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Abstract: 3D object detection with LiDAR and camera fusion has always been a challenge for
autonomous driving. This work proposes a deep neural network (namely FuDNN) for LiDAR–
camera fusion 3D object detection. Firstly, a 2D backbone is designed to extract features from camera
images. Secondly, an attention-based fusion sub-network is designed to fuse the features extracted by
the 2D backbone and the features extracted from 3D LiDAR point clouds by PointNet++. Besides, the
FuDNN, which uses the RPN and the refinement work of PointRCNN to obtain 3D box predictions,
was tested on the public KITTI dataset. Experiments on the KITTI validation set show that the
proposed FuDNN achieves AP values of 92.48, 82.90, and 80.51 at easy, moderate, and hard difficulty
levels for car detection. The proposed FuDNN improves the performance of LiDAR–camera fusion
3D object detection in the car category of the public KITTI dataset.

Keywords: 3D object detection; LiDAR–camera fusion; LiDAR point cloud; KITTI benchmark

1. Introduction

Object detection is one of the issues that has received much attention in autonomous
driving. In the process of autonomous driving, cars need to detect and track objects in
real-time, such as cars, bicycles, pedestrians, etc. [1]. According to the types of perception
sensors, object detection can be divided into camera-based object detection, LiDAR-based
3D object detection, and LiDAR–camera fusion object detection [2].

Over recent years, camera-based 2D object detection had achieved unprecedented
progress. Starting from the RCNN (Region with CNN Feature) [3], camera-based 2D object
detection algorithms began to develop rapidly. A series of studies [4,5] started to use
two-stage approaches, using a Region Proposal Network (RPN) to propose candidate
proposals and then refining the candidate proposals for classification. Redmon et al. [6]
originally proposed the one-stage object detection architecture, which provided fast and
simple architecture, but the effect was not as good as the two-stage approaches. Lin et al. [7]
employed a focal loss function that enables the one-stage approach to outperform the
two-stage approaches in both accuracy and efficiency. Although camera-based 2D object
detection algorithms had achieved excellent results, they were easily affected by factors
such as lighting and weather in autonomous driving scenarios [8]. CaDDN [9] generated
depth distributions for each pixel of the image and combined them with image features for
camera-based 3D object detection. GUPNet [10] alleviated the error amplification problem
of inference by computing deep uncertainty in monocular 3D object detection. As the
depth obtained from the image was not as accurate as LiDAR, the detection performance
improvement was limited.

In recent years, with the continuous improvement of LiDAR hardware, LiDAR-based
3D object detection research has increased. LiDAR-based 3D object detection mainly
includes three categories: Voxel-based methods, point-based methods, and graph-based
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methods [11], as shown in Table 1. The voxel-based methods first divided the point clouds
into voxels and then input the voxelized point clouds into the backbone network for feature
extraction. For instance, VoxelNet [12] extracted features from equidistant 3D voxelized
point clouds and fed them to RPN to predict 3D bounding boxes. However, VoxelNet was
very slow due to the 3D convolutions. SECOND [13] improved the efficiency of VoxelNet
with a sparse convolutional network (SparsConv) and improved the detection performance
through data augmentation. Shi et al. [14] combined the point method with SECOND
and proposed PV-RCNN, which achieved high detection results. After PV-RCNN, the
voxel-based methods could not be improved on a large scale. The point-based methods
directly extracted features from point clouds. Since PointNet [15] and PointNet++ [16] could
effectively extract point cloud features, they were used as a backbone by many methods.
PointRCNN [17] used PointNet++ as the backbone to extract the features of point clouds
and generate candidate boxes. The candidate boxes were then refined to generate the final
detection results. STD [18], which had a high recall and low computational time, adopted a
spherical anchor mechanism to generate proposals and implemented a parallel intersection-
over-union (IoU) branch to improve positioning accuracy and detection performance. The
graph-based methods used a graph neural network (GNN) to extract features of point
clouds. For example, Point-GNN [19] efficiently encoded point clouds in a fixed-radius
nearest-neighbor graph and used a GNN to obtain the 3D box predictions. Since the LiDAR
point cloud of distant objects is very sparse, it encounters difficulties in detecting distant
or small objects [20]. Moreover, the LiDAR point cloud provides little color and texture
information, which limits further performance improvements [21].

Recently, some studies have explored LiDAR–camera fusion object detection methods,
as shown in Table 1. Some multi-view methods transformed point clouds into a bird’s-eye
view (BEV), front view (FV), or range view (RV), and then fused the features of these views
with image features [22,23]. For instance, MV3D [24] generated 3D object proposals from
BEVs, which were projected to BEVs, FVs, and image views. The features of different views
were then fused to predict 3D object-bounding boxes. AVOD [25] extended MV3D to extract
equal-sized features from BEVs and image views and then fused these features using an
average pooling operation. The disadvantages of multi-view methods are computationally
intensive and time-consuming. Some frustum-based methods utilized existing 2D detectors
to generate frustum proposals in the image and then learned the corresponding frustum
point cloud features for 3D box predictions. For instance, Frustum PointNet [26] generated
2D object region proposals in images via a CNN, and then extruded each 2D region to
a 3D frustum. Finally, PointNet was used to predict a 3D bounding box of each object
from the points in the frustum. The performances of frustum-based methods are easily
limited by 2D image detectors. Later methods tended to design independent backbone
networks to extract features from RGB images and raw LiDAR point clouds, and then
the two kinds of features were fused for 3D box predictions. For instance, 3D-CVF [27]
used an image backbone to extract image features and converted them to BEV domain
features. Next, a gated feature fusion network was utilized to combine image features with
point cloud features. At last, a fusion network based on the 3D region of interest (ROI)
was used to refine proposals and predict the output. EPNet [28] fused image features with
point cloud features five times, which improved the prediction performance. PI-RCNN [29]
proposed a multi-task LiDAR–camera fusion object detection method that combined image
segmentation and 3D detection. These methods using two independent feature extractors
have made progress, but the performance needs to be further improved [30].
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Table 1. Classification of different methods using LiDAR.

Modality Method Category Method

LiDAR-based
Voxel-based methods VoxelNet [12], SECOND [13], PV-RCNN [14],
Point-based methods PointNet [15], PointNet++ [16], PointRCNN [17], STD [18]
Graph-based methods Point-GNN [19]

LiDAR–camera fusion
Multi-view methods MV3D [24], AVOD [25]

Frustum-based methods Frustum PointNet [26]
Independent backbone methods 3D-CVF [27], EPNet [28], PI-RCNN [29]

Focusing on the problem that the accuracy of LiDAR–camera fusion object detection
methods is not high enough, this work proposes a new deep neural network (namely
FuDNN) for LiDAR–camera fusion 3D object detection. First, a 2D backbone is proposed
to learn 2D features from camera images. Second, an attention-based fusion sub-network is
designed to fuse the 2D features and the 3D features extracted from 3D LiDAR point clouds.
Finally, the FuDNN is verified in the experiments using the KITTI [31] 3D object detection
benchmark dataset. The major contributions of this work are two-fold. First, the proposed
2D backbone has a more compact structure than the commonly used 2D backbones but
has better performance. Second, the proposed attention-based fusion sub-network only
needs to fuse point cloud features and image features once to achieve better results. The
follow-up content is organized as follows: Section 2 introduces the architecture of FuDNN
and the overall loss function. Section 3 elaborates the KITTI dataset, the FuDNN training,
the performance metrics, and the analysis of the results. Section 4 provides a summary of
the entire work and the follow-up research directions.

2. FuDNN for 3D Object Detection
2.1. FuDNN Architecture

A deep learning network based on PointRCNN, named FuDNN, is designed to realize
3D object detection. The architecture of FuDNN is shown in Figure 1, including a 2D
backbone, a 3D backbone, an attention-based fusion sub-network, an RPN, and a 3D box
refinement network. The 2D backbone is designed to learn 2D features from camera images
automatically, and the attention-based fusion sub-network is proposed to fuse the 2D
features with the 3D features extracted by PointNet++. The RPN and 3D box refinement
network of PointRCNN are used to generate 3D proposals and refine the 3D box locations,
respectively.
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Figure 1. Network architecture of the FuDNN. B, N, H, and W represent the batch size of FuDNN, 
the number of LiDAR points, the height, and width of image, respectively. 
Figure 1. Network architecture of the FuDNN. B, N, H, and W represent the batch size of FuDNN,
the number of LiDAR points, the height, and width of image, respectively.

The input of FuDNN is point clouds and RGB images. The shape of input images is
a matrix of B × 3 × H × W, where B, H, and W represent the batch size of FuDNN, the
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height, and the width of the image, respectively. The shape of input point clouds is a matrix
of B × 3 × N, where N is the number of LiDAR points.

The architecture of the 2D backbone is shown in Figure 2. The first layer (Conv1) of the
2D backbone is a 2D convolutional layer with 128 convolution kernels, each 7 × 7, using
a stride of 1. The output of Conv1 is a matrix of B × 128 × H ×W. The research of Ioffe
and Szegedy [32] showed that the batch normalization method could speed up network
convergence and reduce training difficulty, so a batch normalization layer (BN1) was used
after Conv1. A rectified linear unit layer (ReLU1) is added after the BN1 layer to avoid
gradient disappearance. The output shape of BN1 and ReLU1 is the same as that of Conv1.
To reduce the amount of calculation, a max-pooling layer (S1) with a kernel size of 2 × 2
is adopted after ReLU1, and its output shape is B × 128 × H/2 ×W/2. Next, the similar
structures repeat two times: The 2D convolutional layer (Conv2) with 256 convolution
kernels, each 5 × 5, is followed by the batch normalization layer (BN2). Then there is the
ReLU2. At last, the 2D convolutional layer (Conv3) with 128 convolution kernels, each
3 × 3, is followed by the ReLU3. The 2D backbone outputs the image feature matrix FI of
the shape B × 128 × H/2 ×W/2.
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Since point cloud features and image features lack correspondence, it is necessary
to establish the correspondence between image features and point cloud features before
projecting the point clouds to the image plane. The point clouds (x, y, z) are mapped to the
image plane (u, v) via a transformation matrix M, as shown in Equations (1) and (2):

(u, v, 1)T = M·(x, y, z, 1)T (1)

M = Prect·
(

Rcam
LiD tcam

LiD
0 1

)
(2)

where Prect is the projection matrix, Rcam
LiD is the 3 × 3 rotation matrix, and tcam

LiD is the 1 × 3
translation vector from the LiDAR to the camera, respectively. Projecting the point clouds
to the image plane obtains a B × N × 2 matrix Pxy.

The point cloud feature FP and the image feature FI need to have the same dimension
to be fused, so the bilinear interpolation method is used to sample FI to obtain the same
dimension as FP. First, Pxy is expanded from B × N × 2 to obtain a B × 1 × N × 2
matrix. Second, with the B × 1 × N × 2 matrix as the guide map, FI is sampled by bilinear
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interpolation to obtain the feature map of B × 128 × 1 × N, which is then removed by the
dimension of 1 to obtain the final feature map FBI of B × 128 × N.

Figure 3 shows the structure of the attention-based fusion sub-network. Since pictures
are easily affected by light and occlusion and introduce interference information, an at-
tention mechanism is introduced to weight image features according to their importance.
Before applying the attention mechanism, FBI is fed to the fully connected layer to obtain
the vector FFC with the shape BN × 128. Then, the attention mechanism is applied to FFC, as
shown in Equations (3)–(5). Among them, w and b are parameters learned during training
to obtain the hidden representation h from the input FFC. The shape of h is BN × 128. The
multiplication result of FFC and w is a matrix product. The vector uw, which is randomly
initialized and learned during training, is introduced to capture context. The similarity is
used as a measure of importance and is obtained by the matrix product of h and uw. The
similarity is processed by the sigmoid function to obtain the normalized attention weight
vector a with the shape BN × 1. Then a is transformed into B × 1 × N. The output of the
attention mechanism is FAtt , which is obtained by the dot product of a and FFC. Finally,
FAtt is concatenated with FP to obtain the fused feature FFu.

h = tanh(wFFC + b) (3)

a = sigmoid
(

hTuw

)
(4)

FAtt = aFFC (5)
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The RPN of PointRCNN is utilized to generate 3D bounding box proposals. Given
the images and point cloud fused features FFu, a segmentation head is used to estimate
the foreground mask, and a box regression head is used to generate 3D proposals. The 3D
proposals are generated from segmented foreground points, which avoids using a large
number of pre-defined 3D boxes in 3D space. The 3D points and corresponding point
features are pooled according to the location of each 3D proposal to eliminate proposals
without interior points. The canonical 3D box refinement network of PointRCNN is
employed to refine the box locations and finally obtain 3D box predictions.

2.2. Overall Loss Function

The overall loss function is mainly based on PointRCNN, and the consistency enforcing
te loss of EPNet is introduced. The proposed FuDNN is optimized with a loss functionLtotal ,
which is the sum of the RPN loss Lrpn and the refinement network loss Lre f ine. The loss
function Ltotal can be formulated as:

Ltotal = Lrpn + Lre f ine (6)

The RPN loss Lrpn consists of the classification loss Lcls, regression loss Lreg, and
consistency enforcing loss Lce, as shown in Equation (7). The focal loss [33] is used as Lcls
to balance positive and negative samples for classification, as shown in Equation (8). The
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parameters of focal loss keep the default values of c = 0.25 and r = 2. The definition of Lce is
shown in Equation (9), where D denotes the predicted bounding box, G denotes the ground
truth, and k denotes the classification confidence of D.

Lrpn = Lcls + Lreg + λLce (7)

Lcls = −c(1− pt)
r log pt (8)

Lce = − log
(

k× Area(D ∩ G)

Area(D ∪ G)

)
(9)

The regression loss Lreg is used to constrain the bounding box (x, y, z, h, w, l, θ), where
(x, y, z) is the center, (h, w, l) is the size, and θ is the orientation. PointRCNN divides each
foreground point-surrounding area into bins along the X and Z axes, and Lreg is the
bin-based regression loss. The calculation process of Lreg is as follows:

Lbin = ∑
uε{x,z,θ}

(
E
(

b̂u, bu

)
+ S(r̂u, ru)

)
(10)

Lres = ∑
vε{y,h,w,l}

S(rv, r̂v) (11)

Lreg =
1

Npos
∑

pεpos
(Lbin + Lres) (12)

where E represents the cross-entropy loss, S represents the smooth L1 loss, b̂u and bu are
the predicted bin assignments and the ground-truth bin assignments, r̂u and ru are the
residuals and the ground-truth residuals, and Npos is the number of foreground points.
Each residual is a variable for further optimizing the position of the specified bin, and its
calculation process is detailed in PointRCNN.

3. Experiments and Analysis
3.1. Dataset

The KITTI 3D object detection benchmark dataset is used as the experimental dataset.
KITTI was collected by an equipment platform fixed on the top of the car, including two
grayscale cameras, two color cameras, a Velodyne 64-line 3D LiDAR, four optical lenses,
and one GPS/IMU system. KITTI was sampled and synchronized at 10 Hz, including
7481 training samples and 7581 testing samples. Each sample provides both the point
cloud and the camera image. The labels of KITTI were divided into three subsets: Easy,
moderate, and hard, according to the heights of their 2D bounding boxes, occlusion levels,
and truncation levels. The easy difficulty level has a minimum 2D bounding box height
of 40 Px, an occlusion level of full visibility, and a maximum truncation level of 15%. The
minimum 2D bounding box height, occlusion level, and maximum truncation level of
moderate difficulty level are 25 Px, partial occlusion, and 30%, respectively. The minimum
2D bounding box height for the hard difficulty level is 25 Px, the occlusion level is hard to
see, and the maximum truncation level is 50%.

The image data of color camera 2 and the point cloud data of Velodyne LiDAR are used
in this work. Since the test samples of KITTI are not labeled, the approach of Shi et al. [17]
is adopted to further divide the training samples into 3712 samples for training and
3769 samples for validation. Only visible objects in the image are labeled, so according to
the general practice of previous studies [19,24], only the LiDAR points projected into the
image are used. The LiDAR points are mapped at the camera coordinates X (right) axis
[−40, 40] meters, Y (down) axis [−1, 3] meters, and Z (forward) axis [0, 70.4] meters. The
range of point clouds is [−π, π].
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3.2. FuDNN Training

The experiments were carried out on a server with the Ubuntu 16.04.1 LTS system.
The server GPU was GeForce RTX 3090 24 GB, the CPU was Intel E5-2620V4@2.10 GHz,
and the RAM size was 256 GB. The main installation packages required by the running
environment of the program are shown in Table 2.

Table 2. Main installation packages required by the running environment.

Package Name Version

Python 3.7.6
CUDA 11.3

PyTorch 1.10.1
TensorboardX 2.4.1

Numpy 1.21.2
Pillow 8.4.0

Numba 0.54.1
Opencv-python 4.5.5.62

Torchvision 0.11.2

The FuDNN was trained in an end-to-end manner. During the data preprocessing
stage, the images were scaled to a uniform size of 384 × 1280. Each point cloud was
subtracted or supplemented to ensure that the number of points in each point cloud was
16,384. Several data augmentation techniques were employed on the point clouds to avoid
over-fitting, which are widely used in [1,12,13], including flip (along the forwarding axis),
random scaling (scale factor 0.95∼1.05 for all 3 axes), and rotation (−10∼10 degrees along
the vertical axis). The data augmentation was only used for training. During network
training, the network parameters were optimized by the Adam method [34]. The initial
learning rate and weight decay of the network were set to 0.002 and 0.001, respectively. The
model was trained for 150 epochs with a batch size of 4 and saved every 5 epochs. The
threshold of IoU was set to 0.7 to distinguish between true positives and false positives.

3.3. Performance Metrics

According to the latest rules of KITTI, the 40-point Interpolated Average Precision
metric was used as the performance metric, as shown in Equation (13):

AP|R40 =
1
|R40| ∑

r∈R40

ρinterp(r) (13)

where R40 = {1/40,2/40,3/40, . . . ,1} and |R40| = 40. The interpolation function ρinterp is
defined as:

ρinterp(r) = max
r′ :r′≥r

ρ
(
r′
)

(14)

where ρ(r) is the precision at recall r. ρinterp(r) is the value at recall r on the smoothed
precision–recall curve, not the actual precision values ρ(r). Furthermore, ρinterp(r) is greater
than or equal to ρ(r).

3.4. Results and Discussion

Since the car category of KITTI provided enough samples, the experiments in this
work were all conducted in the car category. KITTI divided the samples of the car category
into three difficulty levels, easy, moderate, and hard, so the verification experiments of this
work evaluated the three levels of difficulty, respectively. Figure 4 shows the relationship
between the AP of FuDNN and the number of training epochs. When the epoch number
increased from 5 to 45, the AP values increased rapidly. The AP values increased flatly
after epoch 45. When the epoch number was 135, the AP values reached the maximum at
the three difficulty levels of easy, moderate, and hard, which were 92.48, 82.90, and 80.51,
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respectively. When the epoch number was greater than 135, the AP values did not exceed
that of epoch 135. Therefore, the model of epoch 135 was used as the best-trained model.
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Table 3 shows the AP comparison between the proposed FuDNN and the previous
methods on the car class of KITTI validation set with the IoU threshold of 0.7. The AP
values of FuDNN in the moderate and hard difficulty levels were higher than those of other
methods. At the easy difficulty level, the AP value of FuDNN reached 92.48, which was
4.73 higher than the lowest PointPillars [1], but slightly lower than the best PointRCNN [17].
At the moderate difficulty level, the AP value of FuDNN showed a 4.51 improvement over
the lowest PointPillars and a 0.31 improvement over the best EPNet [28]. At the hard
difficulty level, the AP value of FuDNN outperformed the lowest PointPillars and the best
EPNet by 5.33 and 0.37, respectively. Although the AP value of FuDNN was 0.06 lower
than PointRCNN at the easy difficulty level, it was 0.74 and 2.63 higher than PointRCNN at
moderate and hard difficulty levels, respectively. PointPillars achieved a speed of 62.0 fps,
but its AP values were too low. SECOND was also fast, reaching 26.3 fps, but its AP values
were lower than the proposed FuDNN. The speed of FuDNN was similar to PointRCNN,
3D-CVF, EPNet, and PI-RCNN. Therefore, the overall effect of FuDNN was better than
that of PointRCNN. The above comparisons demonstrated the effectiveness of FuDNN.
Since the car samples in the KITTI dataset all have different degrees of occlusion and
truncation, the AP of object detection will be limited. Especially for the hard difficulty
level, the occlusion level is hard to see, and the cutoff level is 50%, so it is very important to
improve the AP value.

Table 3. AP comparison of different 3D object detection algorithms in the car class of KITTI validation
set with IoU threshold 0.7.

Method Modality Easy Moderate Hard Speed (fps)

PointPillars [1] LiDAR-based 87.75 78.39 75.18 62.0
SECOND [13] LiDAR-based 90.97 79.94 77.09 26.3

PointRCNN [17] LiDAR-based 92.54 82.16 77.88 10.0
3D-CVF [27] LiDAR–camera fusion 89.67 79.88 78.47 13.3
EPNet [28] LiDAR–camera fusion 92.28 82.59 80.14 10.0

PI-RCNN [29] LiDAR–camera fusion 88.27 78.53 77.75 11.1
FuDNN (Proposed) LiDAR–camera fusion 92.48 82.90 80.51 10.5

Table 4 shows a set of ablation experiments to compare the effects of different 2D
backbones in the car class of the KITTI validation set with an IoU threshold of 0.7. Models
A, B, C, and D were obtained by replacing the 2D backbone of FuDNN with Resnet50 [35],
Resnet101 [35], VGG16 [36], and DensNet121 [37], respectively. The AP values of model B
and model D were higher than those of model A and model C at all three difficulty levels.
The reason may be that model B and model D had more network layers to extract richer
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feature information. The proposed 2D backbone of FuDNN not only had the simplest
structure but also had the highest AP values across all three difficulty levels. This set of
experiments demonstrated the effectiveness of the proposed 2D backbone.

Table 4. Ablation experiments of different 2D backbones in the car class of KITTI validation set with
IoU threshold 0.7.

Model 2D backbone Easy Moderate Hard

A Resnet50 [35] 91.75 81.22 79.620
B Resnet101 [35] 92.24 81.87 80.03
C VGG16 [36] 91.70 80.80 79.11
D DensNet121 [37] 92.46 82.05 79.97

FuDNN Proposed 92.48 82.90 80.51

Another set of ablation experiments was designed to analyze the effect of different
fusion modes, as shown in Table 5. Model G removed the attention mechanism based
on FuDNN, and model F changed the concatenation of FuDNN to point-wise addition.
Model E removed the attention mechanism based on model F. The AP values of FuDNN
across three difficulty levels were all higher than those of model G, and the AP values of
model F across three difficulty levels were also higher than those of model E, which proved
that the attention mechanism could improve the object detection effect of the model. The
comparison between FuDNN and model F, as well as the comparison between model G and
model E, showed that the effects of the two fusion modes of addition and concatenation
were similar.

Table 5. Ablation experiments of different fusion methods in the car class of KITTI validation set
with IoU threshold 0.7.

Model Fusion Method Easy Moderate Hard

E Addition 91.99 82.26 80.17
F Attention-based Addition 92.74 82.76 80.50
G Concatenation 92.13 81.91 79.96

FuDNN Attention-based Concatenation 92.48 82.90 80.51

4. Conclusions

This work proposed a LiDAR–camera fusion 3D object detection deep neural network
FuDNN. Table 3 shows that the proposed FuDNN has the highest mean AP value across the
three difficulty levels in the car category of the public KITTI dataset, and thus outperforms
other LiDAR–camera fusion 3D object detection approaches in terms of the mean AP value.
Although the speed of FuDNN is not as fast as PointPillars and SECOND, it is comparable
to several other popular methods. Two further sets of ablation experiments verified the
effectiveness of the proposed 2D backbone sub-network and the attention-based fusion sub-
network, respectively. In the future, efforts will be made to further improve the detection
AP and reduce network complexity.
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