
Citation: Ayrault, M.; Kühne, U.;

Borde, É. Finding Optimal Moving

Target Defense Strategies: A

Resilience Booster for Connected

Cars. Information 2022, 13, 242.

https://doi.org/10.3390/info13050242

Academic Editors: Giedre

Sabaliauskaite, Jeremy Bryans and

Farhan Ahmad

Received: 13 April 2022

Accepted: 2 May 2022

Published: 9 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Authors’ Note: This work is

supported by the research chair

Connected Cars and Cyber Security

(C3S) founded by Nokia, Renault,

Thales, Valeo, Wavestone, Fondation

Mines-Télécom and Télécom Paris.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Finding Optimal Moving Target Defense Strategies:
A Resilience Booster for Connected Cars
Maxime Ayrault *, Ulrich Kühne * and Étienne Borde

Télécom Paris, Institut Polytechnique de Paris, Information Processing and Communications Laboratory (LTCI),
91120 Palaiseau, France; etienne.borde@telecom-paris.fr
* Correspondence: maxime.ayrault@telecom-paris.fr (M.A.); ulrich.kuhne@telecom-paris.fr (U.K.)

Abstract: During their life-cycle, modern connected cars will have to face various and changing
security threats. As for any critical embedded system, security fixes in the form of software updates
need to be thoroughly verified and cannot be deployed on a daily basis. The system needs to commit
to a defense strategy, while attackers can examine vulnerabilities and prepare possible exploits before
attacking. In order to break this asymmetry, it can be advantageous to use proactive defenses, such as
reconfiguring parts of the system configuration. However, resource constraints and losses in quality
of service need to be taken into account for such Moving Target Defenses (MTDs). In this article, we
present a game-theoretic model that can be used to compute an optimal MTD defense for a critical
embedded system that is facing several attackers with different objectives. The game is resolved using
off-the-shelf MILP solvers. We validated the method with an automotive use case and conducted
extensive experiments to evaluate its scalability and stability.

Keywords: moving target defense; game theory; automotive systems

1. Introduction

In the automotive domain, there is a clear trend towards increased connectivity: many
new services are available today that demand a reliable communication between the car and
its owner (e.g., via smartphone applications), the manufacturer, or even the infrastructure.
Many cars offer a local WiFi network and Bluetooth. Furthermore, semi-autonomous
driving—such as parking and lane-keeping assistants or automatic emergency braking—
is now standard in middle to higher class models. These functionalities require a large
number of sensors such as cameras, radars, or other distance sensors. While these services
are supposed to increase the safety of the passengers (and of pedestrians), they entail new
security risks. Indeed, many attacks have been demonstrated in the recent years, some of
them putting the lives of the car’s passengers at risk [1].

The security of connected cars is taken very seriously by the manufacturers, and it has
become a major design goal. For instance, in a typical system architecture of a connected
car, the subsystems are divided into different domains, and any message crossing a domain
border passes through a secure gateway. This allows filtering unauthorized messages and
preventing an attacker who has compromised one subsystem from spreading to other—
more critical—subsystems. However, such protections are of a static nature. The defenses
are programmed and configured once before the car leaves the factory. Because of strict
certification requirements, software updates are very costly and usually must be performed
by licensed workshops. This makes the relation between potential attackers and the system
under attack an asymmetric one: the attacker can analyze the car’s system in order to find
vulnerabilities and prepare an exploit that can then be applied—potentially to a whole fleet
of cars in parallel.

In order to limit the risk of this type of large-scale attack, proactive defenses are an
interesting option. In this paper, we consider a class of bio-inspired techniques, called
Moving Target Defense (MTD). The basic idea of an MTD is to proactively modify the

Information 2022, 13, 242. https://doi.org/10.3390/info13050242 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info13050242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-0855-8223
https://doi.org/10.3390/info13050242
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13050242?type=check_update&version=1

Information 2022, 13, 242 2 of 24

configuration of a system, thereby making previously acquired knowledge of the attacker
useless and preventing deterministic attacks. There are several variants of MTDs, targeting
different aspects of the system, such as the network configuration, data representations, or
the execution environment.

Real-time critical embedded systems (CRESs)—such as connected cars or other in-
telligent transportation systems—are an interesting application domain for MTDs. Since
a car is typically in use for more than ten years, it will be exposed to newly discovered
vulnerabilities (zero-day attacks) during its life-cycle with a high probability. Furthermore,
since such systems have strict resource constraints—e.g., regarding computational power,
storage, and communication bandwidth—they are difficult to defend using traditional
methods. MTDs can help slow down the implementation and deployment of new attacks
when a new vulnerability is discovered, and thereby limit its scope. This can be seen as
a way to increase the resilience of the system under attack. The resilience of a system is
defined as the ability to provide its services safely, even in the face of unknown attacks.
This can be achieved by, among other things, degrading certain services or returning the
system to a safe state before critical damage is done.

However, these defense techniques come at a cost: the reconfiguration requires time
and computational resources, and during the reconfiguration phase, the service delivered
by the component might be interrupted or degraded. For example, changing IP addresses
induces communication overhead and temporary connection or packet loss. If we want to
combine several MTD techniques in a distributed system such as a connected car, we need
a good strategy, which determines where, how, and when to defend, i.e., which components
should be reconfigured in which way and at what frequency. Clearly, the question of when
is in fact how often, and the easiest answer is as often as possible; however, such a strategy
is overly pessimistic, and it does not take into account the mentioned costs. In this paper,
we want to answer the following question: How can the benefits and costs of using an
MTD be modeled to find optimal MTD strategies (i.e., where and when to move) in the CRES
domain? We propose a combination of risk analysis techniques, MTD mechanisms, and a
game-theoretic approach to determine the best defense strategy to adopt in terms of the
frequency for each MTD method used.

At this time, the majority of work on MTDs focuses on the issue of where and how,
proposing and evaluating new mechanisms of MTDs [2,3]. There are several MTD methods
that can be applied to CRESs and for which the question how has already been addressed:
Burow et al. [4] analyzed the applicability of some of these techniques in the context of
real-time systems. This can be seen as a good starting point for the questions we try
to answer.

The problem of finding an optimal strategy is best answered by game-theoretic meth-
ods. Indeed, there exist several works in the context of MTDs [5–9], but these contributions
are mainly focused on web applications or general-purpose computing systems, and there-
fore, their requirements, MTD mechanisms, and models are not suitable for CRES design.
Some studies have been conducted to evaluate the effectiveness of MTDs in the context
of risk analysis methods [10]. Regarding the underlying game, we identified Bayesian
Stackelberg games as the most suitable model for our purpose [11], since it reflects well
the asymmetry and the probabilistic nature of the attacker. Besides the choice of the the-
oretic framework and the method for its resolution, a common problem of game-based
approaches to determine is the input. Indeed, many parameters need to be taken into
account in order to establish an appropriate model of a real-world application such as a
connected car architecture. Therefore, we propose a complete methodology that helps to
determine the input parameters for the game.

In summary, the contributions of this paper are:

1. A game theoretic model for the defense of CRESs;
2. A resolution method based on the transformation to an MILP problem;
3. A complete methodology to define the input parameters of the presented model;
4. An experimental case study for a typical connected car architecture,

Information 2022, 13, 242 3 of 24

The article is organized as follows: In Section 2, we present the necessary background
in order to keep the article self-contained. In Section 3, we introduce a motivating example
and we outline the problem we are trying to solve. Section 4 presents our model, as well as
a methodology allowing characterizing the different input parameters. In Section 5, we
further formalize the model as a game, giving rise to a Mixed-Integer Quadratic Program
(MIQP). Section 6 shows the transformation of the problem to a Mixed-Integer Linear
Program (MILP), as well as its resolution and the form of the obtained strategies. In
Section 7, we present a case study for the proposed method and further experimental
evaluations. The results and limitations are discussed in Section 8. Related work is
presented in Section 9, before concluding the article in Section 10.

The work is based on previous work published in [12]. This article differs from the
previous one by a new and refined model, extensive experimentation, including a stability
analysis, and a methodology to define the input parameters.

2. Background
2.1. Moving Target Defense

Before an attacker can successfully launch an attack, he or she must gather as much
information as possible about the targeted system. Depending on the type of target, the
information gathered during this reconnaissance phase can include, for example, network
addresses, open ports, the version of the operating system in use, libraries, and running
applications. This will help an attacker develop an appropriate exploit to be used in the
attack phase.

This gives the attacker a natural advantage: she/he can spend the time and effort
necessary to find flaws in the targeted system and attack whenever he or she wants. The
defender, on the other hand, must establish a defense strategy beforehand, when designing
the system. Thus, he/she can take into account known vulnerabilities, but will have
difficulties in protecting the system against unknown attack vectors. This is why security
updates are crucial to protect a system throughout its life-cycle. However, unknown
exploits (zero-day) always remain a threat. In addition, frequent updates are not an option
for safety-critical embedded systems, where the software must be thoroughly checked and
certified before being released.

Moving Target Defenses (MTDs) are a set of defense techniques aimed at breaking the
asymmetry between attacker and defender [2,13,14]. The general idea behind MTDs is to
reduce the knowledge (utility) that an attacker can acquire by dynamically reconfiguring one
or more features of the system. The goal is to (i) increase the time the attacker needs to
discover vulnerabilities, (ii) reduce the likelihood that the attack will propagate through the
system, and (iii) gain valuable time to bring an attacked system to a safe state. MTD tech-
niques can be applied proactively (i.e., periodically) or reactively (i.e., when the presence of
an attacker is detected or suspected). MTDs represent a practical and effective approach to
improving cyber security and delaying the implementation and propagation of potential
attacks. In particular, the use is to some extent indifferent for the type of attack and thus
provides at least some protection against unknown exploits.

The MTD techniques have been classified into the following four categories [13,15,16]:

• Runtime environment (e.g., modify the operating system’s address space layout);
• Data (e.g., modify data representation in memory);
• Software (e.g., switching between multiple implementations of the same services);
• Network (e.g., switching between multiple active IP addresses and open ports and

modifying the network topology).

The use of MTDs in CRESs such as connected vehicles needs to take into account
several constraints. Indeed, with limited resources and Quality of Service (QoS), as well as
strict timing requirements to respect, not all types of MTDs can be realistically applied in
CRESs, and if used, the time and frequency are an important issue.

As an example, changing the runtime environment can be performed on a CRES
at startup or while the system is not performing any critical functions by restarting it.

Information 2022, 13, 242 4 of 24

This mainly includes the use of techniques such as Address Space Layout Randomization
(ASLR) [16] or its variant, KASLR [17]. Those techniques are used to randomly shuffle the
basic block addresses of an application or the OS in memory to make direct Return-oriented
Programming (RoP) attacks [18] unusable.

Another practical MTD is to dynamically change the IP address of a system [19], as
well as information about the used network. This will slow down or prevent an attacker
from finding and tracking the system. Similar techniques can be also applied to any network
asset, such as the Bluetooth MAC address or on the Tire Pressure Monitor System (TPMS)
ID of a vehicle.

In contrast, the use of data-type or software MTDs in a CRES is difficult, due to limited
computational resources and storage capacity. Physical or software redundancy is often
not an option regarding budgetary and space constraints.

In conclusion, the use of MTDs can add a real advantage in defense for a CRES, but
this requires thorough planning and adjustment before incorporating them into the system.

2.2. Game-Theoretic Concepts

Many decision problems can be modeled using game-theoretic notions, allowing ap-
plications in various domains, from program synthesis to resource allocation in smart grids.
Game theory provides a natural way to model security problems: it allows formalizing
the objectives of potential attackers in terms of objectives and provides a mathematical
framework for reasoning about defense strategies. The use of game theory [20] provides a
representation of the problem posed in the form of an optimization problem.

In general, in a mathematical game, each player chooses from a set of available actions.
The choice of actions of the different players can be made in different ways corresponding
to two basic categories of games:

• Simultaneous games in which the players choose their respective actions at the same
time without knowing in advance the choices of the other players.

• Sequential games in which the players are playing in a (fixed) order, such that all
other players can observe the first player’s action before making a decision.

In this article, we focus on sequential games and in particular on a Stackelberg
game [21], where the first player is denoted as the leader and the others as the follow-
ers. This reflects the fact that the defender must commit to a defense that can be taken
into account by potential attackers. In this context, the leader would be represented by the
vehicle and the followers by the different types of attackers.

Choosing an action to perform results in a reward, which could be more or less attractive
depending on the adversary’s choice. The payoffs of choosing an action for the different
players are defined in terms of reward functions: the value of the payoff depends on the
combination of actions chosen by the different players. The most common way to represent
reward functions is by a matrix (see for example Table 1), called the normal form. In this
example, the attacker has the choice to attack or not to attack and the defender to defend
or not to defend. For each combination of actions, the table gives a pair of constants,
corresponding to the reward for each player: ra for the attacker and rd for the defender.

Table 1. Attacker/defender normal-form game.

Defend Not Defend

Attack (ra1, rd1) (ra2, rd2)

Not Attack (ra3, rd3) (ra4, rd4)

The solution we are looking for—once the problem at hand is represented as a game—
is an optimal strategy, which tells us which actions to take in order to maximize the gain of
the defender. Such a strategy can be pure or mixed. With a pure strategy, a player chooses a
single action to perform, while with a mixed strategy, the player randomly chooses a set of

Information 2022, 13, 242 5 of 24

actions according to some probability distribution. In a Stackelberg attack/defense game, it
is clear that the defender—who occupies the role of leader—must adopt a mixed strategy
in order to maximize his/her gain. On the other hand, it is common to consider that the
attacker adopts a pure strategy.

In their standard form, Stackelberg games are perfect information games. This means
that all players have perfect knowledge of the characteristics of the game, in particular
the reward functions. However, this is not a realistic assumption for the applications we
are investigating: As an example, a terrorist might want to cause maximal damage by
manipulating the brakes, while someone interested in financial gain will prefer to block
the engine in the first place, in order to demand a ransom. A third attacker might want to
extract personal data or to track a vehicle. The defender does not know in advance which
attacker he/she is going to face. This variety makes it impossible to define a reasonable
reward function that covers all of the attackers’ objectives.

We therefore use imperfect information games, Bayesian games [22]. In this variant, there
can be several types of adversaries, each associated with a reward function. Furthermore,
we define an a priori probability distribution over the different player types, reflecting the
probability of encountering one or the other type.

A Bayesian game [23] is represented by a set of players G in which each player g must
be of a given type of the set of type θg. In this work, the games we consider have two
players: the defender d and the attacker a. While there is only one type of defender, θa
contains as many elements as there are attackers. During the game, the attacker knows
her/his own type, but it is unknown to the defender. A probability distribution γ defines
the probabilities for each of the players to be of a specific type. Note that the type is chosen
once before the game starts.

Each player g has a finite set of available actions Ag. The reward for each player then
depends on the actual type of players and the chosen actions: Rg : θd × θa × Ad × Aa → R
for g ∈ {a, d}.

There exists a way to transform a Bayesian game into normal form thanks to the
transformation of Harsanyi [24]. This allows us to find a solution to this problem through a
linear program to find the best possible existing strategy.

2.3. Complementary Slackness

The search for an optimal strategy gives rise to an optimization problem. In some
cases, it can be efficiently solved using for example linear programming.

In general, a linear program is represented by an objective function to maximize and a
set of constraints, such as presented in the equation below. Here, x corresponds to a vector
of variables we are trying to determine, c, b are vectors, and A is a matrix.

max
x

cT × x (1)

Where: A× x ≤ b

and: x ≥ 0

This is also called the primal of the problem. It can be rewritten in another way, in order to
try to find an equivalent solution, called the dual of the problem, presented in (2). Here,
y corresponds to the variable we are trying to determine, and c, A, and b are the same
elements as in the primal.

min
y

bT × y (2)

Where: A× y ≥ c

and: y ≥ 0

In order to show that we have found an optimal solution to the original problem, we
must verify the complementary slackness, which says that if x0 is a solution to the primal and

Information 2022, 13, 242 6 of 24

y0 is a solution to the dual and cT × x0 = bT × y0, then x0 and y0 correspond to the optimal
solution of the problem.

In our model, complementary slackness is added as a constraint in order to force the
attacker to choose an optimal solution. This reflects the fact that we assume a rational
attacker.

2.4. Security Risk Analysis

In the context of critical system design, risk analysis is the systematic investigation of
potential security risks. Its goal is to qualitatively or quantitatively evaluate the possibility
that an adversary can cause damage by attacking the system. It examines the existing entry
points of the system, their potential flaws, the difficulty of attacking them, as well as the
consequences in case of a successful attack.

Performing a risk analysis is a complex process, and it needs to take into account the
stakeholders that are concerned with the examined system and its environment. There
exist several standardized methodologies and guidelines explaining how to perform a
security risk analysis [25–27]. As an example, in the European context, the EBIOS standard
gathers a common base of concepts and analysis tools while respecting the ISO 27001
standard on security risk management [25]. A common tool of such methods is attack
trees [26] or attack graphs, which help to model the steps that an attacker needs to take
to compromise a system and to estimate the success probability of the considered attacks.
The exact methodologies are beyond the scope of this article. For the work at hand, we are
mainly interested in the outcome of a risk analysis process, in the form of the quantitative
score of the identified threats.

One such metric is the Common Vulnerability Scoring System (CVSS) [27]. The CVSS
score is composed of three metrics, base, temporal, and environmental. The base score reflects
the level of danger of a vulnerability according to the system characteristics that do not
change over time. The temporal metrics allow adjusting the base score thanks to the
elements changing over time such as the degree of evolution of an exploit kit. The more
mature or easy to use the exploit kit is, the higher the score will be. The environmental
metric allows completing the basic and temporal score by adding information related to a
specific environment.

The final CVSS score is a value between 0 and 10, where 10 corresponds to the highest
threat level. In this work, the CVSS score is used as an input parameter of our model
(see Section 4.3). CVSS has already been used in other work based on game-theoretic
models [28].

3. Motivating Example

Connected cars are essentially critical and connected real-time embedded systems,
which operate on average for 15 years. These vehicles can be purchased by virtually
anyone with a sufficient budget, including someone looking for a way to attack them. As
a consequence, an attacker has time to study a specific vehicle and its defenses in order
to discover vulnerabilities and ways to exploit them. An attacker who owns a vehicle
can also use this vehicle to gain access to the manufacturer’s network in order to mount
remote attacks on vehicles on the same network. This could eventually allow infecting an
entire fleet.

Regarding the security of connected cars, software updates are difficult to perform
on these widely distributed systems with limited computational and communication
capacities. This means that car manufacturers must mainly rely on defenses deployed
when the vehicle is sold or updated. The asymmetry between attackers and defenders is
therefore very significant in the context of connected cars.

An example of the internal architecture of a connected car is presented in Figure 1.
This type of architecture is called architecture by domain because the different services of the
vehicle are separated into four domains according to their role:

Information 2022, 13, 242 7 of 24

1. Infotainment: services related to the user experience such as the radio, the on-board
screen, and various applications accessible to the user.

2. Core Services: critical services for the operation of the vehicle such as cruise control,
brake controls, or lane-keeping assistant.

3. Management: services dedicated to diagnostics and updates of the vehicle, such as
the On-Board Diagnostic (OBD-II) plug.

4. Shared Services: regroups services allowing communication with the outside world
(V2X), as well as some services shared among several domains.

Core Services

Shared Services

Management

Infotainement

Line
Keeping
Assist

5
6

TPMS

 Rain
DetectionACC LKA

User
screen Radio

USB

OBD-II

V2X

Bastion

SGW

Wi-Fi
1

3

4

Rear
Sensor

SGW

SGW

SGW

2
Bluetooth

7

8

9

10

LKA : Line Keeping Assist
ACC : Automatic Cruise
 Control
TPMS : Tire Pressure
 Monitoring System

SGW: Secure GateWay
OBS-II : On-Board
 Diagnostics

Figure 1. Vehicle architecture scheme.

Within each of these domains, the communication is managed by a secure gateway
serving as the router and firewall. For example, in the Infotainment domain, if the USB
module wants to send a message to the user screen module, those messages must go
through the domain’s secure gateway.

All the communication between two separate domains must pass through an entity
called the Bastion, operating as a “super” secure gateway. If the Bluetooth module located in
the Shared Services domain wants to communicate with the user screen module located in
the Infotainment domain, all the messages will be examined and filtered by the Bastion.
The Bastion is basically a router and a firewall for the communication between the domains.
Typically, it also embeds an Intrusion Detection System (IDS) in order to detect any attempt
of intrusion into the vehicle’s system.

This architecture has been designed with safety and security in mind, and the vehicle
already possesses some defenses located on the secure gateways. However, these defenses
are static, i.e., they have a configuration that will remain the same throughout the entire
life-cycle of the vehicle. If an attacker finds a vulnerability and a way to bypass an existing
defense, the attack has a high chance of being reproducible and may be applied to any
number of vehicles of the same type.

Consider as an example the access code to the vehicle’s Bluetooth module—providing
an entry point for attackers that target the vehicle’s integrity—and the Bluetooth MAC
address, which is of interest for attackers that aim to compromise the driver’s privacy

Information 2022, 13, 242 8 of 24

(e.g., by tracking the vehicle). The Bluetooth access key is generated only once, allowing
a trusted device to access the Bluetooth module. It is relatively easy for an attacker to
retrieve the access key of this module. The attacker will then be able to use the recovered
key to connect to the Bluetooth module and gain access to the CAN bus of the vehicle in
order to send forged messages, potentially compromising the integrity of the vehicle. The
MAC address of the Bluetooth module is visible in clear to all nearby peripherals. Once the
correspondence is made between the MAC address and the associated vehicle, it is possible
to follow the comings and goings of this vehicle in the areas monitored by an attacker.

The introduction of MTDs in the Bluetooth module can help to limit such attacks, and
thus to slow down the progression of an attacker. For example, we can periodically change
the access code to the Bluetooth module. By using a period smaller than the time necessary
for an attacker to discover the access code, it becomes harder for an attacker to succeed
in connecting to the vehicle’s Bluetooth module. Similarly, by periodically changing the
MAC address of the vehicle’s Bluetooth module, it becomes more onerous for an attacker to
maintain a correspondence between a MAC address and a vehicle, making it more difficult
to track.

However, there is a drawback of using MTDs in a connected vehicle. Indeed, connected
vehicles are critical embedded systems with limited computing power and strong time and
QoS constraints. The use of MTDs in a vehicle will have an impact on these three elements.
It is therefore necessary to find a good balance between the protection of the vehicle and
the operating constraints related to this type of system. Therefore, we are interested in
finding the best strategy for using the different MTDs in the vehicle and thus be able to
determine the frequency of use of each MTD on each asset, allowing the vehicle to be as
well protected as possible against all types of existing and future attacks. As a solution to
this problem, we propose a model representing the interactions between a set of attackers
and a connected vehicle, as well as all the constraints that the system must respect.

4. Model

In this section, we present our model, starting with the basic structure and discussing
the different input parameters in the following.

4.1. Model Structure

The game we use is represented by the tuple < N, (Mi)i∈N , P, Rnmpn′m′ , R̂nmpn′m′ >
in which:

• N = {0, 1, ..., n}: the set of nodes of the system under attack.
• Mi = {0, 1, .., mi}: the set of MTDs present on node i.
• P = {0, 1, ..., p}: the set of attacker profiles.
• Rnmpn′m′ : reward obtained by the defender when he/she chooses to use the MTD m

on node n while the attacker p targets the MTD m′ on node n′.
• R̂nmpn′m′ : reward obtained by the attacker p when she/he chooses to target the MTD

m′ on the node n′ while the defender will defend the node n with the MTD m.

The game is composed of a set of nodes N corresponding to the elements present in
each domain, such as the SGW, the Bluetooth, or the ACC. On each of these nodes, a set of
assets is present, corresponding to valuable information or subsystems.

Each of these assets is protected by one or several MTDs of the set Mi. On each node,
it is possible for the defender to choose an action corresponding to doing nothing, denoted
idle and included in the set Mi. This action can be chosen by the defender, but cannot be
targeted by an attacker.

The different attackers are represented by the set of attacker profiles P, each of which
has the objective of targeting some assets present on the different nodes, depending on the
profile type.

Resolving the game consists of finding the best defense strategy for the defender
against the set of attacker profiles taken into account. The decision variables of the problem
corresponding to the strategies chosen by the two players are represented as follows:

Information 2022, 13, 242 9 of 24

• δnm: the strategy of the defender on the node n and its MTD m.
• αn′m′p: the strategy of the attacker of profile p on the MTD m′ of node n′.

On each node, the defender has a budget of 1 to spend. The distribution of this budget
corresponds to the frequency of use of each MTD over a period of time and is represented
the decision variable δnm.

Each attacker has a global budget of 1 to spend on the whole game and will choose
only one node to target. As we consider several types of attackers, each with different
objectives to achieve, they will not necessarily all be interested in all the assets present on
a node.

To illustrate our model, Figure 2 shows a game composed of one node with two assets
to protect and two MTDs, as well as two attackers of different types. The attacker of Profile
0 is interested in recovering the authentication key of the Bluetooth module, as well as the
MAC address of the module. The attacker of Profile 1 is only interested in the MAC address
of the Bluetooth module. Therefore, the attacker of Profile 0 will have to choose if she/he
wants to launch an attack on the Bluetooth node via the MAC address or the Bluetooth
key. The attacker of Profile 1 will always choose to attack the node via the MAC address
because it is the only information she/he is interested in on this node.

Asset 1:
Bluetooth Auth Key

MTD 1 :
shuffle Bluetooth

 auth key

Defender side

Attacker
 profile :

0
Integrity

One budget per node

One budget per game

Attacker
 profile :

1
Privacy

MTD 0 :
shuffle MAC addr

Asset 0:
MAC address

Attacker side

Bluetooth
Node

Figure 2. Model representation for 1 node and 2 attacker profiles.

The defender needs to decide how to use the two available MTDs in the most efficient
way knowing what the attackers are interested in. The resolution of the game will allow us
to determine the optimal strategy of using the MTD, allowing defending the system in the
best possible way against the different attackers.

4.2. Input Parameters

Before defining the reward functions associated with each couple of attacker–defender
actions, we begin by identifying the different input parameters of the game. These parame-
ters must be determined in order to instantiate the model for a specific use case.

The following parameters describe the attacker side:

Information 2022, 13, 242 10 of 24

Ŝpnmp Success probability of attacker profile p on node n when MTD m is used.
Ŵnp Attacker profile p interested in node n.
Ĉnmp Cost for the attacker of type p to attack MTD m on node n.
γ̂p Probability of encountering attacker profile p.

The following parameters describe the defender side:

Wnp Defender interest in node n when the attacker profile p targets it.
CMTD

nm Defender cost to use the MTD m on node n.

4.3. How to Determine the Parameters

To realistically define a model, we need to characterize the parameters of the game in
order to define them correctly. We assume that the following information is known:

• The entropy value associated with each element that we want to protect by an MTD.
This corresponds, e.g., to the number of valid IP addresses that can be used or the
number of MAC addresses available for an element.

• The CVSS score associated with each asset of the system we are considering in the
game. This will allow us to know the interest that one of the players may have in
this node: the more vulnerable it is, the more it may interest an attacker. This score is
computed by taking into account the difficulty of accessing a specific resource and the
requirements to launch an attack.

• For each MTD, the time during which the corresponding service is not accessible if
the defense is used.

• For each attacker profile and information to protect, the time needed for an attacker to
scan an occurrence of the information.

• For each node, the associated reconfiguration period.

In the following, we detail different methods used to determine the input parameters
defined in the previous section.

4.3.1. Success Probability: Ŝpnmp

We start by defining the success probability of an attacker for a given MTD and node.
First of all, when an attacker of profile p is not interested in the asset or information

protected by MTD m on node n, we fix the corresponding success probability to 0 in order
to incite the attacker not to target this asset. If the attacker is indeed interested in an asset
or information, there are several ways to determine the value of the success probability:

1. When the MTD m used is of type shuffle, we apply the urn statistical model [29], to
solve the problem of drawing with replacement. In our case, the number of attempts
is equal to the node period divided by the time needed to scan one configuration.
The formulation of this problem is given by Equation (3), where x is the number of
attempts, h is the number of instances of the asset, and a is the number of available
values. The probability of finding the information can then be calculated as

Ŝp = 1− ((a− h)/a)x (3)

2. When the MTD m is not of shuffle type and a method to bypass this MTD exists, the
attacker’s success probability is equal to the duration of the reconfiguration period
of the node n divided by the time to bypass the MTD. If the duration of a period is
greater, the attacker’s success probability is equal to 1.

3. When the MTD m used is neither of type shuffle nor has a method to bypass, we will
need to resort to an ad hoc method to estimate the success probability.

Example 1. Consider an attacker trying to find the IP address of a module on an IPV4 sub-network.
On this particular sub-network, 252 addresses are valid and usable by a module.

Information 2022, 13, 242 11 of 24

In order to estimate the time an attacker needs to scan the network, we considered a
well-known open-source tool for scanning networks: nmap. In fact, nmap can be used to
discover hosts and services on a network by sending packets and analyzing the responses.
It can also provide further information on targets (e.g., reverse DNS names, device types,
MAC addresses, etc.). Using nmap with highly optimized options, the time needed to scan
one IP address is approximately 255 ms [30].

Considering that the defender can change the IP address of the module sought by the
attacker every 10 s, the attacker will have 10/0.255 = 39.21 attempts to find the correct
address. Assuming that the module is the only element present on the network, according
to Formula (3), the attacker’s probability of success in discovering the IP address of the
module is

Ŝp = 1− ((a− h)/a)x

Ŝp = 1− ((252− 1)/252)39 (4)

Ŝp = 1− 0.856355413 = 0.143644587

4.3.2. Attacker Gain: Ŵnp

The interest of an attacker of profile p in a node n will depend on the type of infor-
mation contained on this node. If there is at least one piece of information on node n that
could be of interest to the attacker, the value of the attacker’s interest p for this node will
be equal to the corresponding CVSS score. The higher the CVSS score for a node’s asset,
the easier and more interesting it will be for an attacker to launch an attack on it. If on the
other hand, none of the information of node n is of interest to the attacker p, the interest of
the attacker p for this node will be equal to 0.

4.3.3. Attack Cost: Ĉnmp

The definition of the cost related to an attack depends on the type of MTD m used on
the node n. If this one corresponds to a shuffle MTD, the cost of an attack will be equal
to the cost of launching a scan multiplied by the number of scans that can be performed
during the reconfiguration period of the node. If the MTD used does not correspond to a
shuffle-type MTD, the cost will correspond to the cost of using the MTD bypass method.

4.3.4. Attacker Appearance Probability: γ̂p

The definition of the probability of the appearance of an attacker can be given in two
ways. If we have access to the history of different attacks that have already taken place on
the same type of system, it is possible to extract the probability of occurrence of an attacker
profile. Obtaining this kind of information is difficult, since car manufacturers typically do
not share such information with the public.

Therefore, if this type of history is not available or does not exist, we propose to use an
exponential distribution, depending on the level of expertise of the attacker. This reflects
the fact that there are many beginners, some serious attackers, and very few experts.

4.3.5. Defender Node Gain: Wnp

The interest in a node for the defender to defend against an attacker p will depend on
the node n, as well as the information contained on this node.

If none of the information on node n is of interest to the profile p attacker, the interest
in this node for the defender will be equal to 0. If at least one of these pieces of information
is of interest to the profile p attacker, the defender’s interest in this node will be equal to the
corresponding CVSS score. The higher the CVSS score for a node’s asset, the more impact
the loss of that asset will have for the defender and the greater the need for defense.

Information 2022, 13, 242 12 of 24

4.3.6. MTD Usage Cost: CMTD
nm

The cost of using the MTD m on node n is equal to the downtime of the node induced
by the use of the MTD divided by the duration of a reconfiguration period of the node.

5. Game Formalization
5.1. Game Form

As explained in Section 3, we have to model the problem by taking into account the
interaction between several attackers and a system, as well as the different constraints
related to the system used.

To do this, we must first take into account the asymmetry between an attacker and the
system. We also need to consider the fact that several types of attackers are interested in the
system, each with different objectives and means. The problem is that it is not possible to
determine which of these attackers will appear and choose to launch an attack at which time.

The game-theoretic concepts presented in Section 2.2 allow us to represent these
different interactions and take into account the different constraints related to the system:
the asymmetry between the attacker and the defender gives rise to a Stackelberg game [31],
allowing imposing an order in the decision of the actions. Bayesian games [6] allow us
to represent the fact that we cannot determine the type(s) of attacker(s) to defend against
and that we are looking for a strategy that will allow us to defend optimally against all the
types of attackers considered.

5.2. Reward

For each combination of actions attacker–defender on each node and MTD, a reward
function allows computing the reward corresponding to this specific combination. There is
one reward function for each player. The higher the reward obtained for one action, the
more the player will be interested in performing this action in the chosen context. The
computation of these reward functions is performed by calculating the gain of performing
the action minus the cost of performing this action.

The value of the gain of a player depends on the action of the other player. In contrast,
the cost of using an action does not depend on the action taken by the other player.

For the attacker, the gain of an action is defined as follows:

• If the attacker p and the defender target the same nodes n and n′ and MTDs m and m′

at the same time, the associated gain for the attacker is 0.
• If the attacker p and the defender do not target the same nodes n and n′ and MTDs m

and m′, the associated gain for the attacker p is equal to his/her success probability
multiplied by his/her interest in the node n′.

The cost of performing an action for the attacker corresponds to the parameter Ĉn′m′ .
The gain function of the attacker is then of the following form:

R̂nmpn′m′ =

{
0, if n = n′ and m = m′

Ŝpn′m′p ∗ Ŵn′p, if n 6= n′ or m 6= m′
(5)

The total reward an attacker will obtain for performing an action will be:

R̂nmpn′m′ − Ĉn′m′p (6)

On the defender’s side, the gain obtained for performing an action is defined as
follows:

• If the attacker p and the defender target the same nodes n and n′ and MTDs m and
m′ at the same time, the associated gain for the defender is equal to the probability of
success of the attacker p multiplied by the interest of the defender in the node.

• If the attacker p and the defender do not target the same nodes n and n′ and MTDs m
and m′, the associated gain for the defender is equal to 0.

Information 2022, 13, 242 13 of 24

The cost of performing an action for the defender will correspond to the parameter CMTD
nm .

The gain function of the defender is then of the following form:

Rnmpn′m′ =

{
Ŝpnmp ∗Wnp, if n = n′ and m = m′

0, if n 6= n′ or m 6= m′
(7)

The total reward the defender will obtain for performing an action will be:

Rnmpn′m′ − CMTD
nm (8)

For each pair of attacker–defender actions, on each node/MTD, the corresponding
reward function must be defined. The reward functions are composed of the gain of
performing an action minus the cost of performing this action. The values of the rewards
will be defined according to the location targeted by the two players. The cost of an action
remains the same regardless of the target chosen by the other player.

5.3. Payoff Function

In order to determine the best possible strategy for the defender, a payoff function
is used to calculate the maximum possible reward. This function basically combines the
different reward functions, depending on the decision variables α and δ, representing the
strategies for the attacker and the defender, respectively:

∑
n∈N

∑
m∈M

δnm × [∑
p∈P

∑
n′∈N

∑
m′∈M−idle

(γ̂p × αn′m′p × Rnmpn′m′)− CMTD
nm] (9)

5.4. Optimal Attack Strategy

As discussed in Section 2.3, complementary slackness is used to constrain each attacker
to maximize her/his payoff function. The payoff is expressed by the following equations:

∀p∈P max
αnmp

∑
n′∈N

∑
m′∈M−idle

[αn′m′p[∑
n∈N

∑
m∈M

(δnm × R̂nmpn′m′)− Ĉn′m′p]]

∀p∈P ∑
n′∈N

∑
m′∈M−idle

αn′m′p = 1

∀p∈P∀n′∈N ∀m′∈M−idle
αn′m′p ≥ 0 (10)

It is then possible to transform the primal problem (10) into its dual (11). Here, the
function aims at finding for each profile p the smallest value of the variable ap that will be
equal to the maximum reward that the attacker p can obtain given the strategy chosen by
the defender.

∀p∈P min ap

∀n′ ∈ N , ∀m′ ∈ M, ∀p ∈ P ap ≥ ∑
n∈N

∑
m∈M

(δnm ∗ R̂nmpn′m′)− Ĉn′m′p (11)

Using strong duality and complementary slackness, these two problems are trans-
formed into Constraint (12), which must be satisfied when solving the optimization prob-
lem for the leader (defender) in order to consider only the best responses by the follower
(attackers).

∀p∈P , ∀n′∈N , ∀m′∈M, 0 ≤ ap − ∑
n∈N

∑
m∈M

(δnm × R̂nmpn′m′)− Ĉn′m′p ≤ (1− αn′m′p)M (12)

This constraint is added to the optimization problem for the defender, where M is a
large integer and ap is a free variable.

Information 2022, 13, 242 14 of 24

5.5. Mixed-Integer Quadratic Program

With the above elements, we have all the ingredients to define the game as a Mixed-
Integer Quadratic Program (MIQP). Formulating our problem in this way allows us to find
the strategy δ that maximizes the reward obtained for the defender, which corresponds to
the best strategy of using the available MTDs.

obj : max
δnm ,αn′m′ p ,ap

∑
n∈N

∑
m∈M

δnm × [∑
p∈P

∑
n′∈N

∑
m′∈M−idle

(γ̂p × αn′m′p × Rnmpn′m′)− CMTD
nm] (13)

C1 :∀n∈N , ∑
m∈M

δnm = 1 (14)

C2 :∀p∈P , ∑
n′∈N

∑
m′∈M−idle

αn′m′p = 1 (15)

C3 :∀n′∈N ∀m′∈M, 0 ≤ ap − ∑
n∈N

∑
m∈M

(δnm × R̂nmpn′m′)− Ĉn′m′p ≤ (1− αn′m′p)M (16)

C4 :∀n∈N ∀m∈M, δnm ∈ [0, 1] (17)

C5 :∀p∈P∀n′∈N ∀m′∈M, αn′m′p ∈ {0, 1} (18)

C6 :∀p∈P , ap ∈ R (19)

The complete MIQP is shown in Equations (13)–(19). We quickly review the different
parts of the MIQP in the following. The objective function (13) maximizes the defender’s
payoff function. According to our model, the defender will defend each node independently,
spending a budget of 1 (Constraint (14)), using a mixed strategy (Constraint (17)). In
contrast, each attacker has a global budget of 1 to spend (Constraint (15)), using a pure
strategy (Constraint (18)). Finally, Constraint (16) adds the complementary slackness,
forcing the attacker to choose the target that maximizes her/his reward, taking into account
the defender’s strategy.

Unfortunately, the complexity of solving an MIQP is high, and there are very few tools
available. In the next section, we show how to transform the problem into an MILP in order
to make its resolution feasible.

6. Game Resolution
6.1. MIQP to MILP Transformation

In this section, we propose a transformation of the above MIQP into an MILP to allow
for a more efficient resolution. In general, transforming an MIQP into an MILP consists of
eliminating quadratic terms by changing the decision variables. The only place where a
nonlinear term occurs is the objective function (13), which contains both δ and α as factors.
As a consequence, we factor the two variables to obtain a new variable Z:

∀n∈N ∀m∈M∀p∈P∀n′∈N ∀m′∈M−idle
, Znmpn′m′ = δnm × αn′m′p (20)

This new variable will replace α and δ in the MILP formulation. However, this is only
an auxiliary construction, and we are not really interested in the value of Z, but in the
defender strategy, which is given by δ. Therefore, we need to recover the original decision
variables from Z. This can be achieved by the following equations:

∀n∈N ∀m∈M, δnm = ∑
p∈P

∑
n′∈N

∑
m′∈M−idle

Znmpn′m′ (21)

∀p∈P∀n′∈N ∀m′∈M−idle
, αn′m′p = ∑

n∈N
∑

m∈M
Znmpn′m′ (22)

Based on the above correspondence, the resulting MILP is shown in the Equations (25)–
(33). We review the individual constraints and their transformation in the following,
starting with the objective function. Expanding (9) gives

Information 2022, 13, 242 15 of 24

∑
n∈N

∑
m∈M

∑
p∈P

∑
n′∈N

∑
m′∈M−idle

[
δnm × γ̂p × αn′m′p × Rnmpn′m′

]
− ∑

n∈N
∑

m∈M

[
δnm × CMTD

nm

]
. (23)

Now, using Equations (21) and (22), we obtain the new objective function:

∑
n∈N

∑
m∈M

∑
p∈P

∑
n′∈N

∑
m′∈M−idle

[
γ̂p × Znmpn′m′ × Rnmpn′m′

]

− ∑
n∈N

∑
m∈M

[(
∑

p∈P
∑

n′∈N
∑

m′∈M
Znmpn′m′

)
× CMTD

nm

]
. (24)

obj : max
Znmpn′m′ ,αn′m′ p ,ap

∑
n∈N

∑
m∈M

∑
p∈P

∑
n′∈N

∑
m′∈M−idle

[γ̂p × Znmpn′m′ × Rnmpn′m′]

− ∑
n∈N

∑
m∈M

[(∑
p∈P

∑
n′∈N

∑
m′∈M

Znmpn′m′)× CMTD
nm] (25)

D1 : ∀n∈N , ∑
m∈M

∑
p∈P

∑
n′∈N

∑
m′∈M−idle

Znmpn′m′ = 1 (26)

D2a : ∀n′∈N ∀m′∈M∀p∈P , αn′m′p = ∑
n∈N

∑
m∈M

Znmpn′m′ (27)

D2b : ∀p∈P ∑
n′∈N

, ∑
m′∈M−idle

αn′m′p = 1 (28)

D3 : ∀n′∈N ∀m′∈M, 0 ≤ (ap − ∑
n∈N

∑
m∈M

R̂nmpn′m′ × (∑
n”∈N

∑
m”∈M

Znmpn”m”)− Ĉn′m′p)

≤ (1− αn′m′p)M (29)

D4 : ∀n∈N ∀m∈M, 0 ≤ ∑
p∈P

∑
n′∈N

∑
m′∈M−idle

Znmpn′m′ ≤ 1 (30)

D5 : ∀p∈P , ∀n′∈N ∀m′∈M, αn′m′p ∈ {0, 1} (31)

D6 : ∀p∈P , ap ∈ R (32)

D7 : ∀p∈P∀n∈N ∀m∈M∀n′∈N ∀m′∈M, Znmpn′m′ ∈ [0, 1] (33)

In the same way, the constraint C1 (14) is transformed to the constraint D1 (26) by
substituting δnm with Equation (21). As in the original MIQP formulation, D1 limits the
defender’s budget to 1.

The attacker’s global budget is represented by the two constraints D2a (27) and
D2b (28), the first of which reintroduces α into the MILP, following (22). The second
constraint directly corresponds to C2 (15). Note that in addition to the new decision
variables Z, we need either α or δ in order to reconstruct the original solution. We chose to
use α.

The transformation of the slackness constraint C3 (16) to its MILP version D3 (29) is
again straightforward, substituting δnm by the corresponding Z variables. Similarly, D4 (30)
sets the lower and upper bounds of the defender’s strategy to 0 and 1, respectively, thus
corresponding to C4 (17). D5 (31) and D6 (32), respectively, correspond directly to C5 (18)
and C6 (19).

Finally, D7 (33) is introduced as an additional constraint in order to fix the Z variables
to 1 or 0. Note that this is due to α being pure strategies (cf. the constraint D5).

6.2. Correspondence between the MIQP and the MILP

Following the transformation described above, based on Equations (22) and (21), we
ensure that any solution to the resulting Mixed-Integer Linear Problem (MILP) is also a
solution to the original Mixed-Integer Quadratic Problem (MIQP). However, this is not
necessarily true in the other direction. Passing from MIQP to MILP by turning two distinct

Information 2022, 13, 242 16 of 24

variables δ and α into a single one introduces additional constraints. This restricts our
model in the case where the number of nodes that we take into account in the MILP is
smaller than the number of attacker profiles considered. As it turns out, such instances do
not have a solution under their MILP form.

However, this limitation is not a practical limitation for the considered use cases of our
model. In our applications, we generally consider two types of attackers—integrity and
privacy—each with a fixed and limited number of levels of expertise. This usually results
in ten or less attacker profiles. The number of assets to defend in an automotive system,
on the other hand, is usually larger, ranging from a dozen (for a single subsystem) up to a
hundred. The number of nodes in the considered models system is therefore greater than
the number of attacker profiles.

7. Experimental Results
7.1. Automotive Use Case

In order to evaluate the proposed method, we set up an experimental use case, which
is based on the connected car architecture presented in Section 3. Figure 3 shows a selection
of ten nodes, for each of which we have selected two or three different MTD defenses. On
the attacker side, there are ten attacker profiles, corresponding to two types (integrity and
privacy) and five levels of expertise.

Core Services

Management

Infotainement

Line
Keeping
Assist

5

6

7

Line
Keeping
Assist

TPMS

ACC

User
screen Radio

USB

OBD2

V2X

Bastion

SGW

Shared Services

IDS Bastion

Wi-Fi

MTD 1 -> Shuffle IP addresses :

MTD 2 -> Shuffle honeypots's IP addresses :

MTD 3 -> Shuffle System Network Information :

MTD 1 -> : Shuffle Authentification Key :

MTD 2 -> : Change ID information :

MTD 1 -> : Shuffle Authentification Key :

MTD 2 -> : Bluetooth MAC adress Shuffle :

MTD 1-> : Shuffle Domains' IP addresses :

MTD 2-> : Shuffle Honeypots' IP addresses :

1

3

MTD 1 -> : Reset the ECU to perform ASLR :

MTD 2 -> : Copy Switching with different OS :

4

MTD 1 -> : Shuffle Bastion's IP addresses :

MTD 2 -> : Shuffle Honeypots' IP addresses :

MTD 3 -> : Reset the ECU to perform ASLR :

SGW

SGW

SGW

2
Bluetooth

8

9

10 IDS SGW

IDS SGW

IDS SGW

IDS SGW

Figure 3. Selected nodes and their defenses.

We implemented a software tool that generates the MILP problem from the given
input parameters and solves it using the CPLEX solver [32]. We obtained the optimal
defense strategy shown as below equation, in which the defender will defend each node
and asset targeted by an attacker by spending his/her full budget per node. As can be seen,
for some nodes, one of the defenses dominates (i.e., the corresponding δ has value 1.0),
while other nodes are defended using a mixed random strategy of multiple MTDs. The
time required to compute this solution with CPLEX was 9.2 s.

Information 2022, 13, 242 17 of 24

δn0m0 = 0.351 δn0m1 = 0.0 δn0m2 = 0.649 δn0idl = 0.0

δn1m0 = 0.95 δn1m1 = 0.05 δn1idl = 0.0

δn2m0 = 0.0 δn2m1 = 1.0 δn2idl = 0.0

δn3m0 = 1.0 δn3m1 = 0.0 δn3idl = 0.0

δn4m0 = 0.404 δn4m1 = 0.311 δn4m2 = 0.285 δn4idl = 0.0

δn5m0 = 0.0 δn5m1 = 1.0 δn5idl = 0.0

δn6m0 = 0.0 δn6m1 = 1.0 δn6idl = 0.0

δn7m0 = 0.078 δn7m1 = 0.922 δn7idl = 0.0

δn8m0 = 0.0 δn8m1 = 1.0 δn8idl = 0.0

δn9m0 = 0.519 δn9m1 = 0.481 δn9idl = 0.0

7.2. Scalability
7.2.1. Random Scenarios

In order to investigate if the proposed solution scales well, we generated random
scenarios of different sizes (the generating tool we made for the experimentation is available
here: https://gitlab.telecom-paris.fr/TheseMA/tool_for_journal.git, accessed on 12 April
2022). During a first series of experiments, we realized that generating the parameters in
a totally random way resulted in a worst-case scenario for the defender in which all the
attacker profiles are interested in all the nodes and assets of the model. Since this is not
realistic—and presents a real challenge to the solver—we limited the interest of an attacker
to two thirds of the assets in a random fashion.

The results obtained are summarized in Figure 4, in which we display the computation
time taken by CPLEX to solve the generated MILP problems. The scenarios were generated
in such a way as to have as many attacker profiles as nodes, while the remaining input
parameters were generated randomly. In this way, we obtained an execution time for a
scenario with ten nodes and ten attacker profiles in the same order of magnitude as in the
case study presented in Section 7.1, which indicates that the random tests are comparable
to real-world scenarios.

Figure 4. Scaling representation with attacker profiles number = node number.

https://gitlab.telecom-paris.fr/TheseMA/tool_for_journal.git

Information 2022, 13, 242 18 of 24

We managed to solve games composed of up to 25 nodes and 25 attacker profiles with
a reasonable runtime. Considering automotive applications, 25 nodes is about the size
of a single domain. Thus, one possibility to apply our method to a complete system is
decomposing it into its domains and finding an optimal strategy for each of them. This can
be considered a conservative approach, since this basically corresponds to a more powerful
attacker with one budget to spend for each domain.

7.2.2. Fixed Attacker Profiles

The above experiment served merely to explore the limits when scaling both attackers
and nodes. In a realistic scenario, it is more common to choose a fixed number of attacker
profiles. In our experiments so far, we considered five levels of expertise (expert, high,
medium, low, beginner). If we only consider one type of attacker (integrity or privacy), we
will have to face five attackers in total. A typical case was already presented in the case
study in Section 7.1. There, we considered privacy and integrity attackers with five levels
of expertise each, amounting to ten attacker profiles to take into account in the model. If we
want to take things even further, and we are aware of, e.g., ten additional specific attacks,
adding those to the model adds up to 20 attacker profiles.

Following the above considerations, we conducted random experiments with a vari-
able number of nodes (Note that in all generated scenarios, the number of nodes is greater
than or equal to the number of attacker profiles. As explained in Section 6.2, this is due
to the form of our model in which the attacker has a global budget for the game, while
the defender has one budget per node. As a consequence, instances with less nodes than
attackers are infeasible in their MILP form because of Constraints (26), (29), and (30)) and
a fixed number of attacker types (5, 10, and 20). The results are shown in Figure 5. As
can be seen in the figure, with five attackers, our solution scales well up to 50 nodes and
beyond. When we add another five attacker profiles, the run-time increases by a factor of
around five. Models with a bit more than 40 nodes can be solved in around 1000 s. Finally,
the case with 20 attacker profiles takes the MILP solver to its limits. As can be seen in the
figure, the variance of the resulting runtimes is much larger. We can still solve models of
up to 30 nodes, whereas in some cases, the solver took more than an hour.

Figure 5. Randomly generated models with a fixed number of attacker profiles and a variable number
of nodes.

Information 2022, 13, 242 19 of 24

7.3. Stability Analysis

As in any model-based approach, the quality of the solution heavily depends on
the quality of the input model. Therefore, a methodology—as presented in Section 4.3—
to determine the model’s parameters is crucial for real-world applications. However,
some parameters are more easy to determine than others. For some, there will remain
some uncertainty with respect to their value. In the following, we describe two further
experiments, which aimed to test the stability of the obtained results. We can be confident
about the result if slight changes in the input parameters lead to slight changes in the
output strategies.

The first experiment focused on the parameter γ, representing the rate of appearance
of the different attacker profiles. We started from a model similar to the case study: 10 nodes
with two or three MTD defenses each and 10 attacker profiles (five integrity attackers and
five privacy attackers). In this case, γ corresponds to the probability of encountering
privacy attackers, while integrity profiles occur with probability 1− γ. In the experiment,
γ was varied between 0.1 and 0.9 in steps of 0.1, and we observed the evolution of the best
strategy for each case.

Figure 6 shows the strategies for four selected nodes. As can be seen, the strategies
change in a monotonous fashion, which is expected. As an example, for Node 1 on the
upper right of the figure, the output is a mixed strategy of the two MTDs, and the dominant
defense is the one that is more effective against the attacker who is more likely to appear.

Figure 6. How moving the ratio between attacker profiles (gamma) affects the defender strategy.

In some cases—such as Node 2 on the lower left of the figure—the strategy does not
change at all, indicating that either the node is not interesting for the attackers or that one
of the defenses is the best one against all attackers. Finally, on Node 3 on the lower right,
the strategy of the defender only starts to adapt slightly when the second attacker becomes
predominant.

In a second experiment, we took a look at the stability of the given strategy according
to a set of input parameters. We started again from the same scenario, where we randomly
shuffled the values of several input parameters: the costs and gain for the defender and the

Information 2022, 13, 242 20 of 24

attacker, as well as the attackers’ success probability. For each parameter, we chose a value
following a Gaussian distribution around the original value and the variance chosen as a
given percentage of the original parameters value. For each value of the variance (1%, 2%,
5%, and 10%), we conducted 100 runs.

The result of this experiment is shown in Figure 7. It shows the δ values of a selected
subset of MTDs in the form of a box plot. The box contains the two central quartiles of
the distributions with the median marked as a horizontal line. Outliers are marked as
individual points with cross marks.

Figure 7. How stable the strategies are considering variance in the parameters.

It can be noticed that the variation of the output strategies remains quite low up to 5%,
and for many nodes even up to 10%. There is a few exceptions. In particular, the strategy
of Node 0 (cf. the three left-most values) shows some volatility. While the original solution
is a mixed strategy of three defenses, for a non-negligible number of models, our method

Information 2022, 13, 242 21 of 24

tends to choose a strategy without the first one, setting δn0m0 to zero. The opposite behavior
can be seen for Node 4: while the original strategy purely relied on one defense, there are
some outliers, where a mixed strategy was chosen.

8. Discussion and Limitations

We presented a method to find an optimal strategy for using MTDs in a critical
embedded system. The proposed model takes into account the cost of performing an action
for the defender in order to use only defenses that protect the system as efficiently as
possible and thereby limit quality of service degradation.

Compared to previous work [12], the model has a fine-grained notion of assets and
their respective defenses. This allows for a more realistic modeling of the system under
attack, as demonstrated with an automotive architecture. During our research, we identified
the input parameters as a critical issue in the modeling process. While some of these
parameters can be determined with relatively high confidence—following the explanations
in Section 4.3—some inputs remain difficult to estimate. Indeed, car manufacturers have
little interest in making public their statistics on the frequency of attacks. For this reason,
we need to resort to ad hoc estimations.

Another consequence of the refined model is the increased computational complexity
of the game resolution. With state-of-the-art solver techniques, the limit of our approach
was reached for ten attacker profiles at about 55 nodes. If we consider the number of
computational units in a modern car architecture, this is a reasonable size for either a
simplified model—taking into account only a subset of nodes of interest—or a complete
model of a single subdomain. The method proposed in this article is applied offline.
Therefore, runtimes of one hour or more are acceptable, since the optimal solution needs
to be calculated only once. It is left to future work to consider online techniques that
would recalculate and adapt the defense strategy when new knowledge of attacks or
vulnerabilities becomes available.

Regarding the stability of the computed strategy, the results are satisfactory. The
observed changes in the output strategies were mostly expected and explicable, but the
experiments also showed that in rare cases, strategies can switch between extremes. In order
to detect such local instabilities, conducting such random experiments is recommended as
an additional step in order to increase the confidence in the obtained results.

9. Related Work

The method of calculating the optimal strategy for MTDs has been the subject of
several recent contributions [5–9]. This topic represents an important challenge for the
configuration of MTDs as the practical implementation of these techniques requires a
trade-off between different constraints such as entropy, frequency, deployment cost, and
QoS impact. The studies mentioned above are close to the topic we dealt with in this paper:
they all aim at defining an optimal strategy for an MTD, while using a formalization of
the problem based on game theory. On the other hand, these works are mainly devoted to
the problem of web applications, which generates strong distinctions with respect to our
approach. Indeed, the problems of this domain diverge from those of CRESs, which leads
to different modeling of MTDs. Another example of these domain-specific issues is the
research by Burow et al. [4] on the impact of MTD techniques on response time analysis.

Thus, the fundamental differences of this work from the existing state-of-the-art are
based on the following criteria: (i) the type of game, (ii) the interpretation of the strategy as
a frequency of MTD execution, and (iii) the nature of the costs associated with the actions
of the defender and the attacker. We clarify these differences throughout this section.

In [6], Sengupta et al. defined a Bayesian Stackelberg game to determine the best
mixed strategy to defend a web application by varying its technology stack configuration.
This mixed strategy is determined by identifying the most likely attacks and the most
exposed configurations. The authors essentially showed that their approach leads to an
improvement of the defense strategy compared to the use of a uniform distribution in order

Information 2022, 13, 242 22 of 24

to determine a strategy of configuration, allowing highlighting the legitimacy of the use of
an approach based on game theory. Although the game is comparable to the one we present
in this paper, the definition of the strategy is not clearly associated with the notion of moving
frequency. This is due to the fact that their model lacks precision regarding the execution
time of an MTD, its impact on the QoS, as well as the probability of the success of an attack
in a short time. More recently, the optimal travel frequency was introduced in detail by Li
and Zheng in [8]. In this paper, the game used corresponds to a Bayesian Stackelberg game
that is solved from the defender’s point of view as a semi-Markovian decision process.
Thus, this approach requires defining some of the parameters of the game for each of
the configurations of an MTD, for example the cost of moving from one configuration to
another or the attack time corresponding to a specific configuration. As we indicated in
our Introduction, we mainly oriented ourselves towards a non-Markovian game. First,
significant configuration changes seem to incur a significant cost for reconfiguration, which
is too large to be performed during the operation of a CRES. Second, it is still complicated
to determine some important parameters for each situation, such as the probability of the
success of an attack. In a similar vein, Feng et al. [7] defined a defense strategy using a
Markov decision process. Therefore, the cost of configuration switching and its associated
assumptions are not suitable for application in the CRES framework.

Within the following paper [9], the authors Zhang et al. also studied the problem
of determining an MTD strategy using a related game theory approach. These authors
suggested relying on learning (Nash-Q) to determine a Nash equilibrium and, consequently,
the defense strategy to adopt. This approach is therefore quite distinct from ours: it aims at
finding a Nash equilibrium, which therefore implies a simultaneous game, and at using a
learning method, which therefore implies some observability of the reward functions. In
such a context, it is rather a question of implementing a reactive defense by combining the
MTD with an IDS, rather than deploying a proactive defense that changes the configuration
periodically.

Connell et al. also attempted in their paper [33] to approach the problems related
to the frequency of use of an MTD in a system. In their article, their approach was not
limited to the very particular contexts of CRESs like ours, but rather tried to determine this
frequency for a more “normal” system. For this, they based their research on an approach
to determine the availability and performance of a resource for which they were using an
MTD. This allowed them, thanks to a Continuous Time Markov Chain [34] (CTMC), to
determine the frequency of use of an MTD for a resource based on a trade-off between the
probability of the success of an attacker and the availability of this resource.

In conclusion, the various existing works in the state-of-the-art have shown the cor-
rectness of the game-theoretic approach in the search for an optimal strategy for an MTD.
However, these works have been performed in an environment related to web applications,
leading to different assumptions, modeling, and correction methods. To the best of our
knowledge, the work we presented is a first attempt to define a game-theoretic approach to
determine an optimal strategy for an MTD in the CRES context.

10. Conclusions and Future Works

In this paper, we developed a model to represent the interactions between a system and
a set of different attackers using a Bayesian Stackelberg game. Our method gives the optimal
defense strategy for the defender against the considered attackers. This allows the optimal
use of MTDs on critical embedded systems, taking into account their limited resources.
The game can be resolved using off-the-shelf solvers thanks to an MILP formulation. Our
experiments showed that the method works for realistic use cases from the automotive
domain, and the results exhibited a good stability.

A possible extension of this work would be the integration of the method with an
automatic adaptation over time in order to update the strategy according to the observations
made during the use of the system.

Information 2022, 13, 242 23 of 24

Author Contributions: Writing—original draft, M.A., U.K. and É.B. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Smith, C. The Car Hacker’s Handbook: A Guide for the Penetration Tester; No Starch Press: San Francisco, CA, USA, 2016; 278p, ISBN

978-1-59327-703-1.
2. Xu, J.; Guo, P.; Zhao, M.; Erbacher, R.F.; Zhu, M.; Liu, P. Comparing Different Moving Target Defense Techniques. Proc. ACM

Conf. Comput. Commun. Secur. 2014, 2014, 97–107. [CrossRef]
3. Taylor, J.; Zaffarano, K.; Koller, B.; Bancroft, C.; Syversen, J. Automated Effectiveness Evaluation of Moving Target Defenses:

Metrics for Missions and Attacks. In Proceedings of the 2016 ACM Workshop on Moving Target Defense—MTD’16, Vienna,
Austria, 24 October 2016.

4. Burow, N.; Burrow, R.; Khazan, R.; Shrobe, H.; Ward, B.C. Moving Target Defense Considerations in Real-Time Safety- and
Mission-Critical Systems. In Proceedings of the 7th ACM Workshop on Moving Target Defense, Online, 9–13 November 2020;
pp. 81–89.

5. Lei, C.; Ma, D.; Zhang, H. Optimal Strategy Selection for Moving Target Defense Based on Markov Game. IEEE Access 2017,
5, 156–169. [CrossRef]

6. Sengupta, S.; Vadlamudi, S.G.; Kambhampati, S.; Doupé, A.; Zhao, Z.; Taguinod, M.; Ahn, G.J. A Game Theoretic Approach to
Strategy Generation for Moving Target Defense in Web Applications. In Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems, Rhodes, Greece, 20–22 June 2017; p. 9.

7. Feng, X.; Zheng, Z.; Mohapatra, P.; Cansever, D. A Stackelberg Game and Markov Modeling of Moving Target Defense. In
Decision and Game Theory for Security; Rass, S., An, B., Kiekintveld, C., Fang, F., Schauer, S., Eds.; Springer International Publishing:
Berlin/Heidelberg, Germany, 2017; pp. 315–335.

8. Li, H.; Zheng, Z. Optimal Timing of Moving Target Defense: A Stackelberg Game Model. arXiv 2019, arXiv:1905.13293.
9. Zhang, H.; Zheng, K.; Wang, X.; Luo, S.; Wu, B. Strategy Selection for Moving Target Defense in Incomplete Information Game.

Comput. Mater. Contin. 2019, 61, 763–786. [CrossRef]
10. Hong, J.B.; Kim, D.S. Assessing the Effectiveness of Moving Target Defenses Using Security Models. IEEE Trans. Dependable Secur.

Comput. 2015, 13, 163–177. [CrossRef]
11. Paruchuri, P.; Pearce, J.P.; Marecki, J.; Tambe, M.; Ordonez, F.; Kraus, S. Playing Games for Security: An Efficient Exact Algorithm

for Solving Bayesian Stackelberg Games. In Proceedings of the 7th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS ’08), Estoril, Portugal, 14–16 May 2008; International Foundation for Autonomous Agents and
Multiagent Systems: Richland, SC, USA, 2008; Volume 2, pp. 895–902.

12. Ayrault, M.; Borde, E.; Kühne, U.; Leneutre, J. Moving Target Defense Strategy in Critical Embedded Systems: A Game-theoretic
Approach. In Proceedings of the 2021 IEEE 26th Pacific Rim International Symposium on Dependable Computing (PRDC), Perth,
Australia, 1–4 December 2021; pp. 27–36. [CrossRef]

13. Lei, C.; Zhang, H.Q.; Tan, J.L.; Zhang, Y.C.; Liu, X.H. Moving Target Defense Techniques: A Survey. Secur. Commun. Netw. 2018,
2018, 1–25. [CrossRef]

14. Cai, G.L.; Wang, B.S.; Hu, W.; Wang, T.Z. Moving target defense: State of the art and characteristics. Front. Inf. Technol. Electron.
Eng. 2016, 17, 1122–1153. [CrossRef]

15. Okhravi, H.; Rabe, M.A.; Mayberry, T.J.; Leonard, W.G.; Hobson, T.R.; Bigelow, D.; Streilein, W.W. Survey of Cyber Moving Target
Techniques; Technical Report; Defense Technical Information Center: Fort Belvoir, VA, USA, 2013.

16. Okhravi, H.; Hobson, T.; Bigelow, D.; Streilein, W. Finding Focus in the Blur of Moving-Target Techniques. IEEE Secur. Priv. 2014,
12, 16–26. [CrossRef]

17. ’KARL—Kernel Address Randomized Link’—MARC. Available online: https://undeadly.org/cgi?action=article;sid=2017061304
1706 (accessed on 12 April 2022).

18. Hund, R.; Holz, T.; Freiling, F.C. Return-Oriented Rootkits: Bypassing Kernel Code Integrity Protection Mechanisms. In
Proceedings of the USENIX Security Symposium, Montreal, QC, Canada, 12–14 August 2009; p. 16.

19. Ayrault, M.; Borde, E.; Kühne, U. Run or Hide? Both! A Method Based on IPv6 Address Switching to Escape While Being Hidden.
In Proceedings of the 6th ACM Workshop on Moving Target Defense. Association for Computing Machinery, MTD’19, London,
UK, 11 November 2019; pp. 47–56. [CrossRef]

20. Prisner, E. Game Theory through Examples; MAA, The Mathematical Association of America: Washington, DC, USA, 2014;
OCLC: 986787860.

http://doi.org/10.1145/2663474.2663486
http://dx.doi.org/10.1109/ACCESS.2016.2633983
http://dx.doi.org/10.32604/cmc.2020.06553
http://dx.doi.org/10.1109/TDSC.2015.2443790
http://dx.doi.org/10.1109/PRDC53464.2021.00014
http://dx.doi.org/10.1155/2018/3759626
http://dx.doi.org/10.1631/FITEE.1601321
http://dx.doi.org/10.1109/MSP.2013.137
https://undeadly.org/cgi?action=article;sid=20170613041706
https://undeadly.org/cgi?action=article;sid=20170613041706
http://dx.doi.org/10.1145/3338468.3356827

Information 2022, 13, 242 24 of 24

21. Brown, G.; Carlyle, M.; Salmerón, J.; Wood, K. Defending Critical Infrastructure. INFORMS J. Appl. Anal. 2006, 36, 530–544.
[CrossRef]

22. Harsanyi, J.C. Games with Incomplete Information Played by “Bayesian” Players, I–III Part I. The Basic Model. Manag. Sci. 1967,
14, 159–182. [CrossRef]

23. Paruchuri, P.; Pearce, J.P.; Tambe, M.; Ordonez, F.; Kraus, S. An Efficient Heuristic Approach for Security Against Multiple
Adversaries. In Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, Honolulu,
HI, USA, 14–18 May 2007; p. 8. [CrossRef]

24. Harsanyi, J.C.; Selten, R. A Generalized Nash Solution for Two-Person Bargaining Games with Incomplete Information. Manag.
Sci. 1972, 18, 80–106. [CrossRef]

25. Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI). EBIOS Risk Manager; Technical Report; ANSSI: Paris,
France, 2019.

26. Gadyatskaya, O.; Hansen, R.R.; Larsen, K.G.; Legay, A.; Olesen, M.C.; Poulsen, D.B. Modelling Attack-defense Trees Using Timed
Automata. In Formal Modeling and Analysis of Timed Systems; Lecture Notes in Computer Science Series; Fränzle, M., Markey, N.,
Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; Volume 9884, pp. 35–50. [CrossRef]

27. Common Vulnerability Scoring System version 3.1. 2021. Available online: https://www.first.org/cvss/v3-1/cvss-v31-
specification_r1.pdf (accessed on 12 April 2022).

28. Maghrabi, L.; Pfluegel, E.; Al-Fagih, L.; Graf, R.; Settanni, G.; Skopik, F. Improved software vulnerability patching techniques
using CVSS and game theory. In Proceedings of the 2017 International Conference on Cyber Security And Protection of Digital
Services (Cyber Security), London, UK, 19–20 June 2017; pp. 1–6. [CrossRef]

29. Carroll, T.E.; Crouse, M.; Fulp, E.W.; Berenhaut, K.S. Analysis of network address shuffling as a moving target defense. In
Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, Australia, 10–14 June 2014; pp. 701–706.

30. Lyon, G.F. Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning; Insecure.com LLC:
Seattle, WA, USA, 2009.

31. Conitzer, V.; Sandholm, T. Computing the optimal strategy to commit to. In Proceedings of the 7th ACM Conference on Electronic
Commerce (EC ’06), Ann Arbor, MI, USA, 11–15 June 2006; Association for Computing Machinery: New York, NY, USA, 2006;
pp. 82–90.

32. IBM. Overview of Mathematical Programming—IBM® Decision Optimization CPLEX® Modeling for Python (DOcplex) V2.23
Documentation. Available online: https://ibmdecisionoptimization.github.io/docplex-doc/mp.html (accessed on 12 April
2022).

33. Connell, W.; Menasce, D.A.; Albanese, M. Performance Modeling of Moving Target Defenses with Reconfiguration Limits. IEEE
Trans. Dependable Secur. Comput. 2021, 18, 205–219. [CrossRef]

34. Thomas, M.U. Queueing Systems. Volume 1: Theory (Leonard Kleinrock). SIAM Rev. 1976, 18, 512–514. [CrossRef]

http://dx.doi.org/10.1287/inte.1060.0252
http://dx.doi.org/10.1287/mnsc.14.3.159
http://dx.doi.org/10.1145/1329125.1329344
http://dx.doi.org/10.1287/mnsc.18.5.80
http://dx.doi.org/10.1007/978-3-319-44878-7_3
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf
http://dx.doi.org/10.1109/CyberSecPODS.2017.8074856
https://ibmdecisionoptimization.github.io/docplex-doc/mp.html
http://dx.doi.org/10.1109/TDSC.2018.2882825
http://dx.doi.org/10.1137/1018095

	Introduction
	Background
	Moving Target Defense
	Game-Theoretic Concepts
	Complementary Slackness
	Security Risk Analysis

	Motivating Example
	Model
	Model Structure
	Input Parameters
	How to Determine the Parameters
	Success Probability: Sp"0362Spnmp
	Attacker Gain: W"0362Wnp
	Attack Cost: C"0362Cnmp
	Attacker Appearance Probability: "0362 p
	Defender Node Gain: Wnp
	MTD Usage Cost: CMTDnm

	Game Formalization
	Game Form
	Reward
	Payoff Function
	Optimal Attack Strategy
	Mixed-Integer Quadratic Program

	Game Resolution
	MIQP to MILP Transformation
	Correspondence between the MIQP and the MILP

	Experimental Results
	Automotive Use Case
	Scalability
	Random Scenarios
	Fixed Attacker Profiles

	Stability Analysis

	Discussion and Limitations
	Related Work
	Conclusions and Future Works
	References

