, 0) 3.046± 0.120 3.079± 0.242 3.046± 0.237 2.963± 0.226 3.101± 0.258
norm_P(1, 0) 3.200± 0.130 3.202± 0.257 3.160± 0.249 3.140± 0.251 3.333± 0.292
norm_P(1, 1) 3.489± 0.086 3.380± 0.165 3.381± 0.165 3.412± 0.167 3.787± 0.191
rand_att(0.5) 3.783± 0.156 2.508± 0.150 2.616± 0.159 3.320± 0.219 6.677± 0.597
norm_P(3, 1) 4.345± 0.154 4.037± 0.274 4.049± 0.276 4.123± 0.282 5.185± 0.393
norm_P(1, 3) 4.357± 0.116 4.191± 0.223 4.194± 0.223 4.255± 0.227 4.912± 0.270
norm_P(10, 3) 6.560± 0.159 6.288± 0.292 6.036± 0.277 6.365± 0.300 7.579± 0.398
rand_att(1) 7.499± 0.515 2.790± 0.183 3.412± 0.279 6.708± 0.894 20.881± 2.562
norm_P(3, 3) 8.697± 0.283 8.391± 0.549 8.398± 0.550 8.461± 0.555 9.429± 0.598

Table A3 shows the mel reconstruction error following Equation (26) between the input
mel spectrograms and the mel spectrograms calculated on the synthesized audio, Table A4
shows the mean F0 prediction error following Equation (9) of the respective F0 modules.
We study the effect of multiplying the input signal by a factor S thus investigating the ro-
bustness towards gain changes in input data. The original data is obtained with S = 1, the
more S deviates from 1 the more the model is required to deal with gain variations.

We compare different strategies to achieve invariance to signal gain: Gain augmen-
tation with random gain Ra and adaptive mel normalization using Equation (20). For
the adaptive mel normalisation we vary the number of iterations i performed in Equa-
tion (19) and the length Ls of the window ws (cf., Equation (19)). The window length is
given as a multiple α of the length La of the analysis window wa (cf., Equation (20)) used
to calculate the STFT and the mel spectrograms.

Ls = αLa (A1)

Furthermore, we evaluate the impact of the energy estimate that is used to derive
the normalization gain. Here a more approximate variant according to Equation (17) is
compared to a method using the pseudo inverse Equation (16).

For the gain augmentation, we multiply the mel spectrograms with a random factor
during training. The range of possible gain factors is varied in this study and determined
by the parameter γ. The notation for the configurations used in Tables A3 and A4 are
the following:

norm_M(α, i): Adaptive mel normalization with energy estimate from the amplitudes ÊM
(Equation (17)).

norm_P(α, i): Adaptive mel normalization with ÊP obtained from the pseudo-inverse (cf.,
Equation (16)).

rand_att(γ): Gain augmentation with random gain Ra ∈ [γ, 1].

Appendix C. The Effect of the VTF Generator

The ablation study from Section 3.2.3 confirms a positive impact of the VTF Generator
of the MBExWN vocoder. Here the question arises how the model separates source and
filter components. In the following we will investigate the source-filter decomposition
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performed by the model using as an example a sub-segment of the phrase LJ007-0048
of the LJSpeech database [54]. The source component generated for this signal segment
by means of the Source Generator in Figure 1 is displayed in Figure A1a. The F0 contour
predicted by the F0-Net is superimposed on the spectrogram as a red line. The harmonic
structure generated according to the predicted F0 is clearly visible. We note that due
to the adaptive normalization described in Section 2.3 the energy variation over time is
quite weak. The spectral envelope of this signal segment is shown in Figure A1b. This en-
velope has been estimated using the cepstral domain spectral envelope estimator [46] with
frequency resolution set to 200 Hz. The spectral envelope does not show a formant structure
but instead shows horizontal stripes at about 1600 Hz and 3200 Hz. Not visible in these
band-limited images is the fact that these stripes are part of a periodic structure with a peri-
odicity of approximately 1600 Hz that extends up to Nyquist. This periodic structure is due
to the fact that the overall transfer function of the PQMF synthesis filter shown in Figure 2
does contain a periodic 3 dB amplification around the transition bands. In Figure A1c we
show the VTF generated by the MBExWN VTF module. Here, we find that the harmonic
structure is not fully separated from the VTF. Notably, for segments with F0 above 200 Hz,
the harmonic structure is clearly visible. Furthermore, we also find a frequency periodic
attenuation that compensates for the frequency periodic amplification in the source signal
due to the PQMF synthesis filter. Clearly, the source-filter separation does not establish
the separation expected in a classical speech vocoder. A few comments are in order. As
mentioned in the introduction the source-filter decomposition is ambiguous. Besides ensur-
ing that the filter preserves energy, Equation (4), nothing prevents the model from moving
gain factors for small bands between source and filter. Nevertheless, the Figure A1b shows
that besides the effect of the PQMF synthesis filter, the source component remains relatively
flat. The MBExWN vocoder does not seem to require using a dedicated source envelope
regularization as the one proposed in the Ref. [70]. We explain the fact that the source
remains well behaved by the fact that the VTF-Net is much smaller and much simpler
to train. Accordingly the model will tend to use the WaveNet only, for those effects that
the VTF-Net cannot represent. More problematic is the fact that the harmonic structure
appears in the VTF displayed in Figure A1c. This can be explained quite easily as follows.
As shown in the Ref. [46] the frequency resolution of a cepstral filter representation can be
linked to the number of cepstral coefficients by means of

∆F =
0.5Fs

OTE
. (A2)

Here ∆F is the frequency resolution, Fs is the sampling rate, and OTE is the order
of the cepstral model. For our setup the frequency resolution of the VTF filter with 240 co-
efficients is ∆F = 50 Hz. This frequency resolution is required to represent the speech
formants, notably the first one that may have a bandwidth of that order. Accordingly, if
we want the VTF module to be able to represent speech formats this implies that it also
may represent the harmonic structure. In our initial experiments, we have been able
to prevent this situation by means of adding a loss that follows [46] and uses a vari-
ant of Equation (A2) to limit the maximum number of cepstral coefficients as a function
of the target F0. While the loss succeeds to remove the harmonic structure from the VTF
the overall reconstruction error increases slightly, and for some cases, the synthesized signal
is perceived as if some vowels are somewhat nasalized. We did interpret this as a result
of the model having a problem reproducing the narrow formants. The perceptual evalua-
tion also reveals that the presence of the harmonic structure in the VTF does not produce
any perceivable degradation and therefore, in the final MBExWN vocoder, we did not
constrain the cepstral order as a function of the F0.
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Figure A1. Visualization of the source filter components generated by the MBExWN model. The red
line visible in all figures is the F0 predicted by the F0 component. (a) The spectrogram of the source
signal generated by the PostNet. (b) The estimate of the spectral envelope of the source signal. (c) The
VTF generated in the VTF model of the MBExWN model.

Another observation that can be made in Figure A1 is the fact that the periodic
attenuation/amplification linked to the PWMF filter does not seem to be present at all
time positions. The amplification of the source signal seems to be weaker at 3200 Hz and
time position 3.8 s and correspondingly the attenuation is weaker in the VTF at the same
location. We see this coherent modification of the source signal and the VTF as a positive
result that indicates that the coupling of source and filter is working correctly, even if here
the model does use it to fix a problem that is produced by the PQMF component. We note
that the periodic amplification could be easily prevented by means of a constant filter, but
this optimization did not seem justified given the model handles this rather stable effect
quite well.
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