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Abstract: The counting of wheat heads is labor-intensive work in agricultural production. At present,
it is mainly done by humans. Manual identification and statistics are time-consuming and error-prone.
With the development of machine vision-related technologies, it has become possible to complete
wheat head identification and counting with the help of computer vision detection algorithms. Based
on the one-stage network framework, the Wheat Detection Net (WDN) model was proposed for
wheat head detection and counting. Due to the characteristics of wheat head recognition, an attention
module and feature fusion module were added to the one-stage backbone network, and the formula
for the loss function was optimized as well. The model was tested on a test set and compared
with mainstream object detection network algorithms. The results indicate that the mAP and FPS
indicators of the WDN model are better than those of other models. The mAP of WDN reached 0.903.
Furthermore, an intelligent wheat head counting system was developed for iOS, which can present
the number of wheat heads within a photo of a crop within 1 s.

Keywords: wheat heads; object detection; one-stage model

1. Introduction

Wheat belongs to the family Gramineae. It is one of the three grains, and it is a widely
planted cereal crop [1]. The caryopsis of wheat is a staple food of humans—most caryopsis
production is used for human consumption, and only about one-sixth is used as feed.
Wheat can be ground into flour to make bread, biscuits, noodles, and other food, or it
can be fermented into beer, alcohol, liquor, or biofuel. The wheat growth stage is usually
divided into the green, jointing, heading, filling, and maturity stages. From the heading
stage to the mature stage, water and fertilizer management of the wheat field significantly
influence wheat yield and quality. Spike number per unit of ground area is one of the main
agronomic traits related to the grain yield of wheat [1]. Rapid assessment based on this
trait can help monitor crop management measures’ efficiency and facilitate early prediction
of food yield. This trait can also serve as a phenotypic trait in breeding programs.

Accurate wheat head counting is the critical step to obtaining wheat head character-
istics and detecting wheat phenotype automatically. With the development of machine
vision and deep learning technology [2–4], the number of ears of wheat can theoretically
be counted automatically and accurately by machine vision. However, using machine
vision technology to identify wheat heads is a complex problem, as the appearance of
wheat heads—including the shape, size, texture, and posture—varies significantly between
different wheat varieties and growth stages. The edges of wheat heads are irregular, and the
color of the ears is similar to the color of the leaves. In the complex environment of a wheat
field, mutual sheltering between different wheat organs and the uneven and constantly
changing natural sunlight severely hinder the automatic identification of wheat heads. The
influence of varying growth environments also needs to be considered. There is a great
need for a machine learning model capable of effectively detecting wheat heads in diverse
environments.
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Some researchers have made progress in the field of image-based wheat head recog-
nition. Jose et al. [5,6] used traditional image processing algorithms, such as a Laplacian
frequency filter and a median filter, to recognize wheat heads based on RGB images au-
tomatically. In a test set, the recognition accuracy reached more than 90%, and in a field
experiment, the recognition accuracy was higher than that of the artificial wheat head
recognition method. Pouria et al. [7] proposed a method called DeepCount, which can
automatically recognize and count wheat heads based on digital images of wheat heads
under natural field conditions. This method uses simple linear iterative clustering to
segment images into superpixels to obtain canopy-related features. It then builds feature
models and inputs them into deep convolutional neural networks (CNNs) for classification.
DeepCount achieved a maximum R2 of 0.89 on an experimental dataset. Tan et al. [8] used
simple linear clustering to identify wheat heads. The experimental results showed that the
recognition accuracy was 94% on a wheatear image set containing wheat that was given a
high level of nitrogen, and 80% on a wheatear image set containing wheat that received no
additional nitrogen. Zhou et al. [9] used vehicle-mounted RGB camera equipment to collect
data samples in a wheat field dynamically and trained a wheat head recognition model
with the twin-support-vector-machine segmentation model. The accuracy of automatic
wheat head recognition was almost the same as that of manual recognition. Zhou et al. [10]
used unmanned aerial vehicles to collect rice spike images. They adopted CNNs based on
improved region-based fully convolutional neural networks, and the model reached 87%
recognition accuracy. Hayal et al. [11] used an unsupervised Bayesian learning method
to identify the rice spikes based on images of rice collected by unmanned aerial vehicles.
It had a recall rate of 96% and an accuracy rate of 72%. Deng et al. used the CNN model
to analyze the number of grains in a panicle of rice. The model integrated the feature
pyramid network (FPN) [12] into the faster region-based CNN (faster R-CNN) network,
and the model’s accuracy reached 99% [13]. In conclusion, existing studies have made
some valuable attempts at using deep learning methods for wheat head recognition. Still,
recognition speed and accuracy are not high enough, so there is room for improvement.

The scientific problem of wheat spike detection is target detection in images, which
involves two main challenges: detection speed and recognition accuracy. The detection rate
depends on the architecture and type of the model. For example, the two-step detection
algorithm approach is usually slower than the one-step detection model. The accuracy of
recognition depends on whether the model can distinguish the characteristics of wheatears
at different growth stages, that is, the shape, size, texture, and growth posture of wheatears.
Modeling challenges include the number of annotated data samples, the quality of annota-
tions, and the model training method. Without a sufficient number of high-quality labeled
samples, the practical training of deep learning class models cannot be completed, and
without practical training, the models cannot achieve optimal effects.

In this study, a one-stage target detection model called Wheat Detection Net (WDN)
was developed for wheat head detection. Some component units of the model structure
were borrowed from the YOLO model, and some module units were designed according
to the characteristics of wheat head detection. In the training stage of the model, various
methods were adopted to improve the training effect of the model. The detection speed
of WDN was 37 FPS, and the mAP value of detection accuracy was 0.903, those values
being better than those of other models. The main contributions of this study follow. (1)
One-stage architecture was adopted to ensure the detection speed of the model. (2) An
attention refinement module was designed to ensure the perceptual ability of wheat spike
features captured by the model. (3) A feature fusion module was designed to fuse features
of different scales to improve the performance of target recognition. (4) Various model
optimization techniques were used comprehensively, such as loss function selection, label
smoothing application, and OOF threshold calculation. (5) In model training, the warm-up
method and pseudo-label training were used to accelerate model convergence. (6) Based on
the proposed WDN, an easy-to-use mobile app was designed, which can be downloaded
from the App Store.
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The rest of this article is organized into four sections. The Section 3 (Materials and
Methods) introduces the dataset used in the research and the design details of the model;
the Section 4 (Experiment) describes the experimental process, results, and analysis; and
the Section 6 (Conclusions) summarizes the study and its findings.

2. Related Work

Object detection is a vibrant research areas in computer vision and an essential part of
image content analysis and understanding. It plays a notable role in automatic driving and
medical image diagnosis applications. This section primarily introduces the deep learning
techniques adopted in object detection.

The excellent performance of AlexNet [14] on ImageNet has led scientists to recognize
that convolutional neural networks are an efficient framework for processing image data.
Thanks to the flexibility of CNNs, they are used in various computer vision tasks, including
object detection. Regarding CNNs, object detection algorithms can be divided into two
categories: two-stage algorithms and one-stage algorithms.

2.1. Two-Stage Algorithms

Two-stage algorithms’ specific stages are shown as follows:

Stage 1 : Generate regional proposals from images.
Stage 2 : Generate final object borders from region proposals.

Ross et al. [15] proposed R-CNN in 2014, which first selects possible object frames
from a set of object candidate frames using the selective search algorithm Selective Search.
Then it resizes the images in these selected object frames to a particular fixed size and
feeds them to a CNN model (trained on ImageNet). Eventually, the extracted features
are fed to a classifier to predict whether a target is detected in that object frame, and
then further predicts which class the detected target belongs to. Although the R-CNN
algorithm has made meaningful progress, the redundant computation of overlapping
frame features makes the detection of the whole network slow. In order to reduce the
redundant computations caused by a large number of overlapping frames, K. He et al. [16]
suggested SPP-Net, which has a unique structure, including a spatial pyramid pooling
layer (SPP). The core idea is to divide an image into blocks of several scales (one image
into 1, 4, 8, etc.) and then fuse the extracted features of each block to take into account the
features of multiple scales. When using SPP-Net for object detection, the entire image is
computed only once to generate the corresponding feature map, which avoids repetitive
computations of convolutional feature maps. SPP-Net employs support vector machines
(SVMs) for classification, which requires enormous storage space, and the model is trained
only for the fully connected layer.

In 2015, Ross et al. presented Fast R-CNN [17], which refined R-CNN and SPP-Net.
It starts with an input image, which is passed to the CNN to extract features and return
potential ROIs, after which an ROI pooling layer is applied to the ROIs to ensure that
each region has the same size. Ultimately, the features of these regions are passed to the
fully connected layer of the network for classification. Although Fast R-CNN takes only
two seconds to process an image (R-CNN takes 14 s), its speed is still not fast enough to
be used in actual production. For the consideration of using CNN models to generate
candidate frames directly, Ren et al. [18] proposed faster R-CNN, which is the first end-
to-end deep learning detection algorithm that achieves close to real-time performance.
This network’s primary innovation is a region selection network for generating candi-
date frames, significantly improving the generation speed of detection frames. In 2017,
Lin et al. [12] suggested a feature pyramid network FPN based on faster R-CNN. FPN
proposes a top-down network architecture with lateral connections to build high-level
semantic information. It immensely improved detection network accuracy (especially for
some datasets with large-scale variations in the objects to be detected).

RETRACTED
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2.2. One-Stage Algorithms

YOLO-v1 [19] is the first one-stage deep learning detection algorithm that is extremely
fast, and the algorithm’s idea is to divide each image into multiple grids and then predict
the bounding box for each grid simultaneously and give the corresponding probability.
Although YOLO-v1 is remarkably fast compared to two-stage algorithms, its accuracy is
lower than the latter, especially with small target objects. After that, Liu et al. [20] sug-
gested the SSD algorithm. The principal innovations of this algorithm are the proposed
multi-reference and multi-resolution detection techniques. The difference between the
SSD algorithm and some previous detection algorithms is that partial previous detection
algorithms only detect at the deepest branch of the network. In contrast, SSD has multiple
different detection branches, which can detect multiple scales of targets. Consequently,
SSD dramatically improves the accuracy of multi-scale target detection and is much more
pleasing for small target detection. YOLO-v4 [21] is the fourth version of the YOLO algo-
rithm. Specifically, (1) mosaic data enhancement, cmBN, and SAT self-adversarial training
are introduced on the input side; (2) YOLO-v4 incorporates various new approaches on
the feature extraction network, containing CSPDarknet53, Mish activation function, and
Dropblock; (3) in the detection head, the SPP module is introduced. Overall, YOLO-v4
has outstanding engineering significance—introducing the latest research achievements to
YOLO-v4 in the field of deep learning in recent years, and having made a giant stride on
the basis of YOLO-v3.

3. Materials and Methods
3.1. Dataset Analysis

The dataset we used was from Kaggle. The wheat images in the dataset were collected
outdoors. It is divided into two parts: a training set and a test set. There are more than
3000 images in the training set, which covers multiple regions, including Europe (France,
the United Kingdom, and Switzerland) and North America (Canada). The test set includes
around 1000 images from Australia, Japan, and China. As shown in Figure 1, it contains
images taken under a variety of weather conditions and lighting conditions, and at different
growth periods of wheat.

Figure 1. Samples of the dataset.
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The dataset used in this paper has several difficulties for processing:

1. Dense wheat plants overlap frequently;
2. Wind blurs the photos occasionally;
3. The appearance varies with maturity, color, genotype, and head orientation.

Through further analysis of the data samples, it was found that the numbers of
detection bound boxes in the samples from the training set were distributed normally, as
shown in Figure 2.
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Figure 2. Distribution of the detection bounding boxes.

Most samples contained 20–60. Forty-nine samples did not contain detection bound
boxes, and there was a single sample containing 116 bounding boxes. These bounding
boxes were too sparse or too dense, which negatively influenced model training. In this
dataset, the mAP value was only 0.7–0.8 using YOLO or SSD network, but that is already
higher than the first ranking in global wheat detection when fusing the WDN512 + YOLO
series(v3, v4, and v5) + MaskRCNN model.

3.2. Data Augmentation

Data enhancement was adopted to solve the problem of insufficient network training
due to inadequate data or performance degradation caused by overfitting. Methods of
the data enhancement included image translation, image rotation, image horizontal and
vertical flip, image cropping, and repositioning. Referring to the method proposed by
Alex et al. [14], first, we cropped the image into five parts, and then flipped the five
images horizontally and vertically, so each original image would eventually generate
fifteen expanded images. The outer bound boxes of the cropped training set images were
counted in order to prevent the outer bound boxes from being cropped. Next, HSV [22]
channel color changes were performed on the dataset, to use hue and saturation. Value
space was used to represent the RGB color space.

3.2.1. Cutout

The cutout [23] method is randomly cutting out some areas in a sample and fill them
with certain pixel values, and the classification labels should remain unchanged. As shown
in Figure 3A, the specific operation involves using a fixed-size rectangle to block the image.
Within the rectangle, all values are set to zero or other pure color values. Cutout enables
the convolutional neural network to use the global information of the entire image rather
than the local information composed of some detailed features. The cutout method is able
to simulate the effect of the wheat being obscured. Moreover, cutout creates a similar effect
with dropout in the preprocessing stage. Dropout randomly discards neurons, and cutout
randomly discards image pixels. Through this preprocessing method, the robustness of the
model could be effectively improved.

RETRACTED
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Figure 3. Illustrations of three data enhancement methods. (A) Cutout method; (B) cutmix method;
(C) mosaic method.

3.2.2. Cutmix

The cutmix [24] method cuts out a part of an area and fills it with the training set
randomly instead of 0 pixels, as shown in Figure 3B. Cutmix enables the model to identify
two objects from a partial view of an image, which improves the efficiency of training.
Cutout could make the model focus on the areas where the objects are difficult to distinguish,
but some areas have no information, which would negatively affect the training efficiency.
In contrast, cutmix makes full use of all the pixel information. In order to make full use of
the background image that does not contain wheat heads in the dataset, when the cutmix
was used in this study, the areas with the wheat heads and the areas without the wheat
heads were subjected to a 1:1 cutmix operation.

3.2.3. Mosaic

Mosaic [25] can use multiple pictures at once, and its most significant advantage lies
in the fact that it can enrich the backgrounds of the detected objects, and it calculates
the data of multiple pictures during the BN calculation, which effectively promotes the
generalization of the model. Its processing method is shown in Figure 3C.

3.3. Wheat Detection Network

Although the current mainstream one-stage models, such as YOLO [26] and SSD, have
achieved excellent performance on COCO and VOC datasets, they still need to be improved
when it comes to wheat detection. The main reasons are as follows:

1. The aforementioned algorithms were used on the COCO and VOC datasets, so the
anchor points of the algorithms are not universal and need to be adjusted.

2. The detection accuracy of the aforementioned networks, especially when it comes
to small objects, is low. Therefore, based on the idea of a one-stage network, the
Wheat Detection Net model was proposed, with the aim of wheat labeling. Its main
features include: (1) adding an attention module to the backbone networks to enhance
the ability to extract features; (2) adding a multi-scale feature fusion module to the
backbone network, and referring to the ideas of two feature fusion networks, Feature
Pyramid Networks (FPN) and the Path Aggregation Network (PANet), to optimize
the fusion module.

3. The loss functions cannot perform different loss calculations on the wheat heads and
the background, that is, the foreground and the background.

4. Smooth activation functions allow better information penetration into the neural network,
resulting in better accuracy and generalization. Therefore, we replaced the LeLU and
LeakyReLU commonly used in CNN with the Mish function, as shown in Figure 4.

The improved network’s results are shown in Figure 5.
RETRACTED
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Figure 4. Mish activation function.

Figure 5. Wheat Detection Net.

3.3.1. Attention Refinement Module

The visual attention mechanism is a brain signal processing mechanism, a unique
mechanism of human vision, as shown in Figure 6. For human vision, the object area
that needs to be focused on could be located by quickly scanning the global image, and
it is commonly referred to as the focus of attention. Then we pay more attention in this
area to obtain more valuable detailed information of the object, and suppress other useless
information. This attention mechanism could also be widely applied in the field of computer
vision. The attention model [27] here functions similarly to human visual selective attention.
When outputting a certain word entity, attention will be focused on the corresponding area.

Based on the above facts, it is proposed in this paper that an attention refinement
module could be applied to contextual information branching, to refine the output of
the last two stages. Global average pooling was adopted at the beginning to obtain the
maximum receptive field, thereby integrating the global contextual semantic information.
Next, the attention module training network was supposed to learn intensively, even if
the features had different weights. Specifically, the attention refining module calculated
the weight for each channel of the feature map, and then weighted each original output
channel with the corresponding weight to obtain the new weighted feature, which played
a role in re-adjusting the integrated features. This attention mechanism achieved the effect
of refining and optimizing the output of the two stages of the context information branch

RETRACTED
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(i.e., the fourth and fifth stages of ResNet18 [28] downsampling) with only a small number
of calculations, and was capable of obtaining the global contextual semantic information
in a simple and fast way. In the attention refining module, through a series of operations,
the response weight matrix of each position in the feature map with respect to all positions
was obtained, and then the sigmoid function was used to map the weight to a number
between 0 and 1. Then, the weight was multiplied by the feature, which was the weighted
response feature.

Figure 6. Illustration of human visual attention.

3.3.2. Feature Fusion Module

The spatial details captured by the spatial information branch were more abundant,
and the features captured by the contextual information branch contained rich contextual
information. The features they output included shallower layer and deeper layer, which
were not at the same level. Hence, they could not be directly merged, and instead required
a module that specialized in fusing features of these different scales—exactly the feature
fusion module designed in this article. The FFM learning attention mask is used to select
and combine features. First of all, it concatenates different input features and then performs
conventional convolution operations. Next, it copies SENet [27] by using the attention
mechanism for feature optimization. Similarly to the aforementioned ARM structure, the
eigenvectors of features after concatenation are obtained through global average pooling.
The weights of different features are calculated through the convolution and activation
function. Then, weights are added to the features to generate the new weighted features.
Finally, it they are added to the original features.

3.3.3. Loss Function

Aiming to label wheat heads, the loss function was divided into three parts: regres-
sion box loss, CIOU loss, and classification loss. The calculation process is shown in
Formulas (1)–(4). Among them, Ĉi = Pr(Object)× CIoUtruth

pred .

Loss = Lossbounding_box + Lossciou + Lossclassi f ication (1)

RETRACTED
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Lossbounding_box =λcoord

K×K

∑
i=0

M

∑
j=0

Iobj
ij (2− wi × hi)[(xi − x̂i)

2 + (yi − ŷi)
2]+

λcoord

K×K

∑
i=0

M

∑
j=0

Iobj
ij (2− wi × hi)[(wi − ŵi)

2 + (hi − ĥi)
2]

(2)

Lossciou =
K×K

∑
i=0

M

∑
j=0

Iobj
ij [Ĉilog(Ci) + (1− Ĉilog(1− Ci)]+

λnoobj

K×K

∑
i=0

M

∑
j=0

Inoobj
ij [Ĉilog(Ci) + (1− Ĉilog(1− Ci)]

(3)

Lossclassi f ication =
K×K

∑
i=0

Iobj
ij ∑

c∈classes
[ p̂i(c)log(pi(c)) + (1− p̂i(c)log(1− pi(c))] (4)

In the training process, pred_bbox was divided into positive examples and negative
examples. For any ground truth, we calculated the IoU with all pred_bboxes, and the
largest IoU was a positive example. One pred_bbox could only be assigned to one ground
truth. For instance, if the first ground truth matched the pred_bbox, the next ground truth
needed to find the largest IoU among the remaining pred_bboxes, as a positive example. If
the IoU with all ground truth was less than the threshold, it was a negative example. All
prediction boxes that were neither positive nor negative were discarded.

In this way, the loss function could reduce the weights of easy-to-classify samples so
that the model could focus more on difficult-to-classify samples during training. Through
this improvement, the accuracy of the network could be promoted while the inference
speed of the network was maintained.

It can be inferred from Formula (5) that if the two prediction boxes do not intersect,
their IoU value is 0. Then, this value could not reflect the distance between the two,
that is, the degree of coincidence. At the same time, the corresponding loss is 0, and the
gradient of back propagation is 0, and learning and training could not be performed. In
the CVPR2019 paper [29], GIoU is proposed, and its calculation is shown in Formula (6),
where Ac represents the smallest rectangular area that contains both the prediction frame
and ground truth. From the formula, it could be inferred that when the prediction frame
completely covers the ground truth, GIoU could not well reflect the coincidence of the two.
In order to consider the distance and overlap rate at the same time, DIoU [30] is proposed,
and its calculation process is shown in Formula (7), where b and bgt represent the center
points of the prediction frame and ground truth, respectively, p represents the Euclidean
distance between these two center points, and c represents the diagonal distance of the
smallest rectangle that could simultaneously contain the prediction frame and ground truth.
However, due to the fact that the expression method does not consider the aspect ratio of
the outer frame, on the basis of DIoU, CloU is proposed [30], which is the measurement
method used in the loss function in this paper, and the penalty term is shown in Formula (8).
Where α is the weight function, and ν, defined as ν = 4

π2 (arctan wgt

hgt − arctan w
h )

2, is used to
measure the similarity of the aspect ratio. The gradient of CIoU loss is similar to DIoU, and
when the length and width are in [0, 1], the value of w2 + h2 is usually very small, which
results in an explosion of the gradient. Thus, when it came to the implementation, 1

w2+h2

was replaced with 1. The loss function of CIoU is defined in Formula (9).

IoU =
|A ∩ B|
|A ∪ B| (5)

GIoU = IoU − |Ac −U|
|Ac|

(6)

DIoU = IoU − ρ2(b, bgt)

c2 + αν (7)

RETRACTED



Information 2022, 13, 153 10 of 17

RCIoU =
ρ2(b, bgt)

c2 + αν (8)

LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αν (9)

4. Results
4.1. Training
4.1.1. Warm-Up

Warm-up [28] is a training concept. In the pre-training stage, first use a low learning
rate to train some epochs or steps, such as four epochs or 10,000 steps, and then move to a
preset learning rate for training.

In this article, exp warm-up was tested; that is, the learning rate linearly increased
from a small value to the preset learning rate, and then decayed according to the exp
function law. Meanwhile, sin warm-up was also tested; that is, the learning rate increased
linearly from a very small value, and after reaching the preset value, it decayed according
to the sin function law.

4.1.2. Label-Smoothing

In this study, the backbone network would output a confidence score that the cur-
rent data corresponded to the foreground—wheat. These scores were normalized by the
so f tmax function, and ultimately the probability that the current data belongs to each
category was obtained. The calculation is shown in Formula (10).

qi =
exp(zi)

∑K
j=1 exp(zj)

(10)

Then, calculate the cross-entropy cost function:

Loss = −
K

∑
i=1

pilogqi (11)

The calculation method for pi is shown in Formula (12).

pi =

{
1, i f (i = y)

0, i f (i 6= y)
(12)

For the loss function, the predicted probability was supposed to be adopted to fit the
true probability. However, fitting the one-hot true probability function would bring about
a problem: The generalization ability of the model could not be guaranteed, and it would
be likely to result in over-fitting.

Based on this, the regularization method of label smoothing was used to solve
this problem. After label smoothing process, the probability distribution changed from
Formulas (12) to (13):

pi =

 1− ε, i = y
ε

K− 1
, i 6= y

(13)

4.1.3. Pseudo-Label

Since the number of datasets was insufficient, the pseudo-label method was adopted
to make full use of the verification data to enhance the training process. Three pseudo-label
methods were tested, as shown in Figure 7. Among them, M represents a supervised
model trained with labeled data, and M′ represents a model trained with labeled data and
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pseudo-labeled data. PL-B used M′, replaced M, and repeated until the model did not
improve. PL-C replaced the loss function with what is shown in Formula (14).

Figure 7. Flow chart of different pseudo-label models.

Loss = (1− α)× Loss(labeled_data) + α× Loss(unlabeled_data) (14)

4.2. Test Time Augmentation
4.2.1. Out of Fold

After the object detection model generated the prediction bounding boxes, the bound-
ing boxes below the confidence threshold were discarded before the Non-Maximum Sup-
pression (NMS) [31] algorithm was used. However, the setting of this threshold usually
depends on experience. The core idea of Out of Fold (OoF) is to calculate the mAP of the
validation set by traversing different thresholds and obtain the optimal threshold with the
highest score of mAP during the traversal process. The process is shown in Figure 8.

Figure 8. The flow chart of the OoF method.
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4.2.2. Optimization for NMS

In classic object detection algorithms, in order to improve the recall rate, many anchors
are generated in the anchor generation stage. This results in many redundant bounding
boxes corresponding to the same object in subsequent processing. Therefore, NMS is an
indispensable step to remove redundant bound boxes in post-processing. However, NMS
possesses the following problems:

1. When objects overlap, there will be a frame with the highest score. When several
objects overlap, there will be a bounding box with the highest score. In this case, if
NMS is used, bounding boxes representing other objects whose confidences are lower
and the overlap with a bounding box with a higher score will be deleted.

2. Sometimes all the bounding boxes around an object are marked, but they are inaccu-
rate.

3. The NMS method is based on the confidence score, so only the prediction bounding
box with the highest score can remain. Nevertheless, in most cases, the IoU and the
classification score are not strongly correlated, and many boxes with high confidences
for classification labels are not highly accurate.

Based on the above analysis, soft NMS [32] and Weighted Boxes Fusion (WBS) [33]
were adopted in the training phase to replace the traditional NMS method. The core of
introducing soft NMS lies in the fact that it would not directly remove redundant outer
boxes due to an NMS threshold. Instead, the highly redundant detection results were
suppressed by a penalty function so that their scores were reduced. The higher the IoU
coincidence degree was, the lower the score was. WBF integrated the outer boxes whose
IoU were higher than the set threshold to get new outer boxes, which in turn contributed to
reducing the final number of outer boxes. his method was adopted in multi-model fusion.

4.2.3. Model Ensemble

The method of model fusion was used to improve mAP. The method of fusion is to
take the intersection of the results identified by different network models, fuse the learning
capabilities of each model, prevent false detection, improve accuracy, and improve the
generalization ability of the final model.

4.3. Experiment Results

The hardware platform for this experiment was: intel i9 CPU, NVIDIA RTX 3080
10 G graphics card, 16 G memory. The software platform was based on Python 3.9 and
PyTorch 1.9.

4.3.1. Yolo and SSD Transfer Learning

Transfer learning means to transfer knowledge from one domain (i.e., the source
domain) to another domain (i.e., the target domain) so that the target domain can achieve
better learning results. Generally, the amount of data in the source domain is sufficient,
whereas the amount of data in the target domain is relatively small. Transfer learning
needs to transfer the knowledge learned under the condition of sufficient data to a new
environment with a small amount of data. The principle is shown in Figure 9.

The YOLO series and SSD were first proposed in 2016–2017 and have been widely
applied in agricultural image annotation [34–37]. In this study, the YOLO series and SSD
were used for migration learning. We used the parameters obtained after training based
on the VOC dataset to initialize the model, and then used the aforementioned method to
complete the transfer process.
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Figure 9. Transfer learning schematic.

4.3.2. Experiment Results

In order to verify the effectiveness of the model proposed in this paper, it was com-
pared with one-stage EfficientDet, YOLO series with SDD, and mainstream two-stage
network models. The results are shown in Table 1.

Table 1. A comparison of other models and our model.

Method mAP FPS Batch Size Input Resolution

FasterRCNN 0.8396 17 2 600 × 600
MaskRCNN 0.8493 19 2 600 × 600
EfficientDet 0.8520 37 8 512 × 512
YOLOv3 0.880 23 2 608 × 608
YOLOv4 0.838 47 2 608 × 608
YOLOv5 0.867 51 2 608 × 608
SSD300 0.846 35 2 300 × 300
SSD300 0.846 32 8 300 × 300
SSD512 0.847 19 2 512 × 512
SSD512 0.847 21 8 512 × 512
WDT512 0.882 41 2 512 × 512
WDT512 0.903 37 8 512 × 512
WDT1024 0.875 29 2 1024 × 1024

5. Discussion
5.1. Ablation Experiments

In order to verify the effectiveness of the various pre-processing techniques pro-
posed in this article, such as various data augmentation methods, many ablation experi-
ments were performed on both WDT512, the model input of which was 512 × 512, and
WDT1024, the model input of which was 1024 × 1024. The experimental results are shown
in Tables 2 and 3.RETRACTED
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Table 2. Ablation experiment results on WDT512.

Cutout Cutmix Mosaic Warm-Up Label-Smoothing Pseudo Label mAP

X X PL-A 0.5020
X X X X X PL-C 0.903
X X X X PL-A 0.873
X X X X X PL-B 0.877
X X X X PL-C 0.870
X X X PL-C 0.888
X X X PL-C 0.895

Table 3. Ablation experiment results on WDT1024.

Cutout Cutmix Mosaic Warm-Up Label-Smoothing Pseudo Label mAP

X X X X X PL-C 0.887
X X X X PL-A 0.903
X X X X X PL-B 0.894
X X X PL-B 0.871
X X X PL-C 0.880

It was found that the data augmentation methods such as cutout, cutmix, and mosaic
are of great assistance to improving the performance of the model. The principles of
cutmix and mosaic are similar. It could also be concluded that compared with adopting the
combination of those two methods, using cutmix or mosaic alone exerts a more significant
effect on the improvement of model performance. It could be seen that the model functions
best when warm-up, label-smoothing, and PL-A-type pseudo-label methods are used
as well.

In order to test the effectiveness of test time augmentation, a large number of ablation
experiments were performed. The experimental results are shown in Table 4.

Table 4. Ablation experiment results of TTA.

Models OoF NMS Method mAP

WDT512 NMS 0.891
WDT1024 NMS 0.879
WDT512 X soft NMS 0.903
WDT512 + YOLO series + MaskRCNN X WBF 0.917

According to the results, the performance of the model using OOF, WBF, and WDT512
+ YOLO series + MaskRCNN for fusion was the best.

5.2. Intelligent Wheat Detection System

In order to realize the end-to-end model of wheat detection and promote the efficiency
of recognizing and labeling, we developed an intelligent diagnosis system for iOS using
the WDN model, with the development language Swift, and the development tool Xcode.

First, we retrieve the video input stream from an iOS device; then, we extract the
representative frame and send it to the server; next, the server transfers the received images
to the trained model; finally, the output of the model is returned to the iOS side, and the iOS
side draws a detection frame based on the returned parameters. The annotation interface is
shown in Figure 10.
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Figure 10. Screenshot of the intelligent wheat detection system on an iOS device.

6. Conclusions

In this paper, the Wheat Detection Network based on the mainstream single-stage
object detection network model was constructed to achieve the goal of rapid wheat detec-
tion. The performance of the model was improved by adding the attention mechanism and
multi-scale feature fusion module and optimizing the activation function. In order to make
full use of the training dataset, data enhancement methods such as cutout, cutmix, and
mosaic, and technical methods such as label smoothing and pseudo-label, were adopted.
Additionally, test time augmentation, OoF, WBF, model fusion, etc., were used to get the
most out of the model.

In order to verify the effectiveness of the model, comparative experiments and ablation
experiments were performed. The results indicate that the WDN inference time could reach
25 ms. As for the problem of wheat head detection, the network model proposed in this
paper could even increase mAP to 0.903.

Eventually, in order to enable the network model proposed in this article to be applied
in the agricultural production environment, our team built a set of intelligent systems,
including front and back ends based on Swift and PHP, to cover the usage scenarios
involving iOS mobile devices.
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