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Abstract: As an informative electroencephalogram (EEG) signal, steady-state visual evoked potential
(SSVEP) stands out from many paradigms for application in wireless wearable devices. However,
its data are usually enormous, occupy too many bandwidth sources and require immense power
when transmitted in the raw data form, so it is necessary to compress the signal. This paper proposes
a personalized EEG compression and reconstruction algorithm for the SSVEP application. In the
algorithm, to realize personalization, a primary artificial neural network (ANN) model is first pre-
trained with the open benchmark database towards BCI application (BETA). Then, an adaptive ANN
model is generated with incremental learning for each subject to compress their individual data.
Additionally, a personalized, non-uniform quantization method is proposed to reduce the errors
caused by compression. The recognition accuracy only decreases by 3.79% when the compression
rate is 12.7 times, and is tested on BETA. The proposed algorithm can reduce signal loss by from
50.43% to 81.08% in the accuracy test compared to the case without ANN and uniform quantization.

Keywords: electroencephalogram (EEG); steady-state visual evoked potential (SSVEP); non-uniform
dequantization; compression; artificial neural network (ANN)

1. Introduction

Brain data from hospitals, research laboratories, and consumer neuroscience devices
can be used to understand the structure and function of the brain to improve individual
health [1]. The brain–computer interface (BCI) is moving from laboratory to practical
applications, and from wired transmission to wireless transmission. However, the amount
of electroencephalogram (EEG) signal data needed is huge, which causes some difficulties
for wireless transmission and forms a bottleneck to the practicability of the brain–computer
interface. For example, there is currently more than 130TB of neural data for research on
the image and data archive (IDA), which is a neurocognitive data-sharing platform. The
EEG signal is promising in neuroscience applications, among the various other signals used
in the brain–computer interface.

In addition, BCI technology is developing in the wireless direction because it has the
significant advantage that its users can use it conveniently for a long time. During the
test, the user’s activity range is not limited, and the neural activities can be monitored
all day, which provides a greater possibility for in-depth research by medical experts and
neuroscientists [2,3].

However, the more data these wireless devices collect, the more data are transmitted
from the sensor end to the decoder end of the wireless system, which requires a higher
bandwidth for the transmission and a large amount of wireless bandwidth resources,
computing power, and transmission power. These restrictions hinder the implementation
of a wearable brain–computer interface [4].
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One of the most suitable application scenarios for EEG compression is the steady-state
visual evoked potential (SSVEP) experiment [5–10]. The BCI speller based on SSVEP has
many advantages in that it does not require user training, and its detection algorithm can
be trained without relying on a large amount of training data. It has an excellent signal-to-
noise ratio, high information transmission rate, and multi-classification ability [11,12]. To
the best of our knowledge, there is a large amount of research on the detection algorithm of
SSVEP [12–14], but little research on its compression.

SSVEP is a common application form of EEG signals. As shown in Figure 1a–c, when a
specific frequency of visual stimulation is presented to the eyes, the brain will reflect neural
signals consistently with the visual stimulation frequency or its harmonic frequencies in
EEG, resulting in an SSVEP signal [15]. In the wireless context, after the user receives
visual stimulation in the monitor, the EEG signal is captured by the collector, wirelessly
transmitted to the data-processing device, and then fed back to the monitor by the device.
Due to the specific frequency stimulation, the SSVEP signal has strong energy concentrated
at some individual frequency points, as shown in Figure 1d. The signal characteristics of
SSVEP have different specificities according to different subjects, and the signal quality
varies greatly from person to person.

Figure 1. Schematic diagram of the SSVEP experiment: (a) The layout resembles a conventional
keyboard with 26 alphabets, 10 numbers, and 4 non-alphanumeric keys (space, comma, dot, and
backspace) aligned in 5 rows. The upper rectangle is designed to present the input character. (b) A
subject is using the SSVEP system. (c) Schematic diagram of SSVEP data transmission. (d) Amplitude
spectrum of SSVEP signal.
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According to this characteristic, this paper proposes a personalized compression
framework for SSVEP. To ensure that the individual SSVEP signal is compressed in the
most effective manner, we propose a method combining incremental learning ANN [16–18]
and non-uniform quantization to adapt to the different characteristics of different human
SSVEP signals to ensure that its detection performance does not significantly degrade.
First, the signal was DCT transformed and the main components were selected, and then
incremental learning was used to generate an adaptive ANN model for each subject. After
decompression with ANN, the difference between the recovered and original values was
calculated to correct the error, and then personalized non-uniform quantization was used
to reduce the error. Finally, inverse discrete cosine transformation (IDCT) was carried
out to obtain the recovered signal close to the input signal. The compression result of the
ANN model and the quantized error value were transmitted as compressed data. When
the compression ratio was 12.7 times, the recognition accuracy decreased by only 3.79%.
Compared with the case without ANN and uniform quantization, adaptive ANN improved
the signal quality by from 9.91% to 15.67%, and non-uniform quantization improved this
by from 46.32% to 90.98%. Under the condition of ensuring the test accuracy, the method
showed an overall improvement of from 50.43% to 81.08%. Therefore, these methods are
helpful to promote the practicability of wearable brain–computer interface devices based
on SSVEP.

The rest of this paper is arranged as follows: Section 2 introduces the database,
algorithm, adaptive ANN training method, and non-uniform quantization calculation
method; Section 3 shows the effect of the two methods on the compression results; Section 4
discusses the impact of compressed data on SSVEP detection; Section 5 draws a conclusion.

2. Materials and Methods
2.1. Dataset

Since this scheme requires a directional design for SSVEP, the relevant data set of
SSVEP was selected in the experiment. The benchmark database towards BCI application
(BETA) is a large benchmark database for SSVEP-BCI applications [19]. The dataset con-
tained the 64-channel EEG signals of 70 subjects, its task was a 40-target cued-spelling
task, and each subject had four blocks of experiments. The 40 targets were arranged as a
QWERTY virtual keyboard to conform to usage habits. The stimulation frequency range
of the 40 targets was from 8 to 15.8 Hz, with a frequency interval ∆ f = 0.2 Hz and a
phase interval of ∆φ = 0.5π. The original sampling rate of the signal was 1000 Hz, the
passband range of the hardware filter was 0.15–200 Hz, and a notch filter was used to
remove the 50 Hz frequency interference of the power supply. In the software processing
stage, a band-pass filter was used to remove environmental noise. The signal was then
down-sampled to 250 Hz. Each subject received an experimental stimulation from each
target for 2 or 3 s.

2.2. Overall Structure

The proposed compression system was divided into two parts: the compressor and
decompressor. The system structure is shown in Figure 2.

The compressor contains three steps: DCT transformation, neural network feature
extraction, and quantization of differences. In the SSVEP task, the EEG signals were
stimulated by a specific frequency and showed the corresponding frequency characteristics.
Hence, the characteristics of these signals in the frequency domain were easier to extract
than those in the time domain. DCT transform can extract the frequency components of
each signal because, for the raw data, most signal energy is concentrated in some limited
low-frequency components [20]. DCT transform, as the first step, was combined with an
ANN-based compression scheme. Specifically, as shown in Figure 2, the DCT transform
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was applied to the input signal in the first step, and then some low-frequency coefficients
were selected, which are called the main coefficients.

FN = { f1, f2, . . . , fN} = DCT(XN) (1)

Figure 2. System structure diagram.

The calculation formula of DCT transform is:

fk = ck ∑N
n=1 x(n)cos

(
π

N

(
n− 1

2

)
(k− 1)

)
, k = 1, 2, . . . , N (2)
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where

ck =


1√
N

k = 1√
2
N 2 ≤ k ≤ N

(3)

Then, the DCT coefficients obtained by the transformation were selected. Since the
DCT signal reflects the strength of the original signal at different frequencies, we can
square the single point to obtain the spectral energy corresponding to each coefficient point,
calculating the energy spectrum of each signal and averaging all the signals in the dataset
to obtain the energy distribution of the SSVEP signal in the DCT transformed domain [21].
As shown in Figure 3, the energy of the first 80 coefficients accounted for a significantly
larger proportion of the total 250 points than the rest of the coefficients, so the first 80 points
were selected as the main components.

Fmain = { f1, f2, . . . , f80} (4)

Figure 3. The mean of the squared values of the DCT coefficients.

Compress the main components with a neural network to obtain the compressed coefficient
Fc, and then restore it with a neural network (see Section 2.3 for details) to obtain F̂main:

F̂main =
{

f̂1, f̂2, . . . , f̂80

}
= ANNd(ANNc(Fmain)) (5)

Then, create zero-padding on F̂main, and make this up to N points to reconstruct the
DCT coefficient:

F̂N =

 f̂1, f̂2, . . . , f̂80,

N−80︷ ︸︸ ︷
0, 0, . . . , 0

 (6)

Compare the reconstructed DCT coefficients with the original coefficients to obtain
the error EN :

EN = FN − F̂N =
{(

f1 − f̂1

)
, . . . ,

(
fN − f̂N

)}
(7)
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In order to compress the error, we were required to build a quantization table. Tradi-
tional methods mostly use uniform quantization, but this paper proposes the concept of
non-uniform quantization for SSVEP. According to the statistical characteristics of different
positions, the method uses different quantization tables to quantize the corresponding
coefficients (see Section 2.4 for details).

ENq = Q(EN) (8)

Fc and ENq are the compressed signal. After transmission, the two sets of numbers
arrived at the decompressor and were then decompressed by the decompressor. Fc un-
derwent a similar procedure as in the compressor, yielding F̂N . ENq was subjected to the
inverse quantizer to obtain the estimated value ÊN of EN .

ÊN = {ê1, ê2, . . . , êN} = DeQ
(
ENq

)
(9)

From this, reconstructed DCT coefficients F̂′N were obtained by adding the estimated
DCT coefficients F̂N and the estimated error ÊN . The difference between F̂′N and the original
DCT coefficients FN was smaller than that of the direct estimation F̂N . Then, inverse DCT
transform was performed on the coefficient to obtain the reconstructed value of the original
EEG signal, as shown in Equations (10) and (11).

X̂N = {x̂1, x̂2, . . . , x̂N} = IDCT
(

F̂′N
)
= IDCT

(
F̂N + ÊN

)
(10)

x̂n = ∑N
k=1 ck

(
f̂k + êk

)
cos
(

π

N

(
n− 1

2

)
(k− 1)

)
k = 1, 2, . . . , N (11)

In this way, a relatively good estimate of the EEG data could be obtained at a higher
compression rate.

2.3. DCT Main Component Compression Using ANN

After obtaining the main component of DCT, we applied ANN [22] to refine the main
component and further compress the signal.

In our design, considering the pressure of computing on wireless devices, the network
used for compression could not be too large, so a double-layer perceptron was used.
The first layer acted as a compressor called ANNc, and the second layer was used for
decompression, called ANNd. In this model, the input data were a fixed-length signal.
After these signals were input into ANN, they were compressed by the ANNc layer to
obtain a shorter sequence Fc as the compression result. Similarly, the output layer, the
ANNd of the ANN, generated a reconstructed signal from the compressed signal in the
opposite way. The overall structure of the ANN-based compression scheme is shown
in Figure 4. In this structure, each input is a signal of length n. A compressed signal is
generated in the output of the ANNc section, which reduces the input block from n samples
to c samples (c < n). In the decompression layer (ANNd part), c samples are expanded
back to n samples.

For different tasks, the selection of loss function affects the network’s performance.
Different loss functions will lead to different convergence speeds and affect the final
network performance in the training process [23]. Therefore, selecting a loss function with
a faster convergence speed and smaller mean square error (MSE) value for the target task is
essential and meaningful.
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Figure 4. ANN schematic diagram.

As shown in Table 1, in the experiment, the same conditions were selected for several
different loss functions, and the value of MSE for the same test set was calculated, where x
represents the difference between the output and input:

MSE =
1
N

N

∑
i=1

x2
i (12)

L1 = |x| (13)

L2 = x2 (14)

Smooth L1 =

{
0.5x2, |x| < 1

|x| − 0.5, otherwise
(15)

Table 1. The performance of different loss functions in the test set.

L1 L2 Smooth L1 ln log10

MSE 13.98 36.99 12.07 16.46 17.80

The disadvantage of the L2 loss is that the derivative of the L2 function with respect
to x increases as x rises. This leads to the fact that, in the early stage of training, when
the difference between the predicted value and the actual value is too large, the gradient
of the loss function to the predicted value is very large, so the training is unstable. The
disadvantage of L1 is that the derivative of L1 with respect to x is constant. This leads
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to the fact that, in the later stage of training, when the difference between the predicted
value and the actual value is very small, the absolute value of the derivative of the L1 loss
to the predicted value is still 1. If the learning rate remains unchanged, the loss function
will fluctuate around the stable value, making it difficult to continue converging to achieve
higher precision. Smooth L1 is a piecewise function, equivalent to the L2 loss between
[−1, 1], which solves the problem that the non-smooth 0 point of L1 is difficult to derive [24].
Outside the [−1, 1] interval, it is the L1 loss that solves the problem of outlier gradient
explosion. When Smooth L1 is small, the gradient to x will also become smaller, and when
x is large, the absolute value of the gradient to x reaches the upper limit of 1, so it will not
be too large to destroy the network parameters. Specifically, the Smooth L1 perfectly avoids
the flaws of L1 and L2. As shown in Table 1, by comparing the influence of different loss
functions on the network, Smooth L1 had the smallest MSE obtained from the test set, so it
was selected as the loss function during training.

As shown in Figure 4, this paper refers to the idea of incremental learning and pro-
poses a training method of pre-training in a wide range of datasets and then performing
incremental learning on a specifically targeted data set in the training of ANN [16–18]. The
former can train a model with strong adaptability and strong generalization, and the latter
can obtain a targeted model based on the former. With the model trained in the previous
stage as the basis, the amount of data required for incremental learning was smaller to
accelerate the convergence, and the model was more targeted.

At the beginning of this experiment, the basic training sets S1 to S15 were used to train
the network to obtain a more general compression model. In a specific application, for each
subject in the test set, the pre-trained model was incrementally trained using the first two
blocks of experiments, and a specific model for the individual data could be obtained. With
this final version of the model, the individual data were tested on the latter two sets of
experiments to obtain compression and decompression results.

In this way, common features valid for all EEG signals were obtained with a large
amount of data. On this basis, individual-specific features could be quickly obtained using
incremental learning with a small amount of data for each person, forming a differentiated
compression model for each person.

2.4. Quantization Table

For the compression algorithm, the quantization step can save the same data with
fewer bits to reduce the storage space occupied by each piece of data, thereby significantly
reducing the total amount of stored data. In the actual situation, the probability distribution
of the sample amplitudes is generally not uniform, and small-amplitude samples occur
much more frequently than large-amplitude samples. The quantization interval would be
too large in the system if uniform quantization was used because the difference e is non-
uniform, which is small in most cases and large in a few cases. Hence, uniform quantization
may lead to many signals being concentrated in a small interval, resulting in a poor signal
recovery effect.

Inspired by the non-uniform quantization method applied in image compression,
this paper proposes a non-uniform quantization method for EEG [25]. This method is
based on the statistical characteristics of the raw SSVEP data to build a quantitative table.
The difference e was quantized according to the quantization table. The method used to
construct the quantization table is as follows:

Define the variance of a set of sorted numbers X = {x1, x2, . . . , xn} as d , then:

d =
n

∑
i=1

(xi − x)2, where x =
1
n

(
n

∑
i=1

xi

)
(16)

The sorted training set X = {x1, x2, . . . , xn} is divided into m intervals, and each
interval is represented with a number. The error between each interval’s internal values
and average values must be the smallest to recover as much as possible after quantization.
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By using the sum of the square of errors to measure the size of the total error, the total error
in each interval can be represented by the variation defined by Equation (16).

For X, di,j is denoted as the variance of the subset X′ =
{

xi, xi+1, . . . , xj
}

of X, and
Sm

n (i1, i2, . . . im−1) is denoted as the total variance of n numbers divided into m intervals,
where {i1, i2, . . . im−1} represent the serial numbers of the separation positions, respec-
tively. Then,

Sm
n (i1, i2, . . . im) = d1,i1 + di1+1,i2 + . . . + dim−1,n (17)

For m divisions of n number, only one group of {i1, i2, . . . im−1} can minimize the
total variation Sm

n (i1, i2, . . . im−1), which is called the optimal division, denoted as Sm∗
n .

Considering the case of m = 3, there are

S3
n(i1, i2) = d1,i1 + di1+1,i2 + di2+1,5 = S2

i2(i1) + di2+1,5 (18)

where S2
i2
(i1) is the optimal division; then, Equation (18) can be rewritten as Equation (19):

S3
n(i1, i2) = S2∗

i2 + di2+1,5 (19)

To calculate the optimal three-division, the optimal two-division of the first i2 number
should be calculated, where i2 = 2, 3, . . . , m − 1. Generally, for an ordered sequence
X = {x1, x2, . . . , xn} composed of n numbers, to calculate its optimal three-division, one
should first calculate the optimal two-division of the first n− 1 data, then the optimal two-
division of the first n− 2 numbers, . . . , until the optimal two-division of the first 3 numbers.
To calculate the optimal k(k = 4, 5, . . . , n− 1) division, the optimal k− 1 division of n− 2
numbers must first be calculated, . . . , until the optimal k− 1 division of the first k numbers.

After calculating the optimal division of a set of numbers, the corresponding optimal
division point can be used as the boundary of the quantization table. Since the calculation of
the optimal division is based on the principle of the minimum total variation, a reasonable
reconstruction value should be obtained from the mean value of each quantization interval.

2.5. Summary

In general, we decided to use Smooth L1 as the optimal loss in ANN, adopted a
combination of pre-training and incremental learning to improve the performance of
personalized compression, and used a non-uniform quantization scheme to further improve
the degree of personalization.

3. Results

For the SSVEP experiment, the brain wave changes induced by visual stimulation
are concentrated in the leads of a specific area rather than all leads. Therefore, eight-lead
experiments are often used in practical applications, which reduces a certain quantity of
data when collecting. In this experiment, POz, PO3, PO4, PO5, PO6, Oz, O1, and O2 were
selected as the utilized leads [26,27], whose labels were determined by the dataset [19].

In order to evaluate the performance of the algorithm, the compression ratio (CR) and
the percentage of root mean square error (PRD) were introduced, which can be calculated
as follows:

CR =
N × Bi

K× Bc + N × Bq
(20)

PRD =

√√√√∑N
i=1 (X(i)− X̂(i))2

∑N
i=1 (X(i))2 × 100 (21)

where Bi refers to the number of bits occupied by each number in the original data, Bc refers
to the number of bits occupied by each data point after being compressed by the ANN
network, and Bq refers to the number of bits occupied by the error data corresponding to
each point after quantization. C refers to the data length after network compression, and N
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refers to the original data length. X(i) and X̂(i) represent the ith point of the original data
and the ith point of the reconstructed data, respectively.

In the actual experiment, the compression rate mainly changed with quantization lev-
els. The relationship between the number of quantization bits, the number of quantization
levels, and the compression rate is shown in Table 2.

Table 2. Quantization order correspondence.

Bit 1 2 3 4 5 6

Quantization order 2 4 8 16 32 64
Compression ratio 20.9974 15.8103 12.6783 10.5820 9.0806 7.9523

For the four groups of each sample, the first group was used as the training set to
calculate the quantization table and the inverse quantization table. The remaining groups
were compressed and decompressed according to the quantization table. The original
values were compared with the compressed ones to calculate the corresponding PRD. The
smaller PRD led to a minor difference between the reconstructed signal and the original
signal for the same quantization order.

3.1. Influence of Adaptive Neural Network on Results

In order to examine the effect of the adaptive ANN, the PRD values with and without
using the adaptive neural network were calculated under different quantization levels.
As shown in Figure 5, the curve of the adaptive neural network was always below the
non-neural network, indicating that the adaptive neural network can improve the results
at each point and effectively reduce PRD. The improved performance of PRD2 to PRD1
was calculated using Equation (22). Table 3 compares the percentage reduction in the PRD
value after using the adaptive neural network with that not using ANN, showing that there
were 8.01% to 15.67% increases under different quantization bits.

Improvement in performance =
PRD1 − PRD2

PRD1
× 100% (22)

Figure 5. Influence of the presence or absence of adaptive neural network.
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Table 3. Improved performance of adaptive neural networks.

Bit 1 2 3 4 5 6

Improved performance (%) 15.67 8.01 12.68 9.91 13.15 13.74

These improvements are mainly attributed to the enrichment of information by ANN
and the personalized model constructed through incremental learning. In this paper, the
ANNc layer compressed the 80-point DCT coefficients into 16 points. This step used
the automatic optimization feature of ANN to find a model that mapped 80 points of
information to 16 points and reconstructed the signal as much as possible. In addition,
due to the large difference among individual signals in SSVEP, the incremental learning
method used in this paper utilized the adaptive characteristics of ANN and individual
data for targeted training, which could improve the adaptation of the ANN model to an
individual. Moreover, this could improve the degree of personalization and the quality of
the compressed signal.

3.2. Influence of Non-Uniform Single Point Quantization on Results

In the experiment, a separate quantification table was calculated for each DCT point
of each sample to achieve the best quantification and reconstruction effect. In the tradi-
tional uniform quantization method, all the data are used for statistics, and the maximum
and minimum values in the data are taken, and then the values are divided into equal-
length intervals to obtain a uniform quantification table [28]. All points in an interval
are quantized to the intermediate value of the interval. This quantification is not suitable
for SSVEP because the DCT signal of SSVEP has different strengths and importance at
different frequencies, and treating them all with the same quantization precision would
lead to serious bias. In this paper, statistics were calculated separately for each frequency
point to obtain a unique quantization table, and different frequency points used different
quantization tables.

The effect was significantly improved by using the non-uniform quantization table
proposed in this paper for every single point. As shown in Figure 6, the non-uniform
single-point quantization PRD was smaller than the uniform quantization and uniform
single-point quantization. The improvement of non-uniform quantization over the two
uniform quantizations is shown in Table 4. At different bit quantization degrees, the
PRD reductions ranged from 4.33% to 58.81% for single-point uniform quantization and
improved by 46.32–90.98% for multi-point uniform quantization.

Figure 6. Influence of different quantization methods on PRD.
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Table 4. The improvement in PRD by non-uniform quantization.

Bit 1 2 3 4 5 6

Effect improvement compared with
single-point uniform quantization (%) 58.81 41.21 30.99 24.24 15.34 4.33

Effect improvement compared with
multi-point uniform quantization (%) 90.98 86.10 77.62 77.93 68.99 46.32

Figure 7 visualizes the effect of the reconstruction by comparing the same signal before
and after compression. The first group is the signal of subject 44 in the dataset, where the
quantization bit is 6 bits, CR is 7.95, and PRD is 2.84%. The second group is the comparison
chart of subject 16, where the quantization bit is 3 bit, CR is 12.7, and PRD is 22.19%. The
waveforms before and after compression are almost identical, with only slightly different
amplitudes in detail, which are minor and within acceptable limits.

Figure 7. Comparison before and after signal compression: (a) EEG original signal of target 44.
(b) Compressed reconstructed signal of target 44 (bits = 6, CR = 7.95, PRD = 2.84). (c) EEG original
signal of target 16. (d) Compressed reconstructed signal of target 16 (bits = 3, CR = 12.7, PRD = 22.19).

4. Discussion

This study proposes a method using adaptive ANN and non-uniform quantization
for compression, which significantly improves signal quality compared to the non-ANN
method and uniform quantization. Such an improvement is mainly attributed to specific
analysis and statistics for specific signals. The adaptive ANN part is based on the general
model obtained on the training set. Then, the individual experimental part of each sample
is used to perform incremental learning to achieve an individualized model to improve the
reconstruction accuracy for individuals.

The non-uniform quantization part considers individual differences and the differ-
ences of each frequency point. It combines the different amplitude distribution of frequency
points to determine different quantization intervals according to statistical characteristics
to obtain a better quantization effect when the number of quantization bits is equal.

We also computed the overall improvement in adaptive ANN and non-uniform
quantization over the two uniform quantizations without ANN. As shown in Table 5, at
different bit quantization degrees, the method in this paper showed a PRD reduction of
from 11.65% to 61.50% for single-point uniform quantization without ANN, compared with
multi-point uniform quantization without ANN, which showed a PRD decline of from
50.63% to 91.61%.
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Table 5. Improvement in PRD using the overall algorithm.

Bit 1 2 3 4 5 6

Effect improvement compared with
single-point uniform quantization with

non-ANN (%)
61.50 44.64 35.53 29.82 21.45 11.65

Effect improvement compared with
multi-point uniform quantization with

non-ANN (%)
91.61 87.30 81.08 75.92 66.01 50.43

Figure 8 shows the comparison of the proposed method with other state-of-the-art
methods (SLP [29], BISK [30], NLSPIHT [31], and MLP-ANN [28]). Our method has obvious
advantages compared with SLP, NLSPIHT, and BISK. For MLP-ANN, this paper shows
advantages in the range of a low compression rate and low PRD, but with the increase in CR,
the PRD of the method proposed in this paper significantly increased. On the other hand,
the method proposed in this paper saves one arithmetic coding module compared to MLP-
ANN. Due to its application in wireless scenarios, the transmitting end of the compressed
signal often has limited computing resources, and the calculation amount of the arithmetic
coding module is very large [32]. The method in this paper provides a better performance
at low compression ratios and a resource-saving option at high compression ratios.

Figure 8. Comparison of the proposed method with SLP, BISK, NLSPIHT, and MLP-ANN.

Since this paper proposes a compression optimization method for the specific ap-
plication of SSVEP, the actual effect of the recovered data in SSVEP detection should be
considered. In the application of SSVEP, the CCA algorithm and its variants are usually
used for testing [13,14,33–35]. The eCCA algorithm used in this paper could provide an
accuracy rate as a test result for each subject’s forty targets in each block of experiments. In
the experiment, the decompressed data were tested by eCCA [14]. Since in ANN, the first
two blocks of each subject were used as training sets to train the adaptive model, and the
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latter two blocks were used as test sets, in the eCCA test, the former two blocks of original
data were used as training sets, and the latter two blocks of test sets were used to obtain
accuracy rates. In this way, the impact of compressed data on the performance of SSVEP
was evaluated. As shown in Figure 9, the results were not significantly affected when
quantization bits were greater than 4. When using 3 bits for quantization, the accuracy
rate decreased from 84.77% of the original data to 80.98%, a reduction of only 3.79%. The
performance loss was not significant but fell within an acceptable range.

Figure 9. Influence of different quantization bits on SSVEP results.

In our future work, to further improve the compression rate, we will consider the
quantization of ANN weights to reduce the number of bits required for this part. In
addition, the application of this framework outside SSVEP can also be studied, for example,
in experiments on EEG signals that are sensitive to specific frequencies.

5. Conclusions

This paper proposes a compression–decompression framework for the application of
EEG signals in SSVEP, in which adaptive ANN and non-uniform quantization methods are
used to improve the compression effect. In this paper, an adaptive ANN and incremental
learning were applied to the compression process to generate an exclusive ANN models
for different subjects, which improved the degree of individualization of compression
and the quality of compressed signals. Additionally, non-uniform quantization was also
used in the quantization process, and corresponding quantization tables were adopted
for different subjects and different signal positions, which improved the recovered signal
quality after quantization. First, the DCT transform was used to concentrate the signal,
and then the DCT coefficients were extracted and compressed using the adaptive ANN. To
reduce the error, the difference between the restored value of ANN and the original value
was calculated, and the compressed result was obtained via non-uniform quantization with
statistical characteristics. After ANN decompressed the compression result, we could apply
inverse quantization, error correction, and IDCT transform to reconstruct the signal. The
method in this paper can effectively maintain the signal quality while ensuring a satisfying
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SSVEP performance after compression. When the accuracy rate decreased by 3.79%, the
compression rate reached 12.7 times, which greatly reduced the amount of transmitted data
and did not significantly impact use.
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