01010

01010

B information

Article

Discrete Event Modeling and Simulation for Reinforcement
Learning System Design

Laurent Capocchi **

check for
updates

Citation: Capocchi, L.; Santucci, J.-F.
Discrete Event Modeling and
Simulation for Reinforcement
Learning System Design. Information
2022,13,121. https://doi.org/
10.3390/info13030121

Academic Editor: Willy Susilo

Received: 17 December 2021
Accepted: 9 February 2022
Published: 28 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Jean-Francois Santucci

t

SPE UMR CNRS 6134, University of Corsica, 20250 Corte, France; santucci@univ-corse.fr
* Correspondence: capocchi@univ-corse.fr
t These authors contributed equally to this work.

Abstract: Discrete event modeling and simulation and reinforcement learning are two frameworks
suited for cyberphysical system design, which, when combined, can give powerful tools for system
optimization or decision making process for example. This paper describes how discrete event
modeling and simulation could be integrated into reinforcement learning concepts and tools in order
to assist in the realization of reinforcement learning systems, more specially considering the temporal,
hierarchical, and multi-agent aspects. An overview of these different improvements are given based
on the implementation of the Q-Learning reinforcement learning algorithm in the framework of the
Discrete Event system Specification (DEVS) and System Entity Structure (SES) formalisms.

Keywords: modeling; simulation; machine learning; reinforcement learning

1. Introduction

Artificial Intelligence (AI) concerns problems involved in Planing and Decision and
has to control autonomous agents by defining a set of actions that an agent has to perform
in order to reach a given goal from a known initial state. Machine Learning (ML) [1] is very
often a good solution for these problems of Planing and Decision. The implementation of
ML models and algorithms generally imply a lot of work because: (i) difficulties may appear
to choose a model which will fit with the issue; (ii) for a chosen the model, best hyper-
parameters are difficult to define; and (iii) classical ML tools are not able to associate the
ML learning agents with a simulation framework due to the lack of temporal, multi-agent
or hierarchical and dynamical aspects involved in the problem resolution. Associating
Modeling and Simulation (M&S) with ML facilitates the resolution of problems such
as: smart parking management or the management of healthcare systems. Furthermore
simulation-based multi-agent ML [2] should help to solve the previous problems.

In this paper an approach based on the DEVS/SES (Discrete EVent system Specifi-
cation/System Entity Structure) [3,4] has been proposed. The DEVS formalism has been
proposed as a mathematical abstract formalism for the M&S of discrete event systems
allowing an independence from the simulator using the notion of abstract simulator. SES
allows to have to specify a family of DEVS models in terms of decomposition and coupling
definitions.

This paper focuses on a set of new topics in the ML field and specifically in Markov
Decision Processes (MDPs) [5] and Reinforcement Learning (RL) [6]. The following features
have been proposed: (i) DEVS modeling RL feature based on agents and environment
models; (ii) definition of RL temporal DEVS features; (iii) DEVS hierarchical modeling in
RL system design; and (iv) DEVS-based multi-agents process. A description of a set of
RL issues which are known as "difficult problems" and their resolution using DEVS and
SES formalism has been proposed. In this approach RL systems designers have an way to
analyze and efficiently resolve the previous problems.

The paper is organized as follows: Section 2 gives the background concerning MDP
and DEVS formalism. The Section 3 describes how M&S is associated to ML concepts in

Information 2022, 13, 121. https://doi.org/10.3390/info13030121

https:/ /www.mdpi.com/journal/information

https://doi.org/10.3390/info13030121
https://doi.org/10.3390/info13030121
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-0793-8742
https://orcid.org/0000-0002-9143-532X
https://doi.org/10.3390/info13030121
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13030121?type=check_update&version=1

Information 2022, 13,121

20f13

order to facilitate the design of ML environments. Section 4 points out: (i) DEVS explicitly
separation between agent and environment involved in RL architecture; (ii) DEVS temporal
aspects consideration in RL model behavior; (iii) DEVS hierarchy of abstraction in RL
model development; and (iv) DEVS multi-agents in RL systems. Finally the last section of
the paper gives some conclusions and proposes some perspectives.

2. Preliminaries
2.1. Markovian Decision-Making Process Modeling

Markov Decision Processes are specified as systems based on the Markov chains
where future states depend only upon the present state [5,7]. A MDP is defined using the
following set:

* S:corresponding to the state space.

* A:corresponding to the set of actions used to control the transitions.

* T: corresponding to the time space.

e 1 corresponding to the reward function associated with state transitions.

The Bellman equation [8] is used to find a policy with no reference to a transition
matrix involved in classical methods used in small-scale MDPs. The equation (Equation (1))
highlights that the reward considered in a long term time associated with an action is
computed using the reward of the current action. The Q value associated with a state (state)
and an action (action) must be computed as the addition of the reward (reward) and the
expected future reward (7y) estimated when considering the next state (s’). Discount factor
7 allows to represent at long term (y = 1) and even medium term (y < 1) the next Q values
at long term (y = 1) and even medium term (¢ < 1). Following the Temporal Difference [6]
process, the Q matrix is computed according to the following equation:

Q(state, action) = Q(state, action) + a[reward + y(max Q(ns’, na’)) — Q(state, action)] 1)
na’

with ns’ € S, na’ € A, discount factor y € [0,1] and learning rate « € [0, 1].

The Q matrix variable allows to compare future rewards towards the current reward.
The best policy is computed using the Q-Learning process which is used to compute in a
loop the best Q-value. Therefore this permits to choose the action a whose Q(state, action)
is the maximum among from all the considered actions.

The Q-Learning process [9] is a well-known Reinforcement Learning algorithm used
to resolve MDP problems. The Q-Learning pseudo-code [6] is given in Algorithm 1. In line
1, the initial state is defined before the repeat statement (line 2) allowing to try to obtain the
final state (line 7). The Q matrix is updated at each step according to the Equation (1) by
involving a new tuple (action, reward, s”). A new episode is considered each time the final
state is computed.

Algorithm 1 Q-Learning algorithm from [6].

1: Initialize Q(state,action)

2: Loop for each episode:

3: Choose action from state using policy derived from Q
4 New tuple (action,reward,s’)
5 Q <-Updated(Q)

6: state <- s’

7. Until state is final state

From [10], the Q-learning algorithm converges according to the learning rates. But if
v =~ 1, the value of Q can deviate [11].

In the case of the goal-reward process, the convergence of the Q-Learning algorithm
may be assured by considering the Q matrix until a steady value is computed. “Repeat
until Q converges” can be used in Line 2. However even if the Q-learning process is based
on an efficient algorithm, the lack of generality should be highlighted. In order to offer

Information 2022, 13,121

30f13

more generality to the process, DON [12] may be used by involving neural networks. DON
uses a neural net to compute the Q-value function. The inputs to the neural net are actions,
while the output expresses the Q value associated with the actions.

Although DON has had a strong influence in great dimensional problems, the search
space may remain low-key. In this case the Deep Deterministic Policy Gradients (DDPG) [13]
off-policy algorithm may be used.

2.2. The Discrete Event System Specification

The DEVS formalism [3] has been introduced in order to offer a hierarchical modeling
and simulation of systems. Every systems that whose inputs correspond to events over
time and compute values on outputs corresponding to events over time is similar to
DEVS models. DEVS offers a simulation process compatible with different computer
configurations (single or multi-core processors).

DEVS offers two types of models: (i) atomic models allowing to define function
transitions to specify the dynamics of sub-systems; and (ii) coupled models allowing to
define the association of models in order to obtain a new model. This hierarchy notion
involved in the DEVS formalism is not able to specify an abstraction hierarchy since DEVS
models are specified at the same level of abstraction.

An basic DEVS model (atomic model) corresponds to a final state machine involving
states and transition functions depending on event occurrence. An internal transition
function (J;,,;) is used to compute the new state when no events occurs while an external
transition function (é,y¢) is used to change the state of the model depending on inputs and
current state if an events occurs. A life time function (f,) is used to manage the life time of
a state. The output function called A allows to generate output messages. A DEVS abstract
simulator is proposed to generate the behavior of a DEVS model.

3. Modeling and Simulation and Reinforcement Learning

M&S and Al are two complimentary fields of science. Indeed the Al may help the
“simulationist” in the modeling phase of system of systems that are difficult or impossible
to represent mathematically [14]. On the other hand, M&S may help Al models failed to
deal with systems for lack of simple heuristics. In [15], the authors point out that: “Al
components can be embedded into a simulation to provide learning or adaptive behavior.
And, simulation can be used to evaluate the impact of introducing Al into a real world
system such as supply chains or production processes”.

Systems that already use Al have to associate Al in the models [16]. Al elements may
be inserted into the simulation system. In [17], a learning algorithm is used to associate load
balancing and bounded-window algorithms dedicated to gate level VLSI (Very large-scale
integration) circuits simulation.

Figure 1 gives the potential associations of M&S features into ML processes. ML
uses the classical three kinds of methods [6] in order to obtain models that are able assure
the input sets to predict output variables. Figure 1 also shows that ML problems can be
considered using Monte Carlo simulation based a “trial and error” process. Monte Carlo
simulation is also able to generate random outputs using ML techniques. Optimization
based on ML techniques is also an issue for integration ML into M&S. Agent-based models
require both several hyper-parameters and important execution times in order to drive
through all their combination to determine the best model structure. This design feature
can be accelerated using ML. The configuration step of Al algorithms can also be acceler-
ated using Simulation. The experimental replay generation can be also facilitated using
simulation. RL elements may be also defined in order to represent rule-based models: for
instance, in [18], the authors point out that an behavioral model is able to be generated
(Output Analysis in Figure 1) by taking in to account a precise behavior defined by the
inputs/outputs correspondences.

Information 2022, 13,121 40f 13
Aspects
Real-Time
Temporal »Asynchronous RL
Monte Carlo (: Delayed
— Reward
Hyperparameters Hierarchical Abstraction
setting N Integrating M&S 4 | —
: Simulation into Modeling Static
Elxperlmental Machine Learning \o_ Multi-Agent
replay generation
———— \ Dynamic
Output Analysis
K‘ Specification Algorithm
selection

Figure 1. M&S aspects impacted when they are integrated into the machine learning algorithms.

Concerning the modeling features, the following items defined to facilitate ML deploy-

ment have to be pointed out:

the temporal feature can be found in the RL processes. For example, MDPs provide
both discrete and continuous time to represent the state life time [6]. In RL processes,
the time notion in the rewards consideration is used to provide a way to model the
system delayed response [19]. The concept of time involved in RL systems also offers
to perform asynchronous simulations.

the abstraction hierarchy makes possible the modeling of RL elements at several
levels of abstraction. This allows to define optimal solutions associated with levels of
details [20].

multi-agent definition may be introduced in RL when the best possible policy is
determined according to the links between dynamic environments involving a set of
agents [21].

grouping the ML elements required to bring solutions may also be difficult [6]. A
set of ML techniques can be find to have to be considered and the selection of a
particular algorithm may be hard. This selection can be facilitated by introducing
models libraries.

This paper focuses on the interest of the DEVS formalism to help the RL system design

with introducing temporal, hierarchical, and multi-agent features.

4. Discrete Event System Specification Formalism for Reinforcement Learning

DEVS is able to help the design of RL system as pointed out in Figure 2:

The Data Analysis phase allows to select which kind of learning methods (supervised
or unsupervised or reinforcement learning) is the most appropriate to solve a given
problem. Furthermore, the definition of the state variables of the resulting model is
performed during this Data Analysis phase which is therefore one of the most crucial.
As pointed out in Figure 2, SES [22] may be involved in order to generate a set of RL
algorithms (Q-Learning, SARSA, DQN, DDQN, ...) [6].

DEVS formalism may facilitate the learning process associated with the previously
defined model. Therefore DEVS is able to deal with the environment component as
an atomic model. But the environment component associated to the learning agent
as usual in RL approach may also be defined as a coupled model involving many
atomic components. Therefore the environment may be considered as a multi-agent
component modeled in DEVS whose agents may change during simulation.

The real-time simulation phase involves both using the real clock time during simula-
tion and exercising the model according to inputs. DEVS is a good solution to perform
real time simulation of policies.

Information 2022, 13,121

50f13

RL Traditional
Approach

Data Analysis
Processing

_—

|
|
|
|
|
|
|
L

\

Reward-based
Learning of
Agent

Execution of

Agent in real

Environment
(real data)

—H
|
|
|
|

DEVS-Based
Approach

DEVS Modeling
using SES formalism

DEVS Simulation with
temporal and dynamic
aspects

Real-time DEVS
simulation

Figure 2. Traditional RL workflow to solve a decision making problem (RL Traditional Approach)

and M&S equivalent tasks with the DEVS formalism (DEVS-Based Approach).

A RL model shown in (Figure 3) points out that the Agent and the Environment
elements are easy to be modeled using DEVS atomic or coupled model according to the
hierarchical adopted definition).

The association of DEVS and RL is achieved as follows:

¢ DEVS may use RL algorithms in two ways: when performing the modeling part of
the system or when considering the simulation algorithms. DEVS is able to obtain
benefits from an Al for instance, in order to help the SES modeling pruning phase
or enhancing simulation performance using a neural net associated with the DEVS
abstract simulator.
e Al processes may use the DEVS formalism in order to perform good selection of

hyper-parameters for example. The presented focuses on this last problematic.

State
and
reward

Agent

—— > Decision Logic

Environment

Discrete-Event
4—
Simulation Model

Figure 3. Learning by reinforcement.

action

Information 2022, 13,121

6 of 13

The integration of DEVS into RL processes can be achieved as described below. The
environment component and the agent element communicate to obtain to the best pos-
sible policy. Using the hierarchy notion inherent to DEVS, it is possible to improve the
communication between agent and environment elements.

The Environment model answers to the messages sent by the agent model by defining
a new tuple (state, reward) associated with an action that has been sent. Furthermore, the
model indicates when the goal state has been reached using variable d (Boolean). The
external transition function allows this previously introduces communication. The output
function is then performed in order to convey the tuple (state, reward, d) towards the Agent
element. State variables are updated using the internal transition function and no output
is generated. The generation of episodes is performed by the model when a goal state is
obtained.

Atomic model called Agent allows to answer to solicitations that come from the Envi-
ronment component. If a tuple (state, reward, d) is received, the Agent element computes
an action according to a policy associated with the chosen technique (e-greedy). The model
introduces a Q matrix modeled using a matrix used to define a selected learning process.
Convergence allows to put the model into a state used to stop any communication with
the environment component (STOP state). The Q matrix is updated using the external
transition function according to the received triplet (state, reward,d). It is the internal
transition function which is defined to allow the model to be put into the STOP state. The
output function as usual is performed after the external function.

This section details how a RL system can be specified using DEVS using the temporal,
abstraction hierarchy, and multi-agent features.

4.1. Temporal Aspect

When dealing with temporal aspects associated with RL methods, two features can be
pointed out [6,23]:

¢ Implicit time aspect is indeed present in the Q-learning or SARSA algorithm since it
leans on the notion of reward shifted in time. However, this implicit notion of time
does not refer to time unit but only to time steps involved in the algorithms. The idea
is to add a third dimension in addition to the classical ones (states and actions). In this
case, the time feature is introduced even if the results give an ordering of the actions
involved in the chosen policy.

* The explicit time aspect is not involved in the classical Q-learning and SARSA al-
gorithms. However, a set of work introduces the possibility to associated random
continuous duration to actions [24]. Time is made explicit in these approaches.

4.1.1. Implicit Time in Q-Learning

The time aspect is introduced by adding a third dimension to the classical Q-learning
equation. In this case, the Q-value function depends on the state, the action, and the stage
t. This new dimension allows one to propose an ordering of the actions involved in the
policy since the resulting best policy depends not only on the state and the action but also
on the stage.

Figure 4 depicts the concept of the simulation analysis of the action-value function
Q during the evolution of the indexes. Qp is the matrix involved in the first simulation
that includes the first index values (at simulation time 0). It consists of state/action tuples
according to Bellman equation definition, and its size is the number of possible states on the
X-Axis and the number of possible actions on the Y-Axis. One point vy on Qy (state/action
in Figure 4) can be followed up during the evolution of the indexes from 0 to L. This path
(vg,.-.,Uk,-..,vL) represents the evolution of the importance of the action a for a corresponding
state s. Performing a maximization on this path returns to find the optimal action-value
function Q. or a best possible time to take the action a for the state s:

Qx(s,a,t) = max Q(s,a,t) 2

Information 2022, 13,121

7 of 13

However, the size of Q can change during the simulation due to the number of possible
states that depend on the values of the indexes. Accordingly, it may be possible that a
tuple (state/action) is not present in a Q; matrix during the simulation. In this case, this
specific value (for a specific simulation time) is not considered for the time analysis in the
Equation (2).

A
/s@‘es

Qo Q« Q

(state/action)

| i~ ol Hbeile. Shal)] A 1
Vo Vi Vi

¢ ——-Actions-——->

»
'

to tx to t

Figure 4. Q matrix simulation analysis during the evolution of the indexes.

4.1.2. Explicit Time in Q-Learning

In MDPs, the time spent in any transition is the same. This assumption, however, is
not the case for many real-world problems.

In [25], the authors extend classical RL algorithms developed for MDP and for semi-
Markov decision processes. Semi-MDPs (SMDPs) extend MDPs by allowing transitions
to have different duration (t). In [23], the authors considered the problem of learning
optimal policies in time-limited and time-unlimited domains using time-limited interactions
(limited number of step k) between the agent and the environment models. Time notion is
explicitly considered but only in terms of limited time T considered for maximize the total
reward assigned to the agent that try to maximize the discounted sum of future rewards:

Tt
Ger = Y v 'Ripx
k=1

In [26], the authors introduce a new model-free RL algorithm to solve SMDPs problems
under the average-reward model. In addition, in [27], the authors introduce the theory of
options to bridge the gap between MDPs and SMDPs. In SMDPs, temporally extended
actions or state transitions are considered as indivisible units; therefore, there is no way
to examine or improve the structures inside the extended actions or state transitions.
The options theory introduces temporally extended actions or state transitions, so called
options, as temporal abstractions of an underlying MDP. It allows to represent components
at multiple levels of temporal abstractions and the possibility of modifying options and
changing the course of temporally extended actions or state transitions. In [28], the authors
explore several approaches to model a continuous dependence on time in the framework
of MDP, leading to the definition of Temporal Markov Decision Problems. They then
propose a formalism called Generalized Semi-MDP (GSMDP) in order to deal with an
explicit event modeling approach. They establish a link between the Discrete Event Systems
Specification (DEVS) theory and the GSMDP formalism, thus allowing the definition of
coherent simulators.

In the case of explicit time, the time of a transition has to be taken into account. The
time between actions is an explicit variable (which may be stochastic) and dependent of
the state and the action. This transition time is known as the sojourn notion. DEVS Markov
models [29] are able to explicitly separate probabilities specified on transitions as well as
defined on the times/rates. Furthermore the dynamic properties involved in the DEVS

Information 2022, 13,121

8of 13

formalism allows to dynamic modify these specifications during the model simulation. The
transition probabilities are classically associated with a Markov chain while probabilities
on transition times/rates are associated with the sojourn notion. This modeling features
associated with Markov chains offers possibility to define explicitly and independently
transition probabilities and transition times.

4.2. Hierarchical Aspect

Hierarchical aspect deals with top-down or divide and conquer approach: A MDP
can be decomposed into a smaller MDPs organized in a hierarchical way. There are two
benefits that can be obtained from the specification of a hierarchy in a MDP: (i) reduce
difficulties of solving a problem by approaching it in the form of a set of sub-problems that
are easier to solve individually. As a result both the state space and action space must be
smaller, and thus the resolution may be facilitated; and (ii) specify actions at a higher level
that may be reused according to different types of goals.

Thanks to the hierarchy concept, a hard task may be split into more simplest tasks.
In [6] the basic tasks are specified as options that are implemented by a policy performed
on part of the set of states. In [30], sub-tasks are built to solve the corresponding sub-goals
which have been initially defined. Rewards related to the sub-goals are used to learn the
sub-tasks. The author Dietterich pointed out that the definition of a MDP using a hierarchy
of small MDPs is equivalent to the definition of the value function of the considered MDP
as a composition of the value functions of the previously mentioned small MDPs.

In [31] a feudal system involving agents at different levels is proposed in order to
implement the hierarchy in a learning agents. An agent situated at a given level obtains
solicitations from an upper-level agent and sends solicitations to agents at a lower level.
Only the agents specified at low levels are able to deal with the environment component.

In [32], Hierarchy specified in the environment is presented and the the concept of
hierarchical Abstract Machines (HAM) named “partial policies” is defined. For instance,
Parr’s maze is designed using orthogonal hallways involving obstacles. In this case HAM
specified at a high level deal with the selection of a hallway, intermediate HAM deal with
the traversing of the hallway and lower-level HAM have to take into account avoiding
obstacles. As explain previously, the concept of the hierarchy may decrease the state space
involved in the RL process by learning a sub-task from only the relevant properties. The
partial description of the environment is used by defining the HAM that allows to obtain
the next state. A state space partition composed of agents related to only one part of the
space is used to define the feudal agents. As stated before, the MDP resolution is based on
the state space reduction but the fact to consider only a part of the context implied in the
execution of the policy allow also to share and reuse the process more easily.

An example of feudal hierarchy is given in Figure 5.

The environment may be in a state belonging to {S0, S1, ..., S11}. The initial agent
level is represented by {A, B, C, D/ agents. Every agent has to take into account a reduced
number of states. The following level is represented by {X, Y} agents and the highest level
is represented by the {SUP} agent.

Using DEVS to implements a generic feudal agent points out the property of Feudal
MDP [33] expressed as follows: since an agent specified at a low level of description relies
on the same model than an agent defined at an upper level of description (this agent is
used to control the agents defined at lower level), the set of agents defined a low level of
description can be considered as the environment states. Therefore, the hierarchy defined
on agents and on the environment is the same: the agents defined at a given level (let
us called L) correspond to the environment when dealing with agents defined at the L+1
level. For instance, according to the n Figure 5, X the agent has to communicate with the
environment whose state may be A and B.

Information 2022, 13,121

90f13

AgentSUP
AgentY
AgentX Agent C
Agent A S8
]
S1 S2 \

w20

Agent B Agent D

Figure 5. States aggregation mechanism to implement hierarchy in feudal agents.

4.3. Multi-Agent Aspect

This section briefly describes how DEVS/SES multi-agents may be introduced in RL.
The Markov decision process generalization of the towards multi-agent notion may be
defined as a tuple {S, Ay, ..., Am, p, 71, ..., tn } Where:

* m: the agents number;
e S:environment states;
e A; i€ 1,..,m: actions associated to the agents and generating the action set A =

ATUAY UL Ay
e p:SxAxS—[0,1]: transition probability function;

e r:SxUxS—R,i=1,..,m: reward functions associated with the agents.

The state transitions are the result of the global action of all the agents. The policies
fi : S x A; — [0,1] define jointly the policy f. Since the rewards ri-‘"’l lean on the global
action, their results lean on the policy f. The Q-function associated with the agents leans
on the global action and on the policy f. The complexity is great since it should be taken
i to account that the state-action space exponentially depends on the number of states
and actions. Because RL algorithms define values associated with all state or state-action
doublet, this causes an exponential computational complexity expansion. This results in
the fact that the complexity is more important in multi-agent RL than in single-agent RL.

In addition, when dealing with RL, many families of algorithms have been defined
in [34]. Each algorithm presented in this paper points out a set of advantages but also a set
of drawbacks and can be used depending on the context of the application.

Finally when proposing a Multi-Agents RL System, several types of architectures have
to be considered. To give to the designer of a multi-agent reinforcement learning project
the possibility of choosing between the previously mentioned architectures, a generic
framework based on SES/DEVS formalism can be proposed. SES [22] is an ontology
framework allowing to represent the elements of a system and their interactions using a
family of DEVS models. A SES defines a set of hierarchical DEVS models. Each resulting
DEVS model may be obtained by a pruning process which allows to choose an element
of the set of considered models. The idea is to give a designer a library of agent models
allowing to deal with the basic agent models (critic-only, actor-only and actor-critic) as well
as to specify a set of multi-agents architectures using SES in order to define a family of
simulation models. The pruning of the SES allows the designer to choose one particular
multi-agent architecture and to execute simulations and learning.

Information 2022, 13,121

10 0f 13

5. Related Work

Machine learning algorithms have been used in the field of simulation in many
cases [17,35-38]. For instance, in [35], the authors derive rules of distraction driving using
Support Vector Machine based on data from a driving simulation environment. In [17], the
Q-learning has been used to associate load balancing and bounded-window algorithms
dedicated to gate level VLSI circuits simulation. A set of AI ML techniques have been
involved in DEVS M&S. In [39] the authors deal with DEVS execution acceleration based
on machine learning thanks to the explicit separation between modeling and simulation.
In [40], DEVS simulation is used to help to set values associated with of hyper-parameters
involved in neural nets. In [29], DEVS Markov features are presented as well as their
implementation in MS4Me framework [22]. DEVS Markov involves the basic and enhanced
features of Markov chains since DEVS modeling aspects are fully compatible with Markov
concepts. In [28], a RL technique involving temporal features is defined using simulation
in order to deal with generalized semi-Markov decision processes.

Concerning the improvement of the DEVS formalism based on machine learning
algorithms , in [39,41], the authors add predictive machine learning algorithms in the DEVS
simulator to improve simulation execution due to the separation between modeling and
simulation inherent in the DEVS formalism. Furthermore a predictive model that learns
from past simulations has been defined. In [42], the use of discrete event simulation with a
deep learning resource has been defined in order to propose intelligent decision making
in the form of smart processes. An another example combining Al and simulation can be
found in [43] where a new machine-learning based simulation-optimization integration
method has been proposed. The machine learning model allows to accelerate simulation-
optimization integration to find optimal building plans.

When simulation and Al are combined, Al simulation models have to be accurate.
For instance, in [44], a validation methodology for Al simulation models has been defined.
The combination may also have nice impacts on specific applications [45—-47]. In [45], the
authors deal with a framework that incorporates Simulation Modeling and ML for the
purpose of defining pathways and evaluating the return on investment of implementation.
In the field of parallel simulation, a cache-aware algorithm that relies on machine learning
has been defined in [46] in order to maximize data reuse, allow workload balance among
parallel threads.

In [48], a machine learning algorithm has been involved to solve problems coming
from the performance evaluation of simulations in the field of effective design space
exploration. A methodology to obtain cross-platform performance/power predictions has
been defined in order to derive the simulation performance/power on another platform.

In [38], a conceptual framework to help the integration of simulation models with ML
has been defined.

All this work mainly consider the problems raised from the association of M&S and
ML. None of the previously quoted work leans on temporal, hierarchical and multi-agent
notions involved in the RL system design using DEVS. As described in [29], the ML (and
more specially MDP) concepts of stochastic modeling are implicitly involved in discrete
event simulation. Concerning the temporal aspect, DEVS allows to explicitly and separately
deal with probabilities defined on state transitions and with probabilities of transition times.
This advantage allows the designer to model temporal aspect in ML models and execute it
in a simulation framework. Dealing with hierarchical aspect, integrating ML modeling into
DEVS offers a wide variety of model types that may be hierarchically inserted within the
same framework. DEVS allows to organize such models into classes that are associated with
both the traditional ones encountered in the mathematics literature as well as the structural
notions that define all DEVS models as specifications of input/output dynamic systems.
Furthermore classes and sub-classes of such models that allows definition of multi-agent
models may be formed by choosing elements belonging to some specializations that define
a specific model architecture. DEVS models are able to represent complex ML systems
at the level of individual subsystems and actors. Each system or actor may be defined

Information 2022, 13,121

110f13

References

as a component with states and transitions as well as inputs and outputs that allow the
interaction with atomic models belonging to coupled models.

6. Conclusions

This paper points out how DEVS features can be used in helping RL system design
putting emphasis on the temporal, hierarchical, and multi-agent aspects. A panorama of a
set of simulation-based RL system design features is given and four of them realized in
the framework of DEVS are detailed: (i) DEVS modeling of the agent and environment RL
components based on the hierarchy feature inherent in DEVS; (ii) DEVS modeling of RL
temporal features since DEVS allows to improve both implicit and explicit time aspects
definition in MDPs; (iii) DEVS hierarchical modeling in RL system design since DEVS
allows to determine optimal policies based on abstraction level; and (iv) possibility to take
into account RL multi-agents since DEVS/SES allows to choose one particular multi-agent
architecture and execute simulations and learning. The future work can be described
as follows: (i) to work on dynamic aspects of RL since DEVS involves the modification
of models during simulation; (ii) to work on a hierarchy of RL agents based on DEVS
abstraction hierarchy feature (initiated in [33]); and (iii) to work on the scalability of the RL
proposed approach.

Author Contributions: All authors have contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.
Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

M&S Modeling and Simulation

Al Artificial Intelligence

RL Reinforcement Learning

ML Machine Learning

MDP Markov Decision Process

DEVS Discrete Event system Specification
SES System Entity Structure

1. Alpaydin, E. Machine Learning: The New AI;, The MIT Press: Cambridge, MA, USA, 2016.

2. Busoniu, L.; Babuska, R.; Schutter, B.D. Multi-Agent Reinforcement Learning: A Survey. In Proceedings of the Ninth International
Conference on Control, Automation, Robotics and Vision, ICARCV 2006, Singapore, 5-8 December 2006; pp. 1-6. [CrossRef]

3. Zeigler, B.P; Muzy, A.; Kofman, E. Theory of Modeling and Simulation, 3rd ed.; Academic Press: Cambridge, MA, USA, 2019.

[CrossRef]

4. Zeigler, B.P.; Seo, C.; Kim, D. System entity structures for suites of simulation models. Int.]. Model. Simul. Sci. Comput. 2013,

04, 1340006. [CrossRef]

5. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st ed.; John Wiley & Sons, Inc.: New York,

NY, USA, 1994.

6. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; A Bradford Book: Cambridge, MA, USA, 2018.

7. Bellman, R.E. Dynamic Programming; Dover Publications, Inc.: Mineola, NY, USA, 2003.

8. Yu, H,; Mahmood, A.R,; Sutton, R.S. On Generalized Bellman Equations and Temporal-Difference Learning. In Proceedings of
the Advances in Artificial Intelligence—30th Canadian Conference on Artificial Intelligence, Canadian AI 2017, Edmonton, AB,
Canada, 16-19 May 2017; pp. 3-14. [CrossRef]

9. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, King’s College, Cambridge, UK, 1989.

10. Even-Dar, E.; Mansour, Y. Learning Rates for Q-learning. J. Mach. Learn. Res. 2004, 5, 1-25.

11. Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall Press: Upper Saddle River, NJ, USA, 2009.

http://doi.org/10.1109/ICARCV.2006.345353
http://dx.doi.org/10.1016/B978-0-12-813370-5.00003-1
http://dx.doi.org/10.1142/S1793962313400060
http://dx.doi.org/10.1007/978-3-319-57351-9_1

Information 2022, 13,121 12 of 13

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Sharma, J.; Andersen, P.A.; Granmo, O.C.; Goodwin, M. Deep Q-Learning With Q-Matrix Transfer Learning for Novel Fire
Evacuation Environment. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 7363-7381. [CrossRef]

Zhang, M.; Zhang, Y.; Gao, Z.; He, X. An Improved DDPG and Its Application Based on the Double-Layer BP Neural Network.
IEEE Access 2020, 8, 177734-177744. [CrossRef]

Nielsen, N.R. Application of Artificial Intelligence Techniques to Simulation. In Knowledge-Based Simulation: Methodology and
Application; Fishwick, P.A., Modjeski, R.B., Eds.; Springer: New York, NY, USA, 1991; pp. 1-19. [CrossRef]

Wallis, L.; Paich, M. Integrating artifical intelligence with anylogic simulation. In Proceedings of the 2017 Winter Simulation
Conference (WSC), Las Vegas, NV, USA, 3—6 December 2017; p. 4449. [CrossRef]

Foo, N.Y.; Peppas, P. Systems Theory: Melding the Al and Simulation Perspectives. In Artificial Intelligence and Simulation,
Proceedings of the 13th International Conference on Al, Simulation, and Planning in High Autonomy Systems, AIS 2004, Jeju Island, Korea,
4-6 October 2004; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2004; pp. 14-23. [CrossRef]

Meraji, S.; Tropper, C. A Machine Learning Approach for Optimizing Parallel Logic Simulation. In Proceedings of the 2010 39th
International Conference on Parallel Processing, San Diego, CA, USA, 13-16 September 2010; pp. 545-554. [CrossRef]

Floyd, M.W.; Wainer, G.A. Creation of DEVS Models Using Imitation Learning. In Proceedings of the 2010 Summer Computer
Simulation Conference, SCSC "10, Ottawa, ON, Canada, 11-14 July 2010; Society for Computer Simulation International: San
Diego, CA, USA, 2010; pp. 334-341.

Eschmann, J. Reward Function Design in Reinforcement Learning. In Reinforcement Learning Algorithms: Analysis and Applications;
Belousov, B., Abdulsamad, H., Klink, P, Parisi, S., Peters, J., Eds.; Springer International Publishing: Cham, Switzerland, 2021;
pp. 25-33. [CrossRef]

Zhao, S.; Song, J.; Ermon, S. Learning Hierarchical Features from Deep Generative Models. In Proceedings of the 34th International
Conference on Machine Learning, Sydney, NSW, Australia, 6-11 August 2017; pp. 4091-4099.

Canese, L.; Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Giardino, D.; Re, M.; Spano, S. Multi-Agent Reinforcement Learning: A
Review of Challenges and Applications. Appl. Sci. 2021, 11, 4948. [CrossRef]

Zeigler, B.P; Sarjoughian, H.S. System Entity Structure Basics. In Guide to Modeling and Simulation of Systems of Systems; Simulation
Foundations, Methods and Applications; Springer: London, UK, 2013; pp. 27-37. [CrossRef]

Pardo, F; Tavakoli, A.; Levdik, V.; Kormushev, P. Time Limits in Reinforcement Learning. In Proceedings of the 35th International
Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 10-15 July 2018.

Zhu, J.; Wang, Z.; Mcilwraith, D.; Wu, C.; Xu, C.; Guo, Y. Time-in-Action Reinforcement Learning. IET Cyber-Syst. Robot. 2019, 1,
28-37. [CrossRef]

Bradtke, S.; Duff, M. Reinforcement Learning Methods for Continuous-Time Markov Decision Problems. In Advances in Neural
Information Processing Systems 7; MIT Press: Cambridge, MA, USA, 1994.

Mahadevan, S.; Marchalleck, N.; Das, T.; Gosavi, A. Self-Improving Factory Simulation using Continuous-time Average-Reward
Reinforcement Learning. In Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, USA, 8-12
July 1997.

Sutton, R.S.; Precup, D.; Singh, S. Between MDPs and semi-MDPs: A Framework for Temporal Abstraction in Reinforcement
Learning. Artif. Intell. 1999, 112, 181-211. [CrossRef]

Rachelson, E.; Quesnel, G.; Garcia, F.; Fabiani, P. A Simulation-based Approach for Solving Generalized Semi-Markov Decision
Processes. In Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference on Artificial Intelligence, Patras,
Greece, 21-25 July 2008; IOS Press: Amsterdam, The Netherlands, 2008; pp. 583-587.

Seo, C.; Zeigler, B.P,; Kim, D. DEVS Markov Modeling and Simulation: Formal Definition and Implementation. In Proceedings of
the Theory of Modeling and Simulation Symposium, TMS 18, Baltimore, MD, USA, 15-18 April 2018; Society for Computer
Simulation International: San Diego, CA, USA, 2018; pp. 1:1-1:12.

Dietterich, T.G. Hierarchical reinforcement learning with the MAXQ value function decomposition. J. Artif. Intell. Res. 2000,
13, 227-303. [CrossRef]

Vezhnevets, A.S.; Osindero, S.; Schaul, T.; Heess, N.; Jaderberg, M.; Silver, D.; Kavukcuoglu, K. FeUdal Networks for Hierarchical
Reinforcement Learning. In Proceedings of the 34th International Conference on Machine Learning, Sydney, NSW, Australia,
6-11 August 2017; pp. 3540-3549.

Parr, R.; Russell, S. Reinforcement Learning with Hierarchies of Machines. In Proceedings of the 1997 Conference on Advances in
Neural Information Processing Systems 10, NIPS ‘97, Denver, CO, USA, 1-6 December 1997; MIT Press: Cambridge, MA, USA,
1998; pp. 1043-1049.

Kessler, C.; Capocchi, L.; Santucci,].F,; Zeigler, B. Hierarchical Markov Decision Process Based on Devs Formalism. In Proceedings
of the 2017 Winter Simulation Conference, WSC "17, Las Vegas, NV, USA, 3-6 December 2017; IEEE Press: Piscataway, NJ, USA,
2017; pp. 73:1-73:12.

Bonaccorso, G. Machine Learning Algorithms: A Reference Guide to Popular Algorithms for Data Science and Machine Learning; Packt
Publishing: Birmingham, UK, 2017.

Yoshizawa, A.; Nishiyama, H.; Iwasaki, H.; Mizoguchi, F. Machine-learning approach to analysis of driving simulation data. In
Proceedings of the 2016 IEEE 15th International Conference on Cognitive Informatics Cognitive Computing (ICCI*CC), Palo Alto,
CA, USA, 22-23 August 2016; pp. 398-402. [CrossRef]

http://dx.doi.org/10.1109/TSMC.2020.2967936
http://dx.doi.org/10.1109/ACCESS.2020.3020590
http://dx.doi.org/10.1007/978-1-4612-3040-3_1
http://dx.doi.org/10.1109/WSC.2017.8248156
http://dx.doi.org/10.1007/978-3-540-30583-5_2
http://dx.doi.org/10.1109/ICPP.2010.62
http://dx.doi.org/10.1007/978-3-030-41188-6_3
http://dx.doi.org/10.3390/app11114948
http://dx.doi.org/10.1007/978-0-85729-865-2_3
http://dx.doi.org/10.1049/iet-csr.2018.0001
http://dx.doi.org/10.1016/S0004-3702(99)00052-1
http://dx.doi.org/10.1613/jair.639
http://dx.doi.org/10.1109/ICCI-CC.2016.7862067

Information 2022, 13,121 13 of 13

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Malakar, P; Balaprakash, P.; Vishwanath, V.; Morozov, V.; Kumaran, K. Benchmarking Machine Learning Methods for Perfor-
mance Modeling of Scientific Applications. In Proceedings of the 2018 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS), Dallas, TX, USA, 12 November 2018; pp. 33-44. [CrossRef]
Elbattah, M.; Molloy, O. Learning about systems using machine learning: Towards more data-driven feedback loops. In
Proceedings of the 2017 Winter Simulation Conference (WSC), Las Vegas, NV, USA, 3—6 December 2017; pp. 1539-1550.
[CrossRef]

Elbattah, M.; Molloy, O. ML-Aided Simulation: A Conceptual Framework for Integrating Simulation Models with Machine
Learning. In Proceedings of the 2018 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM-PADS
’18, Rome, Italy, 23-25 May 2018; ACM: New York, NY, USA, 2018; pp. 33-36. [CrossRef]

Saadawi, H.; Wainer, G.; Pliego, G. DEVS execution acceleration with machine learning. In Proceedings of the 2016 Symposium
on Theory of Modeling and Simulation (TMS-DEVS), Pasadena, CA, USA, 3-6 April 2016; pp. 1-6. [CrossRef]

Toma, S. Detection and Identication Methodology for Multiple Faults in Complex Systems Using Discrete-Events and Neural
Networks: Applied to the Wind Turbines Diagnosis. Ph.D. Thesis, University of Corsica, Corte, France, 2014.

Bin Othman, M.S.; Tan, G. Machine Learning Aided Simulation of Public Transport Utilization. In Proceedings of the 2018
IEEE/ACM 22nd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Madrid, Spain, 15-17
October 2018; pp. 1-2. [CrossRef]

De la Fuente, R.; Erazo, I.; Smith, R.L. Enabling Intelligent Processes in Simulation Utilizing the Tensorflow Deep Learning
Resources. In Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9-12 December 2018;
pp. 1108-1119. [CrossRef]

Feng, K; Chen, S.; Lu, W. Machine Learning Based Construction Simulation and Optimization. In Proceedings of the 2018 Winter
Simulation Conference (WSC), Gothenburg, Sweden, 9-12 December 2018; pp. 2025-2036. [CrossRef]

Liu, F; Ma, P; Yang, M. A validation methodology for Al simulation models. In Proceedings of the 2005 International Conference
on Machine Learning and Cybernetics, Guangzhou, China, 18-21 August 2005; Volume 7, pp. 4083—4088. [CrossRef]

Elbattah, M.; Molloy, O.; Zeigler, B.P. Designing Care Pathways Using Simulation Modeling and Machine Learning. In
Proceedings of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9-12 December 2018; pp. 1452-1463.
[CrossRef]

Arumugam, K.; Ranjan, D.; Zubair, M.; Terzi¢, B.; Godunov, A.; Islam, T. A Machine Learning Approach for Efficient Parallel
Simulation of Beam Dynamics on GPUs. In Proceedings of the 2017 46th International Conference on Parallel Processing (ICPP),
Bristol, UK, 14-17 August 2017; pp. 462-471. [CrossRef]

Batata, O.; Augusto, V.; Xie, X. Mixed Machine Learning and Agent-Based Simulation for Respite Care Evaluation. In Proceedings
of the 2018 Winter Simulation Conference (WSC), Gothenburg, Sweden, 9-12 December 2018; pp. 2668-2679. [CrossRef]

John, L.K. Machine learning for performance and power modeling/prediction. In Proceedings of the 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), Santa Rosa, CA, USA, 24-25 April 2017; pp. 1-2.
[CrossRef]

http://dx.doi.org/10.1109/PMBS.2018.8641686
http://dx.doi.org/10.1109/WSC.2017.8247895
http://dx.doi.org/10.1145/3200921.3200933
http://dx.doi.org/10.23919/TMS.2016.7918816
http://dx.doi.org/10.1109/DISTRA.2018.8601011
http://dx.doi.org/10.1109/WSC.2018.8632539
http://dx.doi.org/10.1109/WSC.2018.8632290
http://dx.doi.org/10.1109/ICMLC.2005.1527652
http://dx.doi.org/10.1109/WSC.2018.8632360
http://dx.doi.org/10.1109/ICPP.2017.55
http://dx.doi.org/10.1109/WSC.2018.8632385
http://dx.doi.org/10.1109/ISPASS.2017.7975264

	Introduction
	Preliminaries
	Markovian Decision-Making Process Modeling
	The Discrete Event System Specification

	Modeling and Simulation and Reinforcement Learning
	Discrete Event System Specification Formalism for Reinforcement Learning
	Temporal Aspect
	Implicit Time in Q-Learning
	Explicit Time in Q-Learning

	Hierarchical Aspect
	Multi-Agent Aspect

	Related Work
	Conclusions
	References

