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Abstract: The outstanding performance recently reached by neural language models (NLMs) across
many natural language processing (NLP) tasks has steered the debate towards understanding whether
NLMs implicitly learn linguistic competence. Probes, i.e., supervised models trained using NLM
representations to predict linguistic properties, are frequently adopted to investigate this issue.
However, it is still questioned if probing classification tasks really enable such investigation or if
they simply hint at surface patterns in the data. This work contributes to this debate by presenting
an approach to assessing the effectiveness of a suite of probing tasks aimed at testing the linguistic
knowledge implicitly encoded by one of the most prominent NLMs, BERT. To this aim, we compared
the performance of probes when predicting gold and automatically altered values of a set of linguistic
features. Our experiments were performed on Italian and were evaluated across BERT’s layers and
for sentences with different lengths. As a general result, we observed higher performance in the
prediction of gold values, thus suggesting that the probing model is sensitive to the distortion of
feature values. However, our experiments also showed that the length of a sentence is a highly
influential factor that is able to confound the probing model’s predictions.

Keywords: neural language models; BERT; probing tasks; treebanks; Italian language

1. Introduction

The rise of large pre-trained neural language models (NLMs) has revolutionized
the field of natural language processing (NLP) in the last five years. In particular, the
introduction of deep contextualized models based on the Transformer architecture [1],
which is able to learn word vectors that are sensitive to the context in which words appear,
has yielded significant improvements in many NLP tasks [2–4]. Even with some differences
concerning the sizes of their parameters, architectures, and training datasets [5–7], these
models are all pre-trained on large amounts of text and, subsequently, fine-tuned on task-
specific, supervised downstream tasks. Among the many Transformer-based models, BERT
(Bidirectional Encoder Representations from Transformers) was the first one to push the
state of the art in many areas of NLP [8].

However, it is well known in the literature that the remarkable ability of BERT—and
of NLMs in general—to perform numerous language-understanding tasks goes with an
opaqueness concerning the interpretation of their internal mechanisms. Particular interest
has been devoted in the last few years to the investigation of the linguistic abilities implicitly
encoded by models [9]. Namely, several methods have been proposed to obtain meaningful
explanations of how NLMs are able to capture syntax- and semantic-sensitive phenomena [10],
also taking inspiration from human language experiments [11,12]. They range from the
analysis of attention mechanisms [13] and the definition of diagnostic tests [14] to the
implementation of explainability techniques via, e.g., integrated gradients [15]. One of the
most explored methods is the definition of probing tasks, which a model can solve only if it
has encoded a precise linguistic phenomenon within its representations [16].

However, despite the amount of work based on the diagnostic probing approach, as
outlined by Belinkov [17], there are still several open questions, such as the following:
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Which probing model should we use to assess the linguistic competence of an NLM? Are
probes the most effective strategy for achieving such a goal? These questions fostered two
complementary lines of research. The first one is devoted to modifying the architectures of
current probing models; the other one is focused on evaluating their effectiveness. Both are
still not well-investigated issues, although their importance for advancing the research on
the evaluation of NLMs’ linguistic competencies has been widely recognized.

This study would contribute to the debate on the effectiveness of the probing paradigm
as a diagnostic method to assess the linguistic knowledge implicitly encoded by BERT. To
achieve this goal, we defined a multifaced approach that comprised a number of exper-
iments aimed at comparing the performance of a probing model that was trained using
BERT representations to predict the values of a set of sentence-level properties extracted
from the Italian Universal Dependency Treebank [18] and from a suite of control datasets
that we specifically built for the purpose of this study. Starting with and extending the
methodology introduced by Miaschi et al. [19], we define as the control dataset a set of
linguistic features whose values are automatically altered in order to be increasingly differ-
ent from the values in the treebank, which are referred to as gold values. Our underlying
hypothesis is the following: If the probing model’s predictions of the variously altered
values diverge from the predictions of the gold values, this possibly suggests that the
corresponding probing tasks are effective strategies for testing the linguistic knowledge
embedded in BERT representations. We will discuss the results of the experiments in light
of this hypothesis. The remainder of this paper is organized as follows. We present our
background and related work in Section 2. Section 3 introduces our methodology and
presents the data, the monitored linguistic features, and the models used in the study.
Section 4 presents the results, and in Section 5, we will draw the conclusions.

Contributions

With respect to the previous literature, the main contributions of our work lie in the
following points:

• We present a methodology for testing the reliability of probing tasks by building
control datasets at diverse levels of complexity;

• We assess the extent to which the linguistic knowledge encoded by BERT is influenced
by the length of a sentence and how the length can represent a confounding factor that
may bias the real estimate of BERT’s knowledge of a wide variety of (morpho-)syntactic
phenomena;

• We test the effectiveness of the diagnostic probing task approach on Italian, a language
frequently neglected by studies on probing.

2. The Diagnostic Probing Paradigm

In the last few years, the analysis of the inner workings of state-of-the-art neural
language models (NLMs) has become one of the most popular lines of research in NLP.
In particular, great efforts have been devoted to obtaining meaningful explanations about
their linguistic competence in order to understand the extent to which these models are
able to capture linguistic properties targeting a variety of domains [20]. These approaches
range from the definition of fill-the-gap probes [14] and probing tasks that a model can
only solve if it has encoded a precise linguistic phenomenon [16,21,22] to the analysis of
attention mechanisms [23–25] and correlations between representations [26].

Among the different strategies developed to study the implicit language competencies
encoded by NLMs, the diagnostic probing task approach has emerged as one of the most com-
monly adopted ones. The idea behind the probing paradigm is actually quite simple: using
a diagnostic classifier, the probing model or probe, which takes the output representations of
an NLM as input, to perform a probing task, e.g., to predict a given language property. If the
probing model correctly predicts the property, then we can assume that the representations
somehow encode that property.
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Studies relying on this approach reported that NLMs’ contextual representations are
able to encode a broad spectrum of linguistic properties, from information about parts of
speech (POSs) and other morphological properties to syntactic and semantic information.
In particular, these works demonstrated that NLMs learn a variety of language properties
in a hierarchical manner [10,27,28] and that their representations also support the extraction
of dependency parse trees [29]. By training a simple probing classifier that has access only
to the per-token contextual embeddings of a BERT model, Tenney et al. [30] showed that
the order in which specific abstractions are encoded within the internal representations
reflects the traditional hierarchy of the NLP pipeline: POS tags are processed earliest,
followed by constituents, dependencies, semantic roles, and coreference. Liu et al. [31],
instead, quantified differences in the transferability of individual layers between different
NLMs, showing that higher layers of ELMo [32] are more task-specific (less general), while
transformer layers (BERT) do not exhibit this increase in task-specificity.

Despite this emerging body of work, there are still several open questions about how
probing tasks should be designed, how complex a probe should be allowed to be, and
whether probes actually show the linguistic generalization abilities of NLMs rather than
learning the linguistic tasks [17]. In the first line of research, which deals with the design of
probing classifiers, several works investigated which model should be used as a probe and
which metric should be employed to measure the performance. In this respect, it is still
questioned if one should rely on simple models [29,31,33] or more complex ones [34,35] in
terms of model parametrization. For instance, Voita and Titov [35] suggested designing
alternative probes by using a novel information-theoretic approach that balanced a probe’s
inner complexity with its task performance. Although this line of research raises many
interesting questions, in this work, we take distance from it and investigate the probing
paradigm from a different viewpoint.

Our perspective is closer to the second line of research on the probing task approach,
which, indeed, is concerned with testing the evaluation of the effectiveness of probing
models. Embracing such a line, for example, Hewitt and Liang [21] suggested that probing
tasks might conceal the information about an NLM representation behind the ability of
a probe to learn surface patterns in data. To test this intuition, they introduced the idea
of control tasks, a set of tasks that associated word types with random outputs that could
be solved by simply learning regularities. Measuring the difference between the accuracy
on linguistic tasks and on control tasks (a property defined as selectivity), they identified
‘good’ probes as the ones for which the model achieved high linguistic task accuracy
and low control task accuracy, thus providing insights into the linguistic properties of a
representation. Along the same line, Ravichander et al. [36] tested probing tasks by creating
control datasets in which a property was always reported in a dataset with the same value;
thus, it was not discriminative for testing the information contained in the representations.
Their experiments highlighted that a probe may also incidentally learn a property, thus
casting doubts on the effectiveness of probing tasks.

While sharing the same goal as that in these previous works, our study differs in two
main respects. Firstly, we followed an approach similar to that of Hewitt and Liang [21],
but we introduce a methodology for progressively testing the effectiveness of probing
models by devising diverse control tasks differing at the level of increasing complexity
and intending to address a larger set of linguistic phenomena. Secondly, we focus on the
Italian language, which is much less explored in the area of interpretability. In fact, the
majority of research is focused on English or, at most, multilingual models, with only a few
exceptions [37–39].

3. Methodology

The methodology that we devised is aimed at testing whether a diagnostic probing
model really encodes the linguistic competencies of an NLM or simply learns the regulari-
ties of one or more probing tasks. To this aim, we trained a probing model by using BERT
sentence representations, as described in Section 3.4, and then tested its performance in
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the resolution of a set of linguistic tasks. These tasks consisted of predicting the values of
various linguistic features (see Section 3.2) extracted from different sections of the Italian
Universal Dependency Treebank (IUDT).

The probing model was tested in two main scenarios. In the first one, the model
had to predict gold features, i.e., the real values of the features in IUDT sentences. In the
second scenario, the gold values were altered based on multiple strategies in order to obtain
alternative datasets at different control levels. As discussed in Section 3.3, this scenario,
which was articulated into multiple ones, was based on the rationale that if the predictions
of the probing model were more accurate and, thus, more similar to the gold values than
to the automatically altered ones, then we might assume that BERT’s representations do
encode the linguistic knowledge required to solve the task. Consequently, the intuition is
that the probing model has not simply learned some regularities that are possibly found in
the dataset and used them to solve the linguistic task.

3.1. Data

For our experiments, we relied on the Italian Universal Dependencies Treebank (IUDT),
version 2.5. The IUDT contains a total of 35,480 sentences and 811,488 tokens, and it consists
of a combination of four sections that are representative of the standard Italian language, i.e.,
the Italian version of the multilingual Turin University Parallel Treebank (ParTUT) [40], the
Venice Italian Treebank (VIT) [41], the Italian Stanford Dependency Treebank (ISDT) [42],
PUD [43], and of two sections including examples of social media texts, i.e., PoSTWITA [44]
and TWITTIRÒ [45].

Considering the high variability in terms of sentence length in the IUDT, which
contains sentences ranging from 1 to 310 tokens long, we decided to split the treebank into
three subsets, which contained the shortest, the standard, and the longest sentences. The
larger subset was the Standard one; it contained 21,991 sentences with a length between
10 and 30 tokens. This is a quite typical length in Italian, a language in which the average
sentence length is equal to about 20 tokens, such as in this example sentence acquired from
the Standard subset: ‘Un rumore infernale, simile al passaggio di un treno, risuona nei corridoi
sotterranei che solcano Rochester’ (trad. ‘An infernal noise, similar to the passage of a train,
resounds in the underground corridors that run through Rochester’).

The other two subsets comprised sentences whose lengths were less standard. Within
the Shortest subset, we included 5538 sentences whose length was up to 9 tokens. This set
covered many examples of nominal or elliptical sentences, including, for instance, news
titles (e.g., ‘Battesimo per l’opera verdiana.’, trad. ‘Baptism for Verdi’s opera.’), short questions
(e.g., ‘Come si spiega un simile risultato?’, trad. ‘How can such a result be explained?’),
and sentences showing a quite simple syntactic structure (e.g., ‘Questa ricchezza è tutta
apparenza.’, trad. ‘This wealth is all appearance’). Note that, for this subset, we excluded
sentences with less than 3 tokens (288 in the dataset), since they do not show a proper
syntactic structure given that they generally consist of a single token plus punctuation.
The set of long sentences, on the other hand, comprised sentences whose length ranged
between 31 and 100 tokens, and it contained 7585 sentences. The following 58-token-long
sentence represents a quite typical example of sentences belonging to the Longest subset:
‘Una giornata convulsa durante la quale il presidente della Regione Lazio, Renata Polverini, è
arrivata vicina alle dimissioni in seguito alla crisi generata dall’abuso di fondi pubblici da parte del
Pdl laziale per il quale è indagato, con l’accusa di peculato, l’ex capogruppo Franco Fiorito.’, trad.
‘It was a convulsive day during which the President of the Lazio Region, Renata Polverini,
came close to resigning following the crisis generated by the misuse of public funds by the
Lazio PDL, for which former group leader Franco Fiorito is under investigation on charges
of embezzlement.’. The IUDT reported an additional 78 sentences longer than 100 tokens,
which we excluded from the experiments since we noticed that they were characterized
by a debatable annotation, possibly caused by an erroneous sentence splitting. Note that,
for the specific purpose of the experiments conducted in this study, we undersampled the
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Longest set to 5538 sentences, which we randomly selected, in order to balance it to the set
of sentences in the Shortest subset.

3.2. Linguistic Features

In order to probe the linguistic competence encoded by the language model, we relied
on the approach proposed for the first time by Miaschi et al. [22], which consisted of predict-
ing the values of multiple linguistic features of a sentence by using the model’s representa-
tions. The set of linguistic features was based on the one described in Brunato et al. [46],
which included about 130 features representative of the linguistic structure underlying a
sentence and derived from raw, morpho-syntactic, and syntactic levels of annotation. In
this study, we selected the 77 most frequent features occurring in the IUDT sections in order
to prevent data sparsity issues. As can be seen in Table 1, they were grouped into seven
main types of linguistic phenomena, which ranged from morpho-syntactic and inflectional
properties to more complex aspects of sentence structure (e.g., the depth of the whole syn-
tactic tree), to features referring to the structures of specific sub-trees, such as the relative
order of subjects and objects with respect to the verb, and to the use of subordination.

Table 1. Probing features used in the experiments grouped into seven main types of linguistic phenomena.

Linguistic Feature Label

Order of elements (Order)
Relative order of subject and object subj_pre, subj_post, obj_post

Morpho-syntactic information (POS)
Distribution of UD and language-specific POS upos_dist_*, xpos_dist_*

Use of Subordination (Subord)
Distribution of subordinate clauses subordinate_prop_dist

Average length of subordination chains and
distribution by depth avg_subord_chain_len, subordinate_dist_1

Relative order of subordinate clauses subordinate_post

Syntactic Relations (SyntacticDep)
Distribution of dependency relations dep_dist_*

Global and Local Parsed Tree Structures (TreeStructure)
Depth of the whole syntactic tree parse_depth

Average length of dependency links and of the
longest link avg_links_len, max_links_len

Average length of prepositional chains and
distribution by depth avg_prep_chain_len, prep_dist_1

Clause length avg_token_per_clause

Inflectional morphology (VerbInflection)
Inflectional morphology of lexical verbs and

auxiliaries verbs_*, aux_*

Verbal Predicate Structure (VerbPredicate)
Distribution of verbal heads and verbal roots verbal_head_dist, verbal_root_perc
Verb arity and distribution of verbs by arity avg_verb_edges, verbal_arity_*

We chose to rely on these features for two main reasons. Firstly, they have been shown
to be highly predictive when leveraged by traditional learning models on various classifica-
tion problems where linguistic information plays a fundamental role [46]. In addition, they
are multilingual, as they are based on the Universal Dependency formalism for sentence
representation [47]. In fact, they were successfully used to profile the knowledge encoded
in the language representations of contextual NLMs for both the Italian [38] and English
languages [22].

Figure 1 exemplifies some of them that were extracted from the following sentence
acquired from the Standard subset:
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(1) In Svizzera, alcuni militanti si sono arrampicati sul tetto dell’ambasciata. [trad. ‘In Switzer-
land, some militants climbed onto the roof of the embassy.’]

Figure 1. Linguistic annotation based on the UD scheme of the example sentence.

Relying on the morpho-syntactic level of IUDT annotation, we can observe, for exam-
ple, that the above sentence features 20% of prepositions (ADP), 6.66% of verbs (VERB),
and 20% of nouns (NOUN) out of the total number of parts of speech. Considering the
features referring to the global syntactic structure, the depth of the whole syntactic tree of
the sentence is equal to 3, corresponding to the two intermediate dependency links that are
crossed in the path going from the root of the sentence (arrampicati, ‘climbed’) to each of the
more distant leaf nodes, represented by the words di (‘of’) and l’ (‘the’), which compose the
articulated preposition dell’ dependent on the word ambasciata (‘embassy’). Focusing on the
local tree structure, the longest dependency relation is 6 tokens long, which corresponds to
the number of tokens occurring linearly between the syntactic head arrampicati (‘climbed’)
and the oblique object (obl) Svizzera (‘Switzerland’), and we can observe a one-link-long
prepositional complement chain (nmod) dell’ambasciata (‘of the embassy’) headed by the
noun tetto (‘roof’). In addition, the sentence is characterized by a canonical order of nuclear
elements, since the nominal subject militanti (‘militants’) is in a pre-verbal position, which
is the preferred order in Italian.

In this study, the values of each feature acquired from the IUDT represent the gold
values. Table 2 reports the average distribution (Mean) and coefficient of variation (CV)
of each group of linguistic features, computed as a mean of the values of every single
feature included in the group. As can be noted, the mean values varied consistently across
the three IUDT subsets, since we accounted for many different linguistic phenomena
characterized by diverse ranges of values. As expected, most features were influenced
by the length of the sentences being considered. In fact, while the mean values increased
with the sentence length, the coefficients of variation, which captured the extent of values’
variabilities within the same subset, tended to decrease as we approached the Longest
subset. This suggests that, as sentences get longer, linguistic features tend to show higher
but more stable values, while the opposite happened on sentences belonging to the Shortest
subset. For the purposes of our experiments, the gold values reported in the gold dataset
(IUDT) were automatically altered to generate control datasets.

Table 2. Average values and coefficients of variation of each macro-group of gold linguistic features
extracted from the sentences in the Shortest, Standard, and Longest subsets of the IUDT.

Shortest Standard Longest

Feat. Group Mean CV Mean CV Mean CV

Order 19.83 1.04 40.45 0.55 52.96 0.34
POS 3.56 0.14 3.56 0.09 3.68 0.03

Subord 16.73 0.96 36.51 0.58 48.67 0.29
SyntacticDep 5.36 0.19 5.33 0.13 5.51 0.08
TreeStructure 4.62 1.17 11.66 0.56 17.37 0.29
VerbInflection 23.21 0.80 38.38 0.47 47.38 0.33
VerbPredicate 16.60 0.78 23.17 0.39 25.97 0.22
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3.3. Control Datasets

We created two main types of control datasets for each subset of the IUDT, which
were obtained by automatically altering the gold feature values according to different
strategies. The first main type, hereafter referred to as Swapped, was built by shuffling the
original values of each feature across sentences; the second type, Random, contained values
that were randomly generated within the maximum and the minimum values that each
feature showed in the gold datasets. To clarify, consider the following example involving
the feature average link length, which captures the average linear distance between
dependents and their syntactic head within a sentence. In the Swapped variant, we simply
exchanged the feature values between sentences; thus, a sentence of the Standard subset
that originally showed an average link length of, e.g., 2.86, could be changed to 8.83, a
value that was originally associated with a different sentence. Note, in fact, that both are
real values extracted from our dataset with respect to the considered feature, and they were
simply randomly reassigned to a different sentence. When building the Random variant, all
of the sentences here considered were associated with a feature value that was randomly
generated between 1.33 and 9.78, and they were the reported minimum and maximum
average link length values in the dataset (Standard subset).

Since the values of many considered features were highly influenced by the lengths of
the sentences, we defined two additional alteration strategies to be combined with the main
ones that accounted for such a property. In the first sub-type, Bins, we grouped sentences
falling into the same predefined range of sentence lengths (i.e., 10–15, 15–20, 20–25, and
25–30 tokens). In a second sub-type, Lengths, we created groups of sentences with exactly
the same length. Note that we applied these strategies only to sentences from the Standard
subset, since the other two subsets did not present a considerable number of sentences for
a given length.

Note that the different data-altering strategies were conceived to represent challenging
testbeds to assess the effectiveness of our probing tasks in different scenarios. The Swapped
control datasets were possibly the most challenging ones, as the swapped feature values
might be quite similar to the gold ones and, thus, were possibly predicted with a high
accuracy by the probing model. This intuition seemed to be confirmed by the differences
between the values of the gold and each control dataset, which were obtained by averaging
the differences between the gold and the altered values that each sentence had in the
corresponding dataset. This held both in the Standard (Table 3) and in the Shortest and
Longest subsets (Table 4). As can be noted, lower differences were reported for the Swapped
control datasets, both on average and for each features group, in all subsets. Indeed, while
the Random strategy tended to produce datasets where all possible values ranging between
the maximum and minimum of that feature were equally distributed along sentences, the
Swapped option simply shuffled gold values across sentences (namely, the mean value of a
feature in the dataset did not change), producing untruthful but more plausible datasets.

Table 3. Average differences between the values of linguistic features in the Gold dataset and each
Control dataset for each of the seven macro-groups.

Random Swapped

Group Random Bins Lengths Swapped Bins Lengths

Order 0.48 0.48 0.48 0.41 0.40 0.40
POS 0.40 0.31 0.25 0.12 0.12 0.12

Subord 0.43 0.41 0.41 0.38 0.35 0.35
SyntacticDep 0.40 0.31 0.25 0.15 0.13 0.12
TreeStructure 0.36 0.28 0.25 0.20 0.18 0.18
VerbInflection 0.47 0.47 0.47 0.44 0.43 0.44
VerbPredicate 0.42 0.41 0.40 0.26 0.25 0.25

Average 0.42 0.38 0.36 0.28 0.27 0.26
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Table 4. Average differences between the values of linguistic features in the Gold dataset and each
Control dataset for each of the seven macro-groups considering only the Shortest and Longest subsets.

Shortest Longest

Group Random Swapped Random Swapped

Order 0.50 0.32 0.46 0.35
POS 0.43 0.13 0.38 0.13

Subord 0.49 0.20 0.39 0.28
SyntacticDep 0.44 0.13 0.37 0.15
TreeStructure 0.37 0.22 0.37 0.14
VerbInflection 0.50 0.34 0.44 0.42
VerbPredicate 0.46 0.24 0.39 0.21

Average 0.46 0.23 0.40 0.24

3.4. Models

For all experiments, we relied on a pre-trained Italian version of the BERT model,
one of the most prominent NLMs. Specifically, we used the base-case BERT developed
by the MDZ Digital Library Team, which was available through Huggingface’s Transform-
ers library [48] (https://huggingface.co/dbmdz/bert-base-italian-xxl-cased (accessed on
20 February 2023)). The model was trained by using the Italian Wikipedia and the OPUS
corpus [49]. To obtain the sentence-level representations for each of the 12 layers of BERT,
we leveraged the activation of the first input token [CLS].

The probing model was a linear support vector regression model (LinearSVR). The
model took as input the above layer-wise sentence-level representations, and it predicted
the value of each considered feature in the Gold and Control datasets. Specifically, we
trained and tested the probing model by adopting a cross-validation process on each
dataset individually. To this aim, we split each dataset into five portions containing the
same number of randomly selected sentences; then, we iteratively trained the probing
model on four portions and used the remaining fifth as a test set. This way, the model was
trained by using a representative sample of the dataset at each iteration.

As an evaluation metric, we used the Spearman correlation coefficient between the
values of the linguistic features in the gold and control datasets and their values when
predicted by the probing model by using BERT’s sentence-level representations as input.
In the remainder of this paper, we refer to the evaluation metric as the probing score.

Since previous work already showed the ability of pre-trained NLMs to outperform
simple baselines (e.g., a linear model trained using only sentence length as an input feature)
in the resolution of probing tasks [50], in this current paper, we did not perform a direct
comparison with a baseline. Nevertheless, since the focus of this work is on assessing
the sensitivity of BERT to distorted feature values, the control datasets can be viewed as
baselines themselves.

4. Results

Our first analysis was devoted to assessing BERT’s abilities in the prediction of the
authentic values of the Gold dataset. These results represent the reference performance
against which we compared the performance obtained on the diverse control datasets that
we built. To better appreciate the impact of sentence length as a possible confounder of the
probing approach that we devised, we kept separated the discussion of the results obtained
on the Standard subset from the outcomes of the probing tasks performed on the Shortest
and Longest subsets.

4.1. Probing on the Standard Subset

As a first analysis, we probed BERT’s linguistic competence with respect to the seven
groups of probing features. Figure 2 shows how the model’s abilities to predict the con-
sidered linguistic phenomena in the Gold dataset changed across layers. As can be noted,

https://huggingface.co/dbmdz/bert-base-italian-xxl-cased
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regardless of the group, BERT tended to lose knowledge as the output layer approached.
As suggested by Liu et al. [31], this could be due to the fact that the representations that
were better suited for language modeling were also those that exhibited worse probing task
performance, indicating that the Transformer layers traded off between encoding general
and probed features. However, in line with what was observed by Miaschi et al. [22,38]
for the Italian and English languages, respectively, each group of features had a different
behavior. Namely, the distributions of parts of speech (POSs) and dependency relations
(SyntacticDep) were the best-encoded types of information, especially in the first layers;
then, they constantly decreased. On the contrary, more complex linguistic knowledge about
the order of subjects and objects with respect to the verb (Order) was acquired only in the
middle layers. Notably, the model showed very scarce competencies concerning the number
of dependents of a verbal head (VerbPredicate), which was quite constant across layers.

Figure 2. Layer-wise probing scores (Spearman correlations) obtained when predicting the Gold
feature values of the Standard subset according to the seven macro-groups of linguistic features.
Average results (Avg) are also reported.

To further investigate these trends across layers, for each feature, we computed the
slopes of a linear regression line between BERT’s layers and the values of the probing scores
in the last and first layers. The Gold column of Figure 3 reports the slopes for the seven
groups of features and for the total number of 77 features (line Avg). As can be noted, all of
the slope values were negative, thus indicating that the learning curve decreased across
layers. The only exception was represented by the trend of the features of the Order group,
which had a positive value. this follows from the quite unique trend observed in Figure 2;
the knowledge about this type of linguistic phenomenon, albeit very low, started to increase
in the middle layers, and it decreased in the last ones, even though it remained higher with
respect to the first ones. The features that BERT tended to know quite constantly across
layers were those belonging to the VerbPredicate group. Accordingly, the slope value was
the lowest one (−0.017).

Figure 3 also allows a first comparison between the performances of the probing
model tested on the gold and control datasets. The majority of negative slope values
reported here show that BERT’s knowledge also generally tended to decrease across layers
when tested against the different typologies of control datasets (Refer to Figure A1 for
the layer-wise probing scores obtained on each control dataset). A few exceptions were
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unevenly scattered across layers and groups of features, and they are not worth discussing.
However, the most striking result emerging from Figure 3 was that the slopes were quite
flat, both on average and considering specific features. Contrary to what was seen for the
Gold dataset, we observed very small differences between the probing scores achieved
by using the representations extracted from the last and first layers, indicating that the
knowledge about linguistic features on all control datasets was stable across layers. This
result seemed to suggest that altering the values of the gold features had a generic impact
on BERT’s linguistic knowledge.

Figure 3. Slopes of the regression lines across the 12 layers for the probing scores obtained with the
Gold and the corresponding Control datasets. Scores are multiplied by 100.

The extent of such an impact is clear by inspecting Figure 4, which reports the gaps
between the probing scores obtained when predicting the gold and altered linguistic
features. Here, we focused on the scores achieved in the output layer, since we previously
observed very small changes in probing performance across layers. Specifically, the gap
was computed as the difference between the probing score obtained at layer 12 on the Gold
dataset and on each control dataset. Note that in order to weigh the impacts of the altered
feature values with respect to BERT’s competence for a given linguistic phenomenon, we
divided the computed difference by the probing score obtained for each feature at layer
12 in the Gold dataset (The formula adopted for every single feature is the following one:
(probing score at layer 12 in the Gold dataset—probing score at layer 12 in the control
dataset)/probing score at layer 12 in the Gold dataset). Differences higher than 1 were
obtained when the probing scores achieved on the control dataset were lower than 0.
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Figure 4. Differences between the probing scores obtained with the Gold dataset and each Control
dataset by using the BERT representations extracted from the output (12) layer.

The positive value of differences visualized in the heatmap shows that, on average
(Avg row), and for all groups of features, the highest probing scores were obtained on
the Gold dataset even with some differences across the typologies of features and control
datasets. The greatest differences were obtained for the Random and Swapped datasets
without any constraints on the length of sentences. This seems to suggest that the probing
model was able to recognize that the feature values contained in the two main types of
control datasets were altered, even when they were not fully random, but plausible, i.e.,
in the Swapped datasets. As a consequence, we could hypothesize that the probing model
was relying on some implicit linguistic knowledge when it predicted the authentic feature
values, rather than learning some regularities that were possibly found in the dataset.

However, if we take a closer look at the gaps between the Gold and the altered datasets
when we constrained the length of the sentences, we can observe that, on average (Avg
row), the differences with respect to the prediction of the authentic feature values were
generally lower. More specifically, the Swapped Bins (diff = 0.781) and Lengths (diff = 0.763)
datasets were more challenging for our probing approach than the corresponding Random
ones, against which we obtained higher differences equal to 0.845 and 0.852, respectively.
Namely, since the feature values that were artificially created simply by shuffling gold ones
across sentences constrained by sentence length were more similar to the gold values, as
shown in Table 3, the swapped values were more confounding for the probing model. In
fact, they were predicted with higher accuracy than randomly altered values.

In addition, stronger differences across groups of features emerged from this analysis.
BERT’s generalization abilities for features referring to the local and global syntactic struc-
ture of a sentence (TreeStructure) seemed the most similar to the gold ones based on the
relatively small gap between predictions. Note that these sentence properties were the most
sensitive to the sentence length, which BERT encoded with very high accuracy [51]. This
may suggest that in the resolution of these tasks, the probing model possibly relied on some
regularities related to sentence length. The same held for features related to Subordination,
which were similarly highly correlated with sentence length. On the contrary, in both
the Swapped and Random control datasets, the probing model performances diverged with
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respect to the prediction of the pre- or post-verbal order of subject and object (Order) in a
sentence and, in particular, of the verbal morphology features (VerbInflection), as shown by
their smaller gaps.

4.2. Probing on the Shortest and Longest Subsets

In this section, we take a closer look at how BERT performed when tested against
the Shortest and Longest subsets of IUDT sentences, which, as described in Section 3.1,
gathered all sentences with a length of up to nine tokens and between 31 and 100 tokens,
respectively. As in the previous section, we start by reporting the layer-wise probing scores
obtained by the model when predicting the gold values of the linguistic features extracted
from sentences belonging to these two subsets. These are shown in Figure 5, where we
can see how BERT’s implicit knowledge changed across layers and groups of linguistic
phenomena. A first observation that we can draw from the figure is that the subset of long
sentences exhibited a higher variation across layers, and this trend was more similar to the
one observed for the Standard subset (see Figure 2). This held especially for some groups of
phenomena, such as the distributions of parts of speech (POSs) and of dependency relations
(SyntacticDep), for which BERT’s predictions were very similar to the gold values, especially
in the first layers, whereas this specific knowledge tended to decrease as the output layer
was approached. A further similarity can be observed with respect to the worst encoded
features, which were represented by sentence properties related to the complexity of verbal
predicates (VerbPredicate) and, although to a lesser extent, to syntactic ordering (Order).
Note that the latter group, as already observed for the Standard subset, was better encoded
in the middle layers than in the first ones.

Figure 5. Layer-wise probing scores (Spearman correlations) obtained when predicting Gold feature
values according to the seven macro-groups of linguistic features for the Shortest and Longest subsets.
Average results (Avg) are also reported.

On the contrary, BERT’s linguistic knowledge when tested on the subset of short
sentences was, on average, more stable, with few variations across layers and across
the diverse groups of linguistic phenomena. In addition, we can observe that BERT’s
competencies were differently ranked with respect to the ranking obtained in the Standard
and Longest subsets. In fact, the features that the language model mastered with the highest
accuracy were those modeling the syntactic structure of the sentence (TreeStructure), with a
layer-wise average probing score equal to 0.68. Note that this score was higher than the
accuracy achieved in the Longest (0.53) and Standard (0.65) subsets. This result may be a
consequence of the fact that the values of the features belonging to this group were highly
sensitive to sentence length, and short sentences were typically characterized by quite flat
and simple syntactic trees (as shown in Table 2). Since, as we mentioned, sentence length
was a feature that BERT mastered very well, BERT may have relied on the knowledge of
this shallow feature as a proxy to predict more complex features related to the structure of
the syntactic tree. Possibly related to the same reason, it turned out that BERT mastered
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the order of subject and object (Order) and the number of dependents of verbal heads
(VerbPredicate) much better in short than in long sentences, with accuracies even higher than
those achieved on the Standard subset (The layer-wise average probing scores of the Order
group were 0.55 in the Shortest subset, 0.37 in the Longest subset, and 0.51 in the Standard
subset. The scores achieved for the VerbPredicate group were 0.52, 0.29, and 0.40 in the
three datasets, respectively). Differently from the other two datasets, the worst prediction
was achieved by the features modeling the subordination (Subord), even though they had
probing scores very similar to those of the Longest subset.

Despite these differences, Figure 6 shows that BERT’s knowledge tended to change
very little across layers with respect to what was observed for the sentences in the Standard
subset (Refer to Figure A2 for the layer-wise probing scores obtained on each control
dataset). As previously noted, the average flattest slopes were obtained considering the
Shortest subset (Avg = −0.49), while more variations could be seen for the Longest one.
It is also worth highlighting that in the latter case, we had several groups of features
with positive slope values. This was the case not only of the features belonging to the
Order group, which had the same trend in the Standard and Shortest subsets, but also of
the features modeling the subordination, the syntactic structure of a sentence, and the
verbal arity.

Figure 6. Slopes of the regression lines across the 12 layers for the probing scores obtained with
the Gold and the corresponding Control datasets for the Shortest and Longest subsets. Scores are
multiplied by 100.

In addition, the figure allows a first analysis of the impact of the corresponding control
datasets on the probing model’s performance. Specifically, we can see that the altered
feature values were predicted quite similarly across layers, while the prediction of the
gold values underwent more variations. This trend was similar to the one reported for the
Standard subsets, and it suggests that, in less standard sentences, the probing model is also
sensitive to the distortion of feature values.

Further evidence in this direction can be acquired by inspecting Figure 7, which reports
the gap between the probing model’s accuracy on the Gold and Control datasets for the two
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subsets. As noted in the previous section, the positive values show that the gold values
of the features were predicted with higher accuracies than the altered ones (In addition,
in this case, the differences were weighted based on the probing scores obtained by each
feature on the gold Shortest and Longest subsets). As in the case of the Standard subset (see
Figure 4), very few variations across the groups of features emerged, thus showing that the
probing model was scarcely confused by the distortion of feature values, regardless of the
linguistic phenomenon tested. We noticed, for example, that BERT’s knowledge concerning
the use of subordination was lower both in the Shortest and Longest subsets than in the
Standard one. However, the gap between the probing scores obtained for the corresponding
Gold and Control datasets was similarly high in the three subsets. However, differently
from what we observed for the Standard subset, the Swapped control datasets were slightly
more challenging than the Random ones. In fact, the differences were, on average (Avg row),
lower, especially when the probing model was tested against the control datasets of the
short sentences.

Figure 7. Differences between the probing scores obtained for the Gold dataset and each Control
dataset for the Longest and Shortest subsets. Differences were computed by using BERT representations
extracted from the output (12) layer.

5. Conclusions

In spite of the large number of studies that have relied on the diagnostic probing
paradigm to assess the linguistic knowledge implicitly encoded by an NLM’s representa-
tions, the validity of this method is still questionable from different perspectives. Our study
has presented a novel contribution to this debate by focusing specifically on one of the
still-open questions, that is, the effectiveness of probes in reflecting the linguistic properties
encoded in a representation. To this aim, we analyzed the performance of a probing model
trained with layer-wise sentence-level BERT representations to predict the value of a large
set of linguistic features derived from the Italian Universal Dependency Treebank (IUDT)
and from a suite of control datasets that were specifically created to alter the original values
of the examined features.

As a general remark, we observed that the probing model always had a better per-
formance when tested against the IUDT datasets than it did when tested against the
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corresponding control datasets. Namely, the gold values of the considered set of linguistic
features were predicted with higher accuracy than with the artificially altered ones, thus
showing that the probing model was sensitive to the distortion of feature values, and it
does not simply learn the regularities of the probing task. This result corroborates the
reliability of the probing task as an interpretability approach for assessing the level of
linguistic knowledge implicitly encoded in BERT’s sentence-level representations.

However, our experiments also highlighted that sentence length is a relevant con-
founding factor that may bias the real estimate of BERT’s linguistic knowledge. In fact,
when we focused on sentences of the same length (or in the same ranges of lengths) taken
from the Standard IUDT subset, we observed that the probing model was less sensitive to
the artificially generated values of features, especially when these values were obtained by
shuffling the original values across sentences of the same length (or ranges of lengths). This
suggests that, when the length is controlled, an alteration strategy that assigns incorrect
but still plausible values is more challenging for the probing model than one that simply
generates random values. This general trend concerns, in particular, groups of linguistic
phenomena that are more influenced by the length of a sentence. This is the case, for
example, of features that model local and global characteristics of the syntactic structure of
a sentence (i.e., the TreeStructure group), which tend to have quite homogeneous values
within sentences of the same length. Accordingly, the output space of the probing model
for these features is smaller than in the whole dataset, thus making them more easily
predictable without relying on authentic linguistic competence. Despite this trend being
particularly visible when we consider the output layer, we showed that the probing model
was also sensitive to the altered values across BERT’s twelve layers. Quite interestingly,
contrary to what was observed for the Gold dataset, the learning curve of the model tested
on the control datasets decreased quite slowly across layers, with no significant variations
across the typologies of linguistic phenomena.

The main outcomes obtained for the group of sentences with a standard length in
Italian were also confirmed by the experiments conducted on the subsets of sentences with
less standard lengths. Although we highlighted that BERT mastered specific linguistic phe-
nomena with different accuracies in the Shortest, Longest and Standard subsets, we showed
that the probing model was similarly scarcely confused in the three subsets, regardless
of the linguistic aspect considered. This seems to suggest that BERT’s representations
extracted from less standard sentences implicitly encoded the linguistic knowledge of the
phenomena therein.

The present study can be extended from various perspectives. In the future, the
effectiveness of the diagnostic probing approach can be evaluated by considering other
languages—possibly those belonging to different language families and, thus, characterized
by different feature values. Indeed, it could be worth exploring whether confounding
factors affecting the performance of probing models are shared among languages or vary
depending on their family. In this respect, we can either reuse the same set of linguistic
features or focus on subsets of phenomena of particular interest for a typological study.
In fact, the approach adopted to select the set of linguistic features is multilingual, as it is
based on the Universal Dependencies formalism. In addition, as neural models continue to
improve, a further possible direction of research may consist of assessing the effectiveness
of the probing approach in testing the linguistic knowledge encoded in models with
different architectures.
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Appendix A

Figure A1. Layer-wise probing scores (Spearman correlations) obtained when predicting Control
feature values of the Standard subset according to the seven macro-groups of linguistic features.
Average results (Avg) are also reported.

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-3105
https://github.com/alemiaschi/Testing_the_Effectiveness_of_the_Diagnostic_Probing_Paradigm_Supplementary_Materials
https://github.com/alemiaschi/Testing_the_Effectiveness_of_the_Diagnostic_Probing_Paradigm_Supplementary_Materials
https://www.cineca.it/en
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Figure A2. Layer-wise probing scores (Spearman correlations) obtained when predicting Control
feature values according to the seven macro-groups of linguistic features for the Shortest and Longest
subsets. Average results (Avg) are also reported.

References
1. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.

Adv. Neural Inf. Process. Syst. 2017, 6000–6010. Available online: https://dl.acm.org/doi/abs/10.5555/3295222.3295349 (accessed
on 20 September 2022).

2. Wang, A.; Pruksachatkun, Y.; Nangia, N.; Singh, A.; Michael, J.; Hill, F.; Levy, O.; Bowman, S. Superglue: A stickier benchmark
for general-purpose language understanding systems. Adv. Neural Inf. Process. Syst. 2019, 32 , 3266–3280.

3. Yang, W.; Xie, Y.; Lin, A.; Li, X.; Tan, L.; Xiong, K.; Li, M.; Lin, J. End-to-End Open-Domain Question Answering with
BERTserini. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics (Demonstrations), Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Minneapolis,
MN, USA, 2019; pp. 72–77. [CrossRef]

4. Naseem, U.; Razzak, I.; Musial, K.; Imran, M. Transformer based deep intelligent contextual embedding for twitter sentiment
analysis. Future Gener. Comput. Syst. 2020, 113, 58–69. [CrossRef]

5. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv 2020, arXiv:1907.11692.

6. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of
Language Representations. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia,
26–30 April 2020.

7. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models Are Unsupervised Multitask Learners; OpenAI
Blog: San Francisco, CA, USA, 2019.

8. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1 (Long and Short Papers); Association for
Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [CrossRef]

9. Rogers, A.; Kovaleva, O.; Rumshisky, A. A Primer in BERTology: What We Know About How BERT Works. Trans. Assoc. Comput.
Linguist. 2020, 8, 842–866. [CrossRef]

https://dl.acm.org/doi/abs/10.5555/3295222.3295349
http://doi.org/10.18653/v1/N19-4013
http://dx.doi.org/10.1016/j.future.2020.06.050
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.1162/tacl_a_00349


Information 2023, 14, 144 18 of 19

10. Belinkov, Y.; Màrquez, L.; Sajjad, H.; Durrani, N.; Dalvi, F.; Glass, J. Evaluating Layers of Representation in Neural Machine
Translation on Part-of-Speech and Semantic Tagging Tasks. In Proceedings of the Eighth International Joint Conference on
Natural Language Processing, Taipei, Taiwan, 27 November–1 December 2017; pp. 1–10.

11. Ettinger, A. What BERT Is Not: Lessons from a New Suite of Psycholinguistic Diagnostics for Language Models. Trans. Assoc.
Comput. Linguist. 2020, 8, 34–48. [CrossRef]

12. Morger, F.; Brandl, S.; Beinborn, L.; Hollenstein, N. A Cross-lingual Comparison of Human and Model Relative Word Importance.
In Proceedings of the 2022 CLASP Conference on (Dis)embodiment, Gothenburg, Sweden, 14–16 September 2022; Association for
Computational Linguistics: Gothenburg, Sweden, 2022; pp. 11–23.

13. Clark, K.; Khandelwal, U.; Levy, O.; Manning, C.D. What Does BERT Look at? An Analysis of BERT’s Attention. In Proceedings
of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Florence, Italy, 1 August 2019;
Association for Computational Linguistics: Florence, Italy, 2019; pp. 276–286. [CrossRef]

14. Goldberg, Y. Assessing BERT’s syntactic abilities. arXiv 2019, arXiv:1901.05287.
15. Ramnath, S.; Nema, P.; Sahni, D.; Khapra, M.M. Towards Interpreting BERT for Reading Comprehension Based QA. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 16–20 November
2020; pp. 3236–3242. [CrossRef]

16. Conneau, A.; Kruszewski, G.; Lample, G.; Barrault, L.; Baroni, M. What you can cram into a single vector: Probing sentence
embeddings for linguistic properties. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Melbourne, Australia, 15–20 July 2018; pp. 2126–2136. [CrossRef]

17. Belinkov, Y. Probing Classifiers: Promises, Shortcomings, and Advances. Comput. Linguist. 2022, 48, 207–219. [CrossRef]
18. Zeman, D.; Nivre, J.; Abrams, M.; Aepli, N.; Agic, Ž.; Ahrenberg, L.; Aleksandravičiūtė, G.; Antonsen, L.; Aplonova, K.; Aranzabe,
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