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Abstract: Artificial intelligence is changing the practice of healthcare. While it is essential to employ
such solutions, making them transparent to medical experts is more critical. Most of the previous work
presented disease prediction models, but did not explain them. Many healthcare stakeholders do not
have a solid foundation in these models. Treating these models as ‘black box’ diminishes confidence
in their predictions. The development of explainable artificial intelligence (XAI) methods has enabled
us to change the models into a ‘white box’. XAI allows human users to comprehend the results from
machine learning algorithms by making them easy to interpret. For instance, the expenditures of
healthcare services associated with unplanned readmissions are enormous. This study proposed a
stacking-based model to predict 30-day hospital readmission for diabetic patients. We employed
Random Under-Sampling to solve the imbalanced class issue, then utilised SelectFromModel for
feature selection and constructed a stacking model with base and meta learners. Compared with the
different machine learning models, performance analysis showed that our model can better predict
readmission than other existing models. This proposed model is also explainable and interpretable.
Based on permutation feature importance, the strong predictors were the number of inpatients, the
primary diagnosis, discharge to home with home service, and the number of emergencies. The local
interpretable model-agnostic explanations method was also employed to demonstrate explainability
at the individual level. The findings for the readmission of diabetic patients could be helpful in
medical practice and provide valuable recommendations to stakeholders for minimising readmission
and reducing public healthcare costs.

Keywords: artificial intelligence; disease analytics; explainable AI; hospital readmission; interpretable
machine learning; stacking-based model

1. Introduction

Explainable Artificial Intelligence (XAI) is a method of making emerging artificial
intelligence systems more understandable, trustworthy, and manageable [1]. According
to Amann et al. [2], the explainability of artificial intelligence models raises legal, ethical,
and societal concerns that require further examination. One of the most contentious issues
concerns the interpretability of machine learning models for prediction, particularly when
it comes to healthcare [2]. Apparently, many healthcare stakeholders do not have a solid
foundation in data science. Experts consider the reason for a prognosis rather than the bi-
nary result of machine learning algorithms [3]. However, most of the previous works in the
field of health informatics only presented machine learning prediction but did not attempt
to explain the model [4–7]. Even if the accuracy measures were high, seeing these models
as a ‘black box’ diminished confidence in their predictions. Since machine learning algo-
rithms are widely considered as ‘black boxes’ that are difficult to understand, incorporating
explainability via XAI into these algorithms should be imperative in healthcare.

Meanwhile, hospital readmissions occur when a patient is released from the hospital
and returns within a particular time window [8]. Unplanned patient readmissions place a
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significant financial strain on healthcare systems. The healthcare expenditures associated
with unplanned readmissions are enormous, and there are severe impacts on patients’
health and well-being [9]. Patients with diabetes are often readmitted to hospitals [8].
Inpatient hospital treatment for diabetics accounted for more than 40% of total diabetes-
related healthcare spending in Australia [10]. Readmissions added significantly to the
burden and medical costs associated with diabetes hospitalisation [11].

In order to reduce healthcare costs caused by readmission after hospitalisation of
patients with diabetes, the hospital readmission reduction programme in the United States
was established under the Affordable Care Act. Hospital readmission within 30 days of
discharge is the criteria for unexpected readmission [12]. According to a recent study, the
30-day readmission rate for hospitalised diabetes patients is roughly 20%, which is much
higher than the rate for all hospitalised patients (i.e., 8.5%–13.5%) [13]. Therefore, it is im-
portant to predict the patients who are at high risk of readmission when they are discharged
from the hospital to receive better treatment and lower their chances of readmission [14].

A substantial amount of related work has been conducted on the related topic of
predicting hospital readmission. Strack et al. [8] used a statistical model to analyse the
impact of HbA1c measurement on hospital readmission rates. According to the findings,
paying more attention to diabetes as assessed improves patient outcomes and minimises
inpatient care costs. Rubin [15] investigated the risk variables for hospital readmission in
diabetic patients. Lower socioeconomic level, racial minority, burden, insurance, emergent
admission, and a history of recent hospitalisation significantly impact admission rates.
Recently, with the rise of machine learning and deep learning, enormous literature has
been devoted to using machine learning models for predicting hospital readmission risks.
Bhuvan et al. [14] employed machine learning classifiers to predict readmission risk in
diabetic patients. Cui et al. [16] suggested a novel technique for predicting readmission risk
that combines a Support Vector Machine and a genetic algorithm. Deep learning algorithms
were also used in this area. Hung et al. [17] used three classic machine learning models
to predict hospital readmissions in patients with atrial fibrillation undergoing catheter
ablation. Arnaud et al. utilised deep learning to predict hospitalisation at triage. They used
a multilayer perceptron with features and a convolutional neural network [18] to operate
over the textual data for predicting hospitalisation. Hammoudeh et al. [19] performed an
analysis on predicting hospital readmission using neural networks. They suggested deep
learning outperformed machine learning models. Although these machine learning and
deep learning models can predict the risk of hospital readmission and classify high-risk
factors, these studies often ignore the models’ interpretability or lack of explainability,
leading to the ‘black box’ phenomenon. Interpretability is crucial, and researchers may
struggle to transfer learnings into a larger knowledge base if they do not comprehend how
a model works. Meanwhile, stakeholders in the healthcare domain may not have a strong
data science background. Using the proposed machine learning and deep learning models
in practice and explaining these models to stakeholders have become critical issues. At the
same time, given that each machine learning strategy is likely to outperform or be wrong in
different contexts, it makes sense to consider how to combine numerous machine learning
approaches to achieve superior results. Bagging [20], boosting [21] and stacking [22] are
three main ensemble learning methods. Despite the fact that Bagging and Boosting are
the most widely used classification methods, they are still part of a simplistic combination
strategy, making it impossible to extract complicated information from different classifiers.
The stacking approach uses several base learner predictions as features to train a new meta
learner, which is a powerful ensemble strategy that has been used effectively in predicting
readmission risk [23–25]. The stacking-based approach is powerful and convincing enough
to shift the initial data mining attitude away from finding the best single model and
towards discovering a group of good complementary models. However, to the best of our
knowledge, the explainable stacking technique is rarely applied in predicting the risk of
30-day readmission in diabetic patients.
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The goal of this study was to use the stacking approach to predict 30-day readmission
following hospitalisation of diabetic patients using the XAI technique. XAI aids clinician
and patient decision-making by revealing the natures and characteristics of the variables
that the method used to make its predictions.

The contributions of this study include:

• The exploration of class imbalanced techniques and feature selection methods on the
dataset with high-class imbalance problems. Measure the importance of the features
to reduce the feature dimensions in machine learning models.

• We utilised a stacking-based model for predicting the readmission risk for diabetic
patients and studied deeply into interpreting the readmission predictions using inter-
pretable machine learning tools.

The rest of the study is organised as follows. Section 2 describes the materials and
methods for the XAI framework. Section 3 presents the experimental results and a case
study for XAI. Section 4 presents the discussion, limitations, and recommendations for
further research, followed by Section 5, which concludes the study.

2. Materials and Methods

The section below describes the data source, data preprocessing, feature selection,
and machine learning classifier. The overall workflow of the XAI-based framework shows
in Figure 1. Our research framework consists of two modules. Firstly, machine learning
classifiers, including the proposed model, were used to predict the outcomes. Secondly, XAI
techniques were used to explore the most important features for prediction. In this research,
we used 30-day readmission after hospitalisation of patients for diabetes prediction as an
example to examine the framework.
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Figure 1. Workflow of Explainable AI-based framework.

2.1. Data Collection

This study employed data from the US Health Facts Database, which comprised
101,766 de-identified diabetes patients between 1999 and 2008 [8]. This dataset also con-
tained the clinical records of diabetic inpatients who stayed in the hospital for 1–14 days
and laboratory testing and medicines administered during their hospitalisations.

2.2. Data Preprocessing
2.2.1. Handing Missing Data and Outlier Detection

We removed the variables with more than 30% missing data, such as ‘variables weight’,
‘medical speciality’, and ‘payer code’. In addition, the race variable contained 2273 missing
values (i.e., 2.3% of total patients). We decided to drop the patients with invalid races.
Further, in addition to three patients with an unknown or invalid value for gender, we also
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dropped these patients. Local Outlier Factor [26] was also used for outlier detection. It
determines how far a sample’s density deviates from its neighbours on a local scale.

2.2.2. Feature Engineering

The goal of this study was to predict whether the patient would be readmitted to
the hospital within 30 days. The target variable readmission category was specified as
three values (i.e., no, less than 30 days and more than 30 days). We integrated readmission
after 30 days and no readmission into a single category to limit the problem to binary
classification (i.e., labels ‘No’ and ‘>30′ representing ‘no 30-day readmission’, encoded
numerically as 0. Otherwise, encoded numerically as 1).

The discharge disposition contained different types of discharge. We dropped the
patients with expired, hospice/home, hospice/medical facility, expired at home, expired at
the medical facility, and expired with place unknown because these patients will not be
readmitted again.

For the diagnosis variable, each variable in the dataset had about 700–900 different
ICD (International Classification of Diseases) codes. In order to reduce the complexity of
these variables, these codes were mapped into nine diseases. We followed the ICD-9-CM
guideline [27], and the mapping details are presented in Table 1.

Table 1. ICD-9-CM mapping.

Diagnosis Code Diseases

[140, 240) Neoplasms
250.x Diabetes

[390, 460) and 785 Circulatory
[460, 520) and 786 Respiratory
[520, 580) and 787 Digestive

[800, 1000) Injury
[700, 740) Musculoskeletal

[500, 630) and 788 Genitourinary
‘V’, ‘E’ and others Other diseases

Further, we encoded the 21 drug features, A1c test results, and glucose serum test
into binary. If the drug with value ‘No’, we classified it as 0, otherwise 1. If the A1c test
result and glucose serum test were ‘Norm’, we classified it as 0, otherwise 1. We then
used one-hot encoding for ‘Race’, ‘admission type ID’, ‘discharge disposition ID’, and
‘admission source ID’.

Lastly, the features ‘examine’ and ‘citoglipton’ were removed because each had just
one value (i.e., it makes no difference for machine learning methods if we consider these
features or not). The features ‘encounter id’ and ‘patient number’ were also removed because
there were nominal variables.

2.3. Handing Class Imbalance

Many machine learning approaches encounter the problem of unbalanced data, which
happens when a majority class dominates the data, and a minority class is rarely discov-
ered [28]. As a result, the classifier’s performance in the minority class may be poor when
compared with the majority class. Predicting readmission is a fundamentally imbalanced
problem [29]. According to previous studies [28], random under-sampling (RUS) [30] was
performed outstandingly on imbalanced medical data. Therefore, we applied the RUS
method that randomly balanced the class by removing a large portion of the majority class
to overcome an imbalanced dataset. RUS is the process of randomly selecting samples
from the majority class from the training dataset and deleting them. The majority of class
instances are deleted at random until a more balanced distribution is attained [30].
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2.4. Feature Selection

The process of selecting the best features that have a substantial influence on the
expected results is known as feature selection [31]. Since there were 55 features in the
dataset, conducting a feature selection process is necessary. We utilised the embedded
technique for feature selection to find informative factors for readmission prediction [31].
In this study, we utilised a feature selection method of SelectFromModel (SFM). SFM is a
meta-transformer created by Scikit-learn [32]. It uses an estimator’s attribute to evaluate
and rank the features, then transforms the dataset based on their ranking. As a result,
the estimator was fitted to the training data, and the model was used to calculate the
importance of each feature. The meta-transformer then rated the features based on their
value and selected the most important ones based on the set threshold.

After the data cleaning and transformation, six machine learning models were used to
feature selection: support vector machine, decision tree, random forest, adaptive Boosting,
extreme gradient boosting, and category boosting. We also utilised accuracy and the area
under the receiver operating characteristic curve to assess the models’ prediction performance.

The Support Vector Machine (SVM) distinguishes between two classes by constructing
a hyperplane, which processes the input data to create a mathematically optimal separation
of classes into a high-dimensional space [33]. The decision tree (DT) approach employs a
tree-like graph and its potential outcomes [34]. It is easy to interpret and understand how the
model is making decisions. Random forest (RF) is an approach for ensemble learning that
consists of several decision trees [35]. It performs well on large volumes of data and high
decisional data. Adaptive Boosting (AdaBoost) is a meta-estimator that begins by fitting a
classifier on the dataset and then fitting further copies of the classifier on the same dataset
while modifying the weights of poorly categorised examples so that future classifiers focus
more on challenging scenarios [21]. Extreme gradient boosting (XGBoost) is a variation
on bagging that aims to enhance learners by concentrating on areas where the system is
not performing well. It also uses both L1 and L2 regularisation to prevent overfitting [36].
Category Boosting (CatBoost) is a boosting variant that focuses on categorical columns using
permutation techniques. To tackle the exponential expansion of feature combinations, it
employs the greedy method for each new split of the current tree [37].

2.5. Stacking-Based Model

The stacking method is a machine learning ensemble algorithm. Using a meta-learning
strategy, it learns how to aggregate predictions from two or more underlying machine
learning algorithms. Multiple machine learning models are merged in a sequence in a
stacking-based model. Each model’s predictions are merged to produce a new feature,
ensuring that each model in the stack accurately predicts a piece of the training data for this
new feature. The stack’s final dataset is fed into a meta learner, tasked with generalising all
of the features to provide a final prediction. Stacking can combine the skills of many high-
performing models to provide predictions that exceed any single model in the ensemble on
a categorisation assignment [22]. In this study, we created a stacking classifier by combining
predictions from the five models: RF, AdaBoost, XGBoost, and CatBoost were used as base
learners. LR was used as the meta learner. Meanwhile, the meta learner is simple, allowing
for a seamless interpretation of the base-models predictions. As a result, linear models,
such as logistic regression for classification tasks, were employed as the meta-model in this
study (see Figure 2).
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2.6. Interpretable Machine Learning Applications

In this study, we used permutation feature importance and Local Interpretable Model-
Agnostic Explanations (LIME) for detailed explanations of the machine learning model’s
behaviour and prediction. The workflow of XAI applications is shown in Figure 3.
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The relevance of permutation features is measured by the increase in the model’s
prediction error after permuting the feature’s values, which destroys the link between the
feature and the true outcome. [38]. This method can be used for any fitted estimator, which
is suitable for the proposed stacking-based model, and it has the advantage of being model
agnostic, allowing it to be calculated multiple times with various permutations of the feature.

LIME [39] is a method for training local surrogate models that can explain individual
predictions. In the LIME method, local refers to the need for the explanation to accurately
reflect the classifier’s behaviour ‘around’ the predicted instance.

2.7. Validation and Evaluation

The models are trained using k-fold cross-validation. The dataset is divided into
different groups. The number of groups, commonly known as the ‘fold’, is denoted by
the letter k. The technique of k-fold cross-validation divides the data set into k groups, the
model is trained by (k − 1) groups, and then the trained model is evaluated by the other
group [40]. In this study, we selected k = 5. Figure 4 represents a 5-fold cross-validation
process. The dataset was divided into five folds, with four participating in model training
and one participating in evaluation in each of the five iterations. After the training, the
average accuracy was calculated to assess the performance.
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This study used accuracy and the area under the receiver operating characteristic curve
(AUC), precision, recall, and f1-score as the measure of model performance. Figure 5 displays
the Receiver Operating Characteristic (ROC) Curve, which is the plot between the true-positive
rate (y-axis) and the false-positive rate (x-axis). The area under the ROC curve (AUC) assesses
how effectively a model can predict whether a classification belongs to one of two classes. The
greater the AUC value, the better the predictive performance of the classifier [41].
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3. Results

After applying the research dataset through the filtering criteria, we removed 4658 pa-
tients from the dataset. The total number of patients was 97,108. We divided the data
into two sets: training and testing. This study randomly selected 80% of patients from the
dataset to train the models. In the training set, there were 68,785 patients who were not
readmitted and 8901 patients who were readmitted. As can be seen, the data were imbal-
anced. We applied random under-sampling methods mentioned in Section 2.2. After the
data preprocessing, there were 8901 readmitted patients and 8901 not-readmitted patients
for model training.
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3.1. Results of Models during the Training Phase

Table 2 displays the accuracy of the machine learning models during the training phase.

Table 2. Performance metrics of the models for training.

Model Accuracy (%) Standard Deviation

KNN 53.42 0.0114
SVM 57.61 0.0135
DT 54.17 0.0119
RF 60.35 0.0114

AdaBoost 61.18 0.0122
XGBoost 61.49 0.0116
CatBoost 61.53 0.0104

The models had similar accuracy in predicting readmission in diabetic patients. We
found that CatBoost had the best accuracy (61.53%), followed by XGBoost (61.49%).

3.2. Results of Feature Selection and Stacking-Based Model

Before feature selection, the dataset had 55 features. Since CatBoost was the best-
performing model in the training phase, we applied SFM on CatBoost. After SFM, which
deleted a significant number of redundant features, there were 18 feature numbers. We also
trained the machine learning models with a reduced number of features. Table 3 displays
the model performance metrics for the testing phase.

Table 3. Performance metrics of models for testing.

Model AUC Precision F1-Score Accuracy (%)

KNN 0.5584 0.8164 0.6658 59.00
SVM 0.6358 0.8321 0.7341 67.79
DT 0.6624 0.8423 0.7117 64.70
RF 0.6690 0.8448 0.6959 62.69

AdaBoost 0.6639 0.8410 0.7226 66.13
XGBoost 0.6542 0.8398 0.7196 65.75
CatBoost 0.6660 0.8425 0.6977 62.96
Stacking 0.6736 0.8542 0.7434 68.63

As shown in Table 3, the stacking model outperformed the other models with an AUC,
precision, F1-score, and accuracy of 0.6736, 0.8542, 0.7434, and 68.63%, respectively. RF and
CatBoost followed behind with AUCs of 0.6690 and 0.6660, respectively. The confusion
matrix is shown in Figure 6. The number of not-readmitted in the test set is greater than
the number of admitted due to the nature of the dataset. The confusion matrix showed
that the best-performed model had more false-negative predictions than false-positive
predictions. Because of the false-positive counts, some diabetic patients may be anticipated
to have a high risk of readmission. This is appropriate for our research because the goal is
to enhance the predictability of readmission risk. It is preferable to anticipate lower-risk
individuals as readmission risks (i.e., false-positives) rather than the contrary (i.e., false-
negative counts). Patients who are on the readmission pathway will leave unnoticed if
there are more false-negative results in the prediction.
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3.3. Comparison with the Other Studies of the Present Literature

Although the stack-based model performed over the other models, the accuracy and
AUC results seem to be relatively low. It would be interesting to provide a comparison with
pre-existing works to understand if these results are in line with the existing state-of-the-art.

Table 4 summarises the comparison of this study to other similar studies in the current
literature using the same dataset. In producing this comparison, we took into account gener-
ally used performance measures (i.e., AUC). As can be seen, the AUC results of the present
literature ranged from 0.640 to 0.670. This comparison with pre-existing studies concluded
model outperforms previous prediction results. There are two main reasons for our proposed
stacking model to have better performance. Firstly, our model selects important features
and then builds a model utilising only those features. This phase reduces variance and
over-fitting, hence improving the model’s generalisation ability, as evidenced by improved
performance. Furthermore, the suggested stacking model takes advantage of numerous
heterogeneous classifiers and solves the drawbacks of single or homogeneous classifiers.

Table 4. Comparison of this study to other similar studies in the current literature using the same dataset.

Study Best Performances Comments

Hempstalk and Mordaunt [42] Logistic Regression with AUC: 0.670
(10-fold training result)

This study developed classic machine learning
models to improve 30-day readmission risk

predictions with no explainability involved. In
addition, they only provided training performance

(i.e., no test AUC provided).

Alloghani et al. [43] Naïve Bayes with AUC: 0.640 This study focused on recognising patterns and
combinations of risk factors.

Shang et al. [44]
Random Forest with AUC: 0.64
(over-sampling) and AUC: 0.661

(down-sampling)

It used different machine learning classifiers to
predict the 30-day readmission, and the random
forest model achieved the best performance. No

further analysis for features importance etc.

Ramírez and Herrera [7] Multilayer perceptron (MLP) with
AUC 0.6548.

This study heavy relied on the data preprocessing
methods. Such as the reduction of several

variables’ domains. Overfitting might occur. We
only consider the result from the second

best-performed model, which is MLP.

This study Stacking model with AUC: 0.6736
This study can assess the risk of 30-day

readmission of diabetic patients with explainable
AI techniques.



Information 2022, 13, 436 10 of 14

3.4. Model Interpretability

Machine learning interpretability is crucial, especially in the context of healthcare
decision-making. In this subsection, we provide explanations for the stacking model in
further detail and how predictions are formed at the individual observation level. We
divided the XAI application into two parts. Firstly, we used permutation importance to
explore the features in the stacking model. We then used LIME [39] to explain the patient
readmission risk for specific patients and interpret the reasons for risk.

3.4.1. Feature Importance

The concepts of permutation importance are discussed in Section 2.6, and the result
of permutation importance for the stacking model is shown in Figure 7. On average, the
feature with the highest importance was the number of inpatient visits associated with an
error increase of 0.0353 after permutation. This was the strongest predictor of readmission.
The primary diagnosis was next, followed by the Discharged/transfer to home with home
health service, and the number of emergencies was also revealed to be a significant effect.
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3.4.2. LIME

LIME was applied to the models created and how predictions are made at the individ-
ual observation level. Figure 8 shows the composition of individualised predictions for two
patients. This figure is divided into three parts: the anticipated probability of readmission,
the nature of the impact on the variables, and the values of the observation whose outcome
is being explained. The model took into account all 18 features and LIME reports on all
variables internally. However, the figure was trimmed for visualisation. The first example
had been hospitalised once before this stay, and this patient was discharged/transferred
to their home with a home health service; the number of lab tests performed during the
encounter was 44, and he/she was between the ages of 70 and 80. The model predicted a
65% chance of 30-day readmission. The model assumed that being discharged/transferred
to another rehab facility, including hospital rehab units, had a negative impact on the
prediction, with a coefficient of 0.14. However, other most important features, such as
being discharged to home and the number of emergencies, have positive impacts on the
outcome of readmission. Conversely, the second example was discharged to home and was
between the ages of 70 and 80, but this patient did not have any prior hospitalisation. The
model suggested there is a 59% chance that this patient is non-readmission, and the most
influential feature to readmission was the number of inpatients.
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charged/transferred to another rehab fac, including rehab units of a hospital, Discharged/transferred
to another short-term hospital, and Discharged to home, respectively. num_emergency stands for the
number of emergencies, diag_1 stands for the primary diagnosis (coded as the first three digits of
ICD9), num_dianoses stand for the number of diagnoses, input stands for the number of inpatients,
time_in_hosp stand for the time in hospital and num_medicat stands for the number of medications.
The right-hand side of the figures shows the weights assigned to each feature. The colours and
directions of each weight’s bars indicate which class they contributed to the prediction.

4. Discussion

Hospital readmissions increase healthcare expenses and have a negative impact on
hospitals’ reputations. As a result, individuals who are at high risk of readmission should
be identified at the point of discharge. The prediction of readmission is not only to decrease
expenditures on the patients but also to improve care to lower the probability of their
readmission. Furthermore, the effect of risk variables allowed for the development of
models that could be used to predict readmission and explain the components of risk and
their interactions.

This study employed stacking-based machine learning algorithms to predict the
probability of readmission in diabetic patients. We addressed the selection of variables for
the application of machine learning models. KNN, SVM, DT, RF, AdaBoost, XGBoost, and
CatBoost were used to compare the performance with the stacking-based model to predict
readmission for diabetic patients. These models performed admirably in terms of accuracy
and AUC. Meanwhile, the stacking-based model was the best-performing model, with an
AUC of 0.6736 and an accuracy of 68.63% for the test data. In addition to outperforming
individual machine learning models in terms of prediction, the stacking model has the
ability to self-adaptively select the basic learners [22]. There are many combinations of
the base learners. The process of experimenting with different combinations takes time.
As a result, we opted to employ tree models in this study. Future studies might test
the combination of the base learners using various data. Further, prediction accuracy
is generally acknowledged to be critical in readmission prediction. As discussed in the
previous subsections, the proposed ensemble technique can achieve a low prediction
error. Unlike other machine learning models, the proposed framework is free from some
limitations. For example, logistic regression struggles with its constrained of expressiveness
(e.g., interactions must be manually added), and interpretation is more challenging since
the weights are multiplicative rather than additive. Moreover, the deep learning model is a
black box model. While it may estimate any function, understanding its structure provides
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no information about the nature of the function being approximated, it does not discern
which feature is more important. Besides, our proposed model is an explainable machine
learning algorithm used widely for the importance of linear and non-linear models.

In practice, a medical professional cannot rely solely on the prediction from the
machine learning models without knowing about the components that contribute to it.
Therefore, it is critical to explain the factors that contributed to the models for medical
practitioners. Permutation importance and LIME were employed as explanatory aids to
attain this research goal. We provided explanations for the stacking-based model using
permutation importance, and an observation of a subject was passed to LIME. LIME was
able to provide extensive explanations for the subject’s readmission prediction.

The interpretable machine learning techniques pointed out that the number of in-
patients, the primary diagnosis, discharge/transfer to home with home service, and the
number of emergencies were the factors that strongly impacted the risk of 30-day read-
mission. Specifically, the variable ‘number of inpatient visits’ had the largest impact on
admission. Meanwhile, LIME provided insight into the factors that contributed to each
instance. It is worth noting that the number of inpatient visits had the most decisive
influence on the result of readmission. The high readmission rate for the relatively large
number of inpatient visits in our study indicates the need for additional research on the
decisions and policies to discharge a patient with a large number of prior readmissions.
This explainable AI model would assist healthcare practitioners in identifying patients at
high risk of short-term readmission, and the factors that were important deserve further
validation in clinical trials.

This study, like many clinical prediction efforts, had several limitations. Firstly, we
used the dataset from patients with diabetes. However, it is unknown whether diabetes
was the cause of their readmission (e.g., the causes might be the comorbidity of diabetes
or other diseases). Further, this retrospective study used data from a single healthcare
system. As a result, external validation is required, implying that our model could be
applicable in other systems. Lastly, the planned readmissions after discharge were not
excluded in our study since there is no such information in the dataset. This work was
only the first step towards XAI. The model needs to be tested and validated on different
data sets. We will explore other machine learning or deep learning methods to increase
prediction performance in the future.

5. Conclusions

Despite the introduction of machine learning models to increase the performance of
diabetes readmission prediction, existing models continue to struggle to perform effectively,
and there are facing a ‘black-box’ problem. In this study, we proposed a stacking model
using an XAI-based framework for predicting 30-day readmission for diabetic patients. We
used a feature selection to reduce the dimensionality of the data and find the most important
features. We then demonstrated a stacking ensemble approach comprising RF, AdaBoost,
XGBoost, CatBoost, and LR. Performance evaluation shows that the proposed model
overperformed those of existing studies. The framework presented here can potentially
help medical experts and stakeholders understand and visualise the risk factors of hospital
readmission. Further, the findings from this study could be useful in medical practice, and
stakeholders could receive recommendations from this research to reduce readmission and
save public healthcare expenses in the future. In addition, researchers can use the proposed
XAI-based framework for any other disease, such as heart disease.

Author Contributions: H.L.: writing, data analysis, and research design; S.U.: research design,
writing, conceptualization, and supervision. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Information 2022, 13, 436 13 of 14

Informed Consent Statement: Not applicable.

Data Availability Statement: This study obtained research data from publicly available sources:
https://downloads.hindawi.com/journals/bmri/2014/781670.f1.zip (accessed on 1 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carvalho, D.V.; Pereira, E.M.; Cardoso, J.S. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics 2019,

8, 832. [CrossRef]
2. Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary

perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [CrossRef] [PubMed]
3. Antoniadi, A.; Du, Y.; Guendouz, Y.; Wei, L.; Mazo, C.; Becker, B.; Mooney, C. Current Challenges and Future Opportunities for

XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review. Appl. Sci. 2021, 11, 5088. [CrossRef]
4. Nusinovici, S.; Tham, Y.C.; Yan, M.Y.C.; Ting, D.S.W.; Li, J.; Sabanayagam, C.; Wong, T.Y.; Cheng, C.-Y. Logistic regression was as

good as machine learning for predicting major chronic diseases. J. Clin. Epidemiol. 2020, 122, 56–69. [CrossRef]
5. Khan, A.; Uddin, S.; Srinivasan, U. Chronic disease prediction using administrative data and graph theory: The case of type 2

diabetes. Expert Syst. Appl. 2019, 136, 230–241. [CrossRef]
6. Hossain, E.; Uddin, S.; Khan, A. Network analytics and machine learning for predictive risk modelling of cardiovascular disease

in patients with type 2 diabetes. Expert Syst. Appl. 2020, 164, 113918. [CrossRef]
7. Ramírez, J.C.; Herrera, D. Prediction of diabetic patient readmission using machine learning. In Proceedings of the IEEE

Colombian Conference on Applications in Computational Intelligence, Barranquilla, Colombia, 5–7 June 2019; Springer:
Berlin/Heidelberg, Germany, 2019.

8. Strack, B.; DeShazo, J.P.; Gennings, C.; Olmo, J.L.; Ventura, S.; Cios, K.J.; Clore, J.N. Impact of HbA1c Measurement on Hospital
Readmission Rates: Analysis of 70,000 Clinical Database Patient Records. BioMed Res. Int. 2014, 2014, 781670. [CrossRef]

9. Considine, J.; Fox, K.; Plunkett, D.; Mecner, M.; O’Reilly, M.; Darzins, P. Factors associated with unplanned readmissions in a
major Australian health service. Aust. Health Rev. 2019, 43, 1–9. [CrossRef]

10. Caughey, G.E.; Pratt, N.; Barratt, J.D.; Shakib, S.; Kemp-Casey, A.; Roughead, L. Understanding 30-day re-admission after
hospitalisation of older patients for diabetes: Identifying those at greatest risk. Med. J. Aust. 2017, 206, 170–175. [CrossRef]

11. Donzé, J.; Lipsitz, S.; Bates, D.W.; Schnipper, J.L. Causes and patterns of readmissions in patients with common comorbidities:
Retrospective cohort study. BMJ 2013, 347, f7171. [CrossRef]

12. Fonarow, G.C.; Konstam, M.A.; Yancy, C.W. The Hospital Readmission Reduction Program Is Associated with Fewer Readmissions, More
Deaths: Time to Reconsider; American College of Cardiology Foundation: Washington, DC, USA, 2017.

13. Ostling, S.; Wyckoff, J.; Ciarkowski, S.L.; Pai, C.-W.; Choe, H.M.; Bahl, V.; Gianchandani, R. The relationship between diabetes
mellitus and 30-day readmission rates. Clin. Diabetes Endocrinol. 2017, 3, 3. [CrossRef] [PubMed]

14. Bhuvan, M.S.; Kumar, A.; Zafar, A.; Kishore, V. Identifying diabetic patients with high risk of readmission. arXiv 2016,
arXiv:1602.04257.

15. Rubin, D.J. Hospital Readmission of Patients with Diabetes. Curr. Diabetes Rep. 2015, 15, 1–9. [CrossRef] [PubMed]
16. Cui, S.; Wang, D.; Wang, Y.; Yu, P.-W.; Jin, Y. An improved support vector machine-based diabetic readmission prediction. Comput.

Methods Programs Biomed. 2018, 166, 123–135. [CrossRef]
17. Hammoudeh, A.; Al-Naymat, G.; Ghannam, I.; Obied, N. Predicting Hospital Readmission among Diabetics using Deep Learning.

Procedia Comput. Sci. 2018, 141, 484–489. [CrossRef]
18. Hung, M.; Lauren, E.; Hon, E.; Xu, J.; Ruiz-Negrón, B.; Rosales, M.; Li, W.; Barton, T.; O’Brien, J.; Su, W. Using Machine Learning

to Predict 30-Day Hospital Readmissions in Patients with Atrial Fibrillation Undergoing Catheter Ablation. J. Pers. Med. 2020,
10, 82. [CrossRef]

19. Arnaud, E.; Elbattah, M.; Gignon, M.; Dequen, G. Deep Learning to Predict Hospitalization at Triage: Integration of Structured
Data and Unstructured Text. In Proceedings of the 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA,
10–13 December 2020; pp. 4836–4841. [CrossRef]

20. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
21. Freund, Y.; Schapire, R.E. Experiments with a new boosting algorithm. In Proceedings of the ICML’96, Bari, Italy, 3–6 July 1996.
22. Wolpert, D.H. Stacked generalisation. Neural Netw. 1992, 5, 241–259. [CrossRef]
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