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Abstract: Knowledge graphs (KGs) have rapidly emerged as an important area in AI over the last ten
years. Building on a storied tradition of graphs in the AI community, a KG may be simply defined
as a directed, labeled, multi-relational graph with some form of semantics. In part, this has been
fueled by increased publication of structured datasets on the Web, and well-publicized successes of
large-scale projects such as the Google Knowledge Graph and the Amazon Product Graph. However,
another factor that is less discussed, but which has been equally instrumental in the success of KGs,
is the cross-disciplinary nature of academic KG research. Arguably, because of the diversity of this
research, a synthesis of how different KG research strands all tie together could serve a useful role in
enabling more ‘moonshot’ research and large-scale collaborations. This review of the KG research
landscape attempts to provide such a synthesis by first showing what the major strands of research
are, and how those strands map to different communities, such as Natural Language Processing,
Databases and Semantic Web. A unified framework is suggested in which to view the distinct, but
overlapping, foci of KG research within these communities.

Keywords: knowledge graphs; applications; natural language processing; semantic web; data mining;
knowledge representation; graph databases

1. Background and Aims

Graphs have always been important in the computational sciences, mathematics
and, most notably, artificial intelligence (AI). Graph theory, as it is known today, was
originally proposed by Euler in 1735 as a solution to the Königsberg Bridge Problem [1].
More recently, within AI, graphs have found use in sub-fields ranging from planning to
probabilistic reasoning and inference [2,3]. In the computational social sciences [4], as well
as in complex systems research in the physical sciences, networks have emerged as an
important model, with many important findings over the years [5–8], including domain-
specific applications in finance [9–12], crisis informatics [13,14], biology [15–17] and even
human trafficking [18–21]. Of course, these models are not exclusive to the communities
where they are most prominent, although the goals of each community tend to be more
distinct. For example, while networks also play an important role in AI, the primary targets
of research tend to be pragmatic applications, such as link prediction and community
detection [22–25].

With accelerating growth of the Web over the 2000s, and the rise of both e-commerce
and social media, knowledge graphs (KGs) have emerged as important models for rep-
resenting, storing and querying heterogeneous pieces of data that have some relational
structure between them, and that typically have real-world semantics [26]. The semantics
are closely associated with the domain for which the KG has been designed [27]. A formal
way to define such a domain, favored in the Semantic Web (SW) community, is through an
ontology [28].

The most common definition of a KG is that it is a directed graph where both edges and
nodes have labels. Nodes are considered to be entities, ranging from everyday entities such
as people, organizations and locations to highly domain-specific entities such as proteins
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and viruses (assuming the domain is a biological one). Edges, also known as properties
or predicates, represent either relations between entities (e.g., an ‘employed_at’ relation
between a person and organization entity) or an attribute of an entity (e.g., a person’s
date of birth), typically represented as a literal. Edges and nodes may also be used to
represent an entity’s attribute (e.g., the ‘date_of_birth’ of a person entity) and the attribute’s
value (e.g., ‘1970-01-01’), respectively. Even definitionally, diversity is observed in KG
research. For example, the SW community makes formal distinctions between the two uses
of nodes and edges mentioned above, while others, such as NLP, are less formal. (Within
SW, nodes representing entities and attribute values are generally referred to as ‘resources’
and ‘literals’, respectively. Similarly, edges representing entity-relations and attributes are,
respectively, referred to as ‘object properties’ and ‘datatype properties’.)

An illustrative KG fragment from the tourism domain is visualized in Figure 1.
The fragment contains both the actual KG fragment (called the A-Box) and the concepts
(nodes shaded in orange) that are part of the T-Box or ontology that models the domain
of interest. Put differently, concepts are the types or classes of entities allowable in the
domain. Another important aspect of the domain is the set of allowable edge-labels (called
properties or predicates) and the constraints associated with them. For example, the ‘em-
ployed_at’ relation can be constrained to only map from an entity of type ‘Person’ to an
entity of type ‘Organization’. Formally, ‘Person’ and ‘Organization’ would be declared as
the allowable domain and range of the predicate ‘employed_at’, similar to a functional
constraint in mathematics. The ontology can also have other axioms and constraints. (An
intuitive example is a cardinality constraint, e.g., the requirement can be imposed that a
‘married_to’ predicate can be linked to at most one entity-object.) A special predicate called
rdf:type serves as an explicit bridge between the A-Box and the T-Box by declaring an
entity’s type (which, by definition, is in the T-Box).

Figure 1. A knowledge graph (KG) fragment. Concepts (that typically belong in the T-Box) are
shaded in orange. Links in the figure were accessed on 17 March 2022.

Per the brief formalism above, the semantics of the KG are provided for by the ontology
itself, in conjunction with a reasoning engine that (in principle) can detect when the KG
is violating the ontology in some way. However, while this formalism is among the most
mature in the AI community for expressing, codifying and manipulating the semantics of
domain knowledge, it is not the only way. The NLP, knowledge discovery and database
communities have much more lightweight and implicit notions of an ontology (usually
denoted a ‘schema’ in the academic work, if mentioned explicitly at all).

Perhaps because the surge of interest in KGs over the last decade can be traced to both
the academic community (e.g., as Resource Description Framework knowledge bases in
the Semantic Web) and industry (e.g., the Google Knowledge Graph), KG research has
witnessed a high degree of conceptual and algorithmic diversity. This diversity can be a
double-edged sword. On the one hand, it leads to a dynamic and creative research agenda
where progress is continuously being achieved in some specific area that is the current
focus of attention within a community. On the other hand, it may lead to the proverbial
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reinventing of the wheel, including a profusion of independently developed terminology
for the same fundamental phenomenon. This is already evident in at least one research
sub-area (namely, entity resolution or ER) that existed before KGs in multiple research
areas, including data mining [29], Semantic Web [30,31], and databases [32]. (Each of the
citations is an example survey of ER in that specific area. Note that the ER problem goes by
different names in different communities but as discussed in a book on the subject [33], they
are fundamentally the same AI problem despite community-specific differences. Further
complicating the matter is the similarity of problems such as schema matching, type
matching and ontology alignment with ER [34–37].) Coincidentally, ER is an important
component in any non-trivial KG construction workflow which does not help maintain
uniformity [27].

The goal of this article is to provide a review of the research landscape that serves
as a concise (but multi-community) synthesis of KG research as it has been shaped over
the last decade. As described next, it draws on a rich body of primary sources for this
synthesis. The aim herein is not to survey KGs or KG algorithms, since good efforts along
those lines already exist, in addition to detailed technical surveys on KG sub-tasks such as
information extraction, ER and (more recently) KG representation learning. Rather, in the
spirit of similar meta-reviews in both the natural and the social sciences (two examples of
which are [38,39]), this article is an attempt to survey the landscape of KG research itself,
in the hopes of illustrating the connections between these (superficially disparate) research
strands. Although this is not a traditional meta-review in the sense of collating data from
multiple studies in a single work (usually with the goal of achieving higher statistical
significance or uncovering variability that was not evident in a single study), it does collate
together and synthesize output from a collection of papers and sub-fields in AI to present a
more unified view of KG research than any individual paper would suggest.

2. Related Work

This synthesis builds on other related work that already reviews the technical details of
KGs, and in some cases important aspects of KGs (such as information extraction), in great
depth. This section primarily describes and cites other surveys that could serve as further
reading material for the reader interested in learning more about these technical aspects.
In the section following this one, a community-specific overview of KG research is also
provided, wherein seminal research articles on some of the individual topical areas are
briefly described and cited.

To begin, the term ‘knowledge graph’ started becoming more popular and standard in
the community with the release and success of the Google Knowledge Graph [40], even
though graphs have been prominent in AI since its founding days. Since the release of
the Google Knowledge Graph, research on KGs has grown tremendously. A very recent
and fairly comprehensive work on KG representation, acquisition and applications is the
survey by [41]; while an excellent source of primary material, the survey also suggests
why the current time is appropriate for a meta-review. In the survey, the authors provide
overviews of state-of-the-art systems for the three topical areas mentioned above (i.e.,
representation, acquisition and applications), but do not attempt to unify them into a
common framework. They also do not mention research in communities like the Semantic
Web (SW) that have developed rigorous techniques to model and publish KGs on the
Web. In contrast, the recent Communications of the Association for Computing Machinery
(CACM) article by [28] takes a deeper look at how SW has contributed to KGs, but the
review is primarily about the Semantic Web, which does not just research KGs. Even
book-level treatments of KGs, of which there are a few (see, e.g., [42–44], and a recent
textbook-level treatment [45]), have not provided an explicit mapping between KG research
strands and priorities in different communities like NLP and SW. This article attempts to do
so by suggesting an initial framework for thinking about these areas in a unified manner.

Earlier work that has attempted to define and provide an overview of KG mod-
els include [26,46]. In recent years, more specialized surveys have also been published,
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e.g., see [47], and the author’s book in 2019 on domain-specific KG construction [27],
as well as Abu-Salih’s survey on the same subject more recently [48]. Multilingual KGs
have become popular as well, with a recent line of research detailing techniques for con-
structing and working with such KGs. Examples include the survey by [49] on constructing
and applying Chinese KGs, the work in [50] describing how to construct a multilingual
event-centric temporal KG, and the work by Wu et al. on constructing KGs from multiple
non-English online encyclopedias [51]. Even more recently, a survey by Zhu et al. also
discusses the construction and applications of multi-modal KGs, which tend to involve
many of the challenges of building multilingual KGs [52].

An important point noted at the outset of this article is that the focus herein is on
fundamental research, mainly pursued by academic researchers, as opposed to more
practitioner-oriented research or applications, although an effort is made to mention and
cite applications where applicable. Applications do play a very important role in the
KG community, with the Google Knowledge Graph serving as an obvious example [40],
but with several others having been implemented in recent years, including (most recently)
in the wake of the COVID-19 pandemic [53,54]. Following the success of the Google
Knowledge Graph, building and using KGs for domain-specific searches has also gained
in prominence in both academia and industry [55,56]. Furthermore, as evidenced recently
through efforts such as the Amazon Product Graph [55], domain-specific KGs frequently
find application in industry [57–59].

3. Community-Specific Overview of KG Research

Given that different aspects of KG research are prioritized in different communities,
an important component of this article is to first review the main research priorities (as per-
tinent to KGs) within those communities. The treatment herein does not imply exclusivity,
e.g., information extraction (IE), which is predominantly researched in NLP, has also wit-
nessed interesting research in knowledge discovery and SW [60,61]. However, an attempt
is made to capture the norms and priorities of the overall community to a reasonable
extent. One manner in which this attempt was made systematically was to consider the
tutorials, workshops and demonstrations published in the top conferences covering these
sub-fields over the last 5 years, including the International Semantic Web Conference
(ISWC), the Knowledge Discovery and Data Mining (KDD) conference, the Association for
Computational Linguistics (ACL), the Web Conference (WebConf; formerly known as the
World Wide Web Conference) and core machine learning conferences, such as NeurIPS,
International Conference on Learning Representations (ICLR) and International Conference
on Machine Learning (ICML). In all of these conferences, there was at least one tutorial,
and multiple workshops and demonstrations involving an important aspect of KG research.
Some recent (non-exhaustive) examples of such workshops include Heterogeneous Graph
Deep Learning and Applications (KDD 2021), Mining Knowledge Graph for Deep Insights
(KDD 2020), International Workshop on Semantic Evaluation (ACL 2021) and Workshop
on Deep Learning for Knowledge Graphs (ISWC 2021).

In short, only those communities where substantial KG-related research has been
published, demonstrated or otherwise promoted (e.g., through tutorials and workshops)
to date are considered. A good example of an important AI community that would not
meet this condition is Computer Vision. Although some KG research has been published in
Computer Vision [62], including the construction of multimodal KGs [52], the number of
KG-related publications is still relatively small compared to the other communities that
are covered in this section. Finally, it bears noting that, because KG research is rapidly
advancing as a field, some of the areas discussed below may become less relevant for
presenting advances in KG research, and others (not currently discussed in depth, such
as computer vision) may gain in importance. Hence, this selection of areas should be
interpreted as being only quasi-objective and subject to change even in the near future.
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3.1. Natural Language Processing (NLP)

KG research can trace its origins to at least two different research areas (NLP and the
Semantic Web, which is re-visited subsequently). Within NLP, KGs first emerged as a result
of progress in the domain of information extraction (IE), starting from the 1990s with the
institution of the Message Understanding Conferences [63]. The majority of IE research
published over the last three decades has involved either named entity recognition (NER)
or relation extraction (RE). Good surveys on the former include work by [64,65] (the second
of which focuses on deep learning methods), while [66,67] provide a recent, comprehensive
survey on the latter.

Since RE research has almost always involved 2-arity relations (where the relation is
assumed to exist between a pair of entities), extracted relations and entities can be modeled
as triples and placed into (what has been traditionally denoted as) a knowledge base
(KB). Prior to the growth of the Web, there was no reason to model these KBs as graphs.
Connections between entities became more apparent and important both when the same
entity started getting extracted from multiple documents and (much later) when it was
discovered that the structural properties of the KB, such as entity and relation co-occurrence
features, could lead to improved performance on related tasks such as entity linking [68].
Entity linking is the problem of automatically linking an extracted entity to its equivalent in
an agreed-upon ‘canonical’ KB like Wikipedia [69]. To take a simple example of the utility
of a structural feature like co-occurrence, suppose that both ‘V. Williams’ and ‘Wimbledon’
were extracted from a single document. If the entity extraction system attempts to link
these two extractions to Wikipedia independently, it becomes difficult to decide whether
V. Williams refers to Venus Williams (the tennis player) or Vanessa Williams (the actress),
and also whether Wimbledon refers to the tennis grand slam tournament of the same
name or Wimbledon, London (where the championships are held, but which is technically
different from the event itself). Co-occurrence helps resolve this ambiguity by not linking
independently. More complex features help improve performance even further, and a
similar philosophy would also apply to related tasks such as co-reference resolution [70],
which is the problem of determining when words and phrases (including pronouns) refer
to a unique entity.

From the perspective of KG research, IE, entity linking and other problems such as
co-reference resolution, all play a vital role because they ultimately lead to a higher-quality
initial KG. If two extractions, such as ‘V. Williams’ and ‘Venus Williams’, can indeed be
linked to the same Wikipedia entry, for example, then they can be modeled as a single
node in the KG. Good co-reference resolution can help add more data to the KG (e.g., more
facts and relations). For these reasons, and also because of other applications that have
arisen over the years (such as question answering [71]), improving performance through
the design of more sophisticated algorithms and representation learning techniques has
always been an important goal in the community. IE problems such as Open IE and event
extraction continue to pose challenges [72,73].

3.2. Semantic Web

Earlier, the concept of the A-Box and the T-Box were briefly introduced. These notions
are primarily inspired by description logics, which have heavily influenced KG research
in the SW community [74]. For example, [75] describe how description logics serve as
ontology languages for the semantic web. However, in the broader community, modeling
and representing KGs is only one part of the equation. An equally important goal is to
devise better ways of publishing, linking and accessing this data on the Web. According
to a seminal article by [76], the Semantic Web is fundamentally an effort to transform the
Web by ‘augmenting Web pages with data targeted at computers’.

With the advent of a movement called Linked Data [77], KGs modeled in formal graph-
friendly languages like Resource Description Framework (RDF) started becoming more
common on the Web [78], although they are still dwarfed by the volume of natural language
text. The KG fragment that was illustrated earlier in Figure 1 is an RDF graph. Data are
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represented as a set of triples of the form (subject, predicate, object), intuitively representing
a directed edge in the graph, where the subject and predicate must be uniform resource
identifiers or URIs (and are typically just uniform resource locators for actual datasets),
while the object may be a URI or a literal. (Technically, they must be internationalized
resource identifiers, which subsume URIs.)

Linked Data are defined as a set of four best practices (https://www.w3.org/wiki/
LinkedData accessed on 17 March 2022) for publishing ‘structured data’ (that are, by and
large, KGs) on the Web: (i) use URIs as names for things, (ii) use HTTP URIs to enable
people to look up those names, (iii) provide useful information when a person looks up a
URI and (iv) include links to other URIs to enable greater discoverability [77]. Linked Open
Data started in 2007 with only a handful (<10) of datasets that has since grown to hundreds
of datasets in recent years [79], spanning domains as varied as social media [80,81], biol-
ogy and life sciences [82,83], and computational linguistics [84,85]. The fourth principle,
in particular, has made this possible, since without it, different datasets obeying the other
three Linked Data principles may still have been siloed. Both classic and recent research in
the 50-year-old problem of entity resolution (ER) has made automatic linking of equivalent
entities in independent datasets to one another (even at the Web scale, e.g., the author’s
previous work on entity name systems [86]) much more feasible [29,87].

Other research priorities in SW include the development of efficient KG querying
infrastructures, such as triplestores [88]. Recently, such triplestores (along with the re-
lated technology of graph databases, which has been a subject of heavy research in the
core Database research community, as subsequently detailed) have also started gaining
prominence, with at least one major cloud service (Amazon Neptune) available for it [89].
Another paradigm that has recently been proposed for data integration and access is the
Virtual Knowledge Graph (VKG) paradigm. This paradigm is inspired by the literature
on Ontology-Based Data Access (OBDA), which is a well known problem in the Semantic
Web community. The key difference between VKGs and OBDA is that the former replaces
rigidly structured tables that are a key feature of the latter with flexible graphs. Similar
to OBDA, however, the graphs do not have to be ‘materialized’ but can be maintained as
a virtual layer and used to capture and represent domain knowledge. A comprehensive
overview of systems and use-cases for VKGs is provided in [90].

3.3. Core Machine Learning: Representation Learning and Probabilistic Graphical Models

Representation learning and probabilistic graphical models, the best known examples
of which are Markov logic networks and Bayesian networks [91–94], have played an equally
important role in recent KG research. Representation learning is a more recent phenomenon,
with the structured embedding paper by [95], followed by influential architectures such
as TransE, ConvE and the neural tensor network. Several surveys of such KG-embedding
approaches have been published, examples being [96–98]. The basic purpose of these meth-
ods is to ‘embed’ each node and relation in the KG into a dense, continuous, real-valued
vector space. Similar to word embeddings, operations such as link prediction can then
be optimized in vector space. In recent years, KG representation learning and refinement
have also become popular in other KG communities, such as SW [99], natural language
processing [100] and broad AI topics such as commonsense reasoning [101]. More recent
surveys on KG embeddings and representation learning include [97,98]. Beyond surveys,
in the SW, examples of KG applications and algorithms include [102–104]. Unsurprisingly,
the success of these approaches closely mirrors the success of deep learning methods and
architectures in related areas. Representation learning has been particularly successful in
‘refining’ KGs by predicting links, detecting incorrect triples and resolving entities.

As KG embeddings have become more advanced, several authors have sought to
use other classes of interesting ‘information sets’ with which to obtain higher-quality
embeddings. One such type of information is temporal information. Since KG facts can be
time-sensitive in some domains (e.g., X co-authored a paper with Y in a given year), the goal
is to use time-aware embedding models to further improve KG embeddings [105,106]. One
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way in which this can be accomplished is by imposing temporal order constraints on
time-sensitive relation pairs. Another way is to model the temporal evolution of KGs by
using quadruples rather than triples. This kind of representation is especially well suited
for medical or sensor-based domains (e.g., Internet of Things). Other kinds of information
sets that have inspired similar research in the machine learning community include relation
paths, which are designed to help incorporate richer context into the relationship between
a pair of entities [107,108], rather than ‘single-hop’ relations represented using an edge
in the KG, and even logical rules. Although the use of such rules, once a staple of expert
systems, is more common in communities such as Semantic Web, their use as regularizers
when learning better KG embeddings shows the interdisciplinary connections between
these fields. Examples of systems that use rules or rule-based constraints to refine KG
embeddings include [109–111].

The application of probabilistic graphical models and probabilistic soft logic (PSL) to
problems like link prediction predates representation learning by several years [2,112]. PSL
is well suited for large-scale KGs because its optimization is convex. A particularly interest-
ing use case is knowledge graph identification (KGI), wherein the confidence-annotated
outputs of tasks like IE and ER (the ‘initial’ KG) are fed into a PSL program, along with
ontological constraints [113]. The output of the program is a much cleaner KG. The ad-
vantage of PSL is that it is able to incorporate a combination of domain knowledge and
probabilistic reasoning to ‘identify’ the true KG. Results have been promising. The possible
synergy of such probabilistic models with representation learning is an interesting avenue
for future research.

3.4. Databases, Data Mining, and Knowledge Discovery in Databases (KDD)

Although distinct from the SW or NLP communities, the knowledge discovery in
databases (KDD) and data mining communities have also had a significant influence on KG
research in the last 5 years. KGs have been used in innovative applications, including rec-
ommender systems [114,115]. One reason that KGs can make a difference in recommender
systems’ performance is their ability to provide useful external knowledge. Combined with
deep learning, the external knowledge can make quite a difference. Gao et al. provide a
survey on deep learning on KGs for recommender systems [116]. They cite the emergence
of graph neural networks (GNNs) as an important recent advance in this space [117]. Us-
ing GNNs in tandem with KGs, recommender systems can be adapted to become more
knowledge-aware, and in turn, this also helps such systems adapt to problems such as
cold-start. In their survey [116], Gao et al. also cite publicly available open-source code and
benchmark datasets (examples of which include [118,119]), showing that the ecosystem
is starting to mature, making it more likely that these algorithms will be adopted and
refined by independent developers (and possibly, smaller companies who may not have
a significant research and development budget) in the near future. Although the use of
external knowledge and even taxonomies is not novel in this space [120–126], KGs have
historically been difficult to work with due to both scale and noise. GNNs present a robust
solution to the problem [127].

KGs have also been studied under the umbrella of heterogeneous information net-
works or HINs [128]. The HIN model resembles a KG and it is also a directed graph, but the
schema (called a network schema [129]) is less formal than the ontologies that are com-
monly found in the SW community. HINs have found applications in many of the domains
that KGs have, including social media, healthcare and bibliographic domains [129]. To take
healthcare as an example, Ding et al. [130] propose considering a biological system to be a
‘complex HIN’ that can be used to explore heterogeneous and complicated relationships
between biological entities such as molecules to study distinct phenotypes. This treatment
of HINs is reminiscent of domain-specific KGs, especially in biology and medicine (in-
cluding recently proposed KGs for COVID-19) [53,82]. HINs have also been applied to
recommender systems [131], as well as for tasks such as sentiment link prediction and
learning structure-aware embeddings [132,133].
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Last but not least, because efficient querying is an important problem in KG re-
search [134], techniques developed by the database community, especially in query refor-
mulation and graph databases, have also been influential [135,136]. Indeed, as argued in
a synthesis lecture series on querying graphs [137], executing queries on modern graph
database systems involves a ‘complete lifecycle’ of processing, with relevant topics of
research including graph data models and query languages, graph constraints, query speci-
fication and formulation, and query processing. There are many outstanding challenges
still in the community, including defining schemas for property graphs, understanding
graph representations in a comprehensive and comparative framework, understanding
and formalizing advanced graph query optimization techniques, and efficiently evaluating
certain classes of queries. These topics are directly relevant to building, maintaining and op-
timizing KG access (which is fundamentally a graph querying problem), and they continue
to be explored in the database community (in particular), with recently published work
including [138–141].

4. A Unified Synthesis

While intuitively the different communities seem to have some overlap in their treat-
ment of KGs, the focus is different in each. For example, the NLP community tends to
work with inputs that are primarily natural language, and the results of techniques like IE,
though more structured in a graph-theoretic sense, are still not ‘ontologized’ to the same
extent as is often expected in (for example) the SW community. Hence, more algorithmic
processing, such as the application of entity resolution and collective reasoning methods,
is necessary. Depending on the application, the choice of a storage and querying infras-
tructure, which itself depends on the KG representation model such as RDF, can make the
difference between success or failure in a real-world deployment.

Each community, in short, works with different inputs and outputs, and has a different
focus. It is not obvious how KG research in each community relates together. Figure 2
attempts such a mapping, wherein a high-level overview is provided of the different
research strands that were reviewed earlier and of the manner in which they relate among
each other.

Figure 2. A systems-level overview for unifying KG research areas. Although the ‘flow’ of different
areas is represented as a linear workflow, there are complex systems-level dependencies between
many of the steps. For example, as discussed in the main text, the choice of KG access and infrastruc-
ture (the final step) is strongly influenced by the ontology representation language decided in the
first step of the workflow.
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Step 1 (Domain Modeling and Data Acquisition): Assuming that an ontology, even if
simple, is the mechanism for modeling the domain and adding semantics to the (eventually
constructed) KG, there are two important first steps: data acquisition and domain modeling.
The latter has been best researched in SW, while the former may not be necessary if the
data are already available. In some cases, however, it is necessary to crawl the data from
the Web, or to use mechanisms like the Twitter Application Programming Interface (API)
to acquire social media data. However, domain modeling is more difficult than it appears.
Designing an ontology from scratch can be a complex process, requiring input from many
stakeholders (often, non-technical). One option is to re-use or re-purpose standard ontolo-
gies, especially in fields for which such ontologies are well developed. Two good examples
are the Conceptual Reference Model (CRM) for cultural heritage (https://cidoc-crm.org/)
and the Gene Ontology (http://geneontology.org/) for biomedical domains.

If the user still decides to design the ontology from scratch, a balance has to be maintained
between having concepts and relations that are too fine-grained versus a shallow schema with
minimal semantics. NLP pipelines are best suited for the latter; however, the true power of a
reasoning engine can only be unlocked with the former. A similar philosophy applies to the
declaration and enforcement of constraints in the ontology. In general, ontology representation
is known to be an important problem in the Semantic Web community, and a representation
that successfully negotiates the needs of the different stakeholders mentioned above can
go a long way towards avoiding problems in later steps, including the important step of
knowledge graph access (discussed below) [142–144].

Step 2 (Knowledge Graph Construction): Next is a component for KG construction.
Depending on whether the data are webpages, social media or natural language documents,
the correct set of NLP techniques must be applied, the most important of which is IE.
Other steps tend to be optional, but if extracted entities can be linked to a canonical
KG like Wikidata or GeoNames, even moderately precise entity linking can raise the
quality of the initial KG. (For example, co-reference resolution is almost never applicable
to web documents or to social media, but if the documents are proper articles (e.g., news)
then it may be essential.) Earlier, all of these steps had been described briefly: both
historically and currently, they are primarily researched within NLP. Some problems, such
as relation extraction, continue to lag in performance (of state-of-the-art systems on general
datasets) compared to problems that have been studied for longer, such as named entity
recognition [66].

Step 3 (Knowledge Graph Identification): This KG that is output by the KG con-
struction step is fed into a component that is denoted as KG identification, in the spirit
of [113]. In [113], Pujara et al. define KG identification as the task of ‘removing noise,
inferring missing information, and determining which candidates should be included into
a knowledge graph’. They refer to the graph that is output by the KG construction step
as an ‘extracted graph’. Therefore, according to their terminology, the KG identification
step is performed on the extracted graph, following which the actual (or ‘identified’) KG is
obtained for purposes of querying and deploying in downstream applications.

It must be noted, however, that many communities are involved in the KG identi-
fication stage, as covered earlier. Important tasks (which tend to draw on similar tech-
niques) include entity resolution [29,31,145], link prediction [23,132,146], triples classifi-
cation [147,148] and representation learning [95,96]. To the researchers working on these
problems, the provenance of the initial KG is not important; rather, their interest is in
assuming it as input and yielding outputs that potentially improve it (e.g., clusters of
resolved entities). As conveyed in Section 5, an important future direction is to better un-
derstand how noise in KG construction might affect these outputs and further downstream
processing. Another important line of work is to reconcile the traditional KG identification
methods, such as those drawing on graphical models (prominent examples of which are
Bayesian networks and Markov logic networks) [91,93], with more recent advances in
neural networks research, such as representation learning [99]. While some recent research
has been proposed in the emerging area of neural Markov logic networks [92], successfully

https://cidoc-crm.org/
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applying it to KG-specific application areas such as entity resolution and link prediction is
still relatively unexplored.

Step 4 (Knowledge Graph Access): Finally, to enable access, the identified KG has to
be placed in a querying and storage architecture, which can range from a graph database to
a more traditional triplestore (or even a document store such as Elasticsearch, which can
be used to store KGs that were modeled using simple ontologies [149]). Triplestores are
best suited for RDF graphs that need to be queried using a formal graph pattern-matching
language such as SPARQL, while their scalability has been improving, they tend to be
less mature and slower than graph-oriented databases, which are themselves less efficient
or scalable than relational databases, certain ‘Big Data’ NoSQL databases, and document
stores, such as Elasticsearch and MongoDB. Examples of commercial graph-oriented (or
graph, for short) databases that have made an impact over the last decade include Neo4j
and TigerGraph, along with databases proposed in academic research [136,150]. Unlike
the RDF triplestores, graph databases tend to have their own representation model and
querying language. For instance, Neo4j databases are queried using a language called
Cypher [151].

RDF is not the only model that can be used to represent a KG. Earlier, the document
store was mentioned, which takes as input key-value documents. One way to represent
a KG this way is for each entity to be its own ‘document’ (with an identifier) and for the
entity’s attributes and attribute-values to be keys and values, respectively. However, ordi-
nary graph pattern matching is not compatible with such document stores, and specialized
query reformulation engines are required. On the other hand, most industrially developed
graph databases can work with a variety of graph formats, including ordinary triples (that
do not have URIs or other RDF elements). Many have their own querying languages.
More recently, large-scale KGs like Wikidata have been represented using alternative, often
simpler (but less formal), models [152].

From an engineering standpoint, decisions also have to be made whether to set up
the infrastructure on a local server or to opt for a cloud service such as Amazon Neptune.
Such decisions are intimately connected to the applications that the KG will be used for;
while the research community has looked at many applications, the best examples of KGs in
practice come from industry. Notable examples include the Google Knowledge Graph [40],
the Amazon Product Graph (https://www.amazon.science/blog/building-product-graphs-
automatically accessed on 17 March 2022), the LinkedIn graph (https://engineering.linkedin.
com/blog/2016/10/building-the-linkedin-knowledge-graph accessed on 17 March 2022) and
the eBay knowledge graph (https://tech.ebayinc.com/research/relation-embedding-with-
dihedral-group-in-knowledge-graph/ accessed on 17 March 2022), to only name a few.

5. Future Directions

Fully instantiating the framework in Figure 2 for a particular domain continues to be
a challenging goal, requiring considerable manpower and investment. This may be why
successful examples of fully end-to-end, scalable deployments of this pipeline have only
been observed in large technological organizations and research groups.

It is equally important to note that the individual components in the figure do not
represent solved problems. However, in addition to the reductionist goal of improving
performance of individual components (e.g., through algorithmic innovations), some
problems require more systems-level thinking. An example of such a research question is:
how does noise in the KG construction step affect both KG identification and querying?
Part of what makes this question challenging to answer is that noise in actual information
extraction algorithms is not random. By contrast, most researchers studying querying
(even when trying to explicitly understand the dependencies of querying performance on
noise) work with benchmarks that are relatively ‘clean’ compared to real-world outputs
produced by the KG construction and KG identification steps. If noise is introduced, it is
‘simulated’ using some type of noise model (e.g., by randomly removing or corrupting facts

https://www.amazon.science/blog/building-product-graphs-automatically
https://www.amazon.science/blog/building-product-graphs-automatically
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
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and entities). What is needed at present is a set of studies that attempt to understand such
dependencies by using the outputs of actual execution runs from previous steps.

Another future direction is to apply KGs to commonsense reasoning problems that
have recently witnessed an upsurge of attention in the AI community [153,154], perhaps
due to the success of large-scale language representation models like the Bidirectional
Encoder Representations from Transformers (BERT) [155]. To the best of the author’s
knowledge, only two major KG efforts in commonsense AI currently exist: ConceptNet
and Cyc [156,157]. However, the advantages of these KGs over the new-age, large-scale
language models are still not fully understood.

Visualizing KGs (especially interactively) is another area of research that could benefit
from the expertise of allied research areas. Currently, there are few ways of intuitively
visualizing even small KGs, and deploying visualization tools for custom KGs still requires
expertise. Good examples of platforms that help with direct visualization and KG manipu-
lation (including collaborative knowledge modeling and knowledge generation) include
metaphacts (https://metaphacts.com/), but they tend to be commercial. For large KGs,
popular tools that are both freely available and widely used seem to be presently lacking
in the community; they represent a fruitful direction for future research, especially for
system developers.

In the next half-decade, a growing body of research may start addressing some of these
questions. Achieving performance improvements on individual steps continues, of course,
to be a worthy goal. However, with impressive recent improvements in transformers and
other neural models, the state-of-the-art is continuously being pushed for AI problems
such as entity resolution, information extraction and question answering. For the last of
these in particular, there have been enormous gains even since the publication and release
of the original BERT architecture [158–160]. In several cases, performance is good enough
that they can be transitioned to real applications. However, for a technology of similar
scale and calibre as the Google Knowledge Graph to be replicated in other industries (such
as manufacturing and pharmaceuticals), a more complex-systems view of Figure 2 may
be necessary.

6. Conclusions

Since the Google Knowledge Graph was published, research on KGs entered a prolific
era, with contributions spanning both applications and fundamental algorithms. Many
advances have been achieved in tasks such as link prediction, entity resolution and search,
and ecosystems that use KGs in some significant way range from large companies like
Amazon and eBay to large scientific communities such as geology and biology. In this
decade, applications that are even more moonshot may become feasible with more systems-
level research. This review of the KG research landscape briefly summarized how KG
research has developed in individual communities, and how one could view the research
within a unified framework.
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15. Gosak, M.; Markovič, R.; Dolenšek, J.; Rupnik, M.S.; Marhl, M.; Stožer, A.; Perc, M. Network science of biological systems at

different scales: A review. Phys. Life Rev. 2018, 24, 118–135. [CrossRef]
16. Koh, G.C.; Porras, P.; Aranda, B.; Hermjakob, H.; Orchard, S.E. Analyzing protein–protein interaction networks. J. Proteome Res.

2012, 11, 2014–2031. [CrossRef]
17. Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.;

et al. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded
gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [CrossRef]

18. Mendel, J.; Sharapov, K. Human trafficking and online networks: Policy, analysis, and ignorance. Antipode 2016, 48, 665–684.
[CrossRef]

19. Kejriwal, M.; Kapoor, R. Network-theoretic information extraction quality assessment in the human trafficking domain. Appl.
Netw. Sci. 2019, 4, 44. [CrossRef]

20. Cockbain, E. Offender and Victim Networks in Human Trafficking; Routledge: London, UK, 2018.
21. Kejriwal, M.; Gu, Y. Network-theoretic modeling of complex activity using UK online sex advertisements. Appl. Netw. Sci. 2020,

5, 1–23. [CrossRef]
22. Martínez, V.; Berzal, F.; Cubero, J.C. A survey of link prediction in complex networks. ACM Comput. Surv. (CSUR) 2016, 49, 1–33.

[CrossRef]
23. Kumar, A.; Singh, S.S.; Singh, K.; Biswas, B. Link prediction techniques, applications, and performance: A survey. Phys. A Stat.

Mech. Its Appl. 2020, 553, 124289. [CrossRef]
24. Kim, J.; Lee, J.G. Community detection in multi-layer graphs: A survey. ACM SIGMOD Rec. 2015, 44, 37–48. [CrossRef]
25. Jin, D.; Yu, Z.; Jiao, P.; Pan, S.; He, D.; Wu, J.; Yu, P.; Zhang, W. A survey of community detection approaches: From statistical

modeling to deep learning. IEEE Trans. Knowl. Data Eng. 2021. . [CrossRef]
26. Ehrlinger, L.; Wöß, W. Towards a Definition of Knowledge Graphs. SEMANTiCS (Posters Demos SuCCESS) 2016, 48, 1–4.
27. Kejriwal, M. Domain-Specific Knowledge Graph Construction; Springer: Berlin/Heidelberg, Germany, 2019.
28. Hitzler, P. A review of the semantic web field. Commun. ACM 2021, 64, 76–83. [CrossRef]
29. Getoor, L.; Machanavajjhala, A. Entity resolution for big data. In Proceedings of the 19th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11 August 2013 ; pp. 1527.
30. Christophides, V.; Efthymiou, V.; Palpanas, T.; Papadakis, G.; Stefanidis, K. An Overview of End-to-End Entity Resolution for Big

Data. ACM Comput. Surv. (CSUR) 2020, 53, 1–42. [CrossRef]
31. Kejriwal, M. Populating a Linked Data Entity Name System: A Big Data Solution to Unsupervised Instance Matching; IOS Press:

Amsterdam, The Netherlands, 2016; Volume 27.
32. Winkler, W.E. Matching and record linkage. Wiley Interdiscip. Rev. Comput. Stat. 2014, 6, 313–325. [CrossRef]
33. Christen, P. The data matching process. In Data Matching; Springer: Berlin/Heidelberg, Germany, 2012; pp. 23–35.
34. Kolyvakis, P.; Kalousis, A.; Kiritsis, D. Deepalignment: Unsupervised ontology matching with refined word vectors. In

Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), New Orleans, LA, USA, 1–6 June 2018; pp. 787–798.

35. Tian, A.; Kejriwal, M.; Miranker, D.P. Schema matching over relations, attributes, and data values. In Proceedings of the 26th
International Conference on Scientific and Statistical Database Management, Aalborg, Denmark, 30 June–2 July 2014; pp. 1–12.

http://doi.org/10.1126/science.aaz8170
https://www.nature.com/articles/d41586-018-05444-y
http://dx.doi.org/10.1093/comnet/cnu016
http://dx.doi.org/10.1007/s41109-020-00313-y
http://dx.doi.org/10.1371/journal.pone.0248573
http://www.ncbi.nlm.nih.gov/pubmed/33765027
http://dx.doi.org/10.1515/bap-2014-0050
http://dx.doi.org/10.1016/j.trip.2021.100325
http://dx.doi.org/10.1007/s13278-020-00670-7
http://dx.doi.org/10.1016/j.plrev.2017.11.003
http://dx.doi.org/10.1021/pr201211w
http://dx.doi.org/10.1093/nar/gkaa1074
http://dx.doi.org/10.1111/anti.12213
http://dx.doi.org/10.1007/s41109-019-0154-z
http://dx.doi.org/10.1007/s41109-020-00275-1
http://dx.doi.org/10.1145/3012704
http://dx.doi.org/10.1016/j.physa.2020.124289
http://dx.doi.org/10.1145/2854006.2854013
http://dx.doi.org/10.1109/TKDE.2021.3104155
http://dx.doi.org/10.1145/3397512
http://dx.doi.org/10.1145/3418896
http://dx.doi.org/10.1002/wics.1317


Information 2022, 13, 161 13 of 17

36. Ngo, D.; Bellahsene, Z. YAM++: A multi-strategy based approach for ontology matching task. In International Conference on
Knowledge Engineering and Knowledge Management; Springer: Berlin/Heidelberg, Germany, 2012; pp. 421–425.

37. Kejriwal, M.; Miranker, D.P. Experience: Type alignment on DBpedia and Freebase. arXiv 2016, arXiv:1608.04442.
38. Niedhammer, I.; Bertrais, S.; Witt, K. Psychosocial work exposures and health outcomes: A meta-review of 72 literature reviews

with meta-analysis. Scand. J. Work. Environ. Health 2021, 47, 489. [CrossRef] [PubMed]
39. Paulet, R.; Holland, P.; Morgan, D. A meta-review of 10 years of green human resource management: Is Green HRM headed

towards a roadblock or a revitalisation? Asia Pac. J. Hum. Resour. 2021, 59, 159–183. [CrossRef]
40. Singhal, A. Introducing the knowledge graph: Things, not strings. Off. Google Blog 2012, 5, 16.
41. Ji, S.; Pan, S.; Cambria, E.; Marttinen, P.; Philip, S.Y. A survey on knowledge graphs: Representation, acquisition, and applications.

IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 494–514. [CrossRef] [PubMed]
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