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Abstract: A new era of the fifth-generation (5G) networks is realized to satisfy user demands on higher
data rate and massive connectivity for information sharing and utilization. The vertical applications
such as vehicle-to-everything (V2X) communications, industrial automation, smart factory, smart
farm and smart cities require ultra-fast communications and wide service range. Coverage extension
is a key issue to support the required demands on higher performance, but requires an additional
deployment of base or relay stations. Therefore, an efficient solution needs to be cost-effective and
easy, in order to deploy more stations. An unmanned aerial vehicle (UAV) has been considered as a
candidate to overcome these issues because it is much more cost-effective than the ground stations
and does not require network or cell replanning, thereby enhancing the network coverage without
additional excessive deployment procedures of the existing networks. UAVs will play important
roles in 5G and beyond networks assisting as macro base stations, relay stations, small cells, or a
moving aggregator. The performance of UAV wireless networks highly depends on the position
or the trajectory of UAVs and the resource managements of entire networks. Recently, there have
been extensive studies on performance analysis, UAV deployment, UAV trajectory and resource
management of UAV wireless networks to achieve the required demands on performance. This
paper surveys research conducted for the UAV deployment and trajectory to construct UAV wireless
networks for the coverage extension, the throughput improvement and the resource management for
different use cases and scenarios, so as to encourage further studies in this area.

Keywords: 5G and beyond wireless communication networks; UAV deployment and trajectory;
coverage extension; machine learning

1. Introduction

The global mobile data traffic reaches 77 exabytes per month in 2022, and annual traffic
will be almost one zettabyte [1]. In addition, with the proliferation of wireless devices
such as smartphones and tablets, 12.3 billion devices exceeding the world’s population
by one and a half times are expected to be wirelessly connected through the Internet of
Things (IoT) and machine-to-machine (M2M) communications for information sharing
and utilization [1]. In addition, the mobile network speed becomes 28.5 Mbits in 2022 [1].
The Third Generation Partnership Project (3GPP) Long Term Evolution (LTE) and LTE-
Advanced systems, known as the fourth-generation (4G) networks, have been deployed to
provide the unprecedented data rate and quality of service (QoS). 4G networks currently
have responsibility for 54% of connections, but 71% of total traffic, and 4G connections will
generate nearly twice the average connections by the third-generation (3G) networks [1].
However, the existing LTE-Advanced systems cannot meet the demands on ultra-high data
rate to support emerging applications.

Unlike the wireless communication systems up to 4G LTE-Advanced, the fifth-generation
(5G) technologies have been developed to support the unprecedented use cases and appli-
cations requiring ultra-reliable high speed and low latency communications and massive
connectivity. To this end, the International Telecommunication Union (ITU) recommends three
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usage scenarios for IMT-2020 and beyond; enhanced Mobile Broadband (eMBB), Ultra-Reliable
and Low Latency Communications (uRLLC) and Massive Machine Type Communications
(mMTC), and eight key performance indicators (KPIs) as 5G requirements [2]. The key tech-
nologies for 5G networks have been developed and studied by researchers and experts from
the organizations, institutes, and companies all over the world. Specially, 3GPP approved
the first 5G New Radio (NR) non-standalone (NSA) specifications, and completed Release 15
including NR standalone (SA) specifications in 2018. The third 5G standard, 3GPP Release 17,
reached stage 3 functional freeze in March 2022, which indicates the system design comple-
tion, and is expected to further enhance system performance and expand into new vertical
applications. Coverage enhancements and broadcast/multicase expansion are the key 5G
milestone in 3GPP Release 17 to enhance the capacity of 5G networks [3].

Communications service providers commercially launched 5G networks in 2019,
and the first 5G device was released in early 2020. 5G networks are expected to support
12% of mobile traffic by the end of 2022, and will drive the enormous amount of traffic
through its connectivity with large bandwidth (i.e., 100 MHz) and ultra low laency (i.e., one
millisecond) [1]. 5G networks will take over more portion of mobile traffic from 4G
networks, and the amount of mobile data traffic through 5G connectivity will increase
exponentially. To satisfy user demands on higher data rate and massive connectivity for
information delivery, coverage extension is a key as pointed out in 3GPP Release 17 for
enhancing 5G capability. The coverage extension can be realized with additional base or
relay stations in 5G networks. However, the deployment of ground base or relay stations
is costly due to cell reorganization to optimize the location of existing stations along with
new stations to provide a required QoS. Hence, a smart solution for coverage extension
and capacity enhancement is being highly required.

With the development of sophisticated technologies, an unmanned aerial vehicle
(UAV) has been advanced in recent years, achieving light weight, high flexibility and longer
battery life [4]. Such advances make UAVs be utilized in a wide range of applications such
as military, public safety and civil applications [5–10]. Moreover, much attention has been
paid to utilizing UAVs in 5G and beyond networks to enhance the capacity due to its swift
deployment, low maintenance costs and high mobility [11]. In addition, since deploying
UAV into wireless communication networks does not require a cell reorganization, UAVs
can provide a viable solution for the purpose into existing networks. However, UAV
wireless networks still leave many issues to be resolved for stable and reliable services [12].
Unlike other wireless networks such as Mobile Ad hoc Networks (MANETs) and Vehicular
Ad hoc Networks (VANETs), the rapid changes in the network topology, including the
number of nodes and links in operation and the relative positions of nodes, require special
attention. The routing protocol cannot be implemented by simple proactive or reactive
manner because the UAV wireless network needs to be reorganized repeatedly when a UAV
is out of service. Furthermore, an instantaneous management of users’ links transferring
from an inactive UAV to an active UAV is challenging [13]. Lastly, UAV wireless networks
require energy efficiency to prolong the lifetime of networks [12].

Most of the issues are related to the configuration of UAV wireless networks because
it determines a communications link condition, an optimal routing protocol and an effi-
cient energy management of networks. In other words, the performance of UAV wireless
networks depends on the position of UAVs, which changes the channel conditions between
ground node and UAV or between UAVs. Therefore, optimal UAV deployment can maxi-
mize the service coverage, the overall throughput and the lifetime of networks when UAVs
are deployed as aerial base or relay stations in wireless communication networks. In ad-
dition, the data collection from massive sensors through IoT and M2M communications
is crucial to realize upcoming vertical applications such as smart factory, smart farm and
smart city. To this end, UAVs are being used as the UAV aggregator in wireless sensor
networks to collect data from and disseminate information to sensors. However, the energy
efficiency and mission complete time are major issues in wireless sensor networks to pro-
long the network lifetime and to save the power at both sensors and UAV, hence the studies
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on UAV trajectory, along which UAV flies have been paid attention to minimize energy
consumption in wireless sensor networks.

There have been extensive studies on optimal UAV deployment and trajectory to
extend cell coverage, improve throughput, reduce energy consumption, and ensure reliable
connectivity of UAV wireless networks. These can provide the desired solutions on not
only 5G, but beyond 5G networks to extend the service coverage, thereby enhancing the
overall capacity. In this paper, we provide extensive survey on research conducted for
UAV deployment and trajectory to enhance the capacity of UAV wireless networks and
to manage them efficiently, so as to encourage further studies on UAV wireless networks.
Current challenges and future research directions are summarized at the end of this paper.

Our paper is organized as follows. Section 2 addresses use cases, practical applications
and characteristics of UAV wireless networks. In Section 3, we present the studies on
UAV deployment and trajectory to extend the coverage and improve the performance of
UAV wireless networks, and Section 4 summarizes the lessons learned from the survey.
Section 5 provides open problems and future research issues on UAV wireless networks,
and Section 6 concludes the paper.

2. UAV in Wireless Communication Networks

A cost-effective and swift deployment, a strong line-of-sight (LoS) communication link
and a high mobility make UAVs a promising component of 5G and beyond networks for the
capacity enhancement over existing networks. This section presents channel characteristics
of UAV wireless networks, UAV use cases in 5G networks and their practical applications.

2.1. Channel Characteristics

A major difference between aerial UAV stations and ground stations is channel char-
acteristics because a strong LoS link dominates the channel conditions in UAV wireless
networks. In addition, the performance of UAV wireless networks depends heavily on
channel variation as UAVs move. Therefore, the channel characteristics of UAV wireless net-
works should be considered to optimally deploy UAVs, thereby guaranteeing the required
QoS of applications. Generally, UAV wireless networks consist of two dominant channels,
air-to-ground (i.e., UAV-to-ground node) and air-to-air (i.e., UAV-to-UAV) channels.

2.1.1. Air-to-Ground Channel

An air-to-ground channel includes a strong LoS link, but not always due to shadowing
by obstacles such as buildings and trees. The mobility of UAV also causes the shadowing
when it flies, therefore, it is essential to model an air-to-ground channel properly to evaluate
the performance of UAV wireless networks. Ref. [14] introduces the LoS probability as

PLoS(θ) =
1

1 + aexp(−b[θ − a])
(1)

to reflect a LoS component on channel modeling, where a and b are the environmental
parameters such as suburban, urban, dense urban, and high-rise urban; θ is an elevation
angle between UAV and ground node. The evaluation angle θ is defined as θ = arctan(h/r),
where h is the UAV altitude and r is the horizontal distance between UAV and ground node.
Note that PLoS(θ) increases as θ becomes large. The non-LoS probability is PNLoS(θ) =
1− PLoS(θ). The pathloss PLLoS for LoS link and PLNLoS for non-LoS link can be expressed
in the dB scale as [14]

PLLoS = 20log(d) + 20log( f ) + 20log
(

4π

c

)
+ ηLoS (2)

PLNLoS = 20log(d) + 20log( f ) + 20log
(

4π

c

)
︸ ︷︷ ︸

FSPL

+ηNLoS (3)
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respectively, where FSPL represents the free space pathloss, d is the distance between UAV
and ground node, f is the system frequency, c is the speed of light, and ηLoS and ηNLoS
are the excessive pathloss for LoS and non-LoS links, respectively. The resulting average
pathloss is

PL = PLoS(θ)× PLLoS + PNLoS(θ)× PLNLoS (4)

and the air-to-ground channel gain G can be defined as

G =
G0

PL
, (5)

where G0 is the channel gain when the distance between UAV and ground node is same as
the reference distance.

Based on the probabilistic channel model, the air-to-ground channel has been ex-
pressed in a different way to reflect the link characteristics more accurately. Ref. [15]
presents the impact of shadowing effects by buildings on non-LoS links along with the
LoS probability. Ref. [16] utilizes the two-ray ground reflection model to construct a base
model of data transmission from UAV to ground station and to allocate radio resources effi-
ciently. A link budget calculation between UAV and ground station is considered in [17] to
determine the feasible frequency band, propagation loss, antenna gain, and so on. Ref. [18]
proposes an height-dependent small-scale fading and pathloss exponent model to reflect
the combination of LoS and multipath scatters along with a Rician model. A statistical prop-
agation model to predict an air-to-ground pathloss between UAV and terrestrial terminal is
proposed in [19], and an air-to-ground propagation channel model for an ultra-wideband
(UWB) is introduced in [20]. The air-to-ground channel model varies with environments
and system parameters, hence, comprehensive measurements and calculations should be
conducted for various UAV scenarios.

2.1.2. Air-to-Air Channel

The LoS link dominates an air-to-air channel characteristic, which reduces the impact
of multipath fading. A small-scale fading can be neglected, hence a pathloss-dependent
large-scale fading with LoS probability can be considered to model an air-to-air channel.
Such a channel characteristic allows for the mmWave protocol, which is a new radio
protocol in 5G networks [5], to be applied in UAV wireless networks, which achieves
a higher capacity of the UAV-to-UAV wireless link, thereby easily co-operating in 5G
networks. However, further studies are needed to properly model an air-to-air link and
select suitable communication protocols for a given air-to-air channel characteristic.

2.2. Use Cases of UAV Wireless Networks

The major three use cases of UAV in wireless communication networks have been
considered as follows: (1) UAV base station (BS) to provide a wireless service within a
certain target area [21–41] , (2) UAV relay station (RS) to set up wireless links to distant
users with no direct connectivity from base station or command center [42–47], and (3) UAV
aggregator to disseminate an information to or collect a data from the distributed sensors
or devices [48–57], as shown in Figure 1. The first two use cases utilize a static UAV as
aerial BS and RS, but a mobile UAV for a moving aggregator, in general.
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(a)

(b)

(c)

Figure 1. UAV Use Cases. (a) UAV base station: Multiple UAVs can cover the emergency or disaster
area as aerial BSs where no terrestrial BS is available. A terrestrial MBS or a satellite can provide wireless
backhaul links to UAV BSs, and UAV BSs can adjust their positions for performance maximization of
networks utilizing UAV-to-UAV links. Note that the coverage area of aerial UAV BSs varies with the
altitude of UAVs. (b) UAV relay station: UAV RS can extend a terrestrial BS coverage by utilizing a
strong air-to-ground LoS link. Scenario 1 considers UE2, who cannot be served by BS2 due to natural
disaster or destroyed infrastructure. The distant BS1 cannot provide a reliable communication link to UE2

due to severe pathloss attenuations. UE3 in Scenario 2 cannot have a direct link from BS1 due to severe
blockage. For both scenarios, UAV RS can provide a reliable communication link to UE2 or UE3, where
it receives a signal from BS1 through a wireless backhaul link, and then forwards the received signal to
UE2 or UE3 via a strong air-to-ground LoS access link. (c) UAV aggregator: UAV aggregator flies over
sensors or IoT devices to collect data from or disseminate information to them. The mobility of UAV
and delay-tolerant transmission (i.e., store-carry-and-forward transmission) can save the transmit power
at sensor/IoT devices. A reliable data delivery from sensor/IoT devices to core network is guaranteed,
and vice versa.



Information 2022, 13, 389 6 of 20

2.2.1. UAV Base Station

UAV BS assists the existing networks in extending service coverage and provides
reliable and seamless connectivity to user equipments (UEs). UAV BS can set a backhaul
link from satellite, nearby terrestrial macro base station (MBS) or adjacent UAVs. UAV
BS can support the emergency area where the communication infrastructures are dam-
aged or destroyed by natural disasters, hence, the temporary communications are needed,
and the extremely crowd area such as sports stadium where the additional links are needed
due to base station offloading. This is addressed in [58], as one of the key scenarios that
5G networks should guarantee. Therefore, UAV BS can provide not only the extended
coverage [30], but also the improved throughput of the network [26] along with the fast de-
ployment [31]. However, the interference between UAVs and the existing wireless networks
should be precisely considered to guarantee the performance of the entire networks [59].

2.2.2. UAV Relay Station

UAV RS provides a wireless connectivity to isolated users or user groups, who do
not have a direct communication link from a BS or a transmitter, without sacrificing the
performance of networks, thereby enhancing the capacity of the overall networks [44]. The
UAV relay network (URN) can be constructed with single or multiple UAVs, but the number
of UAVs, the topology and the routing protocol for a reliable relay communication, and an
efficient power consumption should be optimized for applications [43,44]. URN is suitable
for military communications or emergency responses where the temporary communications
between command center and operators are essential. The outage probability of access
links should be considered to provide a reliable relay connectivity to mission critical
operators [43,44].

2.2.3. UAV Aggregator

UAV aggregator flies around the sky to disseminate (collect) information to (from) the
distributed wireless devices such as sensors. Data should be delay-tolerant, which allows
the traveling of data within a given latency. Monitoring for public safety or agriculture is
an example [51]. The minimization of power consumption is a key challenge to prolong the
lifetime of UAV-enabled networks for IoT applications and M2M communications [48].

2.3. Practical Applications of UAV Wireless Networks
2.3.1. Civil and Public Safety Communications

One of the main applications that have attracted considerable attention is civil and
public safety. Since 2006, the public safety departments in U.S. have accelerated the
acquisition of UAVs on their missions, and currently more than 347 state and local police,
sheriff, fire, and emergency units have acquired UAVs [60]. UAVs cannot only provide a
reliable communication link, but also help locate a suspect during a pursuit or assisting
firefighters at a warehouse fire. In addition, supporting reliable communication links to
victims on the disaster-affected area is critical [21], with a minimum number of UAVs for
fast and efficient operations [22]. Mapping UAVs to a destroyed area is presented in [30],
and further analysis including UAV mobility [26] and genetic algorithm for the deployment
of multiple UAVs [25] are considered to improve the throughput without performance
degradation of networks. In addition, supporting user connectivity in crowded places
such as sports stadiums, open festivals, shopping malls, and other public events is one
of main requirements for 5G networks [58,61] because the required average user data
rates during busy periods for the shopping mall and stadium are 1.07 (0.7) Mbps for
downlink (uplink) and 0.3–3 Mbps for both downlink and uplink, respectively. The study
on modeling the crowd traffic is performed to deal with the supply-demand mismatch [62],
and the reduction of traffic congestion by utilizing UAV relay system is presented in [63].
The flexible modeling for UAV wireless networks to support public safety communications
or crowd areas is necessary to mitigate an interference from other users and guarantee the
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required QoS; hence, the optimal deployment of UAV is critical to achieve the requirements
for a given scenario.

2.3.2. IoT and Wireless Sensor Networks

A UAV can play an important role in IoT networks where small wireless devices
such as sensors are connected, and these devices cannot transmit over a long distance
due to battery constraints [64]. IMT-2020 and beyond for 5G network and METIS, the EU
flagship 5G project, are required to provide the connectivity for 106 devices per 1 km2 [2]
and for 300,000 devices within one cell [61], respectively. In IoT networks, UAV can act
as a static aerial BS for a small range of IoT communications, or as a moving aggregator
to collect (deliver) a data from (to) IoT devices [48,52,65,66]. Several challenges have
been presented to utilize UAVs in IoT networks for ensuring a reliable connectivity to a
moving IoT gateway [65], collecting data successfully from the distributed sensors [52],
reducing energy assumption or shortening response time [66], and minimizing the transmit
power at IoT devices by optimal clustering and trajectory of UAVs [48]. Most importantly,
the deployment of a static UAV BS and the trajectory of a mobile UAV aggregator are
the main issues to efficiently construct IoT networks and prolong the service time to
disseminate (collect) data to (from) the distributed IoT devices or sensors.

3. UAV Deployment and Trajectory

As explained in previous sections, UAV will be a key component in 5G and beyond
networks due to its cost-effective and fast deployment along with its unique channel
characteristics. However, to extend the coverage or improve the throughput of 5G and the
beyond networks, it is necessary to analyze the performance of UAV wireless networks
considering the constraints on UAV such as limited resources. The channel conditions
change as the position of UAV changes, hence, it could enhance or degrade the performance
of UAV wireless networks. Therefore, the deployment of UAV is the first step to construct
an optimal UAV network configuration. In addition, UAV could be static at a given position,
or move around a target area. The optimal trajectory of UAV is a main issue on mobile
UAV use cases to reduce the energy consumption and prolong the lifetime of operation.
In this section, we survey the recent research on UAV deployment and trajectory conducted
for the best utilization of static and mobile UAVs in wireless communication networks.

3.1. A Static UAV

Single or multiple UAVs can be deployed as a BS or a RS in UAV wireless networks.
In these use cases, static UAVs are efficient to reduce the energy consumption and to provide
the seamless wireless services on a given area or to user groups. Multiple UAV networks
have the advantage over single UAV networks. If single UAV networks experience a link
interruption, the whole networks become unavailable. However, multiple UAV networks
are resilient to the link disruption because they can reconstruct the networks and find other
routes to deliver information to the destination. In addition, multiple UAV networks based
on mesh networks are capable of self-reorganization to improve the reliability of the whole
networks [7]. If they do not fly over a wide area, multiple UAVs are assumed to be static
even though re-positioning or self-reorganization during the operation is performed. In this
section, we review the literature on the deployment of UAVs for both single and multiple
UAV networks.

3.1.1. UAV BS

Multiple UAVs are deployed as aerial BSs in UAV wireless networks, and such net-
works applied for different target purposes such as the coverage maximization and the
throughput maximization with the minimum number of UAVs.

To achieve wider coverage of the networks, Ref. [21] considers a tactical mission in
disaster scenarios and proposes a self-deployment based on the Jaccard distance and artifi-
cial intelligence algorithms to serve the maximum number of victims while maintaining
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a seamless connectivity. Ref. [22] proposes the algorithm to cover a given disaster area
with least BSs while satisfying all bandwidth requirements. The algorithm allows for
overlapping the coverage area of each UAV, and is tested on both randomly generated map
and on the real Hurricane Katrina post-disaster map. Ref. [23] investigates the downlink
coverage performance of a drone small cell (DSC) and derives the optimal DSC altitude
to maximize the ground coverage and to minimize the required transmit power for a
single DSC. This study is extended to two DSCs scenario for a certain geographical area
with/without interference considerations. The optimal distance between DSCs is derived
for the maximum coverage. The downlink coverage probability of UAVs as a function of
the altitude and the antenna gain is derived in [24] to determine the minimum number
of UAVs needed to guarantee a target coverage probability for a given geographical area.
Authors use the circle packing theory to position UAVs for the maximum coverage area.

To improve the throughput and capacity of the networks, ref. [25] utilizes a genetic
algorithm (GA) to optimize the position of UAVs, thereby maximizing the fifth-percentile
throughput of the network over a given geographical area, and its objective function is
represented as

max
xi ,yi ,∀i∈{1,2,...,N}

f5th(xi, yi), (6)

where f5th(xi, yi) is the function of the fifth-percentile throughput at the individual locations
(xi, yi) of each UAV i ∈ {1, 2, . . ., N}. Further, Ref. [26] analyzes the throughput gains by
exploiting the mobility of UAVs, and then deploys UAV BSs by the brute force search at the
optimized locations where both throughput coverage and fifth-percentile spectral efficiency
of the network are improved. In [27], the multiple UAVs are deployed to guarantee the
required QoS for different user distributions when the co-channel interference exists. First,
the mean-shift algorithm and global positioning system (GPS) based prior information
of users’ positions are utilized to find x-y coordinates of UAVs supporting the maximum
number of users. Then, the successive convex optimization and block coordinate descent
technique are applied to jointly optimize UAVs altitude and transmit power. The two-step
algorithm achieves the QoS requirement by maximizing the system throughput for all
ground users, thereby obtaining 100% coverage probability and fairness among users.
Ref. [28] proposes the distributed algorithm to achieve 100% spectral efficiency of DSCs
for a realistic drone speed, height, and user traffic model with dynamic repositioning,
but without an additional energy consumption. Ref. [29] utilizes K-means clustering and
a stable marriage approach for associations between UAVs and users, and proposes the
particle swarm optimization (PSO) based approach to maximize the spectral efficiency
considering co-channel interference from other UAVs while guaranteeing the minimum
required QoS. Ref. [30] maps UAVs to high demand area by providing solutions to the MBS
decision and cooperative UAV allocation problems to increase the capacity and coverage of
the wireless communication networks. In [31], the positioning objective is formulated as a
minimax facility problem, which is solved by the concept of entropy nets. The proposed
placement and distribution of cooperative UAVs in the heterogeneous networks optimize
the overall network delay. Ref. [32] investigates the user-demand-based UAV assignment
problem over a given geographical area requiring high traffic demands. A neural-based cost
function is evaluated to match UAV to a particular geographical area. Ref. [33] investigates
the average spectral efficiency depending on the movements of UAV BSs in vertical and
horizontal directions. It shows that keeping all UAVs at a fixed altitude outperforms altering
the altitude of UAVs flexibly when considering energy consumption on UAV movements.
Ref. [34] targets to achieve a load balance in wireless networks. The raw dataset of students’
access in wireless network on campus is utilized to predict the number of served users in
the area. ARIMA and XGBoost models are applied to linear and non-linear predictions
respectively, for the estimation of the number of served uses in the next 24 h. Based on the
prediction, UAV BSs are deployed to achieve the load balance.
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The minimum number of UAVs to construct UAV wireless networks has been derived
to manage them efficiently. Ref. [35] proposes a polynomial-time algorithm with successive
spiral UAV placement to cover all UEs on the ground, but without considering the height
of UAVs. Ref. [36] aims at finding the positions of UAVs and the minimum number
of UAVs in target areas with various user densities using a heuristic algorithm. In [37],
the miminum number of UAVs is first derived to cover the disaster area by the K-means
clustering algorithm considering users’ bandwidth constraints. Then, the algorithm for
rapid deployment of UAVs is proposed to minimize the maximum deployment delay
of UAVs.

Even though multiple UAV networks are more reliable than single UAV wireless
networks, there have been applications utilizing single UAV wireless networks and the
related studies to improve the coverage and the performance along with the efficient man-
agement. Ref. [38] proposes an optimal placement algorithm for UAV BS to maximize
the number of covered users utilizing the minimum transmit power. Two dimensional
deployment problem is decoupled into the vertical and horizontal dimensions, and the
UAV BS deployment in the horizontal dimension is modeled as a circle placement problem
and a smallest enclosing circle problem. Ref. [39] formulates a three-dimensional placement
problem to maximize the number of covered users by UAV, which reduces to a mixed
integer non-linear problem (MINLP) by using a one-dimensional bisection search and is
solved with the interior point optimizer. The benefit of repositioning UAV BS is explored
in [40] to improve the spectral efficiency by placing the UAV BS closer to UEs. The algo-
rithm to autonomously control the repositioning of UAV BS depending on users’ activities
and movements is proposed, and it achieves 10.5% spectral efficiency gain without an
additional energy consumption of UAV. Ref. [41] considers a single UAV to provide a
wireless connectivity to indoor users inside a high-rise building under disaster situations.
It introduces two cases of practical interest and provides an efficient UAV placement to
minimize the total transmit power required to cover the entire high-rise building. Ref. [18]
analyzes both power and sum-rate capacity gains of UAV BS and represents the trade-off
between them. It proposes an altitude dependent performance model, and determines an
optimal altitude range. Within the optimal altitude range, the height of UAV BS is adapted
to optimize the sum-rate or the power, respectively.

3.1.2. UAV RS

Compared with UAV BS, there have been less studies on UAV RS due to the limited
capacity to provide a wireless connectivity to a small amount of user groups. However, it
is also important on mission-critical communications such as military and first responder
communications. Ref. [42] considers the placement of multiple UAVs as a facility location
problem (FLP) to improve the connectivity by grouping mobile UEs to the corresponding
UAV with the shortest distance, thereby maximizing the capacity of the downlink. Ref. [43]
proposes a UAV deployment algorithm for multiple UAV relay systems to maximize an
average data rate of UEs and to provide a reliable relay connectivity to an isolate UE
simultaneously. The minimum number of UAVs and the minimum number of transmission
time slots to improve an average data rate are derived, and the performance comparison
between multiple UAVs and single UAV relay systems with respect to the position of an
isolated UE is presented. Ref. [44] applies a non-orthogonal transmission at BS in a single
UAV relay system to increase the signal to interference plus noise ratio (SINR) at UEs within
BS coverage. A joint resource allocation algorithm is proposed to optimize the transmit
period and power of signals at both BS and UAV. The proposed algorithm maximizes
the overall throughput of UEs while guaranteeing a seamless UAV relay transmission by
analyzing the outage probability and utilizing the power control strategy. This study is
extended in [45], where the minimum required transmission time slots between terrestrial
BS and UAV and between UAV and an isolated user are first determined, and the feasible
area within that UAV can be deployed is reduced. The proposed UAV deployment and time
allocation algorithm achieves a fast and optimal UAV deployment due to the small feasible
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search area. Ref. [46] investigates how the type of wireless backhaul links (i.e., network-
centric or user-centric) would affect the number of covered users. The optimal three-
dimensional (3D) backhaul-aware placement of a single UAV RS is obtained to maximize
both the total number of served users and sum-rates. The robustness of the network is also
examined with respect to the user distributions. A sum-rate maximization for UAV-enabled
two-way relay systems is considered in [47], where the local optimal solution for joint
optimization of time slot pairing, transmit power allocation, and the UAV deployment
is obtained.

3.2. A Mobile UAV
3.2.1. UAV Aggregator

A mobile UAV has attracted attention on IoT applications and wireless sensor networks
to collect a data from or to disseminate an information to devices or sensors as a moving
aggregator [48–57]. To efficiently utilize UAVs, optimal deployment or trajectory and
energy efficiency of UAVs should be considered, and these are the main challenges of the
UAV aggregator to prolong the lifetime of networks and maintain stable systems. Ref. [48]
investigates the optimal trajectory and deployment of multiple UAVs to enable reliable
uplink communications for data collection from IoT devices with a minimum energy
consumption by properly clustering IoT devices and serving each cluster with one UAV.
This study is extended in [49] to jointly optimize the 3D placement and the mobility of
the UAVs, UAV-device association, and uplink power control. The proposed approach
achieves the reduction of total transmit power of IoT devices by 45% and the improvement
of system reliability by 28% compared with static UAV BSs. Ref. [50] minimizes the mission
completion time to find a target (e.g., set a coverage area) and to setup a communication
link (e.g., network connectivity) by prioritizing coverage or connectivity depending on the
mission demands. Ref. [51] addresses the capacity and delay of UAV wireless networks
with multiple UAVs to monitor the 3D environment, and derives the capacity and delay
scaling laws of UAV wireless networks with a mobility pattern information. UAVs deliver
a delay-tolerant data with a store-carry-and-forward (SCF) method when UAVs return
to control station to charge the battery. The capacity of the networks increases and the
delay decreases as more UAVs are deployed. Ref. [52] applies a Markov chain to model
the irregular mobility of a single UAV for data collection from sensors. It also investigates
the success probability of information transmission depending on the distance between
UAV and sensors. Ref. [53] jointly optimizes the sensors’ wake-up schedule and UAV’s
trajectory to minimize the maximum energy consumption at sensors to prolong the network
lifetime. Ref. [54] explores a UAV as a SCF node to enhance the availability of delivery path
and to reduce the end-to-end packet delivery delay for VANET, which is one of the major
vertical applications in 5G networks. In [55], wireless sensor network (WSN) is used to
monitor animals. To determine the best monitoring scheme under different environments,
it investigates the average energy consumption and the buffer capability of two proposed
data collection systems, which determines the UAV trajectory. Ref. [56] formulates the data
collection utility maximixation problem (UMP) to improve the data collection efficiency
and considers it jointly on the determination of UAV trajectory. The cooperative trajectory
planning algorithm in large-scale WSN is proposed in [57] to minimize the total mission
time to collect data. It first divides the overall mission area into subregions where UAV can
stay for data collection. In this study, a battery-carrying truck is considered as a mobile
recharging station, and follows UAV. The proposed algorithm also takes the position
of the truck into account for the determination of UAV trajectory because the distance
between UAV and truck affects the mission completion time when UAV is out of battery.
From the literature review, it is obvious that the UAV trajectory in IoT and wireless sensor
networks targets to minimize the energy consumption and mission time to prolong the
network lifetime.
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3.2.2. UAV BS/RS

A mobile UAV as UAV BS or RS could not be the proper choice in terms of energy
efficiency. To this end, there have been little studies on mobile UAV BS or RS. Ref. [67]
introduces a simple circular UAV trajectory and maximizes the energy efficiency of UAV by
jointly optimizing UAV’s flight radius and speed. In [68], the coexistence of UAV and device-
to-device (D2D) communication networks is considered for the downlink transmission.
The minimum number of stop points of UAV to completely cover the area is derived
using the disk covering problem and the outage probability of D2D devices. Ref. [69]
solves the throughput maximization problem in mobile relaying systems by optimizing
the transmit powers, the relay trajectory and the information-causality constraint at the
relay. It demonstrates that the throughput-optimal power allocations at source and relay
node follow a staircase water filling structure over time. In addition, the throughput is
further improved by optimizing the UAV’s trajectory by successive convex optimization
when power allocations are given. Ref. [70] studies UAV-enabled mobile relaying systems
to assist the information transmission from a ground source to a ground destination when
a direct link between them is blocked. The spectrum efficiency and energy efficiency are
maximized by jointly optimizing the time allocations for UAV’s relaying along with its
flying speed and trajectory.

4. Summary and Lessons Learned

The extensive survey of recent works on the UAV deployment and trajectory in
wireless communication networks is summarized in Tables 1–3. It is observed that early
studies on the coverage maximization of multiple UAV wireless networks in Table 1 do
not consider unique characteristics of UAV wireless networks such as an air-to-ground
channel and interferences between UAVs, but only focus on covering a given area [21,22].
Refs. [23,24] consider those characteristics with altering the altitude of UAVs to minimize
the transmit power at UAVs. On the other hand, most research on the performance
enhancement of multiple UAV wireless networks do not consider optimizing the altitude
of individual UAVs, but all UAVs at a fixed height. UAV wireless networks at a fixed
height could outperform those with the altitude flexibility in some scenarios when the
resources are properly managed [33]. However, it is essential to optimize the altitude of
the individual UAV to best utilize UAV wireless networks, which is a challenging problem
due to a high computational complexity. As in Table 2, single UAV wireless networks,
such as UAV BS or RS, mostly consider the variation of the height of UAV to achieve the
target performance because it requires much less computational complexity compared
with multiple UAV wireless networks. The UAV aggregator in Table 3 selects a flexible
trajectory of UAV to maximize the energy efficiency to prolong the lifetime of networks
and maintain reliable systems. As introduced in this paper, there have been lots of studies
on the deployment and trajectory of UAVs; however, it is still in its infancy and further
research on various scenarios should be achieved to satisfy a target performance for their
use cases.

The optimal deployment or trajectory of UAVs in the literature targets to maximize
either the coverage or the throughput of networks with consideration of the altitude
flexibility, interferences from UAVs and air-to-ground channels. However, to best utilize
UAVs in wireless communication networks, it is essential to jointly consider the resource
allocations of transmit power and time at UAVs and ground nodes in the entire networks
including scheduling methods and UAV-UEs associations, along with the deployment of
UAVs. However, there have been very few studies on optimal resource allocations for
UAV wireless networks [44]. Further research on optimal resource allocations for various
scenarios should be conducted, and they can be further extended to the joint optimization
of UAV deployment and resource allocations to maximize both coverage and throughput of
UAV wireless networks. This is challenging, but determines key features on the construction
of UAV wireless networks.
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Table 1. Deployment of multiple UAVs.

Objective Algorithm/Analysis

Design Considerations of UAV Networks

UAV Altitude Interference
Consideration Environment/Scenario Channel Model

Use Case 1: UAV BS

[21]
Maximize the

number of covered
users

Jaccard dissimilarity
metric, Artificial

intelligence
algorithm

Fixed - Disaster -

[22]
Cover the area with

the minimum of
UAVs

Develop computer
program for
positioning

terrestrial and aerial
BS

Variable Within the
overlapped area

Disaster in
heterogeneous

networks
-

[23] Maximize the
coverage of UAV

Mathematical
analysis (downlink
coverage analysis)

Derive an optimal
altitude

Interference
/interference-free

conditions
Urban Air-to-ground

channel model [61]

[24]

Maximize the
coverage with

minimum number
of UAVs

Circle packing
theory

Numerically
updating the

altitude

Within the
overlapped area Urban Air-to-ground

channel model [52]

[25]
Improve the
throughput

coverage
Genetic algorithm Fixed Within the

overlapped area

General public
safety

communications

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[26]
Improve the
throughput

coverage

Brute force
algorithm

(exhaustive search)
Fixed Interference-

limited condition

Disaster in
heterogeneous

networks

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[27]
Maximize the

network
throughput

Mean-shift and
successive convex

optimization

Find an optimal
altitude

Co-channel
interference - Air-to-ground

channel model [61]

[28] Maximize the
spectral efficiency

Two distributed
algorithm (UAV
repositioning)

Fixed
Interference leakage
(signal-to-leakage

ratio)
49 cells Air-to-ground

channel model [61]

[29] Maximize the
spectral efficiency

K-means clustering
and a stable

marriage approach

Find an optimal
altitude

Co-channel
interference from all

UAVs
Disaster Air-to-ground

channel model [61]

[30] Improve capacity
and coverage

Two-stage
problems(i.e.,

decision problem ->
cooperative

problem (network
bargaining))

Assume an optimal
altitude

From all UAVs
except the serving

UAV

High demand area
in heterogeneous

networks

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[31]
Optimize the

overall network
delay

Entropy (neural
network version of

decision tree)
-

From all UAVs
except the serving

UAV

Heterogeneous
networks

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[32]
Improve the

spectral efficiency
and delay

Formulation of
neural based cost

function

Numerically
updating the

altitude

From all UAVs
except the serving

UAV

Areas with high
traffic demands

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[33]
Investigate the

average spectral
efficiency

A simple heuristic
bio-inspired
procedure

Derive an optimal
altitude

From all UAVs
except the serving

UAV
Disaster Air-to-ground

channel model [62]

[34] Achieve the load
balance

Hybrid
ARIMA-XGBoost

prediction
Fixed - Crowded area (i.e.,

campus)
Small cell pathloss

model

[35]
Minimize the

number of UAV to
cover the area

Successive UAV
placement (i.e.,

spiral algorithm)
Fixed - No terrestrial BS

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[36]

Minimize the
number of UAV to
serve all UEs in the

network

Heuristic algorithm
(particle swarm
optimization)

Find an optimal
altitude

Within the
overlapped area No terrestrial BS Air-to-ground

channel model [61]

[37]
Minimize the

number of UAV and
deployment delay

UB-K-means
algorithm

Determine an
altitude - Disaster Air-to-ground

channel model [61]

Use Case 2: UAV RS

[42] Maximize the
capacity

Formulate facility
location problem - - Downlink in

MANET -

[43] Maximize the
throughput

Propose multi-layer
UAV deployment

algorithm
Fixed - Disaster Air-to-ground

channel model [61]
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Table 2. Deployment of single UAV.

Objective Algorithm/Analysis
Design Considerations of UAV Networks

UAV Altitude Environment/Scenario Channel Model

Use Case 1: UAV BS

[38] Maximize the number
of covered users

Circle placement
problem (2D placement) Find an optimal altitude - Air-to-ground channel

model [61]

[39] Maximize the number
of covered users

Bisection/interior point
method Find an optimal altitude Urban, suburban, dense

urban, High-rise urban
Air-to-ground channel

model [61]

[40] Improve the spectral
efficiency

Propose algorithm to
autonomously control

the repositioning of
UAV

Fixed - Air-to-ground channel
model [61]

[41] Minimize the transmit
power

Solve the non-convex
problem by considering

two practical cases

Numerically search an
optimal altitude High-rise building Outdoor-Indoor path

loss model in [71]

[18]
Optimize the sum-rate

capacity or transmit
power gain

Propose altitude
dependent performance

evaluation model
Find an optimal altitude -

θ dependent Rician
fading and pathloss

exponent model

Use Case 2: UAV RS

[44] Maximize the network
throughput

Power control and time
allocation algorithm Fixed Disaster

Air-to-ground channel
model [61] and Rician

fading

[45] Maximize the network
throughput

UAV deployment and
time allocation

algorithm
Find an optimal altitude No terrestrial wireless

network

Air-to-ground channel
model [61] and Rician

fading

[46]
Maximize total number

of served users and
sum-rates

Exhaustive search to
find 3D location of UAV Find an optimal altitude Urban Air-to-ground channel

model [61]

[47] Maximize the sum-rates
Genetic algorithm and

successive convex
approximation

Fixed Two way relay system Air-to-ground channel
model [61]

Table 3. Trajectory of mobile UAVs.

Objective Algorithm/Analysis
Design Considerations of UAV Networks

Trajectory of UAV Speed of UAV Environment/Scenario Channel Model

Use Case 3: Multiple UAVs Aggregator

[48]
Minimize the

energy
consumption

Optimal transport
theory Flexible Fixed IoT Air-to-ground

channel model [61]

[49] Maximize the
energy efficiency

Joint optimization
of 3D placement,

device-UAV
association and
power control

Flexible Variable IoT Air-to-ground
channel model [61]

[50]
Minimize the

mission complete
time

Propose algorithms
to allocate tasks and

plan paths for a
team of UAVs

Flexible Fixed Mission complete -

[51] Derive capacity and
delay scaling laws

Exploit the mobility
pattern information

Fixed (returning
path) Fixed 3D monitoring

network -

Use Case 3: Single UAV Aggregator

[52]

Investigate the
success probability

of information
transmission

Design Markov
chain to model

movement of UAV
and its irregularities

Flexible Fixed (average
value)

Wireless sensor
networks

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[53]
Minimize the

energy
consumption

Joint optimize
sensor node’s

wake-up schedule
and UAV trajectory

by successive
convex

optimization

Flexible Maximum speed Wireless sensor
networks

Rician fadings and
pathlossdependent

channel model
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Table 3. Cont.

Objective Algorithm/Analysis
Design Considerations of UAV Networks

Trajectory of UAV Speed of UAV Environment/Scenario Channel Model

[54]

Enhance a
connectivity and

reduce an
end-to-end packet

delivery delay

Develop
mathematical

model for
UAV-assisted

vehicular network

Fixed (along the
roadway) Fixed VANET -

[55]

Investigate two data
collection schemes
in terms of average

energy
consumption

Develop
mathematical

model considering
dynamics of WSN

Fixed Fixed Animal Monitoring -

[56] Maximize the data
collection utility

Formulate data
collection utility

maximization
problem

Flexible - Wireless sensor
networks -

[57]
Minimize the total
mission time for
gathering data

Formulate
coordinated

traveling salesman
problem and

propose cooperative
trajectory planning

algorithm

Flexible Fixed Large-scale wireless
sensor networks

Air-to-ground
channel model [61]

Use Cases 1 & 2: UAV BS & RS

[67] Maximize the
energy efficiency

Derive the
propulsion energy

consumption model

Fixed (circular
trajectory) Variable -

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[68]

Cover the area with
the minimum

number of stop
points

Formulate disk
covering problem

and derive coverage
probability

Flexible (find stop
points of UAV) Fixed

D2D
communications in

heterogeneous
networks

Air-to-ground
channel model [61]

[69]
Maximize the

network
throughput

Propose iterative
algorithm to

optimize power
allocation and UAV

trajectory

Flexible Maximum speed of
UAV -

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

[70]
Maximize the

spectral and energy
efficiency

Consider relaxed
problem and use

Bisection and
Ternary search

method

Fixed (circular
trajectory) Variable Urban

Large scale LoS
pathloss model
(PLoS(θ)=1, ∀θ)

5. Open Problems and Future Opportunities for UAV Wireless Networks

In the previous sections, we have presented studies on UAV deployment and trajectory
for UAV use cases in wireless communication networks including channel characteristics,
and summarized the main lessons learned from this survey. Despite extensive studies on
UAV deployment and trajectory in wireless communication networks, there are still many
open problems to be investigated and future opportunities to make solutions. Most of
the research introduced in this survey proposes the optimal UAV deployment or trajec-
tory algorithm to achieve their target performance; however, it requires a computational
complexity to derive the optimal result, thereby limiting their practical utilization in a real
world. Recently, the machine learning (ML) framework is integrated into UAV wireless net-
works and expected to provide solutions for channel modeling, throughput enhancement,
and complexity reduction along with UAV deployment and trajectory. Open problems,
future opportunities, and applications of ML techniques for solutions are presented in the
next section.

5.1. Channel Characteristics

The proper channel model in wireless communication networks is most important
factor to accurately evaluate and estimate the network performance [15]. In particular,
the channel characteristics of UAV wireless networks are quite different from those of the
traditional ground-based networks due to the dominance of air-to-air and air-to-ground
links [72]. Furthermore, compared to the air-to-air link, which composes of strong LoS



Information 2022, 13, 389 15 of 20

communication channels, an air-to-ground link is prone to experience the blockage, thereby
requiring an accurate air-to-ground channel model to construct optimal UAV wireless
networks. However, the channel characteristics of air-to-ground link vary with the UAV al-
titude, elevation angle between UAV and ground node, environment, and so on. Therefore,
comprehensive measurements in various enviroments considering the effects of key factors
is essential for air-to-ground channel model. Clearly, it is challenging to find a generic
air-to-ground channel model.

Recent studies provide valuable insights into air-to-ground channel characteristics
that are useful to derive a generic air-to-ground channel model. The work in [73] provides
a comprehensive review on the air-to-ground channel model and a brief description for
air-to-ground channel measurement plans and the modeling campaign. Another study
in [74] provides a comprehensive survey on air-to-ground propagation along with large-
scale and small-scale fading models. In [75], both measurement-based models for path loss,
delay spread and correlations among signals, and statistical models for the air-to-ground
channel are provided. It reveals that the small-scale fading in air-to-ground link can be
characterized by the Rician fading model, where the Rician K-factor depends on the eleva-
tion angle and the UAV altitude. There are some measurement-based models [76–78] that
can determine some key factors for air-to-ground channel characteristics, but still cannot
capture all variations under different environments. To overcome this issue, the study
in [79] applies the unsupervised learning clustering technology to air-to-ground channel
modeling. It derives the 3D temporary channel model based on received signal strength
(RSS) measurements, and adapts an online learning approach. An online learning approach
allows dynamic changes on network topology to be considered on the 3D temporary
channel model, thereby significantly increasing the accuracy of the channel model. ML
framework on air-to-ground channel model can enhance the accuracy; however, more
research to realize practical air-to-ground communication link is necessary.

5.2. UAV Deployment and Trajectory

We have surveyed recent studies on UAV deployment and trajectory in this paper
to construct UAV wireless networks. As discussed in Section 4, the key consideration for
UAV deployment on UAV wireless networks is coverage and throughput enhancement
while there is a network lifetime for UAV trajectory. There have been lots of studies on
UAV deployment and trajectory, but it has still open problems because it depends on
environments, users’ location, air-to-ground channel characteristics, and so on. Moreover,
an air-to-ground channel characteristic is a function of UAV altitude, hence, the modeling
of air-to-ground link and UAV deployment influence each other. Furthermore, the users’
mobility and resource management have not been jointly considered on UAV deployment,
which restricts actual use in a real environment. Considering all key factors on UAV
deployment to optimize the performance of UAV wireless networks is a challenging task.
When deploying multiple UAVs, it becomes more challenging.

Other technologies on communication systems can be coupled with UAV deployment
and trajectory to further improve the performance of UAV wireless networks. In [80],
the cognitive radio (CR) technology is integrated into micro UAV-based communications
to improve the spectral efficiency, and the UAV position and tranmit power are jointly
optimized to minimize the UAV flying time, thereby achieving the energy efficiency at
the same time. Ref. [81] also considers UAV-enabled CR networks and optimizes the UAV
trajectory and transmit power while maximizing the average secrecy rate of the secondary
network to improve the security on communications via UAV. Ref. [82] deals with the
resouce allocation for the transmit power and channel time allocations for secondary ground
user to maximize the total network throughput. The stationary UAV positions to hover
and transmit are determined where the required throughput and no interference from the
primary network on individual secondary ground user are guaranteed. Ref. [83] proposes
the interference management framework for UAV-assisted networks based on the power
control and UAV clustering, which could be combined with UAV deployment and trajectory
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to further improve the QoS in UAV wireless networks. In addition, non-orthogonal multiple
access (NOMA) is applied in [84] to maximize the sum-rate of network by jointly optimizing
the UAV deployment and power allocation. It has been well known that superposition-
coded signal transmission and successive interference cancellation (SIC) in non-orthogonal
transmission achieve superior performance over orthoghonal transmission. A millimeter
wave (mmWave) communication is considered in UAV wireless networks, and [85] provides
reviews on research achievements for mmWave communications in UAV wireless networks
as well as the technical advantages and challenges. Due to the characteristics of mmWave
communications such as high FSPL, atmospheric attenuation, and blockage effect, mmWave
communications are suitable for air-to-air links between UAVs. In addition, NOMA and
mmWave communications are the key protocols in 5G stadards, therefore, they enable UAV
wireless networks to be integrated with 5G and beyond wireless networks to support the
required performance demands. In [86], a simultaneous wireless information and power
transfer (SWIFT) is employed in UAV-enabled two-way relay systems to harvest energy
through the power splitting (PS) scheme. This study proposes PS factor optimization along
with beamforming to maximize the sum-retained energy at two user equipments, and is
extended in [87], considering multiple user equipments.

ML techniques are also integrated into the construction of UAV wireless networks, spe-
cially UAV deployment and trajectory to satisfy the required performance. In [88], the joint
optimization of multiple UAVs deployment and power control is proposed to maximize the
sum trasmit rate and to satisfy the users’ rate requirement. Both users’ position and UAVs’
deployment are obtained by ML techniques, which are echo state network (ESN) based
predetion algorhtim and multi-agent Q-learning-based placement algorithm, respectively.
In [89], the optimal deployment of UAV BS for communication service to multiple users is
proposed to maximize the sum trasmit rate using Q-learning. The algorithm can learn the
network topology with no explicit information of the environment to improve the network
performance. The integration of ML techniques into UAV wireles networks increases as
it can provide an efficient solution for complicated problems considering multi-factors.
Q-learning, artificial neural network (ANN), deep Q-network (DQN) are applied in [90–93]
to improve the throughput, sum rate, and spectral efficiency of UAV wireless networks
thereby extending the service coverage and enhancing the network capacity, however, more
research on various environments should be conducted for practical implementation.

6. Conclusions

The UAV is integrated into 5G and beyond networks to extend the coverage and
improve the throughput as base or relay stations to support the higher data rate and
massive connectivity. The performance of UAV wireless networks highly depends on
their configuration, hence, the optimal deployment of UAV is a major issue along with the
efficient utilization of radio resources. The literature on UAV deployment and trajectory
is investigated and categorized as static and mobile UAVs for three different use cases.
Open problems and future research directions are summarized to obtain realistic channel
characteristics between UAV and ground nodes, and UAV deployment and trajectory for
practical implemeatation. In addition, key technologies on communication systems are
discussed as an additional factor on UAV deployment and trajectory for performance
improvement. ML techniques are also expected to provide solutions for multi-factor
problems in UAV wireless networks; however, the integration of ML techniques into UAV
wireless networks should be widely conducted to achieve a target performance under
various environments. In this paper, the communication aspect for UAV deployment and
trajectory is only considered to construct UAV wireless networks; however, the limitation
on the UAV itself, such as battery shortage and operation under a GPS-denied environment,
should be considered for practical uses.
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