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Abstract: We consider neural sign language translation: machine translation from signed to written
languages using encoder–decoder neural networks. Translating sign language videos to written
language text is especially complex because of the difference in modality between source and target
language and, consequently, the required video processing. At the same time, sign languages are low-
resource languages, their datasets dwarfed by those available for written languages. Recent advances
in written language processing and success stories of transfer learning raise the question of how
pretrained written language models can be leveraged to improve sign language translation. We apply
the Frozen Pretrained Transformer (FPT) technique to initialize the encoder, decoder, or both, of a sign
language translation model with parts of a pretrained written language model. We observe that the
attention patterns transfer in zero-shot to the different modality and, in some experiments, we obtain
higher scores (from 18.85 to 21.39 BLEU-4). Especially when gloss annotations are unavailable, FPTs
can increase performance on unseen data. However, current models appear to be limited primarily by
data quality and only then by data quantity, limiting potential gains with FPTs. Therefore, in further
research, we will focus on improving the representations used as inputs to translation models.

Keywords: sign language translation; machine translation; transfer learning

1. Introduction

Machine translation (MT) from signed to written languages is a two-stage task. First,
sign language videos have to be processed to some salient representation. This stage is
commonly referred to as sign language recognition (SLR). Then, this representation is used
as input to an MT model that performs the actual translation to written language text. MT
is increasingly becoming more powerful for written languages, and advances in the domain
are also being applied for sign language translation (SLT).

Datasets used for MT from signed to written languages are significantly smaller than
typical datasets used for MT between different written languages. The most popular dataset
for translation from sign language video to written language text is RWTH-PHOENIX-
Weather 2014T [1]. This dataset consists of 8257 parallel utterances between German sign
language (in video format) and German (in text format). In contrast, the ParaCrawl corpora
contain up to several million sentence pairs [2]. The most common MT models today are
neural MT models, based on deep neural networks. These are primarily designed for MT
between pairs of written languages, more often than not high-resource languages. These
models are therefore optimized to work with large quantities of data and do not scale well
to low-resource languages as they are. This needs to be taken into account when these
models are adapted for SLT.

The lack of labeled data for MT can be mitigated in several ways. One possibility is the
generation of synthetic training data through data augmentation [3] or back-translation [4,5].
Another possibility—explored in this article as an extension of previous research—is to
leverage language models that are pretrained on larger corpora [6]. Here, instead of train-
ing neural translation models from scratch, the encoder, decoder, or both, are replaced
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by a pretrained language model. This transfer learning, when applied in the direction
of high-resource to low-resource language pairs, can improve the performance for those
low-resource language pairs [7]. These language models do not necessarily need to be
pretrained specifically for translation. They can also be pretrained on monolingual corpora
for the purpose of transfer learning. Models such as the well-known “BERT” [8] that are
trained in this way can also be adapted as encoders or decoders in an MT model to improve
translation performance [9]. Such models can even transfer in few or zero-shot to different
languages [10,11], but also across modalities [12], and this gives them great potential in
low-resource scenarios. Even if the downstream task is not related to natural language
processing, incorporating pretrained language models can provide a powerful initialization
for model parameters and improve the performance on the downstream task. Again, this
is possible without additional training of the attention mechanism, i.e., in a few- or zero-
shot setting [13]. Using a (partly) frozen pretrained written language model to initialize
a model for a different downstream task is called the “Frozen Pretrained Transformers”
(FPT) technique.

In written language translation, sequences of discrete tokens are used. These tokens
typically correspond to words or parts of words. Signed languages, unlike written lan-
guages, have no standardized written form. Therefore, many papers on SLT use frame
based or clip based representations of sign language videos as inputs to the translation
model [1,5,6,14,15]. These representations are typically longer than sequences of words.
Furthermore, such representations often exhibit a large degree of correlation between
neighbors in the sequence (e.g., between two subsequent frames in a video).

The fact that pretrained language models can be used for tasks that are unrelated
to natural language processing [13] suggests that the attention patterns learned by large
language models generalize to other tasks and modalities. This raises the question of
whether the attention patterns also transfer to the longer, more intra-correlated, sequences
used in SLT. It turns out that they do. By integrating (a small number of layers of) BERT
into a sign language machine translation model, one can match and even exceed the
performance of models trained from scratch in terms of the BLEU-4 translation score [6].
The FPT approach to SLT is illustrated in Figure 1.

Figure 1. In our proposed approach to SLT, pretrained written language models are integrated into
the SLT pipeline as initialization for (parts of) the translation model, and then partly frozen and partly
fine-tuned on the translation task [1].

We further explore FPTs for SLT in this extension article (of [6]). We focus on the
cases where the encoder of a transformer based translation model is replaced by BERT or
where encoder and decoder are replaced by BERT. We show that the gains in performance
are not due to the model architecture, but indeed due to pretraining on unrelated written
language corpora. We furthermore extend the analysis beyond reporting the BLEU-4
score: we also report the ROUGE-L and CHRF scores of our models on unseen data. We
additionally perform several qualitative analyses on FPTs to gain insights into the technique.
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We showcase some example translations of transformers trained from scratch and FPTs.
Learning curves show that the models we are investigating are primarily limited by data
quality rather than data quantity. Finally, we compare models with gloss level supervision
(Sign2(Gloss+Text)) and models without gloss level supervision (Sign2Text). We show that
an FPT trained without glosses can match the performance of a baseline model trained
with glosses.

2. Background
2.1. Sign Language Machine Translation

SLT (from a signed to a written language) is a video-to-text translation task. Typically,
sign language utterances (as parts of conversations or monologues) are recorded as videos,
and these videos need to be translated into written language utterances with the same
meaning. As sign languages have no standardized written form, one needs to extract
relevant information from these videos to feed to the translation model. Many papers
translate from sign language glosses to written language text (e.g., Refs. [1,15–19]). These
glosses form a transcription of the sign language video with written language words or
clauses. This method is similar to written language MT: they both translate from text to
text. However, glosses do not convey the full meaning of what is being signed [20,21] and
they are often influenced by written language [20,22]. Hence, end-to-end SLT (from video
rather than glosses), is required to fully extract the meaning of the sign language utterances.
Due to practical hardware limitations, the videos need to be converted into feature vectors
before training the translation model: therefore, a powerful offline feature extractor is
required. The design of this feature extractor is typically based on SLR techniques. The
feature vectors are used as inputs to MT models, which borrow their architecture from
written language MT models.

Early SLT models used statistical MT techniques (e.g., Refs. [16–19]). More recently,
neural MT techniques have become the standard for SLT (e.g., Refs. [1,5,6,14,15,23–25]).
Advances in MT and in computer vision have made this end-to-end MT from sign language
video to written language text possible. The first neural Sign2Text model was introduced
together with the RWTH-PHOENIX-Weather 2014T dataset that we consider in this article.
The recurrent encoder–decoder model with Luong attention [26] and achieves a BLEU-
4 score of 9.58 on the test set [1]. Camgoz et al. [1] argue that glosses are more salient
representations than what can be extracted using convolutional neural networks and
therefore they also propose a Sign2Gloss2Text model. In such a model, sign language
glosses are first predicted by a continuous SLR (CSLR) model and then these glosses are
translated into written language text. This simplifies the translation task and can benefit
from research into SLR, which, while still unsolved, is more mature than SLT. By using this
technique, they achieve higher scores: 18.13 BLEU-4 on the same test set.

However, translating from sign language glosses to written language text is not
desirable. Glosses do not convey the full meaning of signing [20,22] and may present
an information bottleneck [14]. Nevertheless, they can still provide useful information
to bootstrap the learning process of a sign language translation system. When used as a
side channel rather than a bottleneck, they can provide an additional supervised signal
to improve translation performance. A Sign2(Gloss+Text) translation model performs
CSLR and SLT jointly, but the translation input is the sign language representation as in a
Sign2Text model and not glosses as in a Sign2Gloss2Text model. The glosses are instead
added as a side channel to be predicted based on the sign language inputs. This has several
benefits: glosses no longer are an information bottleneck for the translation model, and
gloss level annotations are not required for all training data, nor do glosses need to be
predicted during inference. The original Sign2(Gloss+Text) model uses transformers [14]
instead of recurrent neural networks and achieves a BLEU-4 test score of 21.32 on the
RWTH-PHOENIX-Weather 2014T dataset.

Pretrained language models for many written languages are frequently made publicly
available to the scientific community. The Hugging Face Model Hub serves over thirty-
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five thousand models at the time of writing: https://huggingface.co/models (accessed
on 21 April 2022). These pretrained models can be used for downstream tasks such as
text summarization and question answering, but also to initialize translation models. In
our previous work, we used frozen pretrained written language models for SLT on the
RWTH-PHOENIX-Weather 2014T dataset in a Sign2(Gloss+Text) set-up [6]. We observe a
potential performance improvement of 1 to 2 BLEU-4 when integrating frozen pretrained
transformers.

2.2. Frozen Pretrained Transformers

The parameters of transformers that are trained on large language datasets can be
transferred to downstream tasks that are not related to language [13]. In fact, it is possible
to freeze the attention computation modules in these transformers, as the attention patterns
learned in the pretraining setting transfer in zero-shot to downstream tasks. This requires
only minor modifications to the transformer architecture: a linear input layer must be
added to transform the new type of inputs to align with the attention modules and a
linear output layer is required depending on the downstream task. Then, the pretrained
transformer can be fine-tuned on the downstream task.

Pretraining on language tasks yields better performance on the downstream task than
random initialization or pretraining on related tasks with less data: this suggests that the
quantity of pretraining data offsets the difference in the data modality.

The original paper on FPTs uses GPT-2 [27], a generative language model. A linear
input layer is added, and the positional embeddings as well as the layer normalization
parameters are fine-tuned, while other parameters are frozen. FPTs converge faster than
models trained from scratch and only a fraction of the layers of the pretrained model
suffices to outperform random initialization. In some cases, additionally fine-tuning the
feedforward layer parameters can improve performance. BERT [8] is also evaluated, and
similar results are obtained when compared to GPT-2.

2.3. Related Work

Pretrained language models provide a warm start for training neural networks on
multiple downstream tasks such as question answering and MT, for written languages.

Imamura and Sumita [28] integrate a BERT checkpoint in the encoder of their machine
translation model. They use a two-stage training approach, where first only the decoder is
trained (with a frozen BERT encoder), and then both encoder and decoder are fine-tuned.
They show that integrating BERT increases the effectiveness of the machine translation
model in low-resource settings. Rothe et al. [9] not only initializes the encoder of the MT
model, but also the decoder. They evaluate the effects of initializing MT models with
BERT, GPT-2 and RoBERTa [29] checkpoints. They employ these checkpoints in several
locations and combinations, e.g., RoBERTa in the encoder and GPT-2 in the decoder, or
BERT in the encoder and the decoder. They obtain the best results with BERT-based models,
outperforming a baseline trained from scratch.

Pretrained language models can even be leveraged across language boundaries.
Artetxe et al. [10] show that the attention patterns learned by BERT on one written language
transfer to another written language with minimal fine-tuning. Gogoulou et al. [11] further
illustrate how semantic information is transferred between different languages.

Written language model checkpoints have also been leveraged in the domain of sign
language translation. Miyazaki et al. [30] present a machine translation model from written
text to sign language glosses. They augment the written language encoder with a pretrained
language model.

The above papers use a written language model to initialize an encoder and/or
decoder that processes written language text. The novelty of our work specifically lies in
the transfer of a written language model (BERT) to a sign language encoder: a BERT model
is first pretrained on English text and it is then used to encode German Sign Language
utterances. These utterances are not represented as text. They are modeled as sequences of

https://huggingface.co/models
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feature vectors which are extracted frame per frame in the sign language video. In other
words, we show that the attention patterns of BERT trained on written text transfer in zero
shot to this different language, and more importantly, to this different modality.

3. Materials and Methods
3.1. Sign Language Representation

Due to GPU memory constraints, we are limited to offline feature extraction to obtain
sign language representations from sign language videos. We use the same representation
as in our previous work on FPTs for SLT [6], which is also the same as the representation
used by the model that we consider to be our baseline [14]. This representation is thus
preextracted for the entire dataset.

The feature extractor is a 2D Convolutional Neural Network (CNN) that extracts frame-
wise embedding vectors: i.e., every frame in a video is transformed into a corresponding
feature vector. This 2D CNN is an Inception network [31] pretrained as part of a larger
model for CSLR.

This larger model combines a CNN with a Long Short-Term Memory (LSTM) net-
work and a Hidden Markov Model (HMM). This model was originally used for weakly
supervised learning of SLR [32]. The CNN-LSTM combination performs labeling, while
the HMM performs alignment between labels and video frames. A detailed explanation of
the feature extractor is out of scope for this article; more information can be found in the
original paper [32].

We extract the CNN from the pretrained CNN-LSTM-HMM model and apply it
frame-wise on the RWTH-PHOENIX-Weather 2014T dataset to obtain one feature vector
for every frame. Sequences of these feature vectors are the inputs to the encoder of our
encoder–decoder translation model.

3.2. Sign Language Transformers

We transform a baseline transformer based translation model into an FPT based model.
The baseline, taken from the pioneering work on SLT with transformers [14], has three
layers in both encoder and decoder. We refer to this model as Baseline.

As a first modification to the baseline model, we replace the encoder with the first two
layers of BERT. This number of layers was found to be optimal in previous research [6].
We use the weights of the BERT model trained by its original authors [8]. Hence, BERT is
pretrained to perform masked language modeling and next sentence prediction on English
text. We refer to this model architecture as BERT2RND.

We also perform experiments where the encoder and the decoder are both replaced
with the first two layers of BERT: we refer to this model as BERT2BERT. We use two fine-
tuning schemes, as in our previous work. In the first scheme, we fine-tune only the layer
normalization parameters. In the second scheme, we fine-tune layer normalization parame-
ters and feedforward layer parameters (the original work on FPTs showed that fine-tuning
feedforward layer parameters can yield better performance [13]). The difference is indi-
cated in superscript: BERT2RNDln and BERT2BERTln for the first scheme and BERT2RNDff

and BERT2BERTff for the second. In order to determine whether any increase in translation
scores is due to the architecture of BERT or due to the pretraining on monolingual English
texts, we also consider BERT2RNDscratch and BERT2BERTscratch. These models have the same
BERT based architecture, but they are trained entirely from scratch on the sign language
data (i.e., there is no transfer learning). In summary, we consider the following models:

• Baseline
• BERT2RNDscratch

• BERT2BERTscratch

• BERT2RNDff

• BERT2BERTff

• BERT2RNDln

• BERT2BERTln
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3.3. Sign Language Translation

We consider two approaches to SLT. Firstly, we look at end-to-end translation in the
form of a Sign2Text approach. The sign language representation is the input of the encoder,
and the output of the decoder is the sequence of written language words. Secondly, we
provide additional supervision to the encoder through the form of glosses. The model
jointly performs CSLR and SLT, by predicting glosses from the sign language context. That
is, we add an auxiliary classifier on top of the encoder and train it using Connectionist
Temporal Classification (CTC) [33]. This approach, which is called Sign2(Gloss+Text), has
been empirically shown to improve translation performance [14]. Figure 2 illustrates the
Sign2Text and Sign2(Gloss+Text) network architectures.

Figure 2. A neural SLT model translates from a sign language video to a written language text
using an encoder–decoder model. Solid arrows indicate transformations that are trained end-to-end.
Dashed arrows indicate an offline conversion: for example, the sign language videos are converted
to sign language representations before training the SLT model. The gloss output (top left) is only
present in a Sign2(Gloss+Text) setup.

3.4. Implementation Details

To construct the BERT2RND models from the Transformer baseline, we replace the
three encoder layers with two layers from the BERT-base [8] model. Two layers were
shown to be optimal for BERT2BERTff, BERT2BERTln and BERT2RNDff in our previous
experiments [6]. While the BLEU-4 score was slightly higher with only one layer for
BERT2RNDln, the difference was negligible: we therefore choose two layers for all models to
have comparable complexity. We freeze all parameters in multi-head attention layers except
the layer normalization parameters in BERT2RNDln. For BERT2RNDff, we additionally
fine-tune the feedforward layer parameters. For BERT2RNDscratch, we train all parameters
from scratch on the sign language dataset: we transfer the BERT architecture, but not the
pretrained weights.
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The BERT2BERT models are constructed similarly, by replacing both encoder and
decoder using a BERT model. BERT—an encoder-only model designed for the processing
of monolingual data—only features self-attention, but a decoder in a translation model
also requires cross-attention. Therefore, we add a cross-attention layer that is trained from
scratch (it is not frozen in any of the variants, as that would imply that random attention
patterns would be used).

As per previous research [6], all models are optimized using Adam [34], with a batch
size of 32. We use weight decay (0.001) to reduce overfitting. We decrease the learning
rate by a factor of 0.7 whenever the development set BLEU-4 score has not increased for
800 iterations. We stop training when the learning rate is smaller than 1× 10−7.

Previous research suggests that the choice of a random seed may have a significant
impact on model performance [6]. We account for this variance by using five arbitrarily
chosen random seeds (1, 93, 2021, 251016 and 7366756) and running every experiment for
each seed. We then report average scores and the standard deviation.

Our experiments are built on the open source PyTorch [35] code base from “Frozen
Pretrained Transformers for Neural Sign Language Translation” [6], which is based on
SignJoey [14], in its turn derived from JoeyNMT [36]. We provide the source code that can
be used to reproduce all of our experiments on GitHub (https://github.com/m-decoster/
fpt4slt) (accessed on 21 April 2022).

3.5. Evaluation

We measure the following translation scores: BLEU-4 [37], which corresponds to
translation precision, ROUGE-L [38], which can be interpreted as the translation recall, and
CHRF [39], the 6-gram F-score, with recall weighted twice as high as precision. We also
perform a qualitative analysis by providing example translations of the different models.

4. Results
4.1. Experimental Results

Table 1 provides an overview of the scores on the development set for the different
models. Table 2 shows the same overview for the test set. We can observe several patterns
in these results, which we discuss in the following sections.

4.2. Performance Comparison

In order to determine whether or not FPTs can be used to improve the performance of
SLT models, we compare BLEU-4, ROUGE-L and CHRF scores for the Baseline model with
the BERT2RNDff, BERT2RNDln, BERT2BERTff and BERT2BERTln models. Figure 3 shows
this comparison.

For Sign2Text, we observe a clear difference between the Baseline model and the FPTs:
on average, FPTs outperform the Baseline model in terms of BLEU-4, ROUGE-L and CHRF.
This can not be said for Sign2(Gloss+Text), where the difference is less pronounced and the
BERT2BERTln model performs worse than the Baseline model. This is in line with findings
from previous research, suggesting that the decoder of the translation model benefits from
having more degrees of freedom to model the written language text [6].

Note that these models have a different architecture from the Baseline model. There-
fore, we investigate whether the performance gains for Sign2Text are due to the architecture
or due to the pretraining on a monolingual (English) text corpus.

https://github.com/m-decoster/fpt4slt
https://github.com/m-decoster/fpt4slt
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Table 1. Overview of the scores on the development set for the different models, averaged over five
trials with different random initialization.

Task Model BLEU-4 ROUGE-L CHRF

Sign2Text

Baseline 19.09± 0.59 44.18± 0.25 41.35± 0.75
BERT2RNDscratch 19.67± 0.75 44.02± 1.35 42.00± 1.12

BERT2RNDff 21.58± 0.41 47.36± 0.56 44.44± 0.73
BERT2RNDln 20.95± 0.51 46.46± 0.62 43.78± 0.45

BERT2BERTscratch 17.35± 1.26 41.25± 1.74 39.11± 1.51
BERT2BERTff 20.77± 0.55 46.83± 0.72 43.93± 0.42
BERT2BERTln 19.92± 0.45 46.03± 0.72 42.77± 0.47

Sign2(Gloss+Text)

Baseline 20.68± 0.46 46.39± 0.64 43.79± 0.70
BERT2RNDscratch 21.95± 0.49 47.63± 0.83 44.44± 0.50

BERT2RNDff 21.97± 0.65 47.54± 0.69 44.69± 0.78
BERT2RNDln 20.64± 0.24 46.37± 0.39 43.12± 0.43

BERT2BERTscratch 21.34± 0.73 47.17± 1.00 43.88± 0.89
BERT2BERTff 21.44± 0.69 47.41± 0.51 44.33± 0.99
BERT2BERTln 19.77± 0.39 46.19± 0.59 42.77± 0.48

Table 2. Overview of the scores on the test set for the different models, averaged over five trials with
different random initializations.

Task Model BLEU-4 ROUGE-L CHRF

Sign2Text

Baseline 18.85± 0.69 44.01± 0.70 41.69± 0.91
BERT2RNDscratch 19.45± 0.61 43.79± 1.20 42.36± 1.02

BERT2RNDff 21.39± 0.63 46.67± 0.63 44.66± 0.77
BERT2RNDln 20.74± 0.58 46.24± 0.82 43.84± 0.63

BERT2BERTscratch 17.24± 1.75 41.15± 2.53 39.74± 2.19
BERT2BERTff 21.07± 0.80 46.49± 0.79 44.41± 0.69
BERT2BERTln 19.98± 0.35 46.02± 0.72 43.02± 0.47

Sign2(Gloss+Text)

Baseline 20.18± 0.64 45.59± 1.13 43.78± 0.81
BERT2RNDscratch 21.82± 0.22 47.25± 0.32 45.05± 0.24

BERT2RNDff 21.52± 0.59 47.00± 0.67 44.82± 0.70
BERT2RNDln 20.62± 0.73 46.27± 0.66 43.66± 0.76

BERT2BERTscratch 21.36± 0.84 47.04± 0.88 44.44± 0.94
BERT2BERTff 21.23± 0.88 47.22± 0.64 44.76± 0.94
BERT2BERTln 19.44± 0.63 45.71± 0.70 42.87± 0.30

4.3. Model Architecture

Any potential performance gain from using the BERT architecture, compared to
using the baseline architecture, can be observed by comparing the BERT2RNDscratch and
BERT2BERTscratch models with the Baseline model. In Figure 4, there appears to be no
difference between scratch and the Baseline model for Sign2Text, suggesting that the choice
of architecture (between BERT or Baseline) has little impact on the performance of the
models on unseen data.



Information 2022, 13, 220 9 of 17

Figure 3. The FPT models outperform the Baseline model for the Sign2Text task. For the
Sign2(Gloss+Text) task, the difference is less pronounced.

Figure 4. For Sign2Text, using the BERT2RND or BERT2BERT architecture does not yield performance
gains. For Sign2(Gloss+Text), we observe slight performance gains compared to the Baseline model.

4.4. Glosses

In the previous sections, we noted that the models trained from scratch (Baseline,
BERT2RNDscratch and BERT2BERTscratch) benefit from the additional gloss information,
while the FPTs do not benefit as much or at all.

From these results, we can draw two conclusions from different points of view. Firstly,
by using FPTs, we can close the gap between Sign2Text and Sign2(Gloss+Text) performance.
Secondly, using FPTs has little benefit when we train the translation model with additional
gloss level supervision. In other words, in situations where no gloss level annotations are
available, FPTs can be beneficial to the model’s translation performance.

We can reconcile these points of view via the following explanation of this phe-
nomenon. We first remark that every one of these models suffers from overfitting on the
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training data (as will be illustrated in the next section). Then, we remark that adding
the auxiliary supervision in the form of glosses with the Sign2(Gloss+Text) training task
regularizes the model. We observe that using FPTs also introduces a form of regularization:
the attention patterns learned from written language texts transfer to SLT so that we no
longer need to train the attention modules and therefore we can freeze the majority of
the pretrained transformer’s parameters to regularize the model. We see diminishing
returns on the benefits of regularization when these two forms (gloss information and FPTs)
are combined.

4.5. Learning Curves

We generate learning curves by combining the median models (see Appendix A) of
all model types. We use 25%, 50%, 75% and 100% of the training set to train a model and
plot the BLEU-4 performance on the training set and development set in function of the
training set size.

Figure 5 shows the learning curves for Sign2Text on the left and Sign2(Gloss+Text) on
the right. Figure 6 zooms in on the development set curve and combines the curves for
Sign2Text and Sign2(Gloss+Text) in a single graph. Here, we clearly observe (1) that all
models are heavily overfitting to the training set, (2) that Sign2(Gloss+Text) models tend to
perform better on unseen data on average, and (3) that the slope of the development set
curve is flattening as the size of the training set increases.

Figure 5. The learning curves for all Sign2Text models (left) and all Sign2(Gloss+Text) models
(right) show clear overfitting. They also show that adding additional data would not yield large
improvements to the BLEU-4 scores of the models.

Figure 6. Zooming in on the development set curves of Figure 5, we observe that Sign2(Gloss+Text)
models outperform Sign2Text models on average, and that they have lower variance. The slopes,
however, are similar.

This implies that the current models, while they are heavily overfitting, will not benefit
majorly from additional training data. Instead, the primary factor limiting performance is
not the quantity of the data, but rather the quality. Data cleaning and the extraction of more
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salient representations for the sign language videos are required to further close the gap
between training and development set scores.

4.6. Example Translations

The best performing FPT, in terms of the average development set BLEU-4 score,
according to Table 1, is BERT2RNDff for Sign2Text and Sign2(Gloss+Text). We take the
median BERT2RNDff models (see Appendix A) for these two tasks. We then extract
three reference translations and the hypotheses of the models. We also do this for the
Baseline model. The three reference translations are taken at random from the test set (with
indices 114, 25 and 281 generated randomly with seed 42). We compare these translations
qualitatively, to determine whether there is any clearly observable difference in the quality
of the translations between the best performing FPT and the Baseline. The translations
are shown in Tables 3–5. We provide all generated translations for all models, as well as
reference translations, in Supplementary Material (S1).

In Table 3, we see an example of our models failing to correctly translate the sentence.
The word “freundlich” (friendly) occurs in the translations, but the meaning of the forecast
is missed. Some models predict sunny weather (Sign2Text Baseline) while others predict
rain (Sign2(Gloss+Text) Baseline) or wind (Sign2(Gloss+Text) BERT2RNDff). Geographical
areas are missed entirely. Note that “biskaya” only occurs five times in the training set
and “shetlandinseln” does not occur in the training set at all. Table 4 shows examples of
translations that are not grammatically correct, but convey the main information in the
weather forecast: rain and thunder. Finally, Table 5 shows perfect translations for one type
of sentence: the announcement of the day which will be discussed next in the weather
forecast. These sentences have a rigid structure that is repeated throughout the entire
dataset, making them easy to translate. All of the trained models can correctly translate
this example.

Table 3. Example hypotheses generated by the median BERT2RNDff model and the Baseline model.
English translations are obtained using Google Translate (1 out of 3).

Model Hypothesis

Example: 03July_2011_Sunday_tagesschau-1665
Reference: in den übrigen landesteilen wird es meist freundlich dank einer hochdruckzone
die von der biskaya bis zu den shetlandinseln reicht
English translation: in the remaining parts of the country it is mostly friendly thanks to a
high pressure zone that stretches from the bay of biscay to the shetland islands

Sign2Text
Baseline sonst klart es verbreitet auf und es wird später auf trotzdem wird es recht freund-

lich und es fällt dort bis in tiefe lagen
otherwise it clears up widely and it gets up later, nevertheless it becomes quite friendly and
it drops down to low levels there

BERT2RNDff im übrigen land wird es verbreitet freundlich die macht sich morgen dann in den
kommenden tagen von der ems bis nach brandenburg
in the rest of the country it is spreading friendly which will then make itself felt tomorrow
in the coming days from the ems to brandenburg

Sign2(Gloss+Text)
Baseline sonst wird es deutlich freundlicher und erreicht das hoch nur einen recht freundl-

iches wetter in den kommenden tagen mit den regenwolken
otherwise it will be much friendlier and the high will only be quite friendly weather in the
coming days with the rain clouds

BERT2RNDff sonst wird es meist freundlich und von westen weht ein schwacher bis mäßiger
wind aus unterschiedlichen richtungen
otherwise it will mostly be friendly and a weak to moderate wind will blow from the west
from different directions
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Table 4. Example hypotheses generated by the median BERT2RNDff model and the Baseline model.
English translations are obtained using Google Translate (2 out of 3).

Model Hypothesis

Example: 12July_2010_Monday_tagesschau-374
Reference: morgen gibt es im osten und südosten bei einer mischung aus sonne und wolken zum teil kräftige schauer
oder gewitter
English translation: tomorrow there will be some heavy showers or thunderstorms in the east and southeast with a
mixture of sun and clouds

Sign2Text
Baseline morgen im osten und südosten noch sommerliche werte am nachmittag einzelne schauer und gewitter

tomorrow in the east and southeast some showers and thunderstorms in the afternoon
BERT2RNDff morgen im osten und südosten zunächst noch freundlich sonst viele wolken und zum teil kräftige gewittrige regenfälle

tomorrow in the east and south-east initially still friendly otherwise lots of clouds and partly heavy thundery rain

Sign2(Gloss+Text)
Baseline morgen im osten und südosten noch zweistellige regenfälle sonst teils wolkig oder zum teil heftige gewitter

tomorrow in the east and south-east there will still be double-digit rainfall, otherwise partly cloudy or partly heavy thunderstorms
BERT2RNDff morgen im osten und südosten noch teilweise gewittrige schauer

partly thundery showers in the east and southeast tomorrow

Table 5. Example hypotheses generated by the median BERT2RNDff model and the Baseline model.
English translations are obtained using Google Translate (3 out of 3).

Model Hypothesis

Example: 02December_2009_Wednesday_tagesschau-4039
Reference: und nun die wettervorhersage für morgen donnerstag den dritten dezember
English translation: and now the weather forecast for tomorrow thursday the third of december

Sign2Text
Baseline und nun die wettervorhersage für morgen donnerstag den dritten dezember

and now the weather forecast for tomorrow thursday the third of december
BERT2RNDff und nun die wettervorhersage für morgen donnerstag den dritten dezember

and now the weather forecast for tomorrow thursday the third of december

Sign2(Gloss+Text)
Baseline und nun die wettervorhersage für morgen donnerstag den dritten dezember

and now the weather forecast for tomorrow thursday the third of december
BERT2RNDff und nun die wettervorhersage für morgen donnerstag den dritten dezember

and now the weather forecast for tomorrow thursday the third of december

Overall, we observe that sentences with rigid reoccurring patterns are translated
correctly by our models. We see that general concepts such as rain or friendly weather
are present in the models’ translations, but that output translations can be grammatically
incorrect or can fail to convey the full message. Geographical information appears to be
more challenging: region names are in the minority in the dataset or are even completely
unseen to the models.

5. Discussion
5.1. Discussion of Results

Current SLT datasets, for example the RWTH-PHOENIX-Weather 2014T dataset con-
sidered in this article, are small compared to datasets for written language translation.
Additionally, SLT is complex especially because sign languages have no standardized
written form: we are required to extract sign language representations from videos. This ex-
traction is part of the unsolved domain of SLR. This lack of data, as well as the complex task
of feature extraction, means that SLT researchers are working with small and noisy datasets.
As a result, current translation models suffer from severe overfitting to the training data.
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To reduce the problem complexity, we leverage pretrained written language models.
We show that the self-attention patterns of a pretrained (on English text) BERT-base model
transfer in a zero-shot situation to SLT, both in an encoder and a decoder setting, even if
we only use two layers of BERT-base. We furthermore show that the gains are not due to
the different architecture, but rather stem from the pretraining task. As already shown in
previous research, training with additional gloss level information as an auxiliary task can
improve the performance of SLT models. However, in the absence of gloss level annotations,
applying FPTs can augment the performance by a comparable amount. The application of
FPTs can therefore be especially beneficial in cases where gloss level annotations are not
available or hard to obtain.

We further observe, by charting learning curves, that additional data will likely not
improve model performance for the RWTH-PHOENIX-Weather 2014T dataset. Instead, we
suggest investigating the effects of data cleaning and researching more powerful feature
extraction techniques.

We also perform a limited qualitative analysis, by presenting three example transla-
tions for the baseline and the best performing FPT variant. We see that both models can
grasp the general meaning of the message but do not yield accurate translations when
considering complete sentences. Here, we do not observe a notable difference in trans-
lation quality between the different models. The models especially have difficulty with
low-frequency signs and out-of-vocabulary signs: this indicates an important challenge for
future work.

Our research is limited in the fact that we only evaluated FPTs on a single dataset and a
single sign language representation. Future research may investigate whether FPTs have the
same regularization benefit for different data and different sign language representations.

5.2. Representation Power of Neural Sign Language Translation Models

Neural SLT models are typically written language MT models with minor changes
to adapt them to the sign language modality [1,14,15,25]. However, we ask the question:
what is the representation power of such models? Understanding how SLT models work is
challenging, as they are “black boxes”: we can observe the input and output of a model,
but its inner workings are difficult to interpret.

We can decompose the complete SLT pipeline into two parts. The first part is related
to the information extraction from video: the design of a sign language tokenizer [1]. The
tokenizer T transforms a video v into a sequence of N tokens s = (s1, s2, . . . , sN): T(v) = s.
s is an approximation of the signed content in the video v. The second part of the SLT
pipeline is the translation model R itself, which translates the sign language tokens into
written language tokens. It models the conditional probability p(w|s) of the generated
written language utterance w = (w1, w2, . . . , wM) given the sign language utterance s. In
other words, the SLT model output is y = R(s) = R(T(v)).

The sign language representation s, that is, the output of the tokenizer T, is the input to
the translation model. To obtain high quality translations, this representation must be mean-
ingful and model the semantics of the sign language utterance. Orbay and Akarun [23]
show that the choice of tokenizer has a significant impact on model performance. The
quality of the sign language representation entails a bound on the expressive power of the
downstream machine translation model.

In the scientific literature, we find two main approaches towards the design of T [25].
First, there are gloss based SLT models (Gloss2Text and Sign2Gloss2Text). Here, the sign
language utterance is modeled as a sequence of sign language glosses. Such a repre-
sentation models the semantics of the sign language utterances. Second, frame based
or clip based representations are morphological representations based in the visual do-
main (Sign2Text and Sign2(Gloss+Text)). When such representations are used, the task of
modelling semantics falls on the sign language encoder (which is part of the translation
model). Belinkov et al. [40] show, in their discussion of the representation power of written
language neural MT models, that character based models focus primarily on morphology,



Information 2022, 13, 220 14 of 17

whereas sub-word based models focus on semantics. Sign2Text and Sign2(Gloss+Text) mod-
els can be likened to character models, whereas Gloss2Text and Sign2Gloss2Text models
are similar to sub-word models.

The errors made by deep neural networks can be decomposed into the approxima-
tion error, estimation error and optimization error [41]. As both T and R are deep neural
networks, they both make approximation, estimation and optimization errors. The perfor-
mance of the complete SLT pipeline is bounded by the errors introduced by T and by R, and
any errors made by T are propagated to R. The simpler the sign language representation,
the higher the approximation error of T, and thus of R. In our case, we use a single sign
language representation for all experiments, hence T is fixed and we cannot reduce the
error term associated with it. Therefore, we must reduce the error term associated with the
translation model R.

When a frame based representation is used (as is the case in our experiments), the
translation model is tasked with modeling the sign language utterance semantics from the
morphological representation. This is a significant challenge, and it increases the potential
estimation error of the translation model. Previous research has facilitated this task by
adding gloss level supervision through the use of Sign2(Gloss+Text) models [14]: as the
encoder is tasked to perform CSLR, i.e., to predict glosses, it learns to model semantics. This
is possible (shown by Camgoz et al. [14]), so the frame based representation that we use
here is rich enough to extract semantic information from. FPTs provide a different approach
to the extraction of this semantic information from the sign language representation, and
they do not require gloss annotations. BERT was trained to model semantics with English
sub-word units. As Gogoulou et al. [11] show, semantic information can be transferred
across language boundaries. FPT based SLT models can leverage this pre-learned semantic
information to better model the sign language utterance s.

The errors of T are fixed (because T itself is fixed). T therefore determines a lower
bound on the error of the SLT model. Here, we reduce the total error by lessening the error
of R: we introduce semantic information into the encoder of the translation model. We can
do this without adding additional gloss level information, through the integration of FPTs
into the sign language model.

An exhaustive theoretical analysis (e.g., as performed by Qi et al. [41] for vector-to-
vector regression) is out of the scope of this article. However, in future research, such an
analysis may provide useful information on the amount of research effort required in the
design of T and R.

6. Conclusions

We transfer BERT-base, pretrained on an English text corpus, to an SLT task from
German sign language video to German text. The self-attention patterns of BERT-base
transfer in zero-shot to this new task, modality and language. This application of Frozen
Pretrained Transformers (FPTs) improves the performance (in terms of BLEU-4, ROUGE-L
and CHRF) of SLT models. When gloss level annotations are available, this improvement is
on average 1 BLEU-4 (best model: +1.34) compared to a baseline trained from scratch. When
gloss level annotations are not available and the task at hand is end-to-end video-to-text SLT,
FPTs widen the gap with the baseline: here, they provide an average increase of 1.95 BLEU-
4 (best model: +2.54). Qualitative inspection of the generated translations suggests that
the increase in scores does not necessarily correlate with the translation quality. However,
our research into the behavior of FPTs provides us with some additional useful insights
into the task of SLT. Neither the baseline, nor FPTs, would benefit from additional data as
much as they would benefit from improving the quality of the training data. Measures to
take include data cleaning and researching improved feature extraction techniques from
the domain of SLR. Therefore, in future work, we will focus on reevaluating existing and
designing new feature extraction techniques.
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Abbreviations
The following abbreviations are used in this manuscript:

MT Machine Translation
SLR Sign Language Recognition
CSLR Continuous Sign Language Recognition
SLT Sign Language Translation
FPT Frozen Pretrained Transformer
BERT Bidirectional Encoder Representations from Transformers
GPT-2 Generative Pretrained Transformer 2
RND Random
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
HMM Hidden Markov Model

Appendix A

As discussed, the experiments for the various models are repeated with different
random initializations, by choosing arbitrary random seeds. We observe in the experiment
results that there is nonnegligible variance in the BLEU-4 scores. Therefore, for further
analyses, we do not choose the best model from every five runs, but, instead, the median
model. We do this by selecting the model with the median BLEU-4 score out of the five
runs. The seeds that result in these models, per model type, are listed in Table A1.

Table A1. Random seeds resulting in the model with median BLEU-4 score, for every model-task
combination.

Task Model Seed

Sign2Text

Baseline 1
BERT2RNDscratch 93

BERT2RNDff 2021
BERT2RNDln 1

https://www.mdpi.com/article/10.3390/info13050220/s1
https://www.mdpi.com/article/10.3390/info13050220/s1
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Table A1. Cont.

Task Model Seed

Sign2Text
BERT2BERTscratch 7366756

BERT2BERTff 251016
BERT2BERTln 2021

Sign2(Gloss+Text)

Baseline 93
BERT2RNDscratch 93

BERT2RNDff 7366756
BERT2RNDln 93

BERT2BERTscratch 251016
BERT2BERTff 7366756
BERT2BERTln 93
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