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Abstract: The developments in the internet of things (IoT), artificial intelligence (AI), and cyber-
physical systems (CPS) are paving the way to the implementation of smart factories in what is
commonly recognized as the fourth industrial revolution. In the manufacturing sector, these techno-
logical advancements are making Industry 4.0 a reality, with data-driven methodologies based on
machine learning (ML) that are capable of extracting knowledge from the data collected by sensors
placed on production machines. This is particularly relevant in plastic injection molding, with the
objective of monitoring the quality of molded products from the parameters of the production process.
In this regard, the main contribution of this paper is the systematic comparison of ML techniques to
predict the quality classes of plastic molded products, using real data collected during the production
process. Specifically, we compare six different classifiers on the data coming from the production of
plastic road lenses. To run the comparison, we collected a dataset composed of the process parameters
of 1451 road lenses. On such samples, we tested a multi-class classification, providing a statistical
analysis of the results as well as of the importance of the input features. Among the tested classifiers,
the ensembles of decision trees, i.e., random forest and gradient-boosted trees (GBT), achieved 95%
accuracy in predicting the quality classes of molded products, showing the viability of the use of
ML-based techniques for this purpose. The collected dataset and the source code of the experiments
are available in a public, open-access repository, making the presented research fully reproducible.

Keywords: plastic injection molding; machine learning; quality control; Industry 4.0

1. Introduction

The advancements in the internet of things (IoT), artificial intelligence (AI), and Cyber-
Physical Systems (CPS) are leading the manufacturing sector towards a fourth industrial
revolution [1]. Part of this technological leap, named “Industry 4.0”, involves the develop-
ment of smart factories, i.e., production systems capable of self-organizing, predicting, and
correcting their own faults, and that can adapt to variable human needs [2]. The increasing
availability of pervasive sensors makes AI and, specifically, machine learning (ML) pivotal
for the Industry 4.0 transition, enabling the operation of industries in a flexible, efficient,
and green way [3]. In fact, data-driven methodologies based on ML and deep learning
(DL) are emerging in several Industry 4.0 applications, such as anomaly detection [4],
predictive maintenance [5,6], inventory management [7], sensory and productivity mea-
surements [8,9], aided design [10], quality control [11], security [12], smart working [13],
digital twin development [14], healthcare [15,16], and many others [17].

Plastic injection molding is a manufacturing process widely used in the industry [18],
as it allows for the production of plastic objects characterized by complex geometries with
high precision and productivity [19]. Specifically, the process includes four phases, i.e.,
plasticization, injection, packing, and cooling [20], during which the polymer is melted,
injected and compressed in the mold, and, eventually, cooled. Given that the quality of a
molded product depends on the process parameters, as optimal values reduce the cycle
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time and increase the quality of the final product [21], extensive research has been devoted
to predict the quality of products from the value of the production process parameters.
Whilst early research works are dated back to the first decade of 2000, using techniques
such as support vector machine (SVM) [22] and neural networks [20,23], the advent of
Industry 4.0 and its focus on extracting knowledge from machine sensors have boosted
interest about the application of ML methods for the prediction of product quality from the
parameters of the production process [24–27].

In this regard, this paper investigates the effectiveness of ML techniques to predict the
quality of molded plastic products from the production process parameters, using real data
from in-line industrial measurements. Specifically, the data comes from the production
of plastic road lenses of “iGuzzini Illuminazione”, a company located in Recanati, Italy,
which specializes in providing plastic components for lighting devices. In fact, road lenses
are regulated by the standard “UNI EN 13201-2:2016”, which sets threshold values for the
lighting uniformity (U0). Currently, controlling the quality of the lenses, i.e., their lighting
uniformity, requires a lens-by-lens photometric analysis conducted by specialized personnel
in lab settings, demanding significant resources. Therefore, our aim is to understand if this
control can be automated or, at least, integrated by using ML methods to estimate the level
of the lighting uniformity of a lens from its process parameters collected by the sensors of
the injection molding machine during the production.

The research conducted on the “iGuzzini Illuminazione” case study and that is de-
scribed in this paper adds the following contributions to the state of the art of quality
prediction in injection molding:

• A real application of Industry 4.0 is demonstrated, proposing the use of ML to auto-
mate the quality control of molded plastic products;

• A comparison of six ML techniques for quality prediction is provided. The tested
techniques are K-nearest neighbor (KNN), decision tree, random forest, gradient-
boosted trees (GBT), support vector machine (SVM), and multi-layer perceptron
(MLP). The source code of the comparison is publicly available in a GitHub reposi-
tory (https://github.com/airtlab/machine-learning-for-quality-prediction-in-plastic-
injection-molding, accessed on the 15 May 2022);

• A new dataset is presented. It includes the real data about the production of road
lenses by injection molding and is publicly available in the source code repository. As
such, the dataset can be used to benchmark other techniques.

Despite the number of research works about quality prediction in plastic injection
molding available, most of the papers compare few techniques (one or two) on often-
unbalanced datasets with few samples, as explained in the literature review included in
Section 2. Moreover, most of the papers distinguish between good products and faulty prod-
ucts. Instead, we compare six different techniques on a dataset collecting the production
process parameters of 1451 samples, i.e., road lenses. Moreover, we classify the road lenses
in four different quality classes, instead of dealing with a binary problem. Furthermore, to
the best of our knowledge, this is the first work in quality prediction for plastic injection
molding to publicly release the source code of the comparison of ML techniques and the
data used for the tests, providing fully reproducible results.

The rest of the paper is organized as follows. Section 2 lists other relevant research
works on quality prediction for plastic injection molding, comparing our methodology
to the related literature. Section 3 describes the dataset built for the experiments and the
compared ML techniques, providing the necessary background. Section 4 presents an
experimental evaluation of the quality prediction applied to the production of the road
lenses, discussing the results. Finally, Section 5 draws the conclusions of this research.

2. Literature Review

Early research works for quality prediction in plastic injection molding are dated back
to the early 2000s. For example, Sadeghi [23] proposed a neural network and a multi-layer
perceptron (MLP) using four features (melt flow rate, injection pressure, mold temperature,

https://github.com/airtlab/machine-learning-for-quality-prediction-in-plastic-injection-molding
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and melt temperature) to estimate actual injection pressure, filling time, and part soundness,
with a hidden layer composed of two neurons. The author tested the proposed methodology
on simulated data. Similarly, Chen et al. [20] used a neural network-based approach to estimate
the weight of the samples. They combined self-organizing maps (SOM), using three features as
inputs (injection stroke curve, injection velocity curve, and pressure curve), and an MLP, using
six features as inputs (injection time, VP switch position, packing pressure, injection velocity,
packing time, and injection stroke), on 160 real samples (120 for training, 40 for testing),
achieving a root mean squared error of 0.0017. Ribeiro [22] proposed the use of support
vector machine (SVM) classifiers to predict faults in automotive parts produced with injection
molding. They used six features as the input (cycle time, metering time, injection time, barrel
temperature before nozzle, cushion, and injection velocity) and compared their methodology
with a neural network to predict six types of faults, obtaining an accuracy between 87% and
100% (depending on the type of fault to be classified). Liu et al. [28] proposed an ensemble
of neural networks to predict the shrinkage of thin shell parts as a measure of their quality.
They used mold temperature, holding pressure, and holding time as inputs for the neural
networks, taking 70 samples for training, 15 samples for validation, and 15 samples for testing,
achieving a top root mean squared error of 0.008.

Differently from the listed early research works, we compare more techniques (six), on
more real data (our dataset is composed of the process parameters of 1451 samples), using
more features (thirteen), and applying a cross-validation scheme to generalize the results.

After Industry 4.0 became an established paradigm exploiting IoT, AI, and CPS to
increase efficiency and productivity in manufacturing, several research works devoted their
efforts to predicting the quality of molded plastic products. For example, Nagorny et al. [24]
proposed the use of convolutional neural networks (CNNs) to process thermographic
images of products and long short-term memory (LSTM) neural networks to process
raw parameters and to run the regression of a single-quality attribute. They tested their
approach on a dataset composed of 177 samples for training and 27 samples for testing.
They compared their methodology with classical regression algorithms, achieving the best
results with the LSTM. Instead of calculating the regression of a single variable, we use a
classification approach to predict the quality classes of road lenses, and we train and test
on a bigger dataset. Ogorodnyk et al. [25] compared an MLP and a decision tree classifier
(J48) using 18 features as inputs. They used a 10-fold cross-validation scheme on a dataset
composed of 101 defective samples and 59 good samples. They achieved the best results
with the decision tree, obtaining 95.6% accuracy. Differently from their work, our dataset
is almost balanced and includes more samples. Furthermore, we classify the samples
into four quality classes, instead of performing a binary classification. Obregon et al. [29]
compared different ensembles of decision trees on an imbalanced binary dataset, with the
objective of inferring explainable rules for quality control. In their first experiment, they
used a dataset composed of 81 normal products and 37 defective products, whereas, in
the second, they had 287 normal products and 613 defective products, achieving a top
accuracy of 94.98% in the first experiment, and 99.73% in the second. Ke and Huang [26]
proposed an MLP with a hidden layer to predict classes of three width measures of the
molded products. As inputs, they took four parameters measured in ten different points
of the injection molding process. They trained their model on 356 samples and tested on
89 samples, obtaining an accuracy around 90% (with a class scoring of 93% as the best
result). Jung et al. [27] compared an autoencoder against several classical ML techniques on
a very imbalanced dataset composed of 5617 samples, using 70% of the data as the training
set and 30% of the data as the test set. Specifically, the test set included 1605 good samples
and only 125 defective samples. They achieved a 99% accuracy with the autoencoder on
their binary problem. Differently from these research works, we tested our models on a
balanced dataset and on a multi-class problem.

Deep neural networks (DNNs) and DL-based techniques demonstrate their effec-
tiveness in pattern recognition for many different applications, such as image and video
processing, object detection, speech recognition, and others [30]. DNNs and DL-based
techniques have been recognized as useful even for industrial quality prediction, pro-



Information 2022, 13, 272 4 of 17

viding better results than shallow networks in different applications [31]. For example,
Liu et al. [32] proposed a novel stacked multi-manifold autoencoder for feature extraction,
and successfully applied it to quality prediction in the hydrocracking process. Instead, in
our research, we try to classify the quality of molded products from 1451 feature vectors
with the parameters of the plastic injection molding process. As such, the amount of
available data, its tabular nature, and the need of using only real data, without simulated or
synthetic values, led us to the choice of applying classical ML techniques on hand-crafted
features. However, DL-based techniques are emerging, even in plastic injection mold-
ing, and try to apply transfer learning to deal with the scarcity of training data, such as
in [33,34].

Moreover, differently from all the works listed in this section, we publicly released the
source code and the data of the tests, providing fully reproducible experiments.

3. Materials and Methods

Figure 1 outlines the methodology implemented in the research described in this
paper. We built a dataset with the process parameters corresponding to the production of
1451 road lenses, collected during different production days. Then, we defined four quality
classes to label the lenses in our dataset by measuring their general uniformity (U0) with
the manual photometric analysis in lab settings. To understand the viability of the quality
prediction, we compared six different classifiers by collecting accuracy metrics. To select
the best hyperparameters for each classifier, we applied a grid search strategy.

Labeling

KNN Decision TreeSVM GBT Random Forest

1. Collection of production data from the "Engel
E-MAC 310/100" molding machine

2. Labeling of data into four quality classes from
photometric analysis

3. Comparison of accuracy metrics from six
classifiersMLP

Waste Acceptable Target Inefficient

Figure 1. The methodology followed for the study proposed in this paper. The production process
parameters of the molded road lenses were collected from a real production environment and
labeled by analyzing their general uniformity (U0) in lab settings. Then, six different classifiers were
compared to understand their capability of predicting the quality class of each sample (a sample is
the vector of the process parameters of a lens).

In the following, we provide a detailed description of the dataset that we used for the
comparison (Section 3.1), as well as a description of the hyperparameters tested for each
classifier (Section 3.2).

3.1. Plastic Injection Molding Data

The experimental evaluation consists of tests executed on a dataset composed of 1451
feature vectors corresponding to 1451 road lenses produced by iGuzzini Illuminazione.
The data was collected from the sensors of the “Engel E-MAC 310/100” injection machine
(https://www.engelglobal.com/en/us/index.html, accessed on the 15 May 2022), with the
“TIG” Manufacturing Execution System (MES) (https://www.tig-mes.com/en/, accessed
on the 15 May 2022), during five different production days, namely, the 18th, 19th, and 20th
of September 2019, the 7th of February 2020, and the 20th of May 2020. Each feature vector
includes 13 injection molding process parameters (Table 1), namely, the melt temperature
(◦C), the mold temperature (◦C), the filling time (s), the plasticizing time (s), the cycle time
(s), the closing force (N), the clamping force peak value (N), the torque peak value (N·m),

https://www.engelglobal.com/en/us/index.html
https://www.tig-mes.com/en/
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the torque mean value (N·m), the back pressure peak value (bar), the injection pressure
peak value (bar), the screw position at the end of the hold pressure (cm), and the shot
volume (cm3).

Table 1. The process parameters included in the feature vector of each sample in the dataset.

Feature Unit Description

Melt temperature ◦C Temperature of the polymer before the injection in the
mold

Mold temperature ◦C Temperature of the mold
Filling time s Time to fill the mold
Plasticizing time s Time to plasticize the product
Cycle time s Time to complete the entire process for a product
Closing force N Closing force of the mold
Clamping force peak value N Peak value of the closing force of the mold
Torque peak value current cycle N·m Peak value of the torque on the injection screw
Torque mean value current cycle N·m Mean value of the torque on the injection screw
Specific back pressure peak value Bar Peak value of the resistance of the injection screw
Specific injection pressure peak value Bar Peak value of the injection pressure
Screw position at the end of hold
pressure cm Position of the injection screw at the end of the holding

cycle
Shot volume cm3 Injection volume

Given that the standard “UNI EN 13201-2:2016” imposes a general uniformity U0
greater than 0.4 for M1 lenses in motorized roads, we defined the following four quality
classes for the samples of the dataset:

• Waste, with U0 < 0.4. All the samples that exhibit a general uniformity less than
0.4 in the photometric analysis should be discarded, as they are not compliant to the
standard. The label for this class is 1;

• Acceptable, with 0.4 ≤ U0 < 0.45. All the samples with a uniformity greater than or
equal to 0.4 and less than 0.45 are considered acceptable by iGuzzini Illuminazione, as
they comply with the standard. However, the target for the iGuzzini production is a
higher quality. The label for this class is 2;

• Target, with 0.45 ≤ U0 ≤ 0.5. All the samples with a uniformity greater than or equal
to 0.45 and less than or equal to 0.5 are considered optimal by the company. The label
for this class is 3;

• Inefficient, with U0 > 0.5. Even if the general uniformity is far greater than the
standard threshold, producing lenses with a uniformity greater than 0.5 would result in
the molding machine using more resources; therefore, this quality should be avoided,
given that it is not required. The label for this class is 4.

Table 2 describes the division of the 1451 samples included in the dataset into the
four classes: 370 lenses are labeled as Waste, 406 lenses as Acceptable, 310 as Target, and 360
as Inefficient.

Table 2. The number of samples for each class in the proposed dataset.

Waste Acceptable Target Inefficient

Label 1 2 3 4
# Samples 370 406 310 360

We evaluated the relevance of each feature on the class labels by scoring each feature
according to the Relief algorithm [35] and the analysis of variance (ANOVA) method [36].
To this end, Figure 2 shows the feature scores computed with the Relief algorithm, nor-
malized between 0 and 1. The feature with the highest score is the cycle time, i.e.,
the time to complete the molding process for a single sample. The filling time is the
second-best feature, whereas the melt temperature and the specific back pressure have the
lowest values.
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0 0.2 0.4 0.6 0.8 1
Shot volume

Screw position
Spec. injection pressure

Spec. back pressure
Torque mean
Torque peak

Clamping force
Closing force

Cycle time
Plasticizing time

Filling time
Mold temperature
Melt temperature

0.1393
0.1421

0.0632
0.0038

0.0584
0.0611

0.1849
0.1793

1.0
0.0913

0.5749
0.1325

0.0

Attribute Weights - Relief

Figure 2. Relevance of the features on the class label of a sample computed with the Relief algorithm.
The values are normalized between 0 and 1.

The ANOVA statistic confirms that the most relevant feature is the cycle time, as per
Figure 3. However, the importance of the other features is relatively low compared to
the cycle time. In fact, normalizing the computed ANOVA F-values between 0 and 1, the
cycle time has an importance of 1, whereas the second-best feature is the specific injection
pressure, with a weight equal to 0.0295, and the third best feature is the mold temperature,
with a weight of 0.0289.

0 0.2 0.4 0.6 0.8 1
Shot volume

Screw position
Spec. injection pressure

Spec. back pressure
Torque mean
Torque peak

Clamping force
Closing force

Cycle time
Plasticizing time

Filling time
Mold temperature
Melt temperature

0.0204
0.0202

0.0295
0.0032
0.002
0.0012
0.0101
0.0145

1.0
0.0199
0.025
0.0289

0.0

Attribute Weights - ANOVA

Figure 3. Relevance of the features on the class label of samples computed with the ANOVA F-values.
The values are normalized between 0 and 1.

3.2. Tested ML Techniques

To understand the feasibility of predicting the quality of the samples, i.e., the uni-
formity of the road lenses in the dataset, we tested six different classifiers, implementing
the most used in the related literature, as described in Section 2. Specifically, we tested
K-nearest neighbor (KNN), decision tree, random forest, gradient-boosted trees (GBT), sup-
port vector machine (SVM), and multi-layer perceptron (MLP) methods. For all the models,
we looked for the hyperparameters which gave the best classification accuracy using an
exhaustive grid search strategy. All the classifiers were implemented in RapidMiner Studio
9.10 (https://rapidminer.com/, accessed on the 15 May 2022), using a stratified 5-fold
cross-validation scheme for the evaluation. In the following, we provide the details of each
tested classifier.

3.2.1. KNN

K-nearest neighbor (KNN) is one of the most known and simple classification tech-
niques. It classifies the feature vector of an unknown sample by using the most common
label among the k feature vectors in the training set, which are the nearest (i.e., the most
similar) to the unknown sample. Therefore, the hyperparameters of a KNN classifier are:

https://rapidminer.com/
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• The K value, to establish how many neighbors should be considered to predict the
class of an unknown sample. We tested all possible K values between 1 and 100;

• The distance measure to evaluate the similarity between feature vectors. Given that
the features are numerical, we tested the Euclidean distance, cosine similarity, and
Manhattan distance.

Table 3 shows the top six KNNs in terms of accuracy. Among the 300 possible variants
of the KNN resulting from the combination of these hyperparameters, we obtained the
best accuracy (92.21%) for K = 4 with the Manhattan distance. In general, the Manhattan
distance showed better accuracy than the Euclidean distance and the cosine similarity, even
for different K values.

Table 3. The top six combinations of hyperparameters for the KNN. The best accuracy was achieved
with K = 4 by using the Manhattan distance to measure the similarity between the feature vectors.

K Distance Accuracy

4 Manhattan 92.21%
6 Manhattan 91.73%
3 Manhattan 91.73%
5 Manhattan 91.73%
8 Manhattan 91.46%
7 Manhattan 91.32%

3.2.2. Decision Tree

A decision tree is a tree-like structure where each node is a test on one of the attributes of
a feature vector and each leaf is a class label. The objective is to infer classification rules from
the features of the training set. As such, a path from the root of the decision tree to a leaf is a
set of classification rules used to assign a label to a sample. We evaluated 88 different decision
trees, resulting from the combination of the following hyperparameters:

• The maximum depth of the tree, testing 10 different steps (with a linear increase)
inside the range [−1, 300], i.e., all the possible values in the set {−1, 29, 59, 89, 119,
150, 180, 210, 240, 270, 300}, where −1 represents “no maximum depth”;

• The splitting criterion to select the features that best separate the input data, testing
information gain, gain ratio, gini index, and accuracy;

• The use of pre-pruning, using the following three criteria, in addition to the maximum depth:

– Gain when splitting a node lower than 0.01 (i.e., minimal gain = 0.01);
– Number of samples in a leaf lower than 2 (i.e., minimal leaf size = 2);
– Number of samples per split lower than 4 (i.e., minimal size for split = 4).

Moreover, we applied an error post-pruning using a confidence value equal to 0.1.
Table 4 lists the top six decision trees in terms of accuracy. We obtained the best result

(91.52%) with the accuracy splitting criterion, without using the pre-pruning. Instead,
the maximum depth had no impact on the final accuracy of the decision tree classifier
in our case study, as the tree never reached the lowest maximum depth (29). The best
result using pre-pruning was also achieved with the accuracy splitting criterion (91.45%
accuracy), whereas the best result achieved by another splitting criterion was 90.08%
accuracy, obtained by the Gini index (with pre-pruning).
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Table 4. The top six combinations of hyperparameters for the decision tree. The best performance was
achieved by using the accuracy as the splitting criterion for the nodes of the tree, without applying
any pre-pruning strategy. The maximum depth had no effect, given that the tree stopped before
reaching a depth of 29, which was the minimum tested.

Pre-Pruning Split Criterion Accuracy

false accuracy 91.52%
true accuracy 91.45%
true Gini index 90.08%
true information gain 89.59%
false Gini index 89.46%
false gain ratio 89.46%

3.2.3. Random Forest

A random forest is a classifier which consists of an ensemble of decision trees inde-
pendently trained by bagging the samples in the training set and the features for each tree.
A new input is classified according to a voting mechanism applied to the results of all
the trees created in the random forest. Specifically, we used extremely randomized trees
(ExtraTrees) [37], which means that:

• No pruning strategy was applied;
• The number of features to evaluate for the split in each tree was equal to int(log(m) +

1), where m is the number of features;
• The features to be used for the split in a tree were randomly selected.

We tested 484 different variants of the random forest with our dataset, looking for the
best accuracy by tuning the following hyperparameters:

• The maximum number of decision trees in the random forest, testing 10 different
steps (with a linear increase) inside the range [1, 300], i.e., all the values in the set
{1, 31, 61, 91, 121, 151, 180, 210, 240, 270, 300};

• The maximum depth of the trees, testing 10 different steps (with a linear increase)
inside the range [−1, 200], i.e., all the possible values in the set {−1, 19, 39, 59, 79, 100,
120, 140, 160, 180, 200}, where −1 represents “no maximum depth”;

• The splitting criterion to select the features that best separate the input data, testing
information gain, gain ratio, Gini index, and accuracy.

The minimal gain for the trees was 0.01, the minimal leaf size was 2, and the minimal size
for splitting was 4. The confidence voting strategy was applied, predicting the class of a new
sample using the label with the highest accumulated confidence (summing up all the trees).

Table 5 includes the top six combinations of hyperparameters for the random forest. We
obtained the best accuracy (95.04%) using 151 trees, with the maximum depth set to 79, and
using the gain ratio as the criterion for the splits. The second-best splitting criterion (94.68%
accuracy) was the information gain, with 151 trees and with 140 as the maximum depth.

Table 5. The top six combinations of hyperparameters for the random forest. The best performance
was achieved by using the gain ratio as the splitting criterion for the nodes of the tree, using 151 trees,
and with 79 as the maximum depth. No pruning strategies were applied, as we used the extremely
randomized trees method. A maximum depth of −1 represents that no maximum depth was used for
the trees.

# Trees Max Depth Split Criterion Accuracy

151 79 gain ratio 95.04%
300 −1 gain ratio 94.97%
210 79 gain ratio 94.90%
61 −1 gain ratio 94.90%

270 −1 gain ratio 94.90%
121 39 gain ratio 94.90%
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3.2.4. GBT

Like the random forest, the gradient-boosted trees (GBT) method is an ensemble of
decision trees. However, different from random forests, the trees are not trained indepen-
dently. Instead, trees are trained sequentially, to gradually produce better predictions, with
each tree attempting to correct the squared error of its predecessor. The class of a sample is
then predicted as a weighted majority of the trees, where the weights are proportional to
the accuracy of each tree. We compared 121 variants of GBT, resulting from the combination
of the following hyperparameters:

• The maximum number of decision trees in the random forest, testing 10 different
steps (with a linear increase) inside the range [1, 300], i.e., all the values in the set
{1, 31, 61, 91, 121, 151, 180, 210, 240, 270, 300};

• The maximum depth of the trees, testing 10 different steps (with a linear increase)
inside the range [1, 200], i.e., all the possible values in the set {1, 21, 41, 61, 81, 101, 120,
140, 160, 180, 200}.
All the samples and features were used for each tree, with a shrinkage (learning rate)

equal to 0.01.
Table 6 lists the top six combinations of hyperparameters for the GBT. The best accuracy

(94.21%) was obtained by the GBT composed of 300 trees, with a maximum depth of 41.

Table 6. The top six combinations of hyperparameters for the GBT. The best performance was
achieved by using 300 trees with a maximum depth of 41 (and all the values above 41). The second-
best accuracy is slightly lower, given by 270 trees with a maximum depth of 41 (and above).

# Trees Max Depth Accuracy

300 41 (and above) 94.21%
270 41 (and above) 94.14%
300 21 94.07%
240 21 (and above) 94.00%
210 41 (and above) 93.87%
210 21 93.80%

3.2.5. SVM

A support vector machine (SVM) classifier builds a set of hyperplanes that separate
the training data into two classes, constructing a classification boundary in the feature space
of the samples. To be adapted to multi-class problems, one-versus-one and one-versus-
rest approaches can be followed. The RapidMiner implementation, based on LibSVM
(https://www.csie.ntu.edu.tw/~cjlin/libsvm/, accessed on the 15 May 2022), uses the
one-versus-one approach, building a binary SVM for all the possible couples of classes and
using a majority voting strategy to label a new sample from the binary SVMs’ outputs. We
compared 36 variants of SVMs on our dataset, given by the combination of the following
hyperparameters:

• The C hyperparameter, regulating the margin from the decision boundary, testing
3 different steps (with a logarithmic increase) inside the range [0.1, 100], i.e., all the
values in the set {0.1, 1, 10, 100};

• The kernel function, testing a linear kernel, a sigmoid kernel, a polynomial kernel,
and a radial basis function (RBF) kernel. With the RBF kernel, we compared different
values for the Gamma parameter, testing 5 steps (with a logarithmic increase) inside
the range [0.0001, 10], i.e., all the values in the set {0.0001, 0.001, 0.01, 0.1, 1, 10}.
Table 7 shows the top six combinations of hyperparametrs for the SVM classifier. We

obtained the best accuracy result (91.73%) with the SVM based on the RBF kernel, with
C = 100 and Gamma = 0.01. The top five combinations are based on the RBF kernel,
whereas the best among the other kernels is the polynomial, scoring 89.39% accuracy with
C = 0.1.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 7. The top six combinations of hyperparameters for the SVM classifier. The best performance
was achieved using the RBF kernel, with C = 100 and Gamma = 0.001. In terms of accuracy, the top
five configurations used the RBF kernel. Among the other kernels, the polynomial worked better
than the linear and the sigmoid, achieving 89.39% accuracy with C = 0.1.

C Gamma Kernel Accuracy

100.0 0.0010 rbf 91.73%
10.0 0.0100 rbf 91.32%
10.0 0.0010 rbf 90.90%
1.0 0.0100 rbf 90.63%

100.0 0.0001 rbf 89.94%
0.1 - polynomial 89.39%

3.2.6. MLP

A multi-layer perceptron (MLP) is a feed-forward neural network in which each layer
is fully connected to the next one. In addition to the input layer, which maps the feature
vector of the samples, and an output layer, which maps the classes to be predicted, it
includes one or more hidden layers. For the architecture of the MLP tested in this paper, we
followed the results from Ke and Huang [26], using a hidden layer composed of six neurons,
between the input layer (13 neurons, given that the features of each sample are 13) and
the output layer (4 neurons, consistent with the number of classes in our dataset). We
compared 48 variants of the MLP, combining the following hyperpameters:

• The learning rate, testing 3 different steps with logarithmic increase in the range
[0.0001, 0.1], i.e., all the values in the set {0.0001, 0.001, 0.01, 0.1};

• The momentum for the gradient descent, testing 3 steps with linear increase in the
range [0.6, 0.9], i.e., all the values in the set {0.6, 0.7, 0.8, 0.9};

• The number of epochs for the training process, testing 3 steps with linear increase in
the range [100, 500], i.e., all the values in the set {100, 300, 500}.
In addition, the minimum error to stop optimization was 0.0001, whilst no decay for

the learning rate was applied. The activation function for each neuron is the sigmoid, and
the inputs were normalized between −1 and 1.

Table 8 lists the top six combinations of the hyperparameters for the MLP. The network
with a 0.1 learning rate, 0.6 momentum, and 500 epochs achieved the best accuracy (92.08%).

Table 8. The top six combinations of hyperparameters for the MLP. The network trained for
500 epochs with a learning rate of 0.1 and a momentum of 0.6 achieved the best accuracy.

Learning Rate Momentum Epochs Accuracy

0.1000 0.6 500 92.08%
0.1000 0.7 500 91.94%
0.0100 0.9 500 91.59%
0.1000 0.7 300 91.39%
0.1000 0.8 100 91.11%
0.1000 0.7 100 90.63%

4. Experimental Evaluation

We compared the six classifiers on the dataset composed of the 1451 feature vectors
with the process parameters collected during the production of road lenses. In this section,
we report the details about the results achieved by the best configuration of each classifier,
as explained in Section 3.2. In fact, we want to understand if the ML-based classifiers can be
used for the quality prediction in the iGuzzini Illuminazione case study. In addition to the
creation of a baseline of metrics on the collected dataset, a comparison of classifiers might
be relevant to other case studies about quality prediction from the production process
parameters in plastic injection molding.
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Therefore, in the following subsections, we describe the experimental setup as well as
the evaluation metrics (Section 4.1) used to compare the classifiers. Moreover, we present
and analyze the results of the evaluation (Section 4.2). Finally, we discuss the limitations of
our experimental evaluation (Section 4.3).

4.1. Experimental Setup and Evaluation Metrics

To assess the viability of the use of ML techniques to predict the quality of road
lenses from the parameters of the production process, we implemented the proposed
classifiers in RapidMiner Studio 9.10. The tests ran on a Windows 10 notebook equipped
with an i7 7700HQ CPU, 16 GB of RAM, and a Nvidia GeForce GTX 1060 GPU. To collect
accuracy measures for all the classifiers, we used a stratified 5-fold cross-validation scheme.
Therefore, the dataset was randomly split into five folds with the same number of samples,
preserving, in each fold, the number of samples per class available in the original dataset.
Then, the accuracy tests were repeated five times, selecting a different fold in each iteration
as the test set and using the other four folds as the training set.

We compared the classifiers by measuring the mean testing accuracy over the five
folds. Therefore, in each iteration, we computed the ratio between the samples classified
correctly and the total number of samples in the test set. Moreover, we aggregated the
results in each fold to compute:

• The precision for each class, i.e., the ratio between the number of samples correctly
classified as belonging to a class and the total number of samples labeled as that class
in the test set;

• The recall for each class, i.e., the ratio between the number of samples correctly
classified as belonging to a class and the total number of samples available for that
class in the test set;

• The macro-averaged F1 score for each classifier, i.e., the average of the F1 scores
computed for each class.

The precision and recall for a class can be computed with the following equations:

class precision =
TC

TC + FC
(1)

class recall =
TC

TC + F
�C

(2)

where C denotes a class label, TC is the number of samples correctly classified as C, FC
represents the number of samples labeled as C but that actually belong to a different class,
and F

�C
is the number of samples actually belonging to C but labeled with a different class.

The F1 score for a class can be computed as the harmonic mean of the class precision and
class recall, as in the following equation:

class F1 score = 2 · class precision · class recall
class precision + class recall

(3)

In addition to the described metrics, given that we compare six different classifiers,
we used the Friedman test [38,39] and the Nemenyi test [40] to check the statistical signif-
icance of the different accuracy results obtained by the compared classifiers. In fact, the
Friedman test and the Nemenyi test are ideal for comparing more than two classifiers [41].
Specifically, as suggested in [41], we use the Iman and Davemport [42] approximation of the
Friedman statistic:

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
, (4)
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where k is the number of classifiers, N is the number of metrics, and χ2
F is the Friedman

statistic, according to the following equation:

χ2
F =

12N
k(k + 1)

[
∑

j
R2

j −
k(k + 1)2

4

]
(5)

where Rj is the average rank in the evaluated metrics of the j-th classifier. Using the average
accuracy, the macro-averaged F1 score, and the class recalls to compare our six classifiers,
given that FF is F-distributed, the null hypothesis (i.e., no significant difference between
the classifiers) is rejected with p < 0.05 if FF is greater than the critical value 2.09216
when comparing six classifiers over six metrics, as the degrees of freedom are k− 1 for the
numerator and (k− 1)(N − 1) for the denominator. According to the Nemenyi test, in case
the null hypothesis is rejected, the performance of two classifiers is significantly different if
their average ranks differ by at least the critical distance CD:

CD = qα

√
k(k + 1)

6N
(6)

where qα is 2.85 for α = 0.05 and 2.589 for α = 0.1 when comparing six classifiers, as in our
experiment. Therefore, for our tests, CD is equal to 3.07835 with α = 0.05, and to 2.79644
with α = 0.1

4.2. Results and Discussion

Table 9 compares the mean testing accuracy achieved by the best configurations of the
six classifiers. The random forest obtains the top accuracy, scoring a mean value of 95.04%
on the test sets of the stratified 5-fold cross-validation scheme. Moreover, the random forest
is the most general model, as the standard deviation has the lowest value compared to the
other classifiers (1.26%), meaning that the accuracy is almost the same in all the folds. GBT,
i.e., the other classifier based on an ensemble of decision trees, has a slightly lower accuracy
(94.21% ± 1.37%). Instead, the other four classifiers, i.e., KNN, decision tree, SVM, and
MLP, score around 92% as the mean testing accuracy, with higher standard deviations (the
SVM obtained the top standard deviation, i.e., 2.37%).

Table 9. The mean accuracy (and its standard deviation) computed for each classifier using a stratified
5-fold cross-validation scheme. The best accuracy value is highlighted with bold.

KNN Decision Tree Random Forest GBT SVM MLP

92.21 ± 1.64% 91.52 ± 1.63% 95.04 ± 1.26% 94.21 ± 1.37% 91.73 ± 2.37% 92.08 ± 1.92%

The accuracy results suggest that the ensembles of weak learners, i.e., the random
forest and the GBT, work better than the other tested classifiers in the quality prediction
from the process parameters of the production of plastic road lenses. This is also confirmed
by the results included in Table 10, which lists the class precision and recall computed by
summing up the results on the test sets of each fold of the stratified 5-fold cross-validation
scheme. In fact, the random forest has the best precision and recall in each class, being
capable of correctly predicting 94.59% of “waste” lenses available in the dataset (with a
precision of 97.22%). The GBT has similar recall and precision in all the classes, but it scores
a lower precision (94.82%) and recall (94.05%) on the “waste” class. Therefore, even if their
general accuracy is similar, the random forest is a better choice than the GBT for the quality
prediction of plastic road lenses, as it is very important to correctly distinguish the “waste”
lenses from all the other classes (which are all compliant to the standard for road lenses). In
this sense, despite that the SVM and MLP exhibit a good accuracy (91.73% and 92.08%),
they obtained the lowest recall for the “waste” class, being able to correctly identify less
than 90% of all the available “waste” lenses. Therefore, a simpler classifier, such as KNN,
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with a slightly lower accuracy is more advisable than the SVM and MLP, given that it
exhibits a higher recall (91.89%) on the “waste” class, with comparable precision.

Table 10. The precision and recall for each class, computed by summing up the samples in the test
set of each fold of the stratified 5-fold cross-validation scheme. The best values of precision and recall
for each class are highlighted with bold.

Class Precision Class Recall

Waste Acceptable Target Inefficient Waste Acceptable Target Inefficient

KNN 92.14% 92.42% 92.48% 91.84% 91.89% 90.15% 91.29% 95.62%
Decision Tree 88.65% 91.05% 93.71% 93.14% 90.81% 87.68% 91.29% 96.71%
Random Forest 97.22% 95.11% 94.37% 93.42% 94.59% 95.81% 91.94% 97.36%
GBT 94.82% 94.29% 94.35% 93.42% 94.05% 93.60% 91.61% 97.26%
SVM 91.04% 89.81% 93.40% 93.14% 87.84% 91.13% 91.29% 96.71%
MLP 92.90% 89.15% 94.22% 92.91% 88.38% 93.10% 89.35% 96.99%

Figure 4 reports the F1 scores of each classifier computed by macro-averaging the F1
scores of each class. The average F1 scores confirm the trend exhibited by the accuracy
scores: the best classifiers are the random forest (94.95%) and the GBT (94.16%), with
the latter obtaining a slightly lower standard deviation (0.98% against 1.23%). The other
classifiers score a lower F1, with the KNN being the third best (92.21 ± 1.04%).

KNN Decision Tree Random Forest GBT SVM MLP0

20

40

60

80

100 92.21
+/-1.04

91.61
+/-2.6

94.95
+/-1.23

94.16
+/-0.98

91.78
+/-2.4

92.07
+/-1.95

Macro-averaged F1-score

Figure 4. Macro−averaged F1 scores (± standard deviation) obtained by the compared classifiers on
the test set of each fold of the stratified 5-fold cross-validation.

Figure 5 shows the confusion matrices (one for each classifier) obtained by summing up
the predictions on the five test sets of the cross validation. For the random forest (Figure 5c),
only 20 out of 370 “waste” lenses were predicted as “acceptable”, resulting in false negatives
(i.e., samples which should be discarded as non-compliant with the standards but, instead,
are labeled as “acceptable”). On the opposite, 10 “acceptable” samples were wrongly
identified as “waste” lenses. Instead, the SVM (Figure 5e) and the MLP (Figure 5f) wrongly
labeled 42 and 43 “waste” lenses as “acceptable” (and the SVM also labeled one “waste”
sample as “target” and two as “inefficient”), doubling the number of false negatives of
the random forest. The GBT (Figure 5d) is in line with the random forest for the number
of “waste” lenses labeled as “acceptable” (22), but wrongly labels far more “acceptable”
lenses as “waste” (19) than the random forest. In fact, the classification errors between
the “waste” and the “acceptable” classes are the most important: their meaning is that
lenses which are not compliant to the regulations are identified as regular, and compliant
lenses are wrongly discarded. The other misclassification errors are less relevant, as they
fall within the “acceptable”, “target”, and “inefficient” classes, which are all compliant
to the standard for plastic road lenses. However, the random forest demonstrated very
good performance even with such classes, with only seven errors between “acceptable”
and “target”, and 35 errors between “target” and “inefficient”, and no errors between
“acceptable” and “inefficient”.
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Figure 5. Confusion matrices collected by summing up all the test samples in the stratified 5-fold
cross-validation scheme, for the six classifiers, i.e., KNN (a), decision tree (b), random forest (c), GBT
(d), SVM (e), and MLP (f).

To check whether there is a statistically significant difference in the performance of
the compared classifiers according to the Friedman test, Table 11 includes the ranks of the
classifiers in terms of mean accuracy, macro-averaged F1 scores, and class recalls (1 = best
classifier, 6 = worst classifier).

Table 11. Ranking (1 = best classifier, 6 = worst classifier) of the classifiers in terms of average accuracy,
macro-averaged F1 scores, and class recalls. The last row reports the average rank.

KNN DT Random Forest GBT SVM MLP

Accuracy 3 6 1 2 5 4
F1 score 3 6 1 2 5 4
Waste Recall 3 4 1 2 6 5
Acceptable Recall 5 6 1 2 4 3
Target Recall 3 3 1 2 3 6
Inefficient Recall 6 3 1 2 3 5
Average 3.83 4.67 1.00 2.00 4.33 4.50

Thus, as per Equation (5), the value of χ2
F is 12, whereas, according to Equation (4), FF is

3.33. Therefore, the hypothesis that there is no statistically significant difference is rejected
with p < 0.05. According to the Nemenyi test (Equation (6)), the performance of the best
classifier in terms of accuracy, F1 score, and class recalls, i.e., the random forest, is statistically
different from the DT, SVM, and MLP with α = 0.05, as the difference between the average
ranks is greater than the critical distance value of 3.07835. In addition, the random forest is
statistically different from the KNN with α = 0.1, as the difference of the rankings is greater
than the critical distance value 2.79644. Finally, as expected from the very close metrics, there
is no statistically significant difference between the random forest and the GBT.

The results highlighted that the random forest and the GBT are the best classifiers
among those tested to predict the quality of molded road lenses, being capable of correctly
identifying quality classes, in addition to being able to distinguish between samples to be
discarded and samples that are compliant to the regulations for road lenses. The random
forest seems slightly preferable, given that the GBT wrongly labels more “acceptable” lenses
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as “waste” than the random forest does. The other classifiers exhibit a poorer accuracy
performance, with the SVM and MLP being the worst classifiers in terms of “waste” lenses
classified as compliant to the standard (and vice versa).

Moreover, the results suggest the viability of the use of ML techniques to classify the
quality of plastic road lenses from the parameters of the molding process. In fact, a random
forest or a GBT classifier can be applied during the production to monitor the process
parameters and predict the quality class of all the samples in a production batch, instead of
manually checking a small subset for each batch, with a photometric analysis in lab settings.
In addition to supporting the operators of the molding machine, an ML classifier with the
demonstrated accuracy might be used in the loop of the process parameter optimization,
for example, as a fitness function in genetic algorithms [43].

4.3. Limitations

The results of the research described in this paper are promising in terms of multi-
class quality prediction in plastic injection molding, but include some limitations. The
proposed dataset includes the process parameters of 1451 road lenses molded in five
different production days. This number limits the evaluation to classical ML techniques,
such as those tested in this paper. A complete evaluation should include the performance
of deep learning-based techniques as well, such as TabNet [44], which would require much
more data. However, the research presented in this paper confirmed that classical ML
techniques are able to converge for the task of quality prediction in plastic injection molding,
even in multi-class problems, to distinguish between more than two quality classes.

Concerning the hyperparameter tuning, we tested several combinations to select the
best hyperparameters in the classification of road lenses: random forest and GBT emerged
as the best classifiers. Therefore, for future works, a more fine-grained comparison of
hyperparameters dedicated to these two classifiers only might be necessary to find the
optimal combination. Moreover, comparing different implementations of ensembles based
on bagging and boosting, as well as deep learning techniques with more training data,
might lead to more general conclusions.

5. Conclusions

We compared six different classifiers trained to predict the quality class of plastic
products created with the injection molding process. Specifically, we tested the proposed
classifiers on the real process parameters collected during the production of plastic road
lenses by the company “iGuzzini Illuminazione”, located in Italy.

Concerning such case study, our results demonstrate that ML techniques can be
definitely applied to the quality prediction of plastic road lenses, thereby automating
a task which is currently performed by measuring the lenses’ general uniformity with
photometric analysis on a subset of the produced samples. In fact, the random forest
classifier is able to predict the quality of samples with a 95.04% accuracy, exhibiting a good
capability of identifying all four of the quality classes available in the dataset collected for
the experiments. Another ensemble classifier, i.e., the GBT, obtains similar accuracy results,
but with a poorer capability of separating the products to be discarded from the regular
ones. The other tested classifiers, i.e., KNN, decision tree, SVM, and MLP, obtain lower
accuracy scores than the random forest and the GBT.

Concerning plastic injection molding in general, our experiments confirm the con-
clusions of the scientific literature about the suitability of ML techniques to automate the
task of quality prediction, making a further step towards a real Industry 4.0. Furthermore,
our results demonstrate that ML techniques can be used to predict more fine-grained
quality classes, and to distinguish between samples to be discarded and good samples in a
binary fashion.

Finally, we publicly released the dataset collected for the tests, as it can be useful to
compare other quality prediction techniques. The source code of our experiments is publicly
available in a repository as well, making the research presented in this paper fully reproducible.
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