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Abstract: At present, there is no uniform definition of annotation schemes for causal extraction, and
existing methods are limited by the dependence of relations on long spans, which makes complex
sentences such as multi-causal relations and nested causal relations difficult to extract. To solve
these problems, a head-to-tail entity annotation method is proposed, which can express the complete
semantics of complex causal relations and clearly describe the boundaries of entities. Based on
this, a causal model, RPA-GCN (relation position and attention-graph convolutional networks),
is constructed, incorporating GAT (graph attention network) and entity location perception. The
attention layer is combined with a dependency tree to enhance the model’s ability to perceive
relational features, and a bi-directional graph convolutional network is constructed to further capture
the deep interaction information between entities and relationships. Finally, the classifier iteratively
predicts the relationship of each word pair in the sentence and analyzes all causal pairs in the sentence
by a scoring function. Experiments on SemEval 2010 task 8 and the Altlex dataset show that our
proposed method has significant advantages in solving complex causal extraction compared to
state-of-the-art methods.

Keywords: entity location awareness; long span dependence; GAT; GCN; complex causal extraction

1. Introduction

Decision-making is an important act of analyzing and reasoning about a problem, and
the correctness or incorrectness of a decision often determines the success or failure of an
activity. For some simple decisions, people can use knowledge and experience accumulated
in the past to decide by intuitive and qualitative analysis. With the development of science
and technology, however, the decision-making environment has become more open, and
the uncertainties in the decision-making process have become increasingly numerous;
furthermore, the data available for decision-making have become increasingly large-scale
and diverse, and they contain a very large amount of information and clues relating to
cause–effect relationships that need to be analyzed.For example, the left-hand side of
Figure 1 shows three real posts from Twitter. By considering these common-sense causes
and effects, we can extract the reasoning content: “because of rain, we catch a cold”; rain is
the cause of a cold, and a cold is the result of rain.

In cause-and-effect relationships, the occurrence of a cause triggers the occurrence
of an effect. This forms the basis of inferences [1] and decisions [2] and plays a pivotal
role in event analysis [3], logic models [4], decision judgments [5], and other application
scenarios. The example in Figure 1 shows the importance of causal extraction. As noted,
this gives us the following results: getting caught in the rain leads to colds; many types of
viruses can cause a common cold. If we introduce expert experience into common-sense
causality, using causal analysis of clinical observation data gives us: “consume warm foods
and warm drinks” to treat “rhinovirus”; and “influenza virus” is treated with “antiviral
drugs”.
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Figure 1. Application of causality extraction in decision-making and question answering.

On the premise of comprehensive use of the causal conclusions obtained above, if the
new case is described as: “It rained heavily today. I forgot to bring my umbrella when I went
out and got drenched badly. I caught a cold when I got home. What should I do?” Using
the knowledge about cold types, we can infer that the patient has rhinovirus and that the
optimal solution should be to consume warm foods and warm drinks. This is an important
semantic relationship that reflects a strong correlation between two entities before and after
from cause to effect. Identifying and extracting causality from unstructured sentences—
and the precise determination of cause and effect in relation to entity boundaries—is of
great significance for high-level applications such as precise causal inference and event-
development inference chains. As such, many researchers are devoted to the study of
causality extraction.

In recent years, there has been great progress in research examining the extraction
of causal relationships. However, most previous work has focused on intra-sentence
relationships and simple entity–pair relationships; there are still two main challenges that
remain. First, as in sentence (a) in Figure 2, in long-sentence relationship extraction, the
entity pairs corresponding to the relationship usually span multiple words, and the existing
methods are limited by the dependence of the relationship on this long span; accurately
unifying the entity information and the feature representation of the long-span semantic
information still needs to be explored. Second, as in sentences (b)–(d) in Figure 2, when the
same causal entity appears in multiple relationship triads (one cause and multiple effects
or chain-causal cases), the classifier is prone to confusion; without the support of a large
amount of training data, it is difficult for the classifier to discern the relationships in which
the entities are involved, and this can greatly affect the performance of the model.

Figure 2. Schematic diagram of complex cause–effect relationships.

It is still difficult to accurately identify complex causal relationships using semantic
information. To address the above problems, herein, we propose a new causality-extraction
method that incorporates an entity-location-aware graph-attention (GAT) mechanism to
reduce redundant content in graph-dependency trees and enhance the association between
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long-span entities. We conducted a large number of experiments to test this approach, and
the results showed its effectiveness. The main contributions of this work are as follows:

1. To address the problems of overlapping multiple relationship groups and long-span
dependencies in causal-relationship extraction, a novel head-and-tail annotation
scheme for relationship entities is proposed. This contains head and tail nodes for
causal entities and relationship words, dividing the triads in the text into multiple
simple small sets according to relationship categories and reducing the complexity
of subsequent entity recognition. Entities of arbitrary span can be detected using
these head and tail pointers, which capture information-boundary data and define
scoring functions. All possible mentions of a causal entity in a sentence can be
detected iteratively, fully integrating the interaction information between entities
and relationships. This provides notable advantages for solving complex causal and
long-span causal problems without complex feature engineering.

2. We propose a GAT mechanism incorporating entity-location perception, in which
entity-location perception strategies provide constraint guidance for graph-dependency
semantics to learn relationships between long-span nodes and reduce redundant in-
terference. This enables better capture of long-range dependencies between entities
and strengthens the dependency-association features between causal pairs.

3. We build a bidirectional graph convolutional network (GCN) to perform deep min-
ing of the implicit relationship features between each word pair outputted from the
attention layer. This improves the directionality of the subject and object in relation-
ship extraction, and it allows iterative prediction of the relationship between each
pair of words in a sentence using a classifier; the functions are then scored to ana-
lyze all causal pairs in a sentence. Experiments were conducted on a sentence-level
explicit-relationship-extraction corpus. The experimental results show that the pro-
posed method obtains the optimal F1 value when compared with the state-of-the-art
model, and it effectively improves the extraction accuracy for complex cause–effect
and long-span sentences.

2. Related Work

This section presents a survey of the previous research related to causal-relationship ex-
traction and briefly describes causal-sequence labeling methods and relationship-extraction
techniques.

2.1. Causal-Sequence Labeling Method

Dasgupta et al. [6] labeled sentences based on four tags—cause (C), effect (E), causation
(CC), and none (None)—dividing a sentence into multiple clauses, with each relationship
considered as a separate sentence. Fu et al. [7] used tags to indicate the semantic role of
causation of events (“cause” (C), “result” (E), or “other” (N)) and tagging labels to indicate
the boundaries of event causality (an event is causally external (O), initiating causality (B),
or continuing causality (I)) in two steps to assign labels to each event in the sequence and
to identify the degree of causality by boundary labels. However, this annotation scheme
introduces a large number of new causal labels, which leads to an uneven distribution of
semantic annotations and creates difficulties in feature training. Zhao et al. [6] applied the
Cartesian product of entity-mention tokens and relationship-type tokens and then assigned
a unique token to encode the entity mention and relationship type for each word. Although
these studies achieved good improvements in causal-relationship extraction, all of the
approaches treated relationships as discrete labels to be assigned to entity pairs, making
relationship classification a difficult machine-learning problem: assuming that a complex
relationship extraction contains m entities and each entity pair may contain relationships
between them, there are A2

m possible combinations of entity pairs, and these are prone to a
large number of negative examples.

To address these problems, Wei et al. [8] proposed a new cascaded binary-tagging
framework for triple extraction of relationships that identifies the tail entities under each
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specified relationship using the premise of identifying the head entities first. This can solve
the relationship-overlap problem to a certain extent, and it achieves a great enhancement for
the extraction of overlapping relationships. The method also partly alleviates the problem
of there being too many combinations of entity pairs, but there is still much room for
improvement.

In the approach described in this paper, we determine entity boundaries by encoding
the start and end positions of causal-entity pairs to improve entity-position-aware features.
This effectively alleviates the long-distance-dependence problem of relationship extraction.
By identifying all possible causal-entity pairs mentioned through the joint extraction of
entities and relationships, the primary features of the entities are extracted as their own
representations for matching. The relationship-extraction problem is then transformed into
an identification problem of three elements: relationships, head entities, and tail entities.

2.2. Relationship Extraction Technology

Traditional causality extraction is divided into two types of approaches, rule-based
and machine-learning based. Garcia [9] et al. defined a lexical syntax of 23 explicit causal
verbs, and the rules explore the causal relationships present in the context by finding field
operations. One of them, Kira [10], proposes an authoritative algorithm for generating
causal pairs from news articles. This rule-based approach achieves a higher degree of
automation than the two pattern-based systems mentioned above, thanks to the use of
generalized rules <pattern, constraint, priority>. The system achieves an accuracy of 70.4%
for news article titles over a period of 150 years. However, the system achieves a poor recall
metric of 10.0% because the rules only cover obvious causal cases.

Statistical-based machine learning reduces manual predefinition relative to rule-based
approaches. Zhao et al. [11] avoided the overfitting problem of hidden plain Bayesian
models by handling partial interactions between text features and introduced a new causal
linkage feature that classifies linking words into different categories. Kim et al. [12]
combined probabilistic topic models with a time-series causal analysis to mine causal
relationships. Lin et al. [13] constructed a classifier to mine relationships with four rules:
generative rules, dependency rules, word pairs, and context. The model has a high recall
but low precision. This is because causal relations are the most dominant relations in the
training set, and this class of models tends to label uncertain relations as causal instances.
These traditional methods are limited to extracting the semantic features of sentences and
ignore the dependent association features in sentences.

With the maturity of deep learning techniques, training models map words and
features into low-dimensional dense vectors to effectively alleviate the feature sparsity
problem. Wang et al. [14] proposed a multisegmental attention-based CNN model to
capture information specific to entity relations, and an attention pooling layer is used to
capture the most useful convolutional features of the CNN; however, this treatment ignores
the long-range dependencies among causal relations. Mao [15] et al. accurately represent
causal keywords and cue phrases by word filtering techniques, output a similarity score for
each word filter, and combine clustering techniques to downscale the features to improve
the convolutional performance of CNN models. However, the pooling layer misses some
valuable information, cannot bridge the correlation between the local vector of text and the
whole, and ignores the long-range dependency between causal relations. Xu [16] et al. used
the shortest dependency path (SDP-LSTM) to extract heterogeneous information during
relation classification to learn higher-level semantic and syntactic representations. Li et al.
Zhao [17] used textual causal connectives to identify causal pairs and extracted specific
causal events from the identified sentences, obtaining high-quality and readable causal
pairs. Li [18]et al. combined Bi-LSTM with a multi-headed self-attention mechanism to
direct attention to long-range dependencies between words. Graph-based models in locally
continuous word sequences, such as graph convolutional networks (GCNs) and graph
attention networks (GATs) to model a set of points (nodes) and their relations (edges),
have also received attention from researchers. Zhang et al. [19] proposed a dependency
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tree-based GCN model to extract relations. The pruning strategy is applied to graphical
convolutional neural networks, which can remove irrelevant content without ignoring key
information and thus improve the robustness of the model. The literature [20] introduced
syntactic dependency trees in the graph attention network layer to enhance causal-semantic
associations but cannot represent accurate sequence labeling for complex relations.

Despite the success of these joint approaches, they all assume that there are no over-
lapping triads in a sentence and the long-span problem of relational pairs is not better
addressed, so the dependency feature between causal pairs is crucial to facilitate infer-
ence about relational triads. Dai [21] directly labels entities and relational tags based on
query word positions and identifies entities in other positions that are related to the former.
Dixit [22] constructs a span-level graph for joint detection of overlapping entities and rela-
tions. However, these models cannot achieve satisfactory performance when the overlap is
relatively complex. Zhang et al. [23] combined entity location with perceptual attention to
encode semantic information and global location of entities. The ablation study showed that
this location-aware mechanism was effective and improved the F1 value by 3.9%. Inspired
by this, we propose a new causality extraction method that fuses entity location-aware
graph attention mechanisms to reduce redundant content from graph dependency trees
and thus enhance the dependent association features between long-span entities.

3. Methods

In this work, the essence of causal-relationship extraction is the automatic tagging of
causal subject–object words in the corpus. In this section, we describe the detailed principles
of our approach. The causal word tagging method is introduced in Section 3.1, and the
causal relationship extraction model (relationship position and attention (RPA-GCN) is
introduced in Section 3.2. As shown in Figure 3, for the input sentences, RPA-GCN is used
for feature encoding and relationship prediction. In the subject-tagging stage, the decoding
of relationship classification is input to the subject-tagging network as a precondition. In
the object-entity labeling stage, the relationship and subject-entity decoded in the first two
stages will be input as preconditions to further limit and enrich the feature representation of
this layer. The classification function predicts the relationship between each pair of words in
the sentence, and the relationship prediction at this time is converted into multiple binary-
classification tasks, which greatly reduces the complexity of triples. Through the connection
and progression of these three stages, the semantic representation of the relationships and
entities in the model network is gradually enriched, and the complex causal relationship
existing in the sentence is well discriminated.

Figure 3. Research steps.
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3.1. Cause–Effect Sequence Labeling Method

In our method, due to the limited number of applicable causal corpora available at
present, we avoid using complex tokens that might cause the reduction in causal semantic
purity, and we use “C” (cause), “E” (effect), “CE” (cause and effect), and “O” (other) as
causal tags. The compound tag CE indicates that the entity is the result of a first causal
pair and the cause of a second causal pair, which intelligently addresses the embedded
causality. To enhance the isolation of entity boundaries and relational edges and to improve
the pruning effect on the dependency tree, the causal extraction is decomposed into two
interrelated sub-tasks: the identification of starting and ending positions of causal-entity
pairs. In Figure 4, the position corresponding to “high” in the cause entity “high inflation”
is labeled as “Ch”, which indicates the cause head, and the position corresponding to
“inflation” in the end marker sequence is labeled as “Ct”, which indicates the cause tail. The
single causal-entity word is marked as “C/E”, and the unrelated word vector is marked as
“O”. Therefore, the process of causal-pair extraction is to determine the boundaries of causal
entities and define the relative-position code by identifying the start and end positions of
the entity. The relative position of “Recessions” to “downward price rigidity” is −11.

Figure 4. Chain causal sentence pattern.

To solve the problem of causal chaining or nesting in sentences and to alleviate
the problem of inadequate long-span-dependent features between causal entities, we
determine entity boundaries by encoding the beginning and ending positions of causal-
entity pairs to improve relative entity-position-aware features. The joint extraction of
entities and relationships identifies all possible causal-pair-entity mentions, extracts the
primary features of the entities as their own representations for matching, and transforms
the causal-extraction task into a sequential annotation of the relationship group (Ch, Ct, Eh,
and Et).

For each start position in the annotation result, it is known from the common sense of
the text that the end position must be after the start position, so annotation results before
the start position can be ignored. Since the span of any entity in a sentence is continuous,
the accuracy of the entity can be guaranteed as long as the start position and end position
of the entity can be correctly identified. In Section 3.2.3, we will describe how the head
and tail pointers match the cause and effect in the sentence parsed by the scoring function.
Compared with the method of a previous study [6] , which simply cut the sentences into
two parts based on the causal conjunction, the annotation scheme in this method effectively
solves the problems of overly loose causal boundaries and uneven distribution of tokens.

3.2. Causality-Extraction Model (RPA-GCN)

The RPA-GCN model, which fuses entity-position perception and GAT for capturing
sentence-level-dependent features, is proposed in this section, as shown in Figure 5. The
model goes through several feature-extraction processes as follows. (1) Sentences are
passed through the word-embedding layer to obtain the initial feature representation of the
sequence, and the feature representation obtained from the word-embedding layer is input
to the bidirectional long short-term memory (Bi-LSTM) layer. The distance of each word
vector relative to the entity is calculated as its relative position feature, and this is also input
to the Bi-LSTM layer. The LSTMs of the front- and back-directional sequences are then
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generated into long-span encoding vectors. (2) The GAT mechanism learns the potential
features of the coding dependency tree, and the Bi-LSTM layer outputs relative-position
information, aggregates the effective information in the dependency tree, and enhances the
associations between related entities. (3) The bidirectional GCN further learns the deeper
dependency interaction features of the semantics, and a pooling operation reduces the
redundancy of the feature information and parses all the causes and effects in the sentence.

Figure 5. Framework diagram of causal extraction model (RPA-GCN).

3.2.1. Bi-LSTM Layer (Fused Entity Location Information)

As shown in Figure 6,to alleviate the inadequate extraction of long-span-dependent
features for causality extraction, entity location-aware information is introduced in the
Bi-LSTM layer. l is the number of words in an entity pair, and Et is the vector of the t entity
pair. Let the first relational entity in the sentence be represented by E1 and the second by
E2. Calculate the distance lE1

t of the current word t with respect to the first entity and the
distance lE2

t with respect to the second entity.

Et =
1
l

l

∑
c=1

hc (1)

lE1
t = lt − lE1 + L (2)

lE2
t = lt − lE2 + L (3)

Rlt =
[
wt, lE1

t , lE2
t

]
(4)

where wi is the word vector of the current word i, lE1 and lE2 are the position codes of
entities E1 and E2, respectively. L is the maximum length of the sequence in the current
training batch.

To obtain semantic contextual continuous sequence features, the input is encoded
using the Bi-LSTM. The LSTM uses a gating device to achieve long-term memory, which
alleviates long sequence forgetting information, and it is also able to capture sequence
information. The hidden state representation in the Bi-LSTM is shown in Equations (5)–(8).

−→
hi =

−−−→
LSTM

(
gi,
−−→
hi−1

)
(5)

←−
hi =

←−−−
LSTM

(
gi,
←−−
hi−1

)
(6)

hi =
[−→

hi ;
←−
hi

]
(7)
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Whi = hi ∗Wc + bc (8)

where gi is the result of stitching using different convolution kernels.
−→
hi and

←−
hi denote the

forward and backward hidden states of hi in the Bi-LSTM, respectively, and the extracted
features are spliced as hi, and the feature is represented by Whi after hi passes through the
linear layer and as the output of the Bi-LSTM layer.

Figure 6. Bi-LSTM network structure.

3.2.2. GAT Layer

A GAT network is a new type of neural-network architecture based on graph-structured
data that is able to engage the features of its neighbors by stacking layer nodes. This means
that the attention is more focused on the relationships between the words to be extracted,
further strengthening the semantic features, incorporating the complete factual information
sentence by sentence to update the graph network, and more comprehensively exploring
the relationships between entities. We parse the dependency information of the sentences
to obtain the adjacency matrix that stores their semantic information. This is input to
the GAT layer along with the output features of the Bi-LSTM layer, and this incorporates
entity-location awareness for further feature extraction.

A semantic dependency pattern is a linguistic structure that represents the relationship
between entities in a sentence. In the Stanford Parser’s analysis of syntactic dependency [24],
the constraint information of lexical dependency reduces the interference of redundant
words. Take the sentence “The pollution was caused by the shipwreck” as an example.
Here, “caused” is the root node, and the causal subject and object point to “pollution” and
“shipwreck”. The semantic dependency graph is stored in the form of an adjacency matrix,
which is a directed acyclic graph. The dependency tree and adjacency matrix of sentence
generation are shown in Figure 7.

Figure 7. Dependency tree example of causal relational sentence pattern.

In the GAT layer, the Bi-LSTM output coding incorporating the entity-location-aware
mechanism performs constraint guidance on the dependency semantics to learn the re-
lationships between long-span nodes and to reduce redundant interference. As shown
in Figure 8,the nodes of the graph correspond to each word in the sentence, the node
features are the word features extracted from the Bi-LSTM layer, and the edges of the graph
correspond to the edges of the semantic dependency graph, i.e., the corresponding semantic
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relationships in the adjacency matrix. The Bi-LSTM layer outputs fused entity-location-
aware feature vectors, and these are concatenated and input to a single-layer feedforward
neural network a, and eij is obtained by a nonlinear activation function:

eij = a
(
Whi, Whj

)
= LeakyReLU

(
WT

a
[
Whi‖Whj

])
(9)

where the linear mapping of the shared parameter W adds dimension to the features of
the vertices (this is a common feature-augmentation method), the operator “‖” splices the
transformed features of vertices i and j, and a() concatenates the spliced features. The
latter high-dimensional features are mapped to the real number eij, which denotes the
importance of word j to word i.

Figure 8. Attention coefficients.

The computation of GAT is performed by mining the dependencies between words
through the adjacency matrix generated by semantic dependency analysis. The normalized
attention coefficient αij is calculated as:

αij = so f tmaxj(eij) =
exp(eij)

∑
k∈Di

exp(eik)
=

exp(LeakyReLU
(

WT
a

[
Wh′i‖Wh′j

])
)

∑
k∈Di

exp(LeakyReLU
(
WT

a
[
Wh′i‖Wh′k

])
)

(10)

where the set of nodes adjacent to word i in the semantic dependency graph is Di, and the
softmax function is introduced to normalize all the nodes j adjacent to i. All the neighboring
word features j of word i in the dependency graph with corresponding weight coefficients
αij are weighted and summed to obtain attentional features h′i using a nonlinear layer:

h′i = σ

(
∑

j∈Di

αijWh′j

)
(11)

3.2.3. GCN Layer

The GCN used in this method is a variant of the undirected GCN proposed in a
previous report [25]. This aims to capture high-level neighborhood information and learn
the representations of nodes in convolutional operations on the graph. To further extract
the interaction information between entities and relationships, the GCN performs deep
mining on the implied relationship features between each word pair output from the GAT
layer; however, an undirected graph structure cannot represent the directionality of the
subject and object in the causal relationship. This is improved in this paper by constructing
a GAT-guided bidirectional GCN network. This considers the relative position weights
between sentence entities to deal with the complex causal-entity-pair distribution problem.
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The parameter hl
i denotes the output features of the ith node in the lth layer of the GCN,

and hl−1
i denotes the corresponding input feature. These are calculated as follows:

−→
h l

i = σ

(
n

∑
j=1

Aij

(−→
W l

hql−1
j +

−→
W l

rel Rij

)
+ bl

)
(12)

←−
h l

i = σ

(
n

∑
j=1

Aij

(←−
W l

hql−1
j +

←−
W l

rel Rji

)
+ bl

)
(13)

hl
i =

[−→
hi ;
←−
hi

]
(14)

where W l is the weight matrix, bl is the bias vector, σ is the sigmoid function, and Rij is the
relational weight representation of the self-attentive layer nodes for (i, j).

Ssent = f
(

S(L)
)
= f (GCN(S(0))) (15)

SEi = f (OEi) (16)

where S(L) represents the hidden representation obtained by the GCN in layer L, f repre-
sents the maximum-pooling function, which maps n output vectors to a sentence vector.
The parameter SEi is the entity-classification representation, the sentence representation
Ssent is spliced with the relational-entity head-end representation SEi, and the final sentence-
feature representation is obtained by the feedforward neural network (FFNN):

S(i, j) = FFNN
([

Ssent; SEi; SEj
])

(17)

For each relationship, the weight matrix W1
r W2

r W3
r is learned, and the propensity score

between each two words in the sentence belonging to the relationship r is calculated as:

S(i, j|RL) = σ
(

W3
RLReLU(W1

RLSi ⊕W2
RLSj)

)
(18)

For each relationship RL, we learn the weight matrices W1
RL, W2

RL, and W3
RL and

compute the score S(i, j|RL) of the relationship trend, with W1
RLSi⊕W2

RLSj representing the
posterior probability modeling of the relationship class for i as subject and j as object. Here,
S(i, j|RL) denotes the relational propensity score of word pairs (i, j) under the relationship
RL. Because there is no bidirectionality in the relationship between causal pairs, S(i, j|RL)
is different from S(j, i|RL). Saha and Kumar [26] classified message tone using n-grams
to select an appropriate emoji. In the present approach, the relationship between each
pair of words in a sentence is predicted using the sigmoid function, and this is converted
into multiple binary-classification tasks. Then, all possible relationships are given a larger
prediction probability for a sentence with multiple relationships for the same word pair,
thus alleviating the relationship overlap problem.

The parameter Sfinal is used as a scoring function to analyze cause and effect in a
sentence:

Sfinal = S(Ch, Ct) + S(Eh, Et) + S(Ch, Eh|RL) + S(Ct, Et|RL), (19)

where: S(Ch, Ct) and S(Eh, Et) are the first and last scores of cause and effect, respectively;
S(Ch, Eh|RL) and S(Ct, Et|RL) match the first and last features of cause and effect as the
subject and object representations, respectively; and the constraint Sfinal > 0 is imposed to
analyze all relationships for all possible causes and effects. The loss function L is set as a
negative log-likelihood function:

L = −
d

∑
i=1

m

∑
j=1

yij log(ŷij) + λ‖θ‖2, (20)
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where y is the sample relationship label, ŷ is the predicted relationship label, d is the total
number of samples in the training set, m is the number of relationship categories, λ is the
L2 regularization coefficient, and θ is the model parameter.

4. Experiments and Analysis
4.1. Experimental Data

In the SemEval-2010 task 8 dataset [27], there are 10,717 examples, and nine types of
relationships and “other” types, one of which is causality. There are 1368 sentences with
cause–effect relationships and 107 sentences without cause–effect relationships. Causes and
consequences can be directly derived from the labeled causal entities and the direction of
causality, but the small sample size and the unbalanced conditions are the main limitations
of this dataset.

The AltLex dataset [28] extracted the text of sentences with causal relationships from
the English Wikipedia corpus. There are 4595 causal sentences and 39,645 non-causal
sentences, which is a large amount of data. The aim of the present work was to explore the
influence of the location relationships of entities on the extraction performance. Therefore,
implicit causal sentences were filtered out from this corpus, and 2482 explicit causal
sentences were extracted for subsequent experiments.

The dataset for this paper was selected to extend the SemEval-2010 task 8 and AltLex
data and to address their shortcomings as follows:

1. The existence of multiple cause − effect relationships. As in the example of Figure 9, the
relationship labeling of the original corpus sentences is limited to one cause and one
effect. This ignores the possible existence of multiple cause − effect relationships in
most of the sentences. We expand the candidate cause − effect pairs for the sentences.

2. Presence of chain causality. As in the example in Figure 4, a word can simultaneously be
a cause or effect in multiple causal pairs; herein, the sentence treatment is considered
an extraction of multiple sets of causal pairs. The model is more generalized than that
of a previous study [29], which focused on the most basic causes for chained causal
sentences.

Figure 9. Multi−causal sentence pattern.

Ultimately, 3850 causal sentences and 4769 randomly selected non-causal sentences
were obtained to constitute the dataset. The sentences were analyzed for dependent syntax
using Stanford CoreNLP [30], and 80% of the results of an intensive audit of automatic
annotation were randomly selected as the training set, 10% were used as the validation set,
and 10% were used as the test set.

4.2. Experimental Parameter Setting

In the linear layer, the input vector dimension of the model was set to 600, the output
vector dimension was 300, and the maximum entity length was 8. In the relative-position-
encoding module, the input size of the Bi-LSTM was 360, the hidden size was 300, the
number of layers was 1, the dropout was 0.5, the dimension of the position embedding was
set to 30, the network weight optimizer was Adam, and the dropout was set to 0.25. The
batch size was set to 8, and the learning rate was 1× 10−4.
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4.3. Evaluation Indicators

The model test was performed at the sentence level for sequence labeling, and the
accuracy of this was determined based on the results of the labeling sequences and relation-
ship types. All the words in the sentence were correctly labeled: (1) the starting and ending
boundaries of the causal entities were completely correct; (2) the types and directions of
the relational entities were correct; (3) the above conditions were also satisfied in complex
sentences such as those with chain causation and multiple causation.

We used the standard precision (Pi), recall (Ri), and F1 scores to evaluate the experi-
mental results. These can be calculated using:

Pi =
|Ai ∩ Gi|
|Ai|

(21)

Ri =
|Ai ∩ Gi|
|Gi|

(22)

F1 =
2PiRi

Pi + Ri
(23)

where Ai is the extracted causal triad, Gi is the number of causal triads in the set of all
sentences in the dataset, and the predicted relational triad is considered correct when and
only when the relationship and the boundaries of the subject and object are correct.

4.4. Baseline Model Comparison

In this paper, we use the same experimental setup and compare it with the mainstream
research methods using the SemEval 2010 task 8 dataset so as to validate the performance
of the model for multi-relational classification. We compare with the following benchmark
models.

LR [23]: A traditional relationship extraction model based on dependency trees com-
bined with lexical information.

SDP-LSTM [27]: a multichannel recurrent neural network with long short-term mem-
ory (LSTM) units is used to pick up heterogeneous information along the SDP (shortest
dependency path between two entities) and retain the most relevant information.

PA-LSTM (2017) [23]: combines an LSTM sequence model with a form of entity
location-aware attention that is more suitable for relationship extraction, employing an
entity location-aware attention mechanism on the sequence model. This model does not
use dependency trees.

C-GCN (2018) [19]: introduced graph convolutional networks to detect entity relation-
ships and employed pruning strategies based on dependency analysis to maximize the
removal of irrelevant content around SDPs.

C-AGGCN (2020) [31]: is a soft pruning strategy based on an attention mechanism
that takes the whole dependency tree as input and applies a multi-headed self-attentive
mechanism to measure the weights of each node on the dependency tree and incorporates
dense connectivity.

As can be seen from Table 1, our model achieves an F1 Score of 85.67 and performs
best on the mean F1. The relative F1 of SDP-LSTM [16] improves by 1.5% relative to
LR [23], which indicates that the dependency path between entities can effectively assess
the weight of attention of relational entities throughout the sequence. The GCN-based
models in the literature [19,31] all embed syntactic structures, and obviously, the GCN-
based models perform better in the F1 test. RPA-GCN contains contextual information
to capture long-range dependencies at the syntactic level, incorporates entity location
awareness in computing graph attention weights, weights the neighborhoods of pruned
graph-dependent nodes, and enhances the semantic features of relational entity pairs,
which is more advantageous compared to other GCN models.
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Table 1. SemEval2010 task 8 relational extraction of F1.

Model F1

LR [23] 82.2
SDP-LSTM [16] 83.7
PA-LSTM [23] 82.7
C-GCN [19] 84.8

C-AGGCN [31] 85.1
RPA-GCN(Model of this paper) 85.67

Based on the causal corpus in Section 3.1, we compare the precision, recall, and F1
values of the GCN-based baseline model, as shown in Figures 10–12.

Figure 10. Value of precision, recall, and F1 of relationship type.

Figure 11. Value of precision, recall, and F1 of cause tags.

Figure 12. Value of precision, recall, and F1 of effect tags.
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As can be seen from Figures 10–12, the precision and recall of RPA-GCN are sub-
stantially better than those of other baseline models, with and without relative position
encoding, with a difference of four percentage points. The weight-learning strategy of
relative encoding information of self-attention models the position of subject and object in
the sequence or the global position of entities within the sequence and more clearly portrays
entity boundaries in the feature extraction process, making the causal entity features richer.

To verify the stability of the model, we analyzed the effect of the number of iterations
on the F1 value, and we tested the variation of the F1 value obtained by the three methods
with different numbers of iterations.

Figures 13 and 14 show the training loss and the best F1 score on the validation set
for the baseline model [19,31]. The F1 value gradually increases in the first 19 iterations,
and then it converges to stabilize. Although there are some fluctuations, these are not large,
demonstrating the stability of the model. Further, we analyzed the performance of the
baseline model under different training data sizes.

Figure 13. Epoch-F1 (Val).

Figure 14. Epoch-loss (train).

We set five training data sizes (20%, 40%, 60%, 80%, and 100%) and evaluated the
performance of the C-GCN, C-AGGCN, and RPA-GCN models. As shown in Figure 15,
RPA-GCN consistently outperforms the baseline model for the same quantity of training
data, and the performance gap between the three models becomes more pronounced as the
size of the training dataset is increased above 60%. These results suggest that our models
are more effective in terms of using training resources. Finally, we analyzed the model
ablation.
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Figure 15. The effect of the number of trainings on F1.

Table 2 presents the results of the ablation tests performed using the RPA-GCN model
on the validation set. The relative entity location aware mechanism of the formulation in
Section 3.2.1 contributes about 1.8% of the F1 score, while the GAT network contributes
about 0.4% and the bidirectional GCN relationship direction-aware mechanism contributes
about 1.2%.

Table 2. Ablation analysis.

Model F1

Final Model 72.68
- Position aware 70.88

- Graph attention networks 70.41
- Bi-directional GCN 69.21

- All of the above 67.58

5. Analysis of Complex Cause-and-Effect Sentences
5.1. Complex Relational Data

To test the effectiveness of our head-to-tail annotation and RPA-GCN model for solving
multi-causal and chain-causal problems, we combed the complex causal sentences in the
original corpus, as shown in Table 3.

Table 3. Complex causal datasets.

Dataset Chain of Cause and Effect Multi-Relationship
Causation

All 244 65
Train set 147 39

Validation set 49 13
Test set 48 13

5.2. Model Performance Analysis

Our head-to-tail labeling method converts the relational-extraction task into automatic
labeling by parsing all causal pairs through the scoring function Sfinal. For error analysis,
we analyzed the confusion matrix of cause label “C” (including “Ch” to “Ct”), effect label
“E” (including “Eh” to “Et”), and chain cause outcome label “CE” (including “CEh” to
“CEt”) on the data of the complex causal corpus, as shown in Figures 16 and 17, and the
baseline model for comparison was BI-LSTM+CRF [32].
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Figure 16. Contrasting models in testing label distributions for linked causality.

Figure 17. Contrasting models in testing multi-causal label distributions.

As can be seen from Figures 16 and 17, due to the small amount of training data, most
of the benchmark model’s errors occur in the confusion of entity positions of cause and
effect. Our model has the highest automatic labeling accuracy for labels C, E, and CE. With
the small amount of training data, the weak character-position-difference representation
in text sentences can be compensated to some extent by capturing the relative positions
between objects and the bidirectional GCN relationship-direction-aware mechanism. To
analyze the impact of different numbers of graph-dependent nodes on the baseline model,
further performance analysis was conducted for complex sentences of different lengths.

Figure 18 shows the F1 scores of the three models for different sentence lengths. As the
sentence length increases and the dependency graph includes more nodes, the performance
of all the models decreases significantly with longer sentences; the information-acquisition
performance also decreases. The results show that RPA-GCN outperforms the baseline
model under different settings and can obtain better cause–effect correlation information
in the dependency graph. Furthermore, our location-encoding strategy reduces the weak
correlations from the graph-dependency tree and enhances the associations between causal
entities. To clearly represent the improvement of the model performance from the GAT-
network-fused entity-location awareness, Figure 19 shows the extraction results of our
model and the baseline model [19,32] based on some test sentences.
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Figure 18. The effects of different sentence lengths on F1.

Figure 19. The automatic labeling result of the test sentence pattern. The blue word indicates the
causal entity after model labeling, and Cause/Effect-X indicates the X-th causal pair in the sentence
pattern.

The first sentence example shows a situation in which the distance between the causal
pair entities is long. It is very difficult for the Bi-LSTM [32] to extract relationships, and it
cannot build on long syntactic dependencies to analyze the subject and object. In contrast,
the GCN model contains contextual information, and it can capture the long-distance
dependencies at the syntactic level and directly establish dependency connections between
causal pairs, making up for the LSTM’s lack of global information extraction ability.

The second sentence example shows a case of chained causality, in which one result
corresponds to multiple causes. As the extraction results show, Bi-LSTM+GCN [19] can
capture long-range dependencies, but the accuracy of extracting cause and effect on the lo-
cation of entities is not high enough. For example, the relationship orientation of “chemical
production” and “destruction” are both “ozone” rather than a simple juxtaposition cause
relationship. Our model benefits from the effective pruning of graph dependencies by
entity-location awareness, and this effectively solves the problems of complex cause–effect
relationships and long-distance-relationship sentences. We also explored the impact of the
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distance of relational entity pairs on the model performance, and the results are shown in
Table 4.

Table 4. Effects of different causal entity distances on F1.

Method

Distance Bi-LSTM [32] Bi-LSTM+GCN [19] Our Model
<5 0.758 0.868 0.896

[5, 10] 0.391 0.674 0.714
>10 0.219 0.371 0.589

It can be seen that by dividing the distances between causal entities into three classes
(<5, [5,10], >10), our model clearly outperforms the baseline in both long- and short-
distance relationships. The performance advantage of our model is more obvious when
the distance between causal-entity pairs is larger. This is due to the enhancement of the
relative-entity-location perception on the causal semantic features.

6. Conclusions

In this paper, we introduce a graph network model incorporating entity location-
aware and attention mechanisms for causal relationship extraction and a novel causal
relationship labeling scheme that contains head and tail nodes of causal entities and
relational words used to jointly extract entity relationships, which is more advantageous
in solving complex causal relationship problems without complex feature engineering.
Experiments are conducted on sentence-level relation extraction, and the results show
that our method obtains the optimal F1 values. Of course, there are some drawbacks and
shortcomings in this paper, as there are few datasets for public evaluation of causal relation
extraction. We use the extended SemEval 2010 task 8 dataset and Altlex dataset, but the
amount of experimental data is still not significant, so the next exploration is to alleviate
the data sparsity problem by data augmentation and weak supervision.
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