01010

01010

Y] information

Article

Automated GDPR Contract Compliance Verification Using
Knowledge Graphs

Amar Taugeer **{), Anelia Kurteva !9, Tek Raj Chhetri 17, Albin Ahmeti !

check for
updates

Citation: Taugeer, A.; Kurteva, A,;
Chbhetri, T.R.; Ahmeti, A.; Fensel, A.
Automated GDPR Contract
Compliance Verification Using
Knowledge Graphs. Information 2022,
13,447. https:/ /doi.org/10.3390/
info13100447

Academic Editor: Ryutaro Ichise

Received: 17 August 2022
Accepted: 20 September 2022
Published: 24 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Anna Fensel 123

Semantic Technology Institute (STI), Department of Computer Science, University of Innsbruck,
6020 Innsbruck, Austria

Consumption and Healthy Lifestyles Chair Group, Wageningen University & Research,

6706 KN Wageningen, The Netherlands

Wageningen Data Competence Center, Wageningen University & Research,

6708 PB Wageningen, The Netherlands

* Correspondence: amar.taugeer@sti2.at or amar.taugeer@wur.nl

Abstract: In the past few years, the main research efforts regarding General Data Protection Reg-
ulation (GDPR)-compliant data sharing have been focused primarily on informed consent (one of
the six GDPR lawful bases for data processing). In cases such as Business-to-Business (B2B) and
Business-to-Consumer (B2C) data sharing, when consent might not be enough, many small and
medium enterprises (SMEs) still depend on contracts—a GDPR basis that is often overlooked due
to its complexity. The contract’s lifecycle comprises many stages (e.g., drafting, negotiation, and
signing) that must be executed in compliance with GDPR. Despite the active research efforts on digital
contracts, contract-based GDPR compliance and challenges such as contract interoperability have not
been sufficiently elaborated on yet. Since knowledge graphs and ontologies provide interoperability
and support knowledge discovery, we propose and develop a knowledge graph-based tool for GDPR
contract compliance verification (CCV). It binds GDPR’s legal basis to data sharing contracts. In
addition, we conducted a performance evaluation in terms of execution time and test cases to validate
CCV’s correctness in determining the overhead and applicability of the proposed tool in smart city
and insurance application scenarios. The evaluation results and the correctness of the CCV tool
demonstrate the tool’s practicability for deployment in the real world with minimum overhead.

Keywords: digital contracts; data sharing; ontology; knowledge graph; GDPR compliance; smart
cities; insurance

1. Introduction

The General Data Protection Regulation (GDPR) [1], which came into effect on 25 May
2018 across all European Union (EU) member states, lays down strict requirements for the
processing, storing, and management of EU citizens’ data [2,3]. The following six legal bases
are defined in GDPR Art. 6 that justify the processing of personal data [3]: (i) informed
consent; (ii) performance of a contract; (iii) legal obligation; (iv) protection of vital interests of
the data subject; (v) performance of tasks carried out in the public interest or in the exercise
of official authority vested in the controller; and (vi) legitimate interest pursued by a data
controller. At the minimum, one of these six bases must be met for the lawful processing of
personal data, which is defined as “any information relating to an identified or identifiable natural
person” (Art. 4 (1), 5 and 6).

In most data sharing scenarios, organisations focus on collecting informed consent
from the data subject (i.e., an identifiable natural person) (Art. 4 (1)). For instance, collecting
data about an individual’s online browsing behaviour is based on consent, which can be
collected via cookie banners [4]. However, consent is not always enough, for example, in
the case of online services where a contract is required. In scenarios such as online services

Information 2022, 13, 447. https:/ /doi.org/10.3390/info13100447

https:/ /www.mdpi.com/journal/information

https://doi.org/10.3390/info13100447
https://doi.org/10.3390/info13100447
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-3345-387X
https://orcid.org/0000-0003-4512-5969
https://orcid.org/0000-0002-3905-7878
https://orcid.org/0000-0001-8766-4069
https://orcid.org/0000-0002-1391-7104
https://doi.org/10.3390/info13100447
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info13100447?type=check_update&version=3

Information 2022, 13, 447

2 of 28

(e.g., information society services), the European Data Protection Board (EDPB) [5] also
highlighted the necessity of a contract by issuing new guidelines in 2019 [6].

There are other scenarios, such as Business-to-Business (B2B) and Business-to-Consumer
(B2C) data sharing, in which consent is not sufficient. This is due to the need for specific
terms and conditions and their complexity. These terms and conditions yield specifica-
tions for an agreement between all contractual parties regarding what is allowed and not
allowed. In addition, some of the main differences between consent and contracts are the
following: (i) consent can be revoked at any time, while a contract cannot be terminated
before its minimum duration; (ii) consent has predefined clauses, while contract clauses
can be negotiated until an agreement is reached by all involved parties.

There is an opportunity for organisations to manage personal data under the GDPR in
digital contracting (i.e., a process that transforms the entire contract lifecycle into digitalised
and collaborative workflow). However, many organisations in insurance, mobility, and
smart city domains still face challenges in binding GDPR rights with businesses and fail to
comply with GDPR, specifically when contracts are used [7]. Another persistent challenge
for many small and medium enterprises (SMEs), especially in the mobility and insurance
sectors within the smart cities’ domain, is the unprecedented amount of data. These data
are generated every day and spread across different silos (organisations, departments,
people, and databases) [8]. In our scenarios, data include contractual information, which
can number in thousands per month in an organisation such as LexisNexis Risk Solutions, a
leading insurance data provider. Locating specific data and permissions for its sharing, such
as consent and contracts, can be time-consuming and computationally expensive due to the
lack of interoperability. We can define the primary challenges regarding contracts and their
management as (i) building interoperable GDPR-based contract models and (ii) performing
GDPR contract compliance verification (CCV). In digital contracting or agreements, the CCV
is a process that ensures data processing according to GDPR by detecting contractual conflicts or
breaches. A contract breach or conflict is a failure without legal excuses to perform any promise
that forms all or part of the contract [9]; (iii) monitoring contract execution; and (iv) updating
contracts and the involved contractual parties accordingly.

While challenges vary in complexity, all should be solved in a scalable and secure
GDPR-compliant manner. To do so, organisations have to adopt security measures and data
protection on contracting services and processes regarding GDPR (Art. 25, 32). According to
Art. 28 (3), contracts must include the following details: (i) the subject matter and duration
of the processing;; (ii) the nature and purpose of the processing; (iii) the type of personal data
and categories of the data subject; and (iv) controller’s obligations and rights. It also sets the
minimum required contractual clauses, such as the duty of confidence, security measures,
data subject rights, audits, and inspections. Data subject rights protection is another crucial
challenge for organisations according to GDPR (Art. 25). Organisations must implement
GDPR technical organisational measures (TOMs). GDPR TOMs comprise all provisions
put into place to guarantee the security of personal data, such as pseudonymisation. These
provisions implement data-protection principles such as data minimisation (see details in
Section 4.2.1).

This paper focuses on two scenarios from the smashHit [10] project, which aims to
develop a scalable, trusted, and secure solution for data sharing and contract management
in the connected car and smart city domains. Use case 1 (UC1) focuses on data sharing in
the insurance domain, where data sharing is key to informed decision-making. Although
informed consent is the main legal basis for data sharing between the data subject and
the data processor (i.e., an insurance company), when data are sold or analysed by third-
party entities, additional terms and conditions must be presented and agreed upon. These
form the basis of a contract, which becomes the main legal basis. Use case 2 (UC2), on
the other hand, presents a data sharing scenario in the smart city domain, where an
unprecedented amount of data (contractual information) is simultaneously emitted, shared,
and analysed by multiple agents (i.e., software, humans, and organisations). In cases such
as B2B data sharing in UC2, a contract is also needed as it provides in-depth specifications

Information 2022, 13, 447

30f28

of each contract party’s obligations and the specific terms and conditions that need to
be followed.

Research on GDPR compliance for digital contracts has started to gain popular-
ity, especially in the Semantic Web domain. Solutions such as smart contracts (based
on Blockchain [11,12]) and semantic contract or agreement [13-16] based on knowl-
edge graphs (KGs) are commonly used for digital contracting. However, GDPR rights,
such as the exercise of rights to the eraser and right to rectification, identifying the
data controller or data processor, and data transfer are still persistent issues in smart
contracts [17,18]. A further challenge with smart contracts is the classification of the var-
ious contractual parties (e.g., joint controllers) involved. The possible misclassification
can directly affect the contractual party’s responsibilities under the law and their poten-
tial liability for violations. These contracts define rules and penalties for an agreement
and automatically enforce those contractual clauses. In digital contracting, machines
do not always understand contractual terms. In such a case, smart contracts cannot
handle these contractual terms that are vague [19]. GDPR compliance using Blockchain
technology for data processing results in compliance issues due to the different methods
used to ensure privacy-by-design and privacy-by-default [20].

KGs and ontologies can aid the building of common solutions, foster interoperability,
support knowledge discovery, and decision making [14-16,21,22]. In UC1 and UC2 as
discussed above, the usage of web technologies in combination with semantic technologies
ensures information reusability, reliability, and inference to support the end users on the
web [23]. The use of KGs for consent-based GDPR compliance has already proven to be
beneficial in our previous work presented in [24]. In our earlier work [24], we proposed and
developed a scalable data protection by design tools for automated compliance verification
and auditability based on informed consent using KGs. This research focuses on performing
GDPR contract compliance verification, where consent is not enough, for example, in online
services [6]. Furthermore, in comparison to the diverse consent ontologies that are available,
as shown in [8], there are few ontologies that model contracts based on GDPR. Following
this and our previous work in [24], we present a KG-based solution for digital contracting,
which has the following functionalities: (i) binding GDPR with data sharing contracts and
(ii) performing CCV checks on contracts.

The main contributions of our work are as follows:

1. Ascalable tool for managing semantic-based contracts within smart city and insurance
use cases;

2. Our tool implements a KG-based approach for GDPR-compliant CCV;

3. An ontology and KG for contracts that can be reused in various cases and domains.

We would like to emphasise that our tool reduces contractual execution time and
cost compared to manual contract compliance verification. With the example of the con-
tract repository, contractors can easily track their data usage and obtain compliance no-
tifications within the tool. Last but not least, our tool improves contract management
processes, which ultimately reduces the overall contracting cost compared to the (classical)
manual contracting approach or to ad hoc solutions that each come with their vendor
lock-in solutions.

The rest of the paper is structured as follows. Related research studies are presented in
Section 2. We describe the approach for building this tool in Section 3. The tool’s architec-
tural design and implementation are presented in Section 4. We discuss the evaluation and
results in Section 5. Finally, the conclusion and future research are presented in Section 6.

2. Related Work

This section presents an overview of related work on contract management
(Section 2.1), semantic contract modelling (Section 2.2), and on contract-focused GDPR
compliance verification (Section 2.3).

Information 2022, 13, 447

4 of 28

2.1. Contract Management

Longo et al. [25] present a model for the construction and management of Service Level
Agreements (SLAs) by extending the XML-based WSLA (Service Level Agreements for
web services) framework [26]. Two of the main challenges that were solved include (i) the
lack of standard models representing service contracts and their SLAs in service-oriented
architecture (SOA) and service network environments and (ii) making SLAs effectively
machine-readable.

The first one is solved by complementing WSLA with composition topologies and rules.
They achieve the second one by modelling the template as a digraph that is implemented in
a NoSQL (Not only Structured Query Language) [27] graph DBMS (Database Management
Systems). The evaluation of the functionalities was performed based on the following five
metrics; (i) availability; (ii) response time; (iii) mean time to repair; (iv) mean time to failure;
and (v) mean time between failure. Based on these assessment capabilities, they offer a tool
named DAMASCO (Data Manager for Service Composition) to Information Technology
(IT) professionals during the design phase. However, this tool does not comply with GDPR
for data processing.

Guo et al. [28] present an electronic contract management system based on Blockchain
technology for commodity procurement in the electric power industry. The proposed
BEcontractor process-oriented contract management system solves a series of security
issues (e.g., signatures and digital certificates) existing in traditional contract management
systems. The evaluation of the system has shown that it can significantly reduce the time
and cost of completion of the contract signing process. With this, they also present that the
payment period is shortened from three months to around one month. BEcontractor works
under China’s legal protection of electronic contracts, but there is no information about
data processing rights, such as GDPR, and there is no information about B2B contracts.

Voronova [29] proposes a contract management system, which provides a classifica-
tion of contracts (e.g., sales contract and supply contract) and their types (e.g., unilateral
agreement and bilateral treaty) for network trading companies. The contract types are
based on several features, such as the rights and obligations of interested parties to the con-
tract. The author emphasises determining the contract strategy by choosing the contractual
structure (based on types, sequence of conclusion, and relationship of contracts), setting
the key performance indicator (KPI) of the contract, the KPI of business processes, and
establishing relationships between them. The author provides guidelines for organisations
to improve their efficiency and competitiveness and to protect their interests by improving
the efficiency of the contract’s management. However, there is no information about data
processing under GDPR.

Schmidt et al. [30] propose an electronic Contract Management System (eCMS) in
the health domain. The primary objective of eCMS focuses on Continuous Process Im-
provement (CPI) in eCMS to align best with Lean Six Sigma and Quality Management
frameworks. The authors standardised the processes and increased both the system’s
productivity through workflow design and its efficiency and achieved improved quality
with respect to the eCMS process. The Cobblestone for eCMS web-based system, which
provides contract tracking, drafting, and administration functionalities, was selected. It
also offers contract lifecycle management that streamlines and automates the entire contract
process from contract drafting to completion. However, there is no information about how
personal data are treated in the eCMS and what types of contracts are available.

Simic¢ et al. [31] explored the applications of smart contracts in the legal domain and
proposed a Blockchain-based smart contract management system with a user interface for
end-user accessibility. The authors conclude that without any intermediary involvement,
smart contracts can be concluded more efficiently and can reduce the contract’s cost [31].
From the underlying mechanisms of the Blockchain, there are many advantages, such
as no risk of data loss and malicious data manipulation arising. For potential disputes,
smart contracts should provide a mechanism to resolve them fairly [31]. For these potential
disputes, the contractual parties have to rely on the legal system. Despite the system being

Information 2022, 13, 447

50f 28

open-access, GDPR’s legal basis (necessary for lawful data processing in contracts) has not
been discussed.

2.2. Semantic Modelling

Zou et al. [32] present a formal service contract model for cloud service and account-
able Software as a Service (SaaS) by utilising semantic technologies. The model allows
service providers and consumers to monitor the execution of service contracts and to
keep track of obligation fulfilment during service delivery. They propose a graphical
model based on Colored Petri-Nets (CPN) to model contract obligations and their interde-
pendencies. However, this service contract implementation supports only B2C contracts
and does not comply with GDPR because it was developed and implemented before
GDPR enforcement.

Perrin and Godart [33] propose a semantic-based contract model to describe business
interactions, deploying cross-organisational activities (called synchronisation points) and
enforcing and controlling policies. A rule-based approach is used for this model. The
resulting contract model describes the processing of web services for cooperation and the
enforcement of contract clauses by synchronisation points. Similarly to [32], the work
in [33] focuses only on B2B contracts and was conducted before the acceptance of the
legislation; thus, its compliance is questionable.

Kabilan and Johannesson [34] present the Multi-Tier Contract Ontology (MTCO),
which consists of three layers. The first layer defines conceptual models of contracts,
while the second layer is responsible for defining specific types of contracts. The third
layer defines contractual obligation and their fulfilment patterns. Furthermore, MTCO
models have different stages with respect to the contract-signing process (e.g., conception,
drafting, and signing), which can be beneficial for modelling contracts in detail (e.g., to
provide provenance information). In addition, MTCO models contract details such as
performance obligations, rules, rights, and payments. However, the ontology does not
clearly differentiate between traditional contracts and electronic contracts.

Cesare and Geerts [35] present an ontology for contracts, which consists of the fol-
lowing three building blocks: (i) agreements amongst persons, (ii) promises, and (iii)
considerations. The ontology in [35] modelling contracts includes types (e.g., verbal and
written), events related to the execution, fulfilment, and the exchange of contracts. However,
modelling specific contract domains (e.g., in sales) and the formalisation of the ontology
in Web Ontology Language (OWL) are left as future research directions. Further, this
ontology is developed before the acceptance of GDPR, and specific legislation requirements
regarding data processing have not been considered.

Petova et al. [36] propose and develop Financial Industry Business Ontology (FIBO) for
contracts. It is a collection of eleven separate ontologies that define entities and processes in
business and finance domains. FIBO does not focus on specific laws (e.g., GDPR). However,
it provides a detailed semantic model of concepts such as contracts and agreements, which
can be used as a foundation for any ontology focused on GDPR. Although FIBO does not
focus explicitly on GDPR when modelling contracts, recent updates regarding its mapping
to the legislation have been made. Furthermore, FIBO can be helpful for the formation
of new ontologies that expect to depict business and monetary ideas and can be utilised
in combination with the Data Sharing Agreement Privacy Ontology (DSAP) [2] to assist
information and interaction straightforwardness. We reused FIBO for many classes (e.g.,
fibo-fnd-agr-ctr:MutualContractual Agreement and fibo-fnd-agr-ctr:Contract) and properties (e.g.,
fibo-fnd-agr-ctr:hasEffectiveDate and fibo-der-drc-ma:hasBeneficiary) related to contracts.

2.3. Compliance Verification

Gangl [37] analyses the impact of GDPR on third-party contracts. The author con-
ducted a survey, which can be used for an in-depth analysis of contracting parties in the
domain of cloud service providers. The survey’s result is compared with the purpose of
the GDPR to find out whether it supports the bilateral relationship in new and disruptive

Information 2022, 13, 447

6 of 28

technologies. Further, they assess whether Blockchain technology might be a valid alterna-
tive to achieve GDPR compliance. They argue that Blockchain technology might be a valid
alternative, but it has limitations.

Doe [38] describes guidelines for GDPR compliance verification from the perspective of
the law firm sectors. The author provides a comprehensive introduction to the regulations
and practicalities for law organisations in compliance with GDPR. The author makes a set
of guidelines regarding the record of data processing, training needs, security, and contract
documentation. There were only sets of guidelines for GDPR compliance verification, but
there was no information about its implementation.

Ferrari [39] discusses data protection issues in Blockchain technology. The author has
examined different aspects of Blockchain technology, which resonated or conflicted with the
GDPR. For instance, GDPR is tailored to the model of centralised data storage. However,
data stored on Blockchains do not fall outside its application. The author emphasises GDPR
requirements, which require more tension with the structure of Blockchain technology (e.g.,
the right to the eraser, data minimisation, and conditions for transmission of data to third
countries).

Starno et al. [40] present the implementation of a prototype for a contract compliance
checker limited to B2B interactions. They describe the design and implementation of an
independent third-party contract monitoring service (Contract Compliance Checker (CCC)),
which provides the contract specification in force, and it is capable of observing and logging
B2B interaction events while determining the business partner’s consistency with contracts.
They developed a contract specification language EROP (for Events, Rights, Obligations,
and Prohibitions) for the CCC. This model only deals with B2B and does not comply
with GDPR.

Aziza et al. [41] present a contract compliance model for Islamic Finance Knowledge
(IFK) using semantic web technology. Further, they describe contract compliance rule
modelling to set Islamic Finance Contract (IFC) Heuristics that can be associated with a
transaction model. Three comparative studies were conducted on the competing rules of
formalism. This model does not focus on specific laws (e.g., GDPR).

Pantlin et al. [42] describe the attention on emerging market practices in supplier
contracts in light of GDPR compliance. The authors discuss the complexity in the supply
chain for businesses due to increased outsourcing to the cloud or the third-party external
service providers. Further, challenges related to supplier contracts, such as rights audits,
security measures, and sub-processors, are discussed as well. Therein, we do not have
discussions and guidelines for GDPR compliance on B2B contracts.

Masoud and Omer [43] present a GDPR compliance tool supporting cloud providers
in the cloud-based service delivery. They introduce the encoding scheme for GDPR rules
by creating legal questions, which is sotred in the Blockchain for auditing purposes. To
investigate the execution cost of GDPR compliance checking, they deploy it on smart
contracts in a Blockchain test network. The presented GDPR compliance tool does not
comply with B2B contracts and contracts without consent.

Maria et al. [44] presented an approach for the contract compliance evaluation re-
garding imperfect timing information to detect violation likelihood. They describe the
importance of time constraints (e.g., a time window) for performing compliance on con-
tracts. Based on these, they construct a time contract language. They only describe the
model mathematically and do not provide any implementation details with any use case
or tool.

To summarise, our work builds on the related work in the field and presents an
exploration into: (i) the construction and management of contracts; (ii) how KGs and
ontologies can aid the building of common solutions and support knowledge discovery
to ensure information reusability, reliability, and inference; and (iii) how the CCV with
GDPR performs. The related work, overviewed in this section, is focused on exploring
how organisations bind GDPR rights in contracts by providing guidelines [38], modelling
the contracts [32-36], developing contract compliance tools [40,43,44], discussing data

Information 2022, 13, 447

7 of 28

protection issues in Blockchain technology [37,39], and describing contract management
tools [25,28-31]. We followed the approach described in [34] to build our contract model
by reusing FIBO [36], which models standard contract-related classes and properties. For
implementing the CCV, we followed the CCC approach in [40] and guidelines presented
in [38].

3. Approach

This section details the approach of our study. However, before discussing our ap-
proach, we first provide an overview of the contract’s lifecycle, as this provides the bigger
picture of our work and its complexity. Following the overview of the contract lifecycle,
in Section 3.1, we provide details on the semantic model that is used in contract KGs. In
Section 3.2, we provide details about our approach to CCV, and finally, in Section 3.3, we
provide example scenarios where CCV can be used. The CCV example scenarios are based
on use cases UC1 and UC2 of the smashHit project, of which this work is part of.

Figure 1 presents the contract’s lifecycle management, which describes the relationship
between the CCV and contract management. The contract’s lifecycle consists of six stages,
as shown in Figure 1.

1. Contract
Request/Offer

6.
Termination
Renewal

2
Negeotiation

Contract Lifecyle
Management

5. Auditing
and
Controlling

3.
Approval/Signing

4. Execution

Figure 1. Contract lifecycle management.

A contract request or offer is the initial stage of contract lifecycle management. In
this stage, the initial contract draft is created in collaboration with different departments
depending on the organisation. However, it is important to understand that most contracts
are not agreed upon and signed as-is. There may be substantial changes that need to be
made before all involved contractors can reach an agreement. In a B2C contract, a consumer
must agree and sign the contract as-is to obtain benefits from online services, for example.

After the creation of the initial contract draft, the next stage is the negotiation stage.
Here, the initial draft is available for all involved contractors to review. Often, this stage is
the longest and most challenging stage in a contract’s lifecycle management. Contractual
parties’ roles (e.g., the data subject, data controller, and data processor) are defined in
this stage as well. A contract contains many contractual terms and clauses, which can be
defined during the negotiation stage. Depending on the number of parties involved, it can
take quite a bit of back-and-forth before a final agreement can be reached.

The next stage (i.e., signing) is responsible for the signing of the contracts. In this
stage, contractors have to sign the contract once they agree on all contractual clauses
defined in the previous stage. The contract management software often includes useful
features that allow users to route the official version of the contract to contractors and allow
individuals as needed during the contract signature process. Another important aspect of
contract lifecycle management is the storage and execution of contracts. The execution of
the contract begins once a contract is signed. It ensures that the contracts are properly filed,
organised, and able to be found easily when needed. The complexity of this stage increases

Information 2022, 13, 447 8 of 28

while determining the contract’s storage and contract execution. All contractual states (see
details in Section 3.2) become valid at this stage.

After executing the contract, the next stage is auditing and controlling. It handles
the contract audits and controls the execution of CCV checks and the contract’s validity.
Organisations and agencies need to focus on refining this stage and ensuring compliance
so that nothing slips through the cracks. Furthermore, the termination or renewal stage
handles the contract’s status such that either the contract will be terminated or renewed.
The CCV process is mainly focused on the auditing/controlling and termination/renewal
stages of the contract’s lifecycle management.

3.1. Semantic-Based Contract Model

In order to perform compliance verification checks, the CCV tool requires contractual
information, such as contractual terms, contractors, and obligations. This information
comes from data sources, such as KGs. This section presents how ontologies can be used
as data models in KGs and how the semantic models of contracts are constructed. The
smashHitCore ontology [45] is developed to perform GDPR compliance verification checks
based on consent and contracts. In this paper, we only describe and present the semantic-
based contract model, while the semantic representation of consent is presented in [24].

The class fibo-fnd-agr-ctr:Contract (Figure 2) is used to model contracts and contrac-
tual obligations. In the context of use cases UC1 and UC2, a contract should present
all of the necessary information for one to make an informed decision. However, the
semantic model itself should also be generic enough so that it can be reused for various
contracting scenarios.

H rbo—fnd—agrm'hasExewunnDale- -~
. ﬁho—n‘ru:l—agrctrhasEﬂectl\reDale‘

.v

-~ - smashHitCore:"”
. smashhltCore * smashHitCore: hasTeIephone
. o |nMed|'um
. atLocation ¢
.“ H JCa _goonsent: |
iCore. PR R srnasthCl:lre --PRREICEEIEI g - © === hasRole
smashhitbore: _______ fibo-fnd-agr- hasContractor
hasContractStatus R smashHitCure:
L ctr:Contract hasEmail
Lt . . smashHitCore: g R ~=.smashHitCore: s
smashHitCore: sMAsBOICOS: pasminmumDuration .« ¢ %, smashtitCore: hasObligations,
hasExpirationDate atDateTime T JE K has&gnatures T
- o o smashHitCore: ™ R
B J
o hasTermsAru:lGondltlons
srnasthCure A smashHitCore:

o - hasObligationStates
o hasG—Dnlrat:tCatﬂgnry
fi bo—fnd—agr—pir.

M utualContractyang reement
" rartye” -

e o e - - - - i
** Business-to-Consumer
Figure 2. Semantic representation of contracts in smashHitCore.

To cover both UC1 and UC2, we have reused fibo-fnd-agr-ctr:MutualContractual Agreement
from FIBO [36], which is generic enough to cover both use cases. A mutual contractual agree-
ment involves an exchange of promises in which the promises made by each party represent
considerations supporting the promises of the other party. Two categories of contracts have
been modelled—smashHitCore:BusinessToBusiness and smashHitCore:BusinessToConsumer—
according to UC1 and UC2.

A contract can be associated with a specific contractor via the object property smash-
HitCore:hasContractors. Specific terms and conditions can be related to a contract via the

Information 2022, 13, 447

9 of 28

smashHitCore:hasTerms and smashHitCore:hasObligations object properties of class fibo-fnd-
agr-ctr:Contract. Once a contract is signed (smashHitCore:Signed), the obligations associated
with it become active (i.e., all contractors need to start adhering to them). If a contract
has expired, then all obligations become invalid. To capture this information, we have
modelled different obligation states with the class smashHitCore:ObligationState, namely
smashHitCore:Invalid; smashHitCore:Valid; smashHitCore:Pending; and smashHitCore:Fulfilled.
A contract has different object properties such as fibo-fnd-agr-ctr:hasContractualElement (e.g.,
terms and conditions) and fibo-der-drc-ma:hasBeneficiary. To differentiate between the date
when a contract is created (i.e., all agents agree upon a set of terms and conditions and a
policy) and the date when a contract becomes effective, we reused properties smashHit-
Core:hasCreationDate and fibo-fnd-agr-ctr:hasEffectiveDate accordingly. The property smashHit-
Core:hasExpirationDate refers to the date a contract expires, while smashHitCore:hasEndDate
can be used in cases when a contract is terminated before its expiry date. To ensure the
integrity of contracts, we defined the object property smashHitCore:hasSignature, which can
be used to store the signatures of all contractors of a specific contract. Information about
the used prefixes is available in Appendix A.

After presenting the semantic model of contract, we now describe the CCV in Section 3.2.

3.2. CCV

Figure 3 shows a general overview of the CCV process, where a data source (e.g., KGs)
is used as input. The first step in the CCV process is to extract contractual information
from the data source. Data sources can vary and depend on the organisation. In the current
scenario, we use KGs as a data source to store contractual information. We check the
category of contracts in the second phase of the CCV process. The approach supports not
only B2B and B2C contracts but also consent-based contracts. In the third phase, consent-
based validation performs on each contract. In CCV, a validation check is performed
to validate the contractual clause in the fourth phase to obtain violation or expiration
results. These results are presented in the fifth phase of the CCV process. The contract
status and clause state are updated in the KGs with violation or expiration results. In the
last phase of the CCV process, contract violation or expiration notifications are sent to
contractual parties.

- Exiract Chieck Validate Check ey
contract ; Vilolation Notification to
Data source contract e contract with contract Toiafloattar contract R IAREE
(e.g., KG) information gory consent clause validity P status and

B2B/B2C clause state

Figure 3. A general overview of CCV process.

After discussing the general overview of the CCV, we now describe the relationship of
the contract breaches with GDPR based on UC1 and UC2. To illustrate, let us assume we
have two organisations: LexisNexis and Infotripla Oy. The first acts as a data controller,
whereas the second acts as a data processor according to GDPR. In data processing, where
a contract is required, it must satisfy the requirements defined by GDPR (e.g., Art. 28,
32). For instance, the data processor must notify the data controller if there is a breach of
a contract. The insurers can view the information about the data storage and its usage.
Personal information needs to be anonymised by the tool. The tool must also satisfy the
TOMs defined by the GDPR (see detail in Section 4.2.1). Complying with GDPR compliance,
our tool fulfils all these requirements. It performs compliance verification checks, ensuring
a contract breach, control over all running contracts, updating the contractual parties about
the contract statuses, and GDPR compliance verification.

The contract dates (i.e., start date, effective, and end date), status, and clause states are
key factors in performing contract validity checks. These contract dates comprise creation,
effective or execution, and end date. The value of contract status depends on changes in
contract dates and clause states values. These clause states are associated with contractual
clauses. In the negotiating process, these states become active once a contract is signed.

Information 2022, 13, 447

10 of 28

We explore contractual clauses and the clause states to illustrate contract breaches. As an
example, we can write a contractual clause as a tuple, as shown as follows:

clause(s,a, o0, [ts, te])

where s = subject; a = action; o = object; ts = start time; and te = end time.

The contractual clause states comprise Invalid, Fulfilled, Pending, and Violated [46]. A
contractual clause becomes invalid if the end time is already passed when it is assigned.
The contractual clause is said to be fulfilled if it has been assigned and its action has been
carried out its activities during the time window [ts, te]. If a contractual clause has been
assigned, has not been fulfilled, and is not invalid but has an end time that is passed, then it
is violated. If a contractual clause is not invalid and has not yet become fulfilled or violated,
then it is pending. We explore such a clause with the following example. Suppose we have
the following.

cly = obl(Bob, submitreview(Bob, p1),[16/02/22,25/02/22])
cly = obl(Bob, submitreview(Bob, p2),[16/02/22,25/02/22])

There are two contractual clauses in tuples cl; and cl,, where Bob has to submit two
reviews for the papers pl and p2 within a specified time framework. If Bob submits
his review for p1l on 25 February, cl; becomes fulfilled. If the tuple cl, has started, its
status becomes pending until 25 February 2022. Tuple cly’s status becomes violated if Bob
does not submit a review for p2 on 25 February 2022. A contract has many contractual
terms that define contractual clauses. Contract status changes due to these contractual
clause states. A contractual clause with violations also changes the contract’s (associated
with that clause) status to violate. The tool sends a notification about these violations to
the contractual parties. We formalise the logic we discussed here in order to make the
presentation of rules more clear and more concise. For the sake of simplicity, we omitted
existential quantifiers for unbound variables. Hence, we have obtained the following rules:
(i) The first rule states that a clause will have a pending state if it does not have any of the
other clause states, such as fulfilled, invalid, or violated; (ii) the second rule states that if a
clause is pending and has an associated obligation that is set in the past, then the clause is
automatically set to invalid; (iii) the third rule states that if a clause with a pending state
that has an associated obligation which has not been submitted until the end date, then
it is violated; (iv) the fourth rule states the opposite compared to the previous rule, in
the sense that a pending state becomes fulfilled if all associated obligations are submitted
within the required period; finally, (v) the last rule states that if a clause is violated, then
the corresponding contract is also violated.

VXVY Contract(X) A hasClause(X,Y) A Clause(Y)

A —hasState(Y, fulfilled) N\ —hasState(Y,invalid) N\ —hasState(Y,violated)

— hasState(Y, pending)

VXVY Contract(X) A hasClause(X,Y) A Clause(Y) A hasState(Y, pending)

A hasObligation(Y, S, A, O, times, time,) N timegssign > timee — hasState(Y, invalid)
VXVY Contract(X) A hasClause(X,Y) A Clause(Y) A hasState(Y, pending)

A hasObligation(Y,S, A, O, times, time,) A timecyy > time, — hasState(Y, violated)
VXVYVSYAVOVtimesVtime, Contract(X) A hasClause(X,Y) A Clause(Y)

A hasState(Y, pending) A hasObligation(Y,S, A, O, times, time,) N timecy,y <= time,
— hasState(Y, ful filled)

VX Contract(X) A hasClause(X,Y) A Clause(Y) A hasState(Y,violated)

— hasState(X, violated).

Information 2022, 13, 447

11 0f 28

Let us consider a running contract ¢; with the associated clause cl;. After the applica-
tion of the first rule, we obtain the following.

Contract(cy) A hasClause(cy,cly) A Clause(cly) — hasState(cly, pending)

Given timecyr = 27/2/2022, and after the application of the third rule, we obtain
the following.

Contract(c1) A hasClause(cy,cly) A Clause(cly) A hasState(cly, pending)
A hasObligation(cly, bob, submitreview(bob, p1), p1,16/2/22,25/2/22)
A 27/2/22 > 25/2/22 — hasState(cly, violated)

Finally, given the last rule from above, for the contract, we also deduce the following.

Contract(cy) A hasClause(cq,cly) A Clause(cly) A hasState(cly, violated)
— hasState(cq,violated) O

After an illustration of a contract breach with examples and rules, we describe CCV
process scenarios in Section 3.3.

3.3. CCV Scenarios

This section presents the CCV overview with four scenarios based on UC1, UC2,
and industrial requirements discussed in Section 1. Before discussing the scenarios, we
present the overview of the CCV process (see Figure 4), which shows a distinction between
each scenario with a specific colour. Second, we describe each scenario in more detail in
Sections 3.3.1-3.3.3.

Figure 4 presents the overall CCV process comprising scenarios, such as B2C or B2B
contracts, consent-based B2C contracts, and consent-based compliance verification on B2B
contracts. It presents the extraction of all contractual clauses from the KGs via the SPARQL
(Simple Protocol and RDF (Resource Description Framework) Query Language) [47] end-
points. A contract repository may have multiple contractual clauses that need multiple
iterations for validation. Each contractual clause has a contractual party, contractID, statelD,
termID, and a time window (including start and end time). The contractual clause state and
contract status require validating each contractual clause. In CCV, only contracts having
created or signed statuses and contractual clauses with a pending state are involved. The
information about a contract’s status and contractual states is extracted from the KGs. With
this information and the current date, we can validate contractual clauses.

Figure 4 is divided into two blocks, namely block-1 and block-2. Block-1 shows
the following three scenarios used to perform CCV: (i) B2C contract; (ii) B2B contract;
(iii) Consent-based B2C and B2B contract. While in block-2, we show the CCV with the
fourth scenario (i.e., automatic detection of contract breaches based on informed consent,
where the consent has expired and the contracts—based on that consent—are still running).
In smashHit, a B2C contract is created between an insurer (acts as a data subject) and
LexisNexis (acts as a data controller). While a B2B contract is made between LexisNexis
(acts as a data controller) and an organisation (as a data processor). To make a clear
distinction among all four scenarios, we assigned different colours to scenarios. In block-1,
the B2C contract scenario is presented in baby blue colour, the B2B contract scenario is
in iceberg colour, and the informed-consent base contract scenario is in fresh air colour.
Alice blue colour is assigned to present the fourth scenario of the CCV in block-2. In the
following subsections, we present each of them in more detail.

Information 2022, 13, 447

12 of 28

Block-1 Loop over contract obligatons

Obl_state==
"statePending"

B2CI=""

Get B2C Data

current_date >

Consent=

T |Update Contract status and|

N

otify

obl state with violation |

obl_end_date

U

B2B!=""

Obligation data / B2C"" BoC_" Get gigszc
identifiers data Consentl="" Consent state
consent

B2B!=""
Consent=="" B2CI=""

Consent!=""

onsent!="Valid

Get B2B Data

obl_state not

Get B2C Data
Consent state

terminated]

Obl_state==
"statePending”

T .| Update Contract status and obl| Notify
current_date > state with violation

obl_end_date

in[violated, expired,

p

pdate Contract status and obl Notify
state with expiration

Consent!="Valid"
obl_state not

terminated)

in[viclated, expired,

Update Contract
status and obl state
with expiration

Notify

Update Contract status and obl‘
state with violation

Notify

obl s

Update Contract status and

tate with expiration

Notify

Update Contract status and obl ‘ Notify

state with expiration

Block-2

Loop over B2B contracts

Loop over B2B obligations

Obligations

o ' 3 "l.Start\F—v{ B2c :
/ : { / instance ’
: Start Contract Status and "]]

- ~ Invalid [
Consent state) Contractors
T~ -~ Notifications

End |

Valid " End :

o

Figure 4. CCV process overview.

Information 2022, 13, 447

13 of 28

3.3.1. B2C or B2B Contracts

The first two scenarios are very similar, with the difference being in the contract’s cate-
gory. Both must satisfy the following conditions for compliance verification: (i) a B2B or B2C
contract and (ii) the consent information must be empty. If the condition result is evaluated
as true, contractual information of the B2B or B2C is extracted from the KGs via the SPARQL
endpoint. Based on this information, another conditional check is performed on the contrac-
tual clause with its states and end date. If this is the case, the condition result is true, and
the contract status and its clause states are updated in the KGs with violation information.
Otherwise, both contract status and clause states update with expiration information. In
both cases, the tool sends notifications automatically to contractual parties with violation or
expiration information.

3.3.2. Consent-Based Compliance Verification on B2C Contracts

The third scenario is based on consent, which has two parts: B2C contract and B2B
contract. In the first part, the conditions (B2B==""and B2C!="" and Consent!="") must be
true to perform compliance verification checks on B2C contracts. Once the condition is true,
the tool extracts B2C contract information from the KGs. Based on this information, the tool
validates it with the consent state and the state of the contractual clause. If the condition
result is true, the tool updates the contract’s status and the contractual clause states with
violation information. In a case where the condition’s result is false, the contract status
and contractual clause states will update with expiration information. The tool notifies the
contractual parties automatically based on this violation or expiration information. This
process repeats for the second part, which is B2B contract compliance verification. In a
case where the consent state is invalid, it must also expire all contracts associated with that
consent. This process repeats and executes until there is no clause left for validation.

3.3.3. Consent-Based Compliance Verification on B2B Contracts

The tool also supports detecting contract violations based on consent automatically.
To illustrate it, we consider a data subject (e.g., a person and software) possessing a B2C
contract with LexisNexis (i.e., the data controller) and consenting to share data for five
months. Based on this contract, LexisNexis makes a B2B contract with an organisation ABC
(i.e., data processor) to obtain benefits for selling the data. For illustration purposes, let us
assume that the data subject revoked consent after two months. The contracts associated
with that consent must be terminated or expire. Since consent has been revoked, the B2C
contract must also be terminated or must expire. The B2B contract, which is created based
on a B2C contract, must also be terminated or expire. Let us assume for any reason that
the B2B contract is still running. In that case, how will the data subject know about this
contract breach? Our tool supports detecting this type of breach automatically and updates
the data subjects about each contract associated with them. We present the process of this
scenario in block-2 of Figure 4.

In the process of Block-2, we extract all B2B contracts with their contractual clause
information. To create a consent-based B2B contract, we have a B2B contract clause pos-
sessing a B2C contract reference. With the help of this reference, we can extract the consent
state from a B2C contract. Furthermore, we perform a compliance check with the consent
state and contract status. If the consent state is invalid and the contract status has not ended
or expired, then the tool sends notifications to the data subjects about this violation.

4. Architectural Design and Implementation

This section details the architectural design of the CCV, which is presented in
Section 4.1 and its implementation details are presented in Section 4.2.

4.1. CCV Architectural Design

Figure 5 presents the CCV architectural design. It follows a micro-services architecture
pattern. A micro-services architecture pattern is one in which all modules are cohesive,

Information 2022, 13, 447

14 of 28

independent processes that interact through messages [48]. The Service Layer is a key
component, which comprises the Core, the Resources, the Application Programming
Interface (API) Layer, and the contract compliance scheduler. We describe each of them in
the following subsections.

4.1.1. Core

The Core module is divided into two sub-modules: Data Processing and Shared
Services. The first one is responsible for data management to support required operations,
such as contract creation, auditing or controlling, and compliance-verification checking.
The query processor and storage are two sub-components for supporting data processing
operations. The query processor component contains the SPARQL queries required to deal
with contracts (e.g., contract data in KGs), while the storage module handles the query
processor’s execution. Shared services include modules that assist other modules in their
operations, such as contract and compliance verification checks.

& Service layer f o N

Data processing

Query
processor
Helper

s Y

f@ Contract compliance scheduler
Obligations
endpoint ¢

\
Query endpoint /B Resources \

Compliance
endpoint Contract Contractors

|

Shared services

e
5
%

Contract endpoint

Confracrors \

endpoint

Terms endpoint

J

! Remote storage

rap
) "

] [User mangement

User endpoint

Terms] [Terms types

obligations

\\ Contract compliance verification]%

Figure 5. Architectural design of the automated GDPR compliance verification tool.

4.1.2. API Layer

The API layer is used to interact with the CCV tool. It provides access to the compliance
verification tool’s functionalities via REST (REpresentational State Transfer) endpoints.
Contract search, contractual parties management, contract audit, and contract compliance
are the core features of the API layer.

[
[Contract
{

2\ g
Q
4 E
g |51
E]
@ =
o o
& &
a a
o °
o, =X
= =

4.1.3. Resources

The Resources component is a part of the Service Layer, which contains classes, such
as Contract, Contractual Parties, Contractual Terms, Contractual Clause Types, Contractual
Clause, and Contract Compliance. These are required for the management and compliance
verification of digital contracts. Each class has Create, Read, Update, and Delete (CRUD) op-
erations. Search by ID (e.g., contract id, contractual party’s id, and clause id) and searching
the bulk of records are two common types of search. The contract compliance compo-
nent is responsible for performing automated compliance verification checks. Figure 6
presents the JSON (JavaScript Object Notation) schema and the semantic representation of
a B2B contract.

Information 2022, 13, 447

15 of 28

Figure 6 represents an overview of a contract instance from our knowledge graph
and all information related to it. The centre node (in red colour) represents an instance
of the class fibo-fnd-agr-ctr:Contract. This instance’s label has been encrypted for security
and privacy reasons. All other nodes represent entities related to that specific contract
instance. For example, a contract can have several contractors associated with it (see the
nodes connected to the contract instance via the “has contractors” relationship).

"ConsentId": "string",
"ConsiderationDescription": "string",
"ConsiderationValue": "str:
"ContractCategory": "

"ContractStatu

"ContractType":
"Contractors": [
"string"

sig ficB4affa-fof-
ec 9756-77d16fafe.

contb2b_9f4b79c2-fd51-
11ec-912¢c-27d6c710c934

€ contb2b_9f4b79c2-fd51-1lec-912¢-

sig_87d8059c-fs2-
ob_5448e940-fd52- Tec-9126-27d6¢710c.

"Effectiv ": "2022-07-28T18:15:09.566Z", ec-9126-27d6¢710c. Types:
"EndDate" -28T18:15:09.5662", ; fibo-fna-agr-ctr:Contract
"ExecutionDate": "2022-87-28T18:15:09.566Z", %,

2%

27d6c710c934

term_bf131da0-fd51-

RDF rank
$ “lec-912¢-27déc710c.
i 0

5
&
has signatures

5
Q’b)
@

"Medium": "string", >
"Obligations": [*
"string"
l 1 . Tec-9126=27d66710c.
"Purpose": "string",
|

N

B
&
3

©—[74B20645EE2- has contractors con§2BROABIGC2- contractType) contractiD
fd51 flec-912e-27c6. WILEeN onthob_9tab79c2-fd51-Tec-912c-

iy 27d6¢710c934

forPurpose

data sharing

hasEndDate

2023-07-06

2 Bl c_0df19a56-fd01- category business to 17:39:21.805000+00:00""xsd:dateTime
st ring Tec DIB6-71A16f afe. g

smyess joenu0d sey
§
S

inMedium

online
status updated

det:description
data selling bwt org to org

@ (b)

Figure 6. A snapshot of the JSON schema used for contract and the contract module’s creation (or
representation) of contract in the legal KG. (a) Contract JSON schema. (b) KG representation of a
contract in GraphDB.

4.1.4. Remote Storage

For the construction and management of contracts, Ontotext GraphDB [49] is used,
which supports the RDF and SPARQL. The SPARQL endpoint is used to perform CRUD
operations on digital contracts, while RDF is used in the construction of semantic models
of contracts.

4.1.5. Contract Compliance Scheduler

The Flask APScheduler [50] is used to handle time-based job scheduling tasks for
automated detection of contract breaches. For instance, we set up a scheduling task for
contract breach detection, which executes every day at 01:00 a.m. The data controller makes
compliance verification checks directly by calling the contract compliance endpoint through
the contract’s REST APIs endpoints. The source code of the entire process can be found on
GitHub [51].

4.1.6. Contract REST API

For interactions with the tool, the API Layer implements REST endpoints. For an
ideal representation of the API documentation, swagger [52] is used. The swagger REST
APIs endpoints for contracts can be found on GitHub [51], which requires performing
CCV checks and managing digital contracts. We divide the contract REST APIs endpoints
into seven parts: contracts; contractual parties; clause types; contractual terms; contract
contractors (contractual parties, which are associated with a particular contract); contractual
clauses; contract signatures; and contract compliance. Each part in terms of functionality
is able to perform CRUD operations. For binding requests from swagger API for KG,
custom contract schema are used as shown in Figure 6. This contract schema comprises
basic information (e.g., contract category, contract types, and purpose) and collections of
contractual parties, contractual terms, contractor signatures, and contractual clauses.

Information 2022, 13, 447

16 of 28

4.2. Implementation

This section details the tool’s implementation based on the use cases and indus-
trial requirements discussed in Section 1. The implementation of TOMs is presented in
Section 4.2.1. We describe the libraries used for this implementation in Section 4.2.2, while
in Section 4.2.3, we present the implementation details for each component of the tool.

4.2.1. The Implementation of TOMs

Performing the CCV with GDPR, our solution follows the “data protection by design
and by default” principle. For this principle, implementing TOMs is a key requirement
according to GDPR (Art. 25 (1)). The adoption of internal policies (Rec. 78) states that it is
the responsibility of the data controller (or data processor) to implement TOMs, ensuring
that processing is performed under GDPR (Art. 4 (7), Art. 24). Our tool implements the
following TOMs.

Data Encryption

The first TOM relates to confidentiality (Art. 32 (1) (a)) to encrypt the processing
data. For encryption, we use the deterministic searchable encryption technique. Two
algorithms the Rivest-Shamir-Adleman (RSA) [53] with Public Key Cryptography (PKCS)
Standards and asymmetric Advanced Encryption Standard (AES) [54] are used for this
purpose. Further, by implementing authentication procedures and identity management,
only registered components have access to endpoints.

Protection against External Influences on Systems and Services

This TOM relates to Art. 32 (1) (b), which is defined as “the ability to ensure the
ongoing confidentiality, integrity, availability, and resilience of processing systems and
services” to ensure that the systems and services are planned correctly and according to the
intended purpose. The tool implements security measures (e.g., authentication procedures
see detail in Section 4.2.3) and user-based access to prevent unauthorised data access.

Documentation of Data Syntax

The third TOM relates to the documentation of data, its availability and resilience (Art.
32 (1) (b)). The entire code follows the Python Enhancement Proposals (PEP)-8 [55] coding
convention and is commented for better understandability. For an ideal representation of
the API documentation, Swagger [52] is used.

Reduction in Non-Required Attributes of Data Subjects

Our fourth TOM is used to enable data minimisation according to GDPR (Art. 32 (1)
(d), 25 (1)). Our tool implements the data minimisation requirements according to GDPR
by establishing retention periods (e.g., dates) for personal data processing to ensure GDPR
contract compliance verification. For example, our contract’s REST APIs endpoint creation
defines a minimal set of variables, such as purpose and dates (execution date and end date
for retaining the data only for as long as it is necessary to fulfil the purpose of processing).

Role Concepts with Graduated Access Rights Based on Identity Management and a Secure
Authentication Process

This TOM relates to the purpose of limitation according to (Art. 32 (1) (d), 25 (1))),
which is about testing, assessing and evaluating the effectiveness of TOM to ensure the
security of data processing. It takes the purpose of the limitation into account and defines
permissible purpose changes. Our tool uses the JavaScript Object Notation (JSON) and
Web Tokens (JWT) [56] based access control. Furthermore, user-based access on endpoints
is implemented.

Translating legal requirements into technical implementations is not easy. The Stan-
dard Data Protection Mode (SDM) [57] provides appropriate measures, transforming the
GDPR legal bases to qualify for TOMs. A summary of GDPR requirements mapped with

Information 2022, 13, 447

17 of 28

their data protection goals is described in [57] (Table in Section C2, p. 28). The SDM is
as follows:

1. Systematises data protection requirements in the form of protection goals;

2. Systematically derives generic measures from protection goals, supplemented by a
catalogue of reference measures;

3. Systematises the identification of risks in order to determine protection requirements
of the data subjects resulting from the processing; and

4. Offers a procedure model for modelling, implementation, and continuous control and
testing of processing activities.

4.2.2. System Setup for Evaluation

We summarise the libraries and software that were used in this implementation in
Table 1. We selected these libraries because of our tool’s requirements. For instance,
GraphDB was selected due to having capabilities, such as more intuitive data visualisation,
storage, and management. The free edition of GraphDB is not sufficient for simultaneous
queries because it does not support concurrency or parallelism of more than two queries. In
order to alleviate this issue, the Enterprise Edition (EE) of GraphDB can be deployed instead.
A Docker container in a system with 32 GB (gigabyte) random-access memory (RAM), a
1.7 gigahertz (GHz) AMD Ryzen 7 PRO 4750U processor, and 1 terabyte (TB) storage is
used for deploying the service layer. Linux with variant distributions, such as Ubuntu and
Debian, is used for all deployment setups.

Table 1. List of software (or libraries) that were used in the implementation.

Software (or Libraries) Version
Python [58] 3.8
Flask [59] 1.1.2
Flask-RESTful [60] 0.3.8
Flask-SQLAlchemy [61] 2.5.1
Python Requests 2.25.1
Flask Apispec [62] 0.11.0
Pycryptodome [63] 3.10.1
SPARQLWrapper [64] 1.85
Docker ([65] Community Edition) 20.X
SQLite 2.6
GraphDB free edition [49] 9.4.1
Protégé 5.5.0
Pyjwt [66] 1.7.1

4.2.3. Automated GDPR CCV Tool Implementation

This section provides the implementation details of each component of the CCV tool,
such as the API layer and CCV layers.

API Layer

The main functionality of the API layer is to implement the REST endpoints for con-
tracts. It enables user-based access as demanded by GDPR’s integrity and confidentiality
principle (Art. 5 (1) (f)) by custom JWT implementation. All the contract’s REST API end-
points are only accessed through a valid JWT token, which is created upon successful login.
Furthermore, the standard REST practices, such as OpenAPI Specification (OAS) version
2.0 and swagger, are used in implementing the API layer for describing the contract’s REST
endpoints (see Figure 7).

Information 2022, 13, 447

18 of 28

Automatic Contracting Tool Contracts API Specification ™

Author: Amar Tauqeer,Emal: amar 23t

Contracts

| /contract/oycontract (contractiny,/

Contract Signatures

(I contract/sigaturercreate/

(B /eontract/signature/updater

(B /contract/sagnatures, contractio)

/signaturs/detate/ (signature1o}/

| IIEEE /signature tsignaturercy/

=

Contract Terms

=

Jcontract/tern/delete/{ternID}/

| BTN scontract/tern/update/

[BICEEI /contract/bycontractor/ contractor10)/

‘“ Jcontract/tern/{termID}/

(I eontract/cronter

| Jcontract/terns/
/contract/delate/ (contractio}/
[B scontract/terns/contractioy/
(IR /contract/uist_or_contracts/
| I /contract/status, (contractio) /gstatus)/ Term Types
AN /contract/update/ | I Jcontract/tern/type/update/
Contract Compliance ‘m Jtern/type/create/
[/contract/conptiance
/tern/type/delete/{termTypeId}/
Contract Contractors
(I st reyees
[I contract/contractors; contractioy/
o IS /terntype/ternTypero}/
Contract Obligations ‘
(= Contractors
| I /contract/obtigations /{contractio)/ ‘m S Y
| IS sovigation/create/
Jcontractor /delete/{contractorID}/
/obigation/detete; (obtigationtd)/
[T /contractor/upaste/
(BRI /contractor/eontractormy/
[IEE /omigation comigationtoy,/
| ovuigetions/ | I /contractors/

(@)

(b)

Figure 7. Contract REST API's endpoints in Swagger. (a) Part 1. (b) Part 2.

Data Processing

The data processing module comprises predefined SPARQL queries with the contrac-
tual information to be filled in during the run-time. These queries are organised based
on the Resource (see detail in Section 4.1.3) component of the CCV tool. In Figure 8, we
present a snapshot of the SPARQL query, which is used to extract all information with
respect to a contract such as contract contractors, terms, obligations, and contract category.
It contains two functions prefix and get_all_contractors. All namespaces are stored in the
first one required for the execution of the SPARQL query, while the second one stores the

SPARQL query.

def prefix(self):

prefix = textwrap.dedent("""PREFIX :

<http://ontologies.atb-bremen.de/smashHitCore#>

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dpv: <http://www.w3.org/ns/dpv#>

PREFIX prov: <http://www.
PREFIX dcat: <http://www.
PREFIX fibo-fnd-agr-ctr:
PREFIX dct: <http://purl.

return prefix

def get_all_contracts(self):

query = textwrap.dedent("""{0

select *
where{{

w3.org/ns/prov#>

w3.org/ns/dcat#>
<https://spec.edmcouncil.org/fibo/ontology/FND/Agreements/Contracts/>
org/dc/terms/>

}

?Contract rdf:type fibo-fnd-agr-ctr:Contract;
:contractID ?contractld;
:hasContractStatus ?contractStatus;

:hasContractCategory

?contractCategory;

dct:identifier ?consentld;

:forPurpose ?purpose;

:contractType ?contractType;
fibo-fnd-agr-ctr:hasEffectiveDate ?effectiveDate;
fibo-fnd-agr-ctr:hasExecutionDate ?executionDate;

:hasEndDate ?endDate;
:inMedium ?medium;

dct:description ?consideration;

rdf:value ?value .

1}
"y format(self.prefix())
return query

Figure 8. A snippet of code

from the query processor module.

Information 2022, 13, 447

19 of 28

Shared Service

Two functions function_map and list_to_query are implemented by the shared services
module as shown in Figure 9. The other modules, such as data processing and compliance
verification can use these shared services. The list_to_query function is used to convert
the array of JSON inputs into the SPARQL query format for supporting contract creation
activities by the contract module, while the function_map is used to perform the mapping to
the actual function.

def function_map(self, name):

mapfunc = {
: self.get_all_contracts,
: self.get_contract_by_contractor,
: self.get_contract_by_provider,
: self.get_contract_by_id,
: self.get_signature_by_id,
: self.get_contractor_by_1id,
: self.get_company_by_id,
: self.get_all_contractors,
: self.get_all_companies,
: self.get_all_terms,
: self.get_all_signatures,
. self.get_contract_signatures,
: self.get_term_type_by_1id,
: self.get_term_by_id,
: self.get_obligation_by_1id,
: self.get_all_obligations,
. self.get_contract_obligations,
: self.get_all_term_types,
: self.get_contract_terms,
: self.get_contract_contractors,
. self.get_contract_compliance,
. self.contract_update_status,
: self.get_obligation_identifier_by_id,
: self.get_signature_identifier_by_id,

return mapfunc[name]

def list_to_query(self, data, whatfor):

querydata =
for vlaue in data:
strs = + whatfor + + vlaue + ";\n

querydata = strs + querydata
return querydata

Figure 9. A snippet of code from the helper module.

Contract Compliance Scheduler

The Flask APScheduler [62] is used to handle time-based job scheduling tasks for
automated detection of contract breaches. For example, the tool sets up a scheduling task
for contract breach detection, which executes every day at 01:00 a.m. Furthermore, the data
controller makes a compliance verification check directly by calling the contract compliance
endpoint through the contract’s REST API endpoint. Figure 10 presents a compliance
verification scheduling task based on the current date.

def compliance():
CONTRACT_URL =
data = requests.get(CONTRACT_URL)
data = data.json()

if __name__ == :
scheduler.add_job(id= , func=compliance, trigger= , minutes=1440)
if current_date >= date(some date):

scheduler.start()

Figure 10. A snippet of code for scheduling the compliance verification check.

Information 2022, 13, 447

20 of 28

Resources

The Resource component of CCV implements sub-modules, such as Contract, Con-
tractual Parties, Contractual Terms, Contractual Clause Types, Contractual Clause, and
Contract Compliance, which are used for the management and to perform compliance veri-
fication checks on contracts. Each class has its procedures for performing CRUD operations.
For instance, creating a new contract requires contract data in JSON format following JSON
schema, as shown in Figure 7. This scheme is used to transform the contract data into KG
and is validated with marshmallow [67]. Marshmallow is a framework-agnostic library for
converting complex data types, such as objects, to and from native Python data types.

Each component performs the following similar functionalities: (i) extracting all details
(records) of the component; (ii) extracting component specific details (based on IDs e.g.,
contractID, contractorID); (iii) component creation; (iv) updating a particular component;
and (v) deleting a specific component. All components of the Resource module perform
partial and full auditing. Figure 11 presents a snapshot of a contract’s partial and full audit
in the JSON Schema. The basic information of the contract, such as contract category and
contract dates (e.g., start, effective, and execution), is provided for the partial contract audit,
as shown in Figure 11. While Figure 11 presents a full contract audit information in JSON
Schema. It contains not only the basic information of the contract but also other contractual
information, such as a collection of contractual parties, a collection of contractual terms,
and a collection of contractual clauses.

(@) (b)
Figure 11. A snapshot of contract partial and full audit JSON Schema. (a) Partial audit. (b) Full audit.

The CCV (see detail in Section 3.2) implements an automated compliance verification
check to perform on contracts. This compliance check performs only on active contracts (i.e.,
a contract having status, such as created, pending, and updated). The CCV implementation
is based on four scenarios discussed in Section 3.3. The implementation in the first two
scenarios is based on B2C and B2B contracts. The third scenario is based on consent-based
contracts. The fourth scenario performs the compliance checks on B2B contracts, where the
consent has expired but the contracts (associated with that consent) are still running. Each
component’s implementation details with respect to the Resource module can be found on
GitHub [51].

Security

Two algorithms RSA [53] and AES [54] are used to ensure secure data processing in
the CCV tool. The RSA algorithm’s proven capability and security robustness over the
last 30 years is a valid reason for its selection. While considering the de facto standard
for symmetric encryption and standardised by the National Institute of Standards and

Information 2022, 13, 447

21 of 28

Technology (NIST) as an encryption technique, the AES algorithm is selected, which is fast
and secure [68]. The function key_generate is used to create and export the public and private
keys using RSA. For data encryption and decryption, the security module implements two
functions rsa_aes_encrypt and rsa_aes_decrypt. The Public-Key Cryptography Standards
(PKCS) # 1 OPTIMAL ASYMMETRIC ENCRYPTION PADDING (OAEP) [69] padding
scheme is used by the RSA’s implementation, which is defined by RFC 8017. To encrypt
and decrypt the keys for symmetric encryption algorithms, RSA is used. The complete
implementation details can be found on GitHub [51].

5. Evaluation

This section presents the evaluation of our tool with a focus on performing CCV
compliance functionalities. It is based on tools” key functionalities, such as contract creation,
contract audit, and CCV checks. Both use cases (UC1 and UC2) require scalable solutions
to handle end users. In Section 5.1, we present the CCV performance evaluation, while
we show the TOMs evaluation in Section 5.2. Furthermore, for CCV implementation and
performance evaluation, we use the system’s setup, as described in Section 4.2.2.

5.1. CCV Performance Evaluation

To evaluate the CCV performance, we created ten different contract instances based on
UC1 and UC2 and measured their execution times. The process repeats to create instances
of contract terms and contractual clauses. The contract creation process is divided into five
parts: (i) contract’s basic information, (ii) contractors, (iii) contract terms, (iv) contractor
signatures, and (v) contractual clauses. The execution time of a contract creation is based
on the total execution time of all the above five parts. For this performance evaluation,
the contract’s information is provided manually. For this performance evaluation, the
information about the instances of contract, contractual terms, contractual clauses, and
terms types can be found on GitHub [51] (see contract-creation.ods file in the evaluation
folder).

Before discussing evaluation results, we introduced terms, such as contract create
instance (CTI), contract audit (CTA), contract terms create (CTT), contract terms audit (CTTA),
contract obligation create (CTO), contract obligation audit (CTOA), and COMP for the instances
of contract creation, contract audit, contract terms, contract obligations, and contract
compliance. Figure 12 represents the contract creation (including five parts) instances
(CTI1, CTI2, ...CTI10) on the x-axis, while the execution time (in minutes) of each contract
creation instance shows on the y-axis. On the right side of Figure 12, we have contract audit
instances (CTA1, CTA2, ...CTA10) on the x-axis and execution time (in minutes) on the
y-axis in the Figure 12. Similarly, in Figure 13, we can see the evaluation results of contract
terms create and audit with their instances. In addition, Figure 14 represents the evaluation
results of contractual clauses creation and audit with their instances, where instances are
shown on the x-axis and execution time on the y-axis. Finally, we present the compliance
verification results in terms of execution time in Figure 15, where the instances (COMP1,
COMP2, ...COMP10) are presented on the x-axis and the execution time (in seconds) on
the y-axis.

Information 2022, 13, 447

22 of 28

Time (in minutes)

[
CTiL CTiz CTI3 CT4 CT5 CTI6 CTi7 CTI8 CTI9 CTIo

(@)

Time (in minutes)

14
12

10

CTAL CTAZ CTA3 CTA4 CTA5 CTA6 CTA7T CTA8 CTA2 CTAl0

(b)

Figure 12. Performance evaluation on contract creation and audit. (a) Time spent on contract creation.

(b) Time spent on contract audit.

Time (in seconds)
8

CTT1 CTT2 CTT3 CTT4 CTTs CTT6 CTT7 CTT8 CTTe CTTI0

(@)

Time (in seconds)

60
% /\/\/\
40
30

20

10

0
CTTAL CTTA2 CTTA3 CTTA4 CTTAS CTTA6 CTTA7 CTTA8 CTTA9 CTTAl0

(b)

Figure 13. Performance evaluation on contract term creation and audit. (a) Time spent on contract
term creation. (b) Time spent on contract term audit.

5D/__/\/_/

Time (in seconds)

o
CTol CTOz CTO3 CTO4 CTO5 CTO6 CTO7 CTO8 CTO9 CTO10

(@)

Time (in seconds)

70

60
. —/\/\/\—
40
30

20

10

0
CTOAL CTOAZ CTOA3 CTOA4 CTOAS CTOAE CTOA7 CTOAS CTOA9 CTOAL0

(b)

Figure 14. Performance evaluation on contract clause creation and audit. (a) Time spent on contractual
clause create. (b) Time spent on contractual clause audit.

40

35

30

25

20

15

Time (in seconds)

10

0

COMP1 COMP2 COMP3 COMP4 COMPS5 COMPG COMPY COMP8 COMPS9 COMPLO

Figure 15. Time spent on CCV.

Information 2022, 13, 447

23 of 28

The minimum time spent on a contract creation process is 3.55 min, while 11.48 is
the maximum time spent on a contract as shown in Figure 12. The CTI4 took 11.48 min
because it has two contract terms and four contractual clauses, whereas CTI1 only has
a contract term and a contractual clause. Similarly, the maximum time of 4.50 min was
spent on contractual clauses (four clauses), 2.50 min on contract (two terms), 0.42 s on
contractor signatures (three signatures), 2.00 min on contractual parties (two contractors),
and 1.40 min on the contract’s basic information. Contract audit and creation processes
have taken almost the same execution time because both have the same contents as shown
in Figure 12a,b. We did not consider partial creation and audits here.

We also measured the performance evaluation on the contract’s term and contractual
clause, which are shown in Figures 13a,b and 14a,b. The average time spent on the contract
term creation or audit is 0.40 s, as shown in Figure 13a,b, while the contractual clauses
creation or audit took an average of 0.55 s, as shown in Figure 14a,b. Based on contract
creation instances depicted in Figure 12, we measured the time spent over compliance
verification in Figure 15. It shows a strong relationship with contract instances, and if
the instances take more time, the compliance verification will also take more time. For
example, the COMP4 (compliance instance related to CTI4) took 36 s to complete, whereas
COMPS (related to CTI8) took only 20 s. More information about the contract evaluation
performance is shown in Table 2 (the fastest and slowest measurements in terms of time
are highlighted in bold). The contract contents (e.g., terms, and obligations) can also
affect the execution time of the contract creation, audit, and compliance. The encryption
and decryption of the information can result in higher time in performance evaluation.
However, these are also required to increase security measures. These extra time-consuming
activities are associated with compliance verification and cause the CCV tool to slow down.

Table 2. Contract performance evaluation.

Con.tract Contractual Contractual Contractual Contractor
Basic In- . R Total
. Parties Term Clauses Signatures .
ID formation (Time in
(Time in (Time in (Time in (Time in (Time in Minutes)
. Minutes) Minutes) Minutes) Minutes)
Minutes)
1 1.00 0:50 0.16 0.44 0.16 3.55
2 1.05 1:55 0.32 1.58 0.30 5.54
3 1.20 2:00 1.50 3.50 0.35 9.34
4 1.30 1:58 2.50 4.50 0.40 11.48
5 1.40 2:00 1.50 3.52 0.37 10.39
6 1.20 1:57 1.48 3.40 0.35 9.33
7 1.30 2:00 1.20 2.40 0.40 8.16
8 1.10 1:58 1.30 2.30 0.35 7.42
9 1.25 2:00 1.40 3.45 0.37 9.45
10 1.35 1:55 1.58 3.25 0.42 9.34

To evaluate the correctness of the CCV tool, we performed unit tests with 28 different
test case scenarios. The evaluated test cases include the CRUD operations relating to
contracts, such as contract terms and contractual obligations. Moreover, the test cases also
include the CCV tool’s compliance verification operations. The CCV compliance verification
unit test cases include 5 different test scenarios described in Section 3.3. Figure 16 shows
a code snippet of the unit test for the B2B contract scenario without consent. As shown
in Figure 16, the test case takes the contract’s ID, status, current date, obligation state,
obligation end date, and obligation ID for compliance verification. Further, a condition (i.e.,
current date > obligation end date and obligation state = ‘Pending” and b2b contract status not in
(*Violated’, “Terminated’, ‘Expired’)) is checked. The contract status and obligation state must
be updated by the tool if the condition result yields true.

Information 2022, 13, 447

24 of 28

handle single business to business contract without consent
def test_bzb_without_consent(self):
current_date =

b2b_contract =
b2b_contract_status =

obligation_state =
obligation_end_date =
obligation_1id =
if current_date > obligation_end_date and obligation_state == and b2b_contract_status not in (
)
expected_status =
expected_obligatioen_state =
r = requests.get(ContractApiTest.CONTRACT_URL +
.format(b2b_contract, expected_status))
self.assertEqual(r.status_code, 200)
r = requests.get(ContractApiTest.CONTRACT_URL +

.format(obligation_id, expected_obligation_state))
self.assertEqual(r.status_code, 200)

Figure 16. A unit test code snippet for B2B test scenario to check the CCV correctness.

The unit test cases with their results logs, and the source code are available on
GitHub [51]. Our evaluation of unit test cases demonstrates that the CCV tool performs
the intended tasks, such as compliance verification and contract creation correctly.

5.2. TOMs Evaluation

In Section 4.2.1, we summarised and evaluated five data protection goals associated
with TOM regarding GDPR (data processing) for contracts. We evaluated the contracts
module manually. We discussed the manual evaluation in Section 5.1. For instance, the
contractual parties’ personal data are encrypted first and then stored in the KG, which
is related to GDPR (Art. 32 (1) (a)) confidentiality (see detail in Section 4.2.1). Similarly;,
the PEP-8 coding convention is used for the documentation of data syntax. For the au-
tomated procedure, we wrote test use cases and executed them using Python’s unit test
framework [70]. We have different conditions to make these tests. For example, testing the
endpoint GetContractContractor, we provide the contract number. In the case of providing
the contract number, the test case returns a success response. The test case returns a failed

response in case of missing the contract number. More information about each test case can
be found on GitHub [51].

6. Conclusions and Future Work

By building on our previous work in [24], in this paper, we presented our CCV (Con-
tract Compliance Verification) tool for digital contract management based on knowledge
graphs. To be specific, we presented an approach for automated CCV checks over digital
contracts. Further, we discussed factors that must consider the technical requirements to
satisfy industry requirements as discussed in Section 1. The CCV tool has micro-services
architecture and utilises an ontology and a knowledge graph, which support the interoper-
ability of data.

The CCV tool supports contract management, based on consent, with B2C (Business-
to-Consumer) and B2B (Business-to-Business) contracts that can be generalised to other
domains. Our tool supports not only consent-based contract generation but also considers
scenarios in which consent is not required (see Section 4). We evaluated the CCV tool with
the performance and scalability regarding contracts. We also evaluated the CCV methods
correctness by performing unit test cases. This research is conducted in collaboration with
legal experts and industrial partners. It can help SMEs (small and medium enterprises)
in binding GDPR (General Data Protection Regulation) legal bases with data sharing
contracts. The CCV tool improves both the compliance verification process and contract
lifecycle. Future studies include (i) improving the signing process with digital signatures;
(ii) implementing digital licensing on contracts using DALICC [71]/Licence Clearance Tool
(LCT) [72]; (iii) improving the negotiation process where the data subject will have more
options to collaborate on making contract clauses; (iv) performing validation to graph-
based data using Shapes And Constraints Language (SHACL); (v) extracting the existing
contracts (e.g., paper contracts and unstructured contracts) from external data sources to

Information 2022, 13, 447 25 of 28

translate into RDF (Resource Description Framework); and (vi) optimising the performance
of the tool.

Author Contributions: Conceptualization, A.T. and A.K.; methodology, A.T.; software, A.T. and
T.R.C; validation, A.T., TR.C. and A.A,; formal analysis, A.T. and A.K,; investigation, A.T., A.A.
and T.R.C; resources, A.T.; data curation, A.T.; writing—original draft preparation, A.T.; writing
—review and editing, A.T., A K., A.A, TR.C. and A F,; visualization, A.T.; supervision, A.F,; project
administration, A.F; funding acquisition, A.FE. All authors have read and agreed to the published
version of the manuscript.

Funding: This work is supported by the Horizon 2020 project smashHit (grant number 871477).
Data Availability Statement: Not applicable.

Acknowledgments: We express our gratitude to Friederike Knoke and Samuel Theanyi Nwankwo
from Leibniz Universitdt Hannover (LUH) Institut fiir Rechtsinformatik (IRI) for the legal analysis
of the contracts for our use cases. Further, we thank our industry collaborators LexisNexis Risk
Solutions, Volkswagen AG, Infotripla and Forum Virium Helsinki for supporting the use cases for
our work. We also thank our colleagues Rainer Hilscher and Antonio J. Roa-Valverde from University
of Innsbruck (UIBK) for participating in the discussions and providing appropriate feedback on
our work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A
Semantic Models Prefix

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

Oprefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

O@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix dct: <http://purl.org/dc/terms/> .

@prefix prov: <http://www.w3.org/ns/prov#> .

Oprefix gconsent: <https://w3id.org/GConsent#> .

@prefix dpv: <http://www.w3.org/ns/dpv#> .

Oprefix fibo-fnd-agr-ctr:
<https://spec.edmcouncil.org/fibo/ontology/FND/Agreements/Contracts/> .
@prefix smashHitCore: <http://ontologies.atb-bremen.de/smashHitCore#> .

@prefix dcat: <http://www.w3.org/ns/dcat#> .
@prefix time: <http://www.w3.org/2006/time#> .
@prefix LC: <https://www.omg.org/spec/LCC/Countries/CountryRepresentation/> .

References

1. General Data Protection Regulation (GDPR). Available online: https://gdpr.eu/what-is-gdpr/ (accessed on 20 July 2022).

2. Li, M.; Samavi, R. DSAP: Data Sharing Agreement Privacy Ontology. SWAT4LS, 2018. Ph.D. Thesis, McMaster University,
Hamilton, ON, Canada, 2018. [CrossRef]

3. European Parliament and Council. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016
on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data,
and REPEALING DIRective 95/46/EC (General Data Protection Regulation). Off. J. Eur. Union 2016, L119. Available online:
https:/ /eur-lex.europa.eu/eli/reg/2016/679/0j (accessed on 5 March 2022).

4. Habib, H,; Li, M.; Young, E.; Cranor, L. “Okay, whatever”: An evaluation of cookie consent interfaces. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems, CHI 22, New Orleans, LA, USA, 29 April-5 May 2022; Association
for Computing Machinery: New York, NY, USA, 2022. [CrossRef]

5. European Data Protection Board. Available online: https://edpb.europa.eu/edpb_en (accessed on 26 July 2022).

6. The Contractual Necessity Basis for Processing Personal Data in the Context of Online Services. Available online:
https:/ /edpb.europa.eu/sites/default/files/consultation/edpb_draft_guidelines-art_6-1-b-final public_consultation_
version_en.pdf (accessed on 25 July 2022).

https://gdpr.eu/what-is-gdpr/
http://doi.org/10.6084/m9.figshare.7322420
https://eur-lex.europa.eu/eli/reg/2016/679/oj
http://dx.doi.org/10.1145/3491102.3501985
https://edpb.europa.eu/edpb_en
https://edpb.europa.eu/sites/default/files/consultation/edpb_draft_guidelines-art_6-1-b-final_public_consultation_version_en.pdf
https://edpb.europa.eu/sites/default/files/consultation/edpb_draft_guidelines-art_6-1-b-final_public_consultation_version_en.pdf

Information 2022, 13, 447 26 of 28

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Li, H; Yu, L.; He, W. The Impact of GDPR on Global Technology Development. |. Glob. Inf. Technol. Manag. 2019, 22, 1-6.
[CrossRef]

Kurteva, A.; Chhetri, T.R.; Pandit, H.].; Fensel, A. Consent through the lens of semantics: State of the art survey and best practices.
Semant. Web 2021, 1-27. [CrossRef]

Breach of Contract. Available online: http:/ /jec.unm.edu/education/online-training/contract-law-tutorial /breach-of-contract
(accessed on 10 July 2022).

The smashHit EU H2020 Project. Available online: https://smashhit.eu/ (accessed on 20 July 2022).

Hunhevicz,].J.; Motie, M.; Hall, D.M. Digital building twins and blockchain for performance-based (smart) contracts. Autom.
Constr. 2022, 133, 103981. [CrossRef]

Liu, L.; Tsai, W.T.; Bhuiyan, M.Z.A.; Peng, H.; Liu, M. Blockchain-enabled fraud discovery through abnormal smart contract
detection on Ethereum. Future Gener. Comput. Syst. 2022, 128, 158-166. [CrossRef]

Semantic Agreement. Available online: https://joinup.ec.europa.eu/taxonomy/term/http_e_f fdata_ceuropa_ceu_fdr8
_fSemanticAgreement (accessed on 20 July 2022).

Pandit, H.J.; O’Sullivan, D.; Lewis, D. Towards knowledge-based systems for GDPR compliance. In Proceedings of the
International Semantic Web Conference (ISWC), Monterey, CA, USA, 8-12 October 2018. [CrossRef]

Fensel, D.; Simsek, U.; Angele, K.; Huaman, E.; Kirle, E.; Panasiuk, O.; Toma, I.; Umbrich, J.; Wahler, A. Knowledge Graphs;
Springer: Cham, Switzerland, 2020. [CrossRef]

Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo, G.d.; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L.; Navigli, R.; Neumaier, S.;
et al. Knowledge Graphs. Synth. Lect. Data, Semant. Knowl. 2021, 12, 1-257. [CrossRef]

Voss, W.G. Data protection issues for smart contracts. In Smart Contracts: Technological, Business and Legal Perspectives; Corrales,
M., Fenwick, M., Wrbka, S., Eds.; Hart Publishing: London, UK; Bloomsbury: London, UK, 2021. Available online: https://www.
bloomsburycollections.com/book/smart-contracts-technological-business-and-legal-perspectives/ (accessed on 15 June 2022).
[CrossRef]

Jusic, A. Dealing with tensions between the blockchain and the GDPR. The LegalTech Book: The Legal Technology Handbook for Investors,
Entrepreneurs and FinTech Visionaries; FINTECH Circle Ltd.: London, UK, 2020; pp. 83-86. [CrossRef]

Smart Contract. Available online: https://corporatefinanceinstitute.com/resources/knowledge/deals/smart-contracts/
(accessed on 20 July 2022).

Jusic, A. Privacy between Regulation and Technology: GDPR and the Blockchain. Int. Univ. Sarajevo (IUS) Law |. 2022, 1, 47-59.
Available online: https://ssrn.com/abstract=4049371 (accessed on 21 July 2022).

Chhetri, T.R.; Kurteva, A.; Adigun, J.G.; Fensel, A. Knowledge Graph Based Hard Drive Failure Prediction. Sensors 2022, 22, 985.
[CrossRef]

Breitfuss, A.; Errou, K.; Kurteva, A.; Fensel, A. Representing emotions with knowledge graphs for movie recommendations.
Future Gener. Comput. Syst. 2021, 125, 715-725. [CrossRef]

Sermet, Y.; Demir, I. A Semantic Web Framework for Automated Smart Assistants: A Case Study for Public Health. Big Data
Cogn. Comput. 2021, 5, 57. [CrossRef]

Chhetri, T.R.; Kurteva, A.; DeLong, R.J.; Hilscher, R.; Korte, K.; Fensel, A. Data Protection by Design Tool for Automated GDPR
Compliance Verification Based on Semantically Modeled Informed Consent. Sensors 2022, 22, 2763. [CrossRef]

Longo, A.; Zappatore, M.; Bochicchio, M.A. Service level aware—Contract management. In Proceedings of the 2015 IEEE International
Conference on Services Computing, New York, NY, USA, 27 June-2 July 2015, pp. 499-506. [CrossRef]

Keller, A.; Ludwig, H. The WSLA Framework: Specifying and Monitoring Service Level Agreements for Web Services. J. Netw.
Syst. Manag. 2003, 11, 57-81. [CrossRef]

NoSQL. Available online: https://www.ontotext.com/knowledgehub /fundamentals/nosql-graph-database/ (accessed on 20
July 2022).

Guo, L,; Liu, Q.; Shi, K.; Gao, Y.; Luo, J.; Chen, J. A Blockchain-Driven Electronic Contract Management System for Commodity
Procurement in Electronic Power Industry. IEEE Access 2021, 9, 9473-9480. [CrossRef]

Voronova, O. Development of contract management system for network companies under economy digitalization. E3S Web Conf.
EDP Sci. 2020, 164, 09018. [CrossRef]

Schmidt, R.N.; House, M.; Rodriguez, O.O. Journey into Dnv Hospital Accreditation and the Implementation of an Electronic
Contract Management System (Ecms). J. Bus. Educ. Leadersh. 2019, 9, 67-75. Available online: http:/ /asbbs.org/files /2019 /JBEL_
Vol9_Fall_2019.pdf#page=67 (accessed on 15 July 2022).

Simi¢, S.; Markovi¢, M.; Gostoji¢, S. Smart contract and blockchain based contract management system. In Proceedings of the
7th Conference on the Engineering of Computer Based Systems, ECBS 2021, Novi Sad, Serbia, 2627 May 2021; Association for
Computing Machinery: New York, NY, USA, 2021. [CrossRef]

Zou, J.; Wang, Y.; Lin, K.J. A formal service contract model for accountable SaaS and Cloud Services. In Proceedings of the 2010
IEEE International Conference on Services Computing, Miami, FL, USA, 5-10 July 2010; pp. 73-80. [CrossRef]

Perrin, O.; Godart, C. An approach to implement contracts as trusted intermediaries. In Proceedings of the First IEEE International
Workshop on Electronic Contracting, San Diego, CA, USA, 6 July 2004; pp. 71-78. [CrossRef]

http://dx.doi.org/10.1080/1097198X.2019.1569186
http://dx.doi.org/10.3233/SW-210438
http://jec.unm.edu/education/online-training/contract-law-tutorial/breach-of-contract
https://smashhit.eu/
http://dx.doi.org/10.1016/j.autcon.2021.103981
http://dx.doi.org/10.1016/j.future.2021.08.023
https://joinup.ec.europa.eu/taxonomy/term/http_e_f_fdata_ceuropa_ceu_fdr8_fSemanticAgreement
https://joinup.ec.europa.eu/taxonomy/term/http_e_f_fdata_ceuropa_ceu_fdr8_fSemanticAgreement
http://dx.doi.org/10.5281/zenodo.3246477
http://dx.doi.org/10.1007/978-3-030-37439-6
http://dx.doi.org/10.1145/3447772
https://www.bloomsburycollections.com/book/smart-contracts-technological-business-and-legal-perspectives/
https://www.bloomsburycollections.com/book/smart-contracts-technological-business-and-legal-perspectives/
http://dx.doi.org/10.5040/9781509937059.ch-004
http://dx.doi.org/10.1002/9781119708063.ch22
https://corporatefinanceinstitute.com/resources/knowledge/deals/smart-contracts/
https://ssrn.com/abstract=4049371
http://dx.doi.org/10.3390/s22030985
http://dx.doi.org/10.1016/j.future.2021.06.001
http://dx.doi.org/10.3390/bdcc5040057
http://dx.doi.org/10.3390/s22072763
http://dx.doi.org/10.1109/SCC.2015.74
http://dx.doi.org/10.1023/A:1022445108617
https://www.ontotext.com/knowledgehub/fundamentals/nosql-graph-database/
http://dx.doi.org/10.1109/ACCESS.2021.3049562
http://dx.doi.org/10.1051/e3sconf/202016409018
http://asbbs.org/files/2019/JBEL_Vol9_Fall_2019.pdf#page=67
http://asbbs.org/files/2019/JBEL_Vol9_Fall_2019.pdf#page=67
http://dx.doi.org/10.1145/3459960.3459975
http://dx.doi.org/10.1109/SCC.2010.85
http://dx.doi.org/10.1109/WEC.2004.1319511

Information 2022, 13, 447 27 of 28

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

45.
46.
47.
48.
49.
50.
51.

52.
53.

54.

55.

56.
57.

58.
59.
60.
61.
62.

63.
64.

Kabilan, V.; Johannesson, P. Semantic representation of contract knowledge using multi tier ontology. In Proceedings of the
First International Conference on Semantic Web and Databases, SWDB’03, Berlin, Germany, 7-8 September 2003; CEUR-WS.org:
Aachen, DEU, 2003; pp. 378-397. [CrossRef]

De Cesare, S.; Geerts, G.L. Toward a perdurantist ontology of contracts. In Proceedings of the International Conference on
Advanced Information Systems Engineering, Gdarsk, Poland, 25-26 June 2012; Springer: Cham, Switzerland, 2012; pp. 85-96.
[CrossRef]

Petrova, G.G.; Tuzovsky, A.F,; Aksenova, N.V. Application of the Financial Industry Business Ontology (FIBO) for development
of a financial organization ontology. J. Phys. Conf. Ser. 2017, 803, 012116. [CrossRef]

Matthias, G. The Impact of the Gdpr on Third-Party Contracts in the Cloud Service Industry (Tilburg University, 2019). Available
online: http://arno.uvt.nl/show.cgi?fid=149355 (accessed on 20 July 2022).

Doe, S. Practical Privacy: Report from the GDPR World. Leg. Inf. Manag. 2018, 18, 76-79. [CrossRef]

Ferrari, V. EU Blockchain Observatory and Forum Workshop on GDPR, Data Policy and Compliance. Soc. Sci. Res. Netw. (SSRN)
Electron. J. 2018, 8. [CrossRef]

Strano, M.; Molina-Jimenez, C.; Shrivastava, S. Implementing a rule-based contract compliance checker. In Proceedings of the 9th IFIP
WG 6.1 Conference on e-Business, e-Services and e-Society, I3E 2009, Nancy, France, 23-25 September 2009; Godart, C., Gronau, N.,
Sharma, S., Canals, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 96-111. [CrossRef]

Mamadolimova, A.; Ambiah, N.; Lukose, D. Modeling Islamic finance knowledge for contract compliance in Islamic banking. In
Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Kaiserslautern,
Germany, 12-14 September 2011; Springer: Cham, Switzerland, 2011; pp. 346-355. [CrossRef]

Pantlin, N.; Wiseman, C.; Everett, M. Supply chain arrangements: The ABC to GDPR compliance—A spotlight on emerging
market practice in supplier contracts in light of the GDPR. Comput. Law Secur. Rev. 2018, 34, 881-885. [CrossRef]

Barati, M.; Rana, O. Tracking GDPR Compliance in Cloud-Based Service Delivery. IEEE Trans. Serv. Comput. 2022, 15, 1498-1511.
[CrossRef]

Cambronero, M.E,; Llana, L.; Pace, G.J. Timed contract compliance under event timing uncertainty. In Proceedings of the Legal
Knowledge and Information Systems: JURIX 2017: The Thirtieth Annual Conference JURIX, Luxembourg, 13-15 December 2017;
pp. 33-38. [CrossRef]

The smashHitCore Ontology. Available online: https://gitlab.atb-bremen.de/smashhit/semantic-model/-/blob/master/
smashHitCore.owl (accessed on 5 March 2022).

Irwin, K.; Yu, T.; Winsborough, W.H. On the modeling and analysis of obligations. In Proceedings of the 13th ACM Conference
on Computer and Communications Security, Alexandria, VA, USA, 30 October-3 November 2006; pp. 134-143. [CrossRef]
Resource Description Framework (RDF) Sparql Query. Available online: https:/ /www.w3.org/TR/rdf-sparql-query/ (accessed
on 1 June 2022).

Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, E; Mustafin, R.; Safina, L. Microservices: Yesterday, today, and
tomorrow. In Present and Ulterior Software Engineering; Springer: Cham, Switzerland, 2017; pp. 195-216. [CrossRef]

Ontotext GraphDB. Available online: https://www.ontotext.com/products/graphdb/ (accessed on 1 June 2022).
Flask-apscheduler. Available online: https://viniciuschiele.github.io/flask-apscheduler/ (accessed on 1 June 2022).

Contract Compliance Verification GitHub Repository. Available online: https:/ /github.com/AmarTauqgeer/Contract/tree/
master/backend/ (accessed on 1 June 2022).

Swagger API Documentation. Available online: https://swagger.io/solutions/api-documentation/ (accessed on 1 June 2022).
[zdemir, F,; [demis {zger, Z.; Rivest-Shamir-Adleman algorithm. In Partially Homomorphic Encryption; Springer: Cham, Switzerland,
2021; pp. 37-41. [CrossRef]

Selent, D. Advanced encryption standard. Rivier Acad. |. 2010, 6, 1-14. Available online: https:/ /www?2.rivier.edu/journal /roaj-
fall-2010/j455-selent-aes.pdf (accessed on 25 June 2022).

Van Rossum, G.; Warsaw, B.; Coghlan, N. PEP 8-style guide for python code. Python. org 2001, 1565, 28. Available online:
http:/ /cnl.sogang.ac.kr/cnlab/lectures /programming/python/PEP8_Style_Guide.pdf (accessed on 18 June 2022).

JSON Web Tokens (JWT). Available online: https:/ /www.json.org/json-en.html (accessed on 20 June 2022).

Conference of the Independent Data Protection Supervisory Authorities of the Federation and the Lander. The Standard Data
Protection Model—A Method for Data Protection Advising and Controlling on the Basis of Uniform Protection Goals, Version
2.0b. 2020. Available online: https://www.datenschutzzentrum.de/uploads/sdm/SDM-Methodology_V2.0b.pdf (accessed on
20 July 2022).

Python. Available online: https://www.python.org/ (accessed on 8 June 2022).

Flask. Available online: https://flask.palletsprojects.com/en/2.0.x/ (accessed on 8 June 2022).

Flask-RESTful. Available online: https:/ /flask-restful.readthedocs.io/en/latest/ (accessed on 8 June 2022).
Flask-SQLAlchemy. Available online: https:/ /flask-sqlalchemy.palletsprojects.com/en/2.x/ (accessed on 8 June 2022).
Flask-Apispec: Auto-Documenting REST APIs for Flask. Available online: https://flask-apispec.readthedocs.io/en/latest/
(accessed on 8 June 2022).

PyCryptodome. Available online: https:/ /www.pycryptodome.org/en/latest/src/introduction.html (accessed on 8 June 2022).
SPARQL Endpoint Interface to Python. Available online: https://sparqlwrapper.readthedocs.io/en/latest/ (accessed on
8 June 2022).

http://dx.doi.org/10.5555/2889905.2889930
http://dx.doi.org/10.1007/978-3-642-31069-0_7
http://dx.doi.org/10.1088/1742-6596/803/1/012116
http://arno.uvt.nl/show.cgi?fid=149355
http://dx.doi.org/10.1017/S1472669618000178
http://dx.doi.org/10.2139/ssrn.3247494
http://dx.doi.org/10.1007/978-3-642-04280-5_9
http://dx.doi.org/10.1007/978-3-642-23854-3_37
http://dx.doi.org/10.1016/j.clsr.2018.06.009
http://dx.doi.org/10.1109/TSC.2020.2999559
http://dx.doi.org/10.3233/978-1-61499-838-9-33
https://gitlab.atb-bremen.de/smashhit/semantic-model/-/blob/master/smashHitCore.owl
https://gitlab.atb-bremen.de/smashhit/semantic-model/-/blob/master/smashHitCore.owl
http://dx.doi.org/10.1145/1180405.1180423
https://www.w3.org/TR/rdf-sparql-query/
http://dx.doi.org/10.1007/978-3-319-67425-4_12
https://www.ontotext.com/products/graphdb/
https://viniciuschiele.github.io/flask-apscheduler/
https://github.com/AmarTauqeer/Contract/tree/master/backend/
https://github.com/AmarTauqeer/Contract/tree/master/backend/
https://swagger.io/solutions/api-documentation/
http://dx.doi.org/10.1007/978-3-030-87629-6_3
https://www2.rivier.edu/journal/roaj-fall-2010/j455-selent-aes.pdf
https://www2.rivier.edu/journal/roaj-fall-2010/j455-selent-aes.pdf
http://cnl.sogang.ac.kr/cnlab/lectures/programming/python/PEP8_Style_Guide.pdf
https://www.json.org/json-en.html
https://www.datenschutzzentrum.de/uploads/sdm/SDM-Methodology_V2.0b.pdf
https://www.python.org/
https://flask.palletsprojects.com/en/2.0.x/
https://flask-restful.readthedocs.io/en/latest/
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask-apispec.readthedocs.io/en/latest/
https://www.pycryptodome.org/en/latest/src/introduction.html
https://sparqlwrapper.readthedocs.io/en/latest/

Information 2022, 13, 447 28 of 28

65.
66.
67.

68.

69.

70.

71.

72.

Docker. Available online: https://www.docker.com/ (accessed on 8 June 2022).

PyJWT. Available online: https://pyjwt.readthedocs.io/en/stable/ (accessed on 8 June 2022).

Marshmallow: Simplified Object Serialisation. Available online: https://marshmallow.readthedocs.io/en/stable/index.html
(accessed on 4 April 2022).

Federal Information Processing Standards Publication (FIPS), P. 197. Advanced Encryption Standard (AES), National Institute of
Standards and Technology, US Department of Commerce. Available online: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.19
7.pdf (accessed on 20 July 2022).

Garg, N.; Yadav, P. Comparison of asymmetric algorithms in cryptography. J. Comput. Sci. Mob. Comput. (IJCSMC) 2014,
3,1190-1196. Available online: https:/ /www.ijcsmc.com/docs/papers/April2014/V314201499a73.pdf (accessed on 17 July 2022).
Unit Testing Framework. Available online: https://docs.python.org/3/library /unittest.html (accessed on 16 June 2022).
Pellegrini, T.; Mireles, V.; Steyskal, S.; Panasiuk, O.; Fensel, A.; Kirrane, S. Automated rights clearance using semantic web
technologies: The DALICC framework. In Semantic Applications: Methodology, Technology, Corporate Use; Hoppe, T., Humm, B.,
Reibold, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 203-218. [CrossRef]

Licence Clearance Tool Description and Documentation. Available online: https://wiki.ni4os.eu/index.php/LicenseClearanceTool-
DescriptionandDocumentation (accessed on 16 June 2022).

https://www.docker.com/
https://pyjwt.readthedocs.io/en/stable/
https://marshmallow.readthedocs.io/en/stable/index.html
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://www.ijcsmc.com/docs/papers/April2014/V3I4201499a73.pdf
https://docs.python.org/3/library/unittest.html
http://dx.doi.org/10.1007/978-3-662-55433-3_14
https://wiki.ni4os.eu/index.php/License Clearance Tool - Description and Documentation
https://wiki.ni4os.eu/index.php/License Clearance Tool - Description and Documentation

	Introduction
	Related Work
	Contract Management
	Semantic Modelling
	Compliance Verification

	Approach
	Semantic-Based Contract Model
	CCV
	CCV Scenarios
	B2C or B2B Contracts
	Consent-Based Compliance Verification on B2C Contracts
	Consent-Based Compliance Verification on B2B Contracts

	Architectural Design and Implementation
	CCV Architectural Design
	Core
	API Layer
	Resources
	Remote Storage
	Contract Compliance Scheduler
	Contract REST API

	Implementation
	The Implementation of TOMs
	System Setup for Evaluation
	Automated GDPR CCV Tool Implementation

	Evaluation
	CCV Performance Evaluation
	TOMs Evaluation

	Conclusions and Future Work
	Appendix A
	References

