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Abstract: In the face of tight natural resources and complex as well as volatile environments, and
in order to meet the pressure brought by population growth, we need to overcome a series of
challenges. As a new data management paradigm, the Earth Observation Data Cube simplifies the
way that users manage and use earth observation data, and provides an analysis-ready form to
access big spatiotemporal data, so as to realize the greater potential of earth observation data. Based
on the Open Data Cube (ODC) framework, combined with analysis-ready data (ARD) generation
technology, the design and implementation of CDC_DLTool, extending the support for data loading
and the processing of international and Chinese imagery data covering China, this study eventually
constructs the China Data Cube (CDC) framework. In the framework of this CDC grid, this study
carried out case studies of water change monitoring based on international satellite imagery data of
Landsat 8 in addition to vegetation change monitoring based on Chinese satellite imagery data of
GF-1. The experimental results show that, compared with traditional scene-based data organization,
the minimum management unit of this framework is a pixel, which makes the unified organization
and management of multisource heterogeneous satellite imagery data more convenient and faster.

Keywords: China Data Cube; remote sensing data management; analysis-ready data; GF-1 data;
Landsat data

1. Introduction

In today’s era, with the development of science and technology, our ability to obtain
remote sensing data has gradually reached an unprecedented level [1]. Remote sensing data
already embody the characteristics of big data, and remote sensing big data are receiving
more and more attention from experts in academic fields and commercial application
fields. Remote sensing big data have inherent characteristics, such as being dynamic,
multiscale, and nonlinear, as well as external characteristics, such as being multisource,
high-dimensional, and heterogeneous, which play an important role in multiple fields, such
as atmospheric science, land use [2], vegetation and ecology [3,4], environmental science [5],
and crustal evolution [6]. Traditional remote sensing data organization and management
methods based on “scenes” have been unable to meet the management and application
requirements of remote sensing big data due to the temporal and spatial fragmentation of
data [7]. People have been exploring new data organization and management frameworks
or technologies to make up for the shortcomings of existing data management methods,
thereby improving the utilization efficiency of remote sensing big data.

Most of the traditional data management frameworks are created based on interna-
tional standards such as those of the ISO (International Organization for Standardization)
and OGC (Open Geospatial Consortium) [8] for representing and storing spatial informa-
tion in data files (such as GeoTIFF and Esri Shapefile) as well as database systems (such
as PostGIS and Oracle Spatial), and for serving spatial data and metadata through web
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services. Most regional, national, and international remote sensing data management agen-
cies still share and disseminate multisource Remote sensing data in the form of individual
imagery data files through HTTP, FTP, and SSH protocols in web service portals [9]. In
order to cope with the pressure faced by traditional data organization and management
methods in storing, processing, and analyzing remote sensing big data, scientists and
engineers have proposed and developed new frameworks based on new technologies,
including cloud computing and distributed systems, such as the array database system
(Array DBMS) [10], Google Earth Engine [11], data cubes [12–14], and cloud-based remote
sensing data production systems [15,16]. It is known from the literature [6] that array
database systems (such as RasDaMam [17], SciDB [18]) are centered on multidimensional
arrays, and large arrays are split into index blocks, which are stored and shared among
multiple computers to improve performance and efficiency. The Google Earth Engine was
launched by Google in 2010 as a commercial cloud platform for the large-scale scientific
analysis and visualization of geospatial datasets. The Open Data Cube (ODC), formerly
known as the AGDC, is an earth observation data organization and analysis framework
consisting of a series of open source data structures and tools. The ODC provides the data
access mode of OGC web services (such as WCS, WM, and WMT), and also provides an
open source Python API interface and Jupyter Notebook with application examples, so as
to help users to use and share multisource remote sensing imagery data [19].

Based on the ODC basic framework, combined with actual needs and application
scenarios, multiple research teams from all over the world have carried out a series of
research studies. Australian researchers, based on archived satellite imagery data, such as
that of Landsat and Sentinel, constructed Australian data cubes to monitor surface water
changes [20–22] and land cover change maps [23], mangrove area expansion [24], etc. Schol-
ars in Switzerland, combining the massive amounts of satellite imagery data covering [22]
Switzerland, have carried out studies on snow cover [25], urbanization [26], vegetation [22],
and water quality changes [27], hoping to improve their understanding of Swiss resources
and further understand the environment [25]. African research teams, by building the
ODC-based Digital Earth Africa, focused on application areas such as land transformation,
urbanization, and water range changes that are consistent with the United Nations’ Sustain-
able Development Goals and to meet national and regional decision-making needs [28–34].
In addition, research teams in countries such as Vietnam, Colombia, Brazil, Mexico, and
China have used ODC for data management and application analyses in a variety of the-
matic areas, such as vegetation [34], hydrology [35,36], soils [37–39], and island ecology [40],
using international and national satellite imagery data covering their countries.

Although data management frameworks such as the Google Earth Engine and Array
DBMS facilitate the large-scale processing and application of satellite imagery data, users
still need to put in a lot of effort and learn advanced techniques to be able to utilize these
data management environments. Moreover, China’s high-resolution imagery data require
high security and are not suitable to be stored in a commercial cloud platform environment.
Therefore, we choose the open source ODC framework to build a localized China Data Cube
to meet the practical application requirements by extending data loading and application
support for international imagery data and China imagery data. Specifically, based on the
ODC open source framework, this study introduces ARD generation technology, designs
and implements the CDC_DLTool tool, and extends data loading and application support
for international imagery data, such as that of Landsat 8, and China imagery data, such
as that of GF-1, covering the Chinese region. A localized China Data Cube is built to
meet practical application requirements. Compared with the traditional scene-based data
organization, the smallest management unit in this study is a pixel, which facilitates the
dynamic analysis of long time series of multisource satellite imagery data.

The main objectives of this paper are to introduce the Earth Observation Data Cube,
present designs of the China Data Cube applicable to Chinese satellite imagery data, design
two research cases and perform related case studies, discuss the shortcomings of existing
research work, and list future work.
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2. Open Data Cube for Earth Observations (EODC)

The Earth Observation Open Data Cube (EODC) is a new paradigm shift from a
“scene” approach to a pixel grid. This aims to realize the full potential of earth observation
data by reducing the barriers posed by these big data and providing access to large-scale
spatiotemporal data in the form of analysis-ready data (ARD) [36].

The conceptual architecture of the EODC is composed of four layers from bottom
to top [35]: the data acquisition and input layer, which generates ARD through a series
of preprocessing operations, such as radiometric and geometric corrections; the data
cube infrastructure layer, where ARD are indexed and stored in the data cube through a
Python API and related interfaces, providing N-dimensional matrix interfaces for tasks.
The data and application platform layer provides users with services such as “virtual
laboratory” and task management. The user interface and application layer provides users
with applications in various research fields based on earth observation data by calling the
underlying interface.

The EODC framework is based on open source software (datacube-core, datacube-
dataset-config, datacube-explorer, datacube-notebooks, datacube-docker, odc-tools, etc.) [12]
and an API interface, using GDAL, Xarray, Numpy, Matplotlib, and other library files to
achieve the loading and analysis of satellite imagery data, the construction of multidimen-
sional arrays, the analysis of calculations, the analysis of the results of graphical plotting, etc.
The EODC supports reading satellite imagery data in various data formats (e.g., GeoTIFF,
NetCDF, HDF, etc.) [37] and using two data structures, DataSet and DataArray, to represent,
in memory, the EODC corresponding to multidimensional satellite imagery data, and to
build an EODC model based on multidimensional arrays for easy calculation and analysis.
Finally, EODCs use the PostgreSQL [38] database to manage the EO data stored in the file
system [35].

The EODC can be deployed in environments such as local file systems, cloud platforms,
and high-performance computing, providing users with pixel-level data computation and
processing capabilities, allowing them to flexibly implement data analysis algorithms
and applications for specific application scenarios with the help of existing analysis tools,
thus solving the difficulties encountered when managing and analyzing data based on
traditional scenic satellite imagery [41]. However, the EODC also has some shortcomings.
Although the EODC open sources the source code of the ODC core technology framework
and some example code based on the Jupyter Notebook, it is still not possible to use the
application and data directly in the new environment. Users must follow the relevant
documentation to manually install, configure, and, if necessary, write interface plug-ins
to reproduce the results of an instance. This requires EODC users to have a relevant
professional background and programming skills. It can be seen that building a Chinese
data cube based on the EODC is both necessary and technically difficult.

3. Development of the China Data Cube (CDC)

Data cubes, a new type of multisource satellite imagery data management framework,
were first well-developed and promoted in countries such as Australia and Switzerland.
The National Data Centre for Earth Observation Science (NODA), as the only national
scientific data center in the field of earth observation science in China officially recognized
by the Ministry of Science and Technology and the Ministry of Finance, plays a crucial
role in the field of application services for matters of national importance. The NODA has
also been following the technical development of the ODC, and proposed the creation of
the CDC initiative in 2018 [39]. The goal of the CDC is to efficiently manage the massive
amount of multisource international and China satellite imagery data covering the Chinese
region based on the ODC, taking into account the characteristics and practical application
needs of Chinese satellite imagery data, to provide a reference for relevant researchers to
make quick decisions and formulate policies. In this paper, the details and processes of
data loading and organizational management in the CDC are described using Landsat 8
and GF-1 data as examples, respectively, as shown in Figure 1.



Information 2022, 13, 407 4 of 13

Information 2022, 13, x FOR PEER REVIEW 4 of 14 
 

a crucial role in the field of application services for matters of national importance. The 

NODA has also been following the technical development of the ODC, and proposed the 

creation of the CDC initiative in 2018 [39]. The goal of the CDC is to efficiently manage 

the massive amount of multisource international and China satellite imagery data cover-

ing the Chinese region based on the ODC, taking into account the characteristics and prac-

tical application needs of Chinese satellite imagery data, to provide a reference for rele-

vant researchers to make quick decisions and formulate policies. In this paper, the details 

and processes of data loading and organizational management in the CDC are described 

using Landsat 8 and GF-1 data as examples, respectively, as shown in Figure 1. 

 

Figure 1. China Data Cube (CDC) architecture diagram. 

3.1. Data Access and ARD Production 

The CDC is built based on the ODC software suite. The ODC is open source and was 

initiated in 2016 by organizations and research institutions such as GA, CSIRO, Australian 

National University, NASA, CEOS, and USGS [40]. The ODC aims to provide for rapid 

access, storage management, and the analysis of large amounts of gridded satellite earth 

observation data in a management framework. In detail, the ODC is capable of cataloging 

large volumes of satellite EO data; the ODC provides Python-based application program-

ming interfaces (APIs) for data analysis; and the ODC can also track data sources such 

that quality control and updates can be performed. 

The systematic and regular delivery of analysis-ready data (ARD) is essential to fa-

cilitate the generation of useful information products and support the development of end 

user applications [42]. CEOS defines ARD as "satellite data that has been processed to 

minimum requirements and organized into a form that allows immediate analysis with 

minimal additional user effort, in the shortest possible time, and interoperability with 

other data sets" [41]. ARD reduce the burden of fully utilizing satellite data by providing 

specifications that limit data preparation to produce relevant, consistent, normalized, and 

interoperable data. These specifications save time and effort and minimize the cost of pre-

processing data, while leveraging the knowledge and expertise of users, allowing them to 

spend more time analyzing data rather than searching and preprocessing them. These re-

quirements involve parameters such as radiometric and geometric corrections, atmos-

pheric corrections, and metadata descriptions. In optical imageries the ARD level corre-

sponds to the surface reflectance product, while in radar images it corresponds to the ra-

diation-normalized backward-scattering product [41]. 

Figure 1. China Data Cube (CDC) architecture diagram.

3.1. Data Access and ARD Production

The CDC is built based on the ODC software suite. The ODC is open source and was
initiated in 2016 by organizations and research institutions such as GA, CSIRO, Australian
National University, NASA, CEOS, and USGS [40]. The ODC aims to provide for rapid
access, storage management, and the analysis of large amounts of gridded satellite earth
observation data in a management framework. In detail, the ODC is capable of cataloging
large volumes of satellite EO data; the ODC provides Python-based application program-
ming interfaces (APIs) for data analysis; and the ODC can also track data sources such that
quality control and updates can be performed.

The systematic and regular delivery of analysis-ready data (ARD) is essential to
facilitate the generation of useful information products and support the development of
end user applications [42]. CEOS defines ARD as “satellite data that has been processed to
minimum requirements and organized into a form that allows immediate analysis with
minimal additional user effort, in the shortest possible time, and interoperability with
other data sets” [41]. ARD reduce the burden of fully utilizing satellite data by providing
specifications that limit data preparation to produce relevant, consistent, normalized, and
interoperable data. These specifications save time and effort and minimize the cost of
preprocessing data, while leveraging the knowledge and expertise of users, allowing
them to spend more time analyzing data rather than searching and preprocessing them.
These requirements involve parameters such as radiometric and geometric corrections,
atmospheric corrections, and metadata descriptions. In optical imageries the ARD level
corresponds to the surface reflectance product, while in radar images it corresponds to the
radiation-normalized backward-scattering product [41].

Since the Landsat 8 data provided by the USGS have been processed by the EPSA
program to be generated to the LaSRC level, they can provide a surface reflectivity level
(L2A) data file, and no further preprocessing is needed to reach the ARD standard. For
domestic satellite imageries, the data distribution unit provides users with data at the L1A
level, which require further preprocessing, such as radiometric correction and geometric
correction, to reach the ARD level. In this paper, absolute radiometric calibration coefficients
are used to achieve the radiometric calibration of GF-1 imagery data, and the FLASSH
method [43] is used to achieve the atmospheric correction of GF-1 imagery data. The
geometric normalization of the GF-1 imagery data is achieved by using the HighImgCorrect
method [44]. Finally, the quality of the GF-1 imagery data products is improved to the L4
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level, which can meet the requirements of quantitative remote sensing analyses, such as
water body change, vegetation change, urbanization, and coastline change.

The ODC provides definition files and organization scripts for earth observation
imagery data products such as Landsat and MODIS, which can automatically generate
YAML [45] profiles and imagery metadata files from imagery files, but lacks relevant access
methods and tools for Chinese satellite imagery data, such as those of GF-1. To this end,
based on GDAL, YamlDotNet, and other components, this paper designs and implements
the CDC_DLTool middleware, which realizes the acquisition of spectral information, band
information, spatial location, and other contents from Chinese satellite imagery files and
generates YAML metadata documents conforming to ODC standards; the specific operation
flow is shown in Figure 2.
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3.2. Data Indexing Based on the CDC Grid

As a new data management method, the CDC grid realizes the paradigm shift from
“scene” to pixels, and it can efficiently store satellite imagery data with multitime, multispa-
tial, multispectrum, and multiattribute characteristics. At the same time, the CDC grid also
takes into account the temporal and spatial correlation of satellite imagery data, avoiding
the temporal and spatial fragmentation of the original “scene” management approach, and
making it easy and efficient to analyze the imagery data for long time series applications.
Figure 3 shows the data query and retrieval process based on the CDC grid, from which
the flow of pixel data in the memory can be clearly seen.
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3.3. Data Storage Strategy and Services

In the process of constructing the CDC, a data storage strategy is an important step
in the management of large amounts of multisource heterogeneous satellite imagery data.
The optimal resampling scheme needs to be determined based on the spatial resolution
and magnitude of the managed satellite imageries to ensure that all of the observed values
(i.e., pixels) have the same characteristics, such as spatial resolution. The AGDC resamples
Landsat data with a spatial resolution of 30 m and MODIS data with a spatial resolution
of 250 m into a grid with a spatial resolution of 25 m [23]. In the CDC grid framework,
Landsat 8 data and GF-1 data are stored in two different sets, which retain the original
spatial resolution. At the same time, the CDC keeps the original data of Landsat and GF-1
data to ensure that users can decide whether to use panchromatic bands according to the
actual needs.

4. Case Study and Results
4.1. Water Body Change Monitoring of the Baiyangdian Lake

The Baiyangdian Lake, the largest freshwater lake in the urban agglomeration of
Beijing, Tianjin, and Hebei Provinces [46], is located in An’xin County, Hebei Province,
with a water area of 366 km2, as shown in Figure 4a. Due to the complexity of Baiyangdian,
the lake wetland and its surrounding water play an important role in several processes that
maintain the normal function of the local ecosystem, including supplying water for the
growth of vegetation such as reeds, increasing groundwater supply, improving the local
climate system, and protecting biodiversity, as shown in Figure 4b [47]. In recent years,
the water bodies of the Baiyangdian Lake have suffered serious impacts due to people’s
excessive interventions, causing many ecological problems, such as the eutrophication of
the water bodies and a reduction in the water body area. Therefore, there is an urgent need
to study the changes in the water body area of the Baiyangdian Lake to prevent the further
deterioration of the current ecological problems.

Figure 4. (a) The selected study area of case study one, the Baiyangdian Lake, located in the urban
agglomeration of Beijing, Tianjin, and Hebei Provinces; (b) The Landsat 8 remote sensing imageries
covering the Baiyangdian Lake, displayed by false color imageries using bands 7, 5, and 3 (Date:
18 September 2019).

With the rapid development of science and technology, it has become increasingly
important to map and detect changes in lake waters through satellite imageries, especially
because satellites capture and provide data in the visible and infrared spectral bands,
where it is relatively easy to distinguish between land and water [48–50]. This makes
optical satellite imageries suitable for monitoring changes in the area of lake waters. In
this study, Landsat 8 satellite imagery data were used to extract the area of water bodies in
the Baiyangdian Lake. Landsat 8 imagery data were downloaded for the period of 2013 to
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2021 with less than 20% cloud cover, which were selected from June to September. Taking
advantage of the Landsat 8 data, monitoring studies of water body coverage information
can provide scientific data for the development of effective measures to improve the
ecological environment of the reservoir basin in the future.

In order to test the usability of the CDC grid, based on the loaded Landsat 8 imagery
data and the water body extraction algorithm WOfS [51], this study calculated the changes
in the spatial distribution of water bodies in the Baiyangdian Lake, as shown in Figure 5.
By comparing and analyzing the annual changes in the water bodies of the Baiyangdian
Lake, a theoretical basis for dynamic changes in domestic and industrial generation can
be provided. For example, from the second graph in the first row, it can be seen that there
was a relatively significant increase in the volume of water in the Baiyangdian Lake in 2014,
due to the introduction of external water from the South–North Water Transfer Project. As
can also be seen in the third graph in the second row, there was also an incremental change
in the quantity of the Baiyangdian Lake in 2018, thanks to a series of protection policies for
the Baiyangdian Lake issued after the establishment of the Xiong’an New Area.
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Figure 6 shows the total number of observable water bodies in the Baiyangdian Lake
based on the CDC grid and the WOfS water body extraction algorithm for the 9 years
between 2013 and 2021. The values of the total number of observable water bodies are
from large to small, in line with the colored bars (dark blue, blue, green, yellow, red) on
the right. The darker the colored bars are, the larger are the total number of observable
water bodies in the study area. From this, it can be assumed that the change of water
body in Baiyangdian Lake is smaller, and its ecological environment is more balanced. The
dark-blue area in the purple rectangle at the bottom right of Figure 6 indicates that water
has been present in this area for nine consecutive years. In contrast, it can be seen that
the light-green areas in the red rectangles presented in the left part, top-right part, and
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bottom-left part of Figure 6 indicate that the values identified as water bodies in these
three parts range from one to three, indicating that the Baiyangdian Lake is dynamically
changing. More in-depth studies will be carried out later, to determine whether the sizes of
the water bodies are increasing or decreasing.
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4.2. Vegetation Change Detection in the Beijing Suburbs

The forest area of Huairou District, Beijing, reaches 164,242 hectares, with a forest
coverage rate of 77.38%. Forests play an important role in maintaining water and soil,
regulating the climate, purifying the atmosphere, preventing noise, and maintaining the
ecological balance of nature [52]. In order to verify the availability of the China GF-1
imagery data stored in the CDC framework, this study selected a small area (40.8050◦ N,
40.8574◦ N, 116.5207◦ E, and 116.653◦ E) in Huairou District, Beijing, for vegetation change
monitoring, as shown in Figure 7.

Figure 7. Location of case study area two (a) map projection; (b) satellite photo (the GF-1 imagery of
Huairou, Beijing; data date: 21 August 2021).
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Since the GF-1 imagery data downloaded from the official data website are of an
L1A level, further data preprocessing steps, such as radiometric correction and geometric
correction, are required to generate ARD products. Figure 8a,b show the changes in the
vegetation spectral curve in the process of radiometric and geometric correction processing
of the GF-1 imagery data used in this study. Figure 9b,c show the geometric deformation
and corresponding pixel position shift of the GF-1 imagery data covering the study area
before and after geometric correction. The error in the geometric correction process was
1.508 pixels. On the metric scale of meters, the error in the geometric correction of this 16-m
spatial resolution GF-1 imagery data was 24.126 m.
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Figure 9. Comparison of the study area before and after geometric correction.

This case study is based on the NDVI (normalized difference vegetation index) values
to determine the vegetation change in the same area at two different time periods. Different
baseline NDVI threshold ranges can be set for different vegetation types, e.g., 0.6 to 0.9 for
dense vegetation and 0.2 to 0.6 for grassland. Figure 10a,b represent the change in dense
vegetation in the study area between the two time periods of 2015 and 2017, based on the
GF-1 imagery data stored and managed in the CDC grid framework. This is an NDVI
threshold plot showing the change in green pixels within the threshold range. Based on
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this map, shown in Figure 10c, it can be seen that dense vegetation changes significantly
elsewhere except the ridges, which can provide a data reference for forest vegetation change
studies [3].
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5. Discussion and Conclusions

Of particular concern to data managers is the question of how to efficiently manage
the massive amounts of EO data generated every day and overcome the limitations as
well as problems encountered in the downloading of data and the transmission of data
providers and high-performance computing infrastructures. The freely accessible EO Data
Cube, capable of bringing global ARD into local infrastructure, makes the EODC one of the
most popular EO data management tools [13]. The main research purpose of this paper
was to introduce the EODC, propose the design of the CDC, suitable for Chinese satellite
imagery data, and then design two research cases as well as conduct related case studies.

The China Data Cube data management framework constructed in this paper has the
following main features: (1) Based on the existing framework and open source code of the
Open Data Cube, the CDC_DLTool middleware is designed and implemented to extend
support for the data loading and processing of international and Chinese satellite imagery
data covering the Chinese region. (2) In order to verify the reliability of this CDC framework,
this study conducted case studies on the spatial variation in water bodies and vegetation
based on Landsat 8 and GF-1 imagery data, respectively. The advantages of this research
framework are mainly focused on two aspects. First, the minimum data management unit
in our research framework is pixels, which realizes a paradigm shift from the traditional
scene organization mode to the pixel organization mode. This facilitates the organization
and management of heterogeneous satellite imagery data from multiple sources in a
consistent way. Second, compared with the traditional scene-based organization, this
research framework is much more efficient in data management in terms of imageries
storage, imageries retrieval, and imageries processing [53]
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The current CDC data management framework project is in its infancy. In the process
of remote sensing big data generation and practice, there are many sources of satellite
imagery data, more complex data formats, and more diverse project needs. Combining
the construction of the CDC grid project with the actual needs of using and managing
multisource satellite imagery data is an important challenge to be considered and solved
in the future. In addition, the current phase of research has not yet considered working
on a cloud platform, and future research work plans have considered improving the CDC
framework by building a localized private cloud. Future research will also study and learn
from existing geospatial cloud platforms such as Sentinel Hub, Google Earth Engine and
Microsoft Azure, and conduct quantitative comparative analyses in terms of data storage
and computation.
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