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Abstract: In the face of tight natural resources and complex as well as volatile environments, and in 

order to meet the pressure brought by population growth, we need to overcome a series of chal-

lenges. As a new data management paradigm, the Earth Observation Data Cube simplifies the way 

that users manage and use earth observation data, and provides an analysis-ready form to access 

big spatiotemporal data, so as to realize the greater potential of earth observation data. Based on the 

Open Data Cube (ODC) framework, combined with analysis-ready data (ARD) generation technol-

ogy, the design and implementation of CDC_DLTool, extending the support for data loading and 

the processing of international and Chinese imagery data covering China, this study eventually con-

structs the China Data Cube (CDC) framework. In the framework of this CDC grid, this study car-

ried out case studies of water change monitoring based on international satellite imagery data of 

Landsat 8 in addition to vegetation change monitoring based on Chinese satellite imagery data of 

GF-1. The experimental results show that, compared with traditional scene-based data organization, 

the minimum management unit of this framework is a pixel, which makes the unified organization 

and management of multisource heterogeneous satellite imagery data more convenient and faster. 

Keywords: China Data Cube; remote sensing data management; analysis-ready data; GF-1 data; 

Landsat data 

 

1. Introduction 

In today's era, with the development of science and technology, our ability to obtain 

remote sensing data has gradually reached an unprecedented level [1]. Remote sensing 

data already embody the characteristics of big data, and remote sensing big data are re-

ceiving more and more attention from experts in academic fields and commercial appli-

cation fields. Remote sensing big data have inherent characteristics, such as being dy-

namic, multiscale, and nonlinear, as well as external characteristics, such as being multi-

source, high-dimensional, and heterogeneous, which play an important role in multiple 

fields, such as atmospheric science, land use [2], vegetation and ecology [3,4], environ-

mental science [5], and crustal evolution [6]. Traditional remote sensing data organization 

and management methods based on "scenes" have been unable to meet the management 

and application requirements of remote sensing big data due to the temporal and spatial 

fragmentation of data [7]. People have been exploring new data organization and man-

agement frameworks or technologies to make up for the shortcomings of existing data 

management methods, thereby improving the utilization efficiency of remote sensing big 

data. 

Most of the traditional data management frameworks are created based on interna-

tional standards such as those of the ISO (International Organization for Standardization) 
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and OGC (Open Geospatial Consortium) [8] for representing and storing spatial infor-

mation in data files (such as GeoTIFF and Esri Shapefile) as well as database systems (such 

as PostGIS and Oracle Spatial), and for serving spatial data and metadata through web 

services. Most regional, national, and international remote sensing data management 

agencies still share and disseminate multisource Remote sensing data in the form of indi-

vidual imagery data files through HTTP, FTP, and SSH protocols in web service portals 

[9]. In order to cope with the pressure faced by traditional data organization and manage-

ment methods in storing, processing, and analyzing  remote sensing big data, scientists 

and engineers have proposed and developed new frameworks based on new technolo-

gies, including cloud computing and distributed systems, such as the array database sys-

tem (Array DBMS) [10], Google Earth Engine [11], data cubes [12–14], and cloud-based 

remote sensing data production systems [15,16]. It is known from the literature [6] that 

array database systems (such as RasDaMam [17], SciDB [18]) are centered on multidimen-

sional arrays, and large arrays are split into index blocks, which are stored and shared 

among multiple computers to improve performance and efficiency. The Google Earth En-

gine was launched by Google in 2010 as a commercial cloud platform for the large-scale 

scientific analysis and visualization of geospatial datasets. The Open Data Cube (ODC), 

formerly known as the AGDC, is an earth observation data organization and analysis 

framework consisting of a series of open source data structures and tools. The ODC pro-

vides the data access mode of OGC web services (such as WCS, WM, and WMT), and also 

provides an open source Python API interface and Jupyter Notebook with application 

examples, so as to help users to use and share multisource remote sensing imagery data 

[19]. 

Based on the ODC basic framework, combined with actual needs and application 

scenarios, multiple research teams from all over the world have carried out a series of 

research studies. Australian researchers, based on archived satellite imagery data, such as 

that of Landsat and Sentinel, constructed Australian data cubes to monitor surface water 

changes [20–22] and land cover change maps [23], mangrove area expansion [24], etc. 

Scholars in Switzerland, combining the massive amounts of satellite imagery data cover-

ing [22] Switzerland, have carried out studies on snow cover [25], urbanization [26], veg-

etation [22], and water quality changes [27], hoping to improve their understanding of 

Swiss resources and further understand the environment [25]. African research teams, by 

building the ODC-based Digital Earth Africa, focused on application areas such as land 

transformation, urbanization, and water range changes that are consistent with the United 

Nations’ Sustainable Development Goals and to meet national and regional decision-mak-

ing needs [28–34]. In addition, research teams in countries such as Vietnam, Colombia, 

Brazil, Mexico, and China have used ODC for data management and application analyses 

in a variety of thematic areas, such as vegetation [34], hydrology [35,36], soils [37–39], and 

island ecology [40], using international and national satellite imagery data covering their 

countries. 

Although data management frameworks such as the Google Earth Engine and Array 

DBMS facilitate the large-scale processing and application of satellite imagery data, users 

still need to put in a lot of effort and learn advanced techniques to be able to utilize these 

data management environments. Moreover, China’s high-resolution imagery data require 

high security and are not suitable to be stored in a commercial cloud platform environ-

ment. Therefore, we choose the open source ODC framework to build a localized China 

Data Cube to meet the practical application requirements by extending data loading and 

application support for international imagery data and China imagery data. Specifically, 

based on the ODC open source framework, this study introduces ARD generation tech-

nology, designs and implements the CDC_DLTool tool, and extends data loading and ap-

plication support for international imagery data, such as that of Landsat 8, and China im-

agery data, such as that of GF-1, covering the Chinese region. A localized China Data Cube 

is built to meet practical application requirements. Compared with the traditional scene-
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based data organization, the smallest management unit in this study is a pixel, which fa-

cilitates the dynamic analysis of long time series of multisource satellite imagery data. 

The main objectives of this paper are to introduce the Earth Observation Data Cube, 

present designs of the China Data Cube applicable to Chinese satellite imagery data, de-

sign two research cases and perform related case studies, discuss the shortcomings of ex-

isting research work, and list future work. 

2. Open Data Cube for Earth Observations (EODC) 

The Earth Observation Open Data Cube (EODC) is a new paradigm shift from a 

"scene" approach to a pixel grid. This aims to realize the full potential of earth observation 

data by reducing the barriers posed by these big data and providing access to large-scale 

spatiotemporal data in the form of analysis-ready data (ARD) [36]. 

The conceptual architecture of the EODC is composed of four layers from bottom to 

top [35]: the data acquisition and input layer, which generates ARD through a series of 

preprocessing operations, such as radiometric and geometric corrections; the data cube 

infrastructure layer, where ARD are indexed and stored in the data cube through a Python 

API and related interfaces, providing N-dimensional matrix interfaces for tasks. The data 

and application platform layer provides users with services such as "virtual laboratory" 

and task management. The user interface and application layer provides users with ap-

plications in various research fields based on earth observation data by calling the under-

lying interface. 

The EODC framework is based on open source software (datacube-core, datacube-

dataset-config, datacube-explorer, datacube-notebooks, datacube-docker, odc-tools, etc.) 

[12] and an API interface, using GDAL, Xarray, Numpy, Matplotlib, and other library files 

to achieve the loading and analysis of satellite imagery data, the construction of multidi-

mensional arrays, the analysis of calculations, the analysis of the results of graphical plot-

ting, etc. The EODC supports reading satellite imagery data in various data formats (e.g., 

GeoTIFF, NetCDF, HDF, etc.) [37] and using two data structures, DataSet and DataArray, 

to represent, in memory, the EODC corresponding to multidimensional satellite imagery 

data, and to build an EODC model based on multidimensional arrays for easy calculation 

and analysis. Finally, EODCs use the PostgreSQL [38] database to manage the EO data 

stored in the file system [35]. 

The EODC can be deployed in environments such as local file systems, cloud plat-

forms, and high-performance computing, providing users with pixel-level data computa-

tion and processing capabilities, allowing them to flexibly implement data analysis algo-

rithms and applications for specific application scenarios with the help of existing analysis 

tools, thus solving the difficulties encountered when managing and analyzing data based 

on traditional scenic satellite imagery [41]. However, the EODC also has some shortcom-

ings. Although the EODC open sources the source code of the ODC core technology 

framework and some example code based on the Jupyter Notebook, it is still not possible 

to use the application and data directly in the new environment. Users must follow the 

relevant documentation to manually install, configure, and, if necessary, write interface 

plug-ins to reproduce the results of an instance. This requires EODC users to have a rele-

vant professional background and programming skills. It can be seen that building a Chi-

nese data cube based on the EODC is both necessary and technically difficult. 

3. Development of the China Data Cube (CDC) 

Data cubes, a new type of multisource satellite imagery data management frame-

work, were first well-developed and promoted in countries such as Australia and Swit-

zerland. The National Data Centre for Earth Observation Science (NODA), as the only 

national scientific data center in the field of earth observation science in China officially 

recognized by the Ministry of Science and Technology and the Ministry of Finance, plays 

a crucial role in the field of application services for matters of national importance. The 

NODA has also been following the technical development of the ODC, and proposed the 
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creation of the CDC initiative in 2018 [39]. The goal of the CDC is to efficiently manage 

the massive amount of multisource international and China satellite imagery data cover-

ing the Chinese region based on the ODC, taking into account the characteristics and prac-

tical application needs of Chinese satellite imagery data, to provide a reference for rele-

vant researchers to make quick decisions and formulate policies. In this paper, the details 

and processes of data loading and organizational management in the CDC are described 

using Landsat 8 and GF-1 data as examples, respectively, as shown in Figure 1. 

 

Figure 1. China Data Cube (CDC) architecture diagram. 

3.1. Data Access and ARD Production 

The CDC is built based on the ODC software suite. The ODC is open source and was 

initiated in 2016 by organizations and research institutions such as GA, CSIRO, Australian 

National University, NASA, CEOS, and USGS [40]. The ODC aims to provide for rapid 

access, storage management, and the analysis of large amounts of gridded satellite earth 

observation data in a management framework. In detail, the ODC is capable of cataloging 

large volumes of satellite EO data; the ODC provides Python-based application program-

ming interfaces (APIs) for data analysis; and the ODC can also track data sources such 

that quality control and updates can be performed. 

The systematic and regular delivery of analysis-ready data (ARD) is essential to fa-

cilitate the generation of useful information products and support the development of end 

user applications [42]. CEOS defines ARD as "satellite data that has been processed to 

minimum requirements and organized into a form that allows immediate analysis with 

minimal additional user effort, in the shortest possible time, and interoperability with 

other data sets" [41]. ARD reduce the burden of fully utilizing satellite data by providing 

specifications that limit data preparation to produce relevant, consistent, normalized, and 

interoperable data. These specifications save time and effort and minimize the cost of pre-

processing data, while leveraging the knowledge and expertise of users, allowing them to 

spend more time analyzing data rather than searching and preprocessing them. These re-

quirements involve parameters such as radiometric and geometric corrections, atmos-

pheric corrections, and metadata descriptions. In optical imageries the ARD level corre-

sponds to the surface reflectance product, while in radar images it corresponds to the ra-

diation-normalized backward-scattering product [41]. 

Since the Landsat 8 data provided by the USGS have been processed by the EPSA 

program to be generated to the LaSRC level, they can provide a surface reflectivity level 

(L2A) data file, and no further preprocessing is needed to reach the ARD standard. For 
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domestic satellite imageries, the data distribution unit provides users with data at the L1A 

level, which require further preprocessing, such as radiometric correction and geometric 

correction, to reach the ARD level. In this paper, absolute radiometric calibration coeffi-

cients are used to achieve the radiometric calibration of GF-1 imagery data, and the 

FLASSH method [43] is used to achieve the atmospheric correction of GF-1 imagery data. 

The geometric normalization of the GF-1 imagery data is achieved by using the 

HighImgCorrect method [44]. Finally, the quality of the GF-1 imagery data products is 

improved to the L4 level, which can meet the requirements of quantitative remote sensing 

analyses, such as water body change, vegetation change, urbanization, and coastline 

change. 

The ODC provides definition files and organization scripts for earth observation im-

agery data products such as Landsat and MODIS, which can automatically generate 

YAML [45] profiles and imagery metadata files from imagery files, but lacks relevant ac-

cess methods and tools for Chinese satellite imagery data, such as those of GF-1. To this 

end, based on GDAL, YamlDotNet, and other components, this paper designs and imple-

ments the CDC_DLTool middleware, which realizes the acquisition of spectral infor-

mation, band information, spatial location, and other contents from Chinese satellite im-

agery files and generates YAML metadata documents conforming to ODC standards; the 

specific operation flow is shown in Figure 2. 

 

Figure 2. Workflow of loading Chinese satellite imagery data based on CDC_DLTool. 

3.2. Data Indexing Based on the CDC Grid 

As a new data management method, the CDC grid realizes the paradigm shift from 

"scene" to pixels, and it can efficiently store satellite imagery data with multitime, mul-

tispatial, multispectrum, and multiattribute characteristics. At the same time, the CDC 

grid also takes into account the temporal and spatial correlation of satellite imagery data, 

avoiding the temporal and spatial fragmentation of the original "scene" management ap-

proach, and making it easy and efficient to analyze the imagery data for long time series 

applications. Figure 3 shows the data query and retrieval process based on the CDC grid, 

from which the flow of pixel data in the memory can be clearly seen. 



Information 2022, 13, 407 6 of 13 
 

 

Figure 3. Pixel-based grid data query and retrieval. 

3.3. Data Storage Strategy and Services 

In the process of constructing the CDC, a data storage strategy is an important step 

in the management of large amounts of multisource heterogeneous satellite imagery data. 

The optimal resampling scheme needs to be determined based on the spatial resolution 

and magnitude of the managed satellite imageries to ensure that all of the observed values 

(i.e., pixels) have the same characteristics, such as spatial resolution. The AGDC resamples 

Landsat data with a spatial resolution of 30 m and MODIS data with a spatial resolution 

of 250 m into a grid with a spatial resolution of 25 m [23]. In the CDC grid framework, 

Landsat 8 data and GF-1 data are stored in two different sets, which retain the original 

spatial resolution. At the same time, the CDC keeps the original data of Landsat and GF-

1 data to ensure that users can decide whether to use panchromatic bands according to 

the actual needs. 

4. Case Study and Results  

4.1. Water Body Change Monitoring of the Baiyangdian Lake 

The Baiyangdian Lake, the largest freshwater lake in the urban agglomeration of Bei-

jing, Tianjin, and Hebei Provinces [46], is located in An’xin County, Hebei Province, with 

a water area of 366 km², as shown in Figure 4a. Due to the complexity of Baiyangdian, the 

lake wetland and its surrounding water play an important role in several processes that 

maintain the normal function of the local ecosystem, including supplying water for the 

growth of vegetation such as reeds, increasing groundwater supply, improving the local 

climate system, and protecting biodiversity, as shown in Figure 4b [47]. In recent years, 

the water bodies of the Baiyangdian Lake have suffered serious impacts due to people's 

excessive interventions, causing many ecological problems, such as the eutrophication of 

the water bodies and a reduction in the water body area. Therefore, there is an urgent 

need to study the changes in the water body area of the Baiyangdian Lake to prevent the 

further deterioration of the current ecological problems. 

With the rapid development of science and technology, it has become increasingly 

important to map and detect changes in lake waters through satellite imageries, especially 
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because satellites capture and provide data in the visible and infrared spectral bands, 

where it is relatively easy to distinguish between land and water [48–50]. This makes op-

tical satellite imageries suitable for monitoring changes in the area of lake waters. In this 

study, Landsat 8 satellite imagery data were used to extract the area of water bodies in the 

Baiyangdian Lake. Landsat 8 imagery data were downloaded for the period of 2013 to 

2021 with less than 20% cloud cover, which were selected from June to September. Taking 

advantage of the Landsat 8 data, monitoring studies of water body coverage information 

can provide scientific data for the development of effective measures to improve the eco-

logical environment of the reservoir basin in the future. 

 

Figure 4. (a) The selected study area of case study one, the Baiyangdian Lake, located in the urban 

agglomeration of Beijing, Tianjin, and Hebei Provinces; (b) The Landsat 8 remote sensing imageries 

covering the Baiyangdian Lake, displayed by false color imageries using bands 7, 5, and 3 (Date: 18 

September 2019). 

In order to test the usability of the CDC grid, based on the loaded Landsat 8 imagery 

data and the water body extraction algorithm WOfS [51], this study calculated the changes 

in the spatial distribution of water bodies in the Baiyangdian Lake, as shown in Figure 5. 

By comparing and analyzing the annual changes in the water bodies of the Baiyangdian 

Lake, a theoretical basis for dynamic changes in domestic and industrial generation can 

be provided. For example, from the second graph in the first row, it can be seen that there 

was a relatively significant increase in the volume of water in the Baiyangdian Lake in 2014, 

due to the introduction of external water from the South–North Water Transfer Project. As 

can also be seen in the third graph in the second row, there was also an incremental change 

in the quantity of the Baiyangdian Lake in 2018, thanks to a series of protection policies for 

the Baiyangdian Lake issued after the establishment of the Xiong’an New Area. 

Figure 6 shows the total number of observable water bodies in the Baiyangdian Lake 

based on the CDC grid and the WOfS water body extraction algorithm for the 9 years 

between 2013 and 2021. The values of the total number of observable water bodies are 

from large to small, in line with the colored bars (dark blue, blue, green, yellow, red) on 

the right. The darker the colored bars are, the larger are the total number of observable 

water bodies in the study area. From this, it can be assumed that the change of water body 

in Baiyangdian Lake is smaller, and its ecological environment is more balanced. The 

dark-blue area in the purple rectangle at the bottom right of Figure 6 indicates that water 

has been present in this area for nine consecutive years. In contrast, it can be seen that the 

light-green areas in the red rectangles presented in the left part, top-right part, and bot-

tom-left part of Figure 6 indicate that the values identified as water bodies in these three 

parts range from one to three, indicating that the Baiyangdian Lake is dynamically chang-

ing. More in-depth studies will be carried out later, to determine whether the sizes of the 

water bodies are increasing or decreasing. 
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Figure 5. Spatial distribution of water body changes in the Baiyangdian Lake from 2013 to 2021. 

 

Figure 6. Total water times according to WOfS in the Baiyangdian Lake from 2013 to 2021. The 

light-green areas in the red rectangles indicated the dynamic changing in the Baiyangdian Lake, 

while the dark blue area in the purple rectangle indicated water of the Baiyangidan Lake is persis-

tent. 
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4.2. Vegetation Change Detection in the Beijing Suburbs 

The forest area of Huairou District, Beijing, reaches 164,242 hectares, with a forest 

coverage rate of 77.38%. Forests play an important role in maintaining water and soil, 

regulating the climate, purifying the atmosphere, preventing noise, and maintaining the 

ecological balance of nature [52]. In order to verify the availability of the China GF-1 im-

agery data stored in the CDC framework, this study selected a small area (40.8050° N, 

40.8574° N, 116.5207° E, and 116.653° E) in Huairou District, Beijing, for vegetation change 

monitoring, as shown in Figure 7. 

 

Figure 7. Location of case study area two (the GF-1 imagery of Huairou, Beijing; data date: 21 Au-

gust 2021). 

Since the GF-1 imagery data downloaded from the official data website are of an L1A 

level, further data preprocessing steps, such as radiometric correction and geometric cor-

rection, are required to generate ARD products. Figure 8a,b show the changes in the veg-

etation spectral curve in the process of radiometric and geometric correction processing 

of the GF-1 imagery data used in this study. Figure 9b,c show the geometric deformation 

and corresponding pixel position shift of the GF-1 imagery data covering the study area 

before and after geometric correction. The error in the geometric correction process was 

1.508 pixels. On the metric scale of meters, the error in the geometric correction of this 16-

meter spatial resolution GF-1 imagery data was 24.126 meters. 

 

Figure 8. Comparison of vegetation spectral curves before and after atmospheric correction in the 

study area. 
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Figure 9. Comparison of the study area before and after geometric correction. 

This case study is based on the NDVI (normalized difference vegetation index) val-

ues to determine the vegetation change in the same area at two different time periods. 

Different baseline NDVI threshold ranges can be set for different vegetation types, e.g., 

0.6 to 0.9 for dense vegetation and 0.2 to 0.6 for grassland. Figure 10a and Figure 10b rep-

resent the change in dense vegetation in the study area between the two time periods of 

2015 and 2017, based on the GF-1 imagery data stored and managed in the CDC grid 

framework. This is an NDVI threshold plot showing the change in green pixels within the 

threshold range. Based on this map, shown in Figure 10c, it can be seen that dense vege-

tation changes significantly elsewhere except the ridges, which can provide a data refer-

ence for forest vegetation change studies [3]. 

 

Figure 10. Result of the NDVI grass change detection between 2015 and 2017. (a) Partially enlarged 

RGB imagery view of the selected area in 2015, (b) partially enlarged RGB imagery view of the 

selected area in 2017, and (c) NDVI change of the selected area. 
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5. Discussion and Conclusions 

Of particular concern to data managers is the question of how to efficiently manage 

the massive amounts of EO data generated every day and overcome the limitations as 

well as problems encountered in the downloading of data and the transmission of data 

providers and high-performance computing infrastructures. The freely accessible EO 

Data Cube, capable of bringing global ARD into local infrastructure, makes the EODC one 

of the most popular EO data management tools [13]. The main research purpose of this 

paper was to introduce the EODC, propose the design of the CDC, suitable for Chinese 

satellite imagery data, and then design two research cases as well as conduct related case 

studies. 

The China Data Cube data management framework constructed in this paper has the 

following main features: (1) Based on the existing framework and open source code of the 

Open Data Cube, the CDC_DLTool middleware is designed and implemented to extend 

support for the data loading and processing of international and Chinese satellite imagery 

data covering the Chinese region. (2) In order to verify the reliability of this CDC frame-

work, this study conducted case studies on the spatial variation in water bodies and veg-

etation based on Landsat 8 and GF-1 imagery data, respectively. The advantages of this 

research framework are mainly focused on two aspects. First, the minimum data manage-

ment unit in our research framework is pixels, which realizes a paradigm shift from the 

traditional scene organization mode to the pixel organization mode. This facilitates the 

organization and management of heterogeneous satellite imagery data from multiple 

sources in a consistent way. Second, compared with the traditional scene-based organiza-

tion, this research framework is much more efficient in data management in terms of im-

ageries storage, imageries retrieval, and imageries processing [53]  

The current CDC data management framework project is in its infancy. In the process 

of remote sensing big data generation and practice, there are many sources of satellite 

imagery data, more complex data formats, and more diverse project needs. Combining 

the construction of the CDC grid project with the actual needs of using and managing 

multisource satellite imagery data is an important challenge to be considered and solved 

in the future. In addition, the current phase of research has not yet considered working 

on a cloud platform, and future research work plans have considered improving the CDC 

framework by building a localized private cloud. Future research will also study and learn 

from existing geospatial cloud platforms such as Sentinel Hub, Google Earth Engine and 

Microsoft Azure, and conduct quantitative comparative analyses in terms of data storage 

and computation. 
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