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Abstract: Heart rate measurement employing photoplethysmography (PPG) is a prevalent technique
for wearable devices. However, the acquired PPG signal is often contaminated with motion artifacts,
which need to be accurately removed. In cases where the PPG and accelerometer (ACC) spectra
overlap at the actual heart rate, traditional discrete Fourier transform (DFT) algorithms fail to compute
the heart rate accurately. This study proposed an enhanced heart rate extraction algorithm based
on PPG to address the issue of PPG and ACC spectral overlap. The spectral overlap is assessed
according to the morphological characteristics of both the PPG and ACC spectra. Upon detecting an
overlap, the singular spectrum analysis (SSA) algorithm is employed to calculate the heart rate at the
given time. The SSA algorithm effectively resolves the issue of spectral overlap by removing motion
artifacts through the elimination of ACC-related time series in the PPG signal. Experimental results
reveal that the accuracy of the proposed algorithm surpasses that of the traditional DFT method by
19.01%. The proposed method makes up for the deficiency posed by artifact and heart rate signal
overlap in conventional algorithms and significantly improves heart rate extraction accuracy.

Keywords: heart rate extraction; accelerometer; photoplethysmography; discrete Fourier transform;
singular spectrum analysis

1. Introduction

As wearable hardware devices continue to advance and people’s awareness of health
monitoring steadily increases, physiological signal acquisition systems have made consid-
erable progress in terms of portability and domestic usage. Among various parameters,
heart rate has emerged as a crucial component for long-term physiological monitoring [1–3].
Heart rate-measurement methods can be broadly classified into two categories, electrocar-
diograms (ECGs) and photoplethysmography (PPG), with the latter being predominantly
employed in daily assessments. PPG, which relies on LED light sources and detectors,
measures pulse waves by detecting light attenuation due to reflection and absorption by
human blood vessels. The intensity of the light can be utilized to monitor blood volume
changes or other alterations within human tissue [2]. Different physiological information
can be revealed according to the frequency of the light wave and the sensor used [3]. PPG
measurement is widely used in wearable devices such as oximeters, sports bracelets and
smartwatches. In these devices, PPG signals are often disrupted by motion artifacts (MAs)
stemming from the user’s voluntary or involuntary movements [4]. To mitigate the inter-
ference of motion artifacts and acquire the cleanest possible PPG signal, accelerometers
(ACCs) are employed to measure motion signals. By comparing the PPG and ACC signals,
the impact of motion artifacts on heart rate measurement can be effectively reduced [5,6].

PPG-based heart rate extraction algorithms typically consist of the following key steps.
First, the PPG signal undergoes preprocessing, which includes band-pass filtering, down-
sampling and normalization. Second, motion artifacts are removed, generally by using
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accelerometer signals as a reference. Commonly employed methods encompass adaptive
filtering, independent component analysis, empirical mode decomposition, wavelet decom-
position, spectral subtraction and Kalman filtering. Third, the heart rate of clean signals
is estimated by analyzing the spectral components of PPG signals after motion artifact
removal. It is evident that filtering is widely utilized in PPG preprocessing; however, it
may result in waveform distortion. Liu et al. [7] demonstrated that the measurement site
and type of pulse feature have a significant influence on the time shift in feature point
between the prefiltered and filtered PPG signals. The finger, which is the most commonly
used measurement site for PPG signals, exhibits a higher overall time shift. Allen et al. [8]
emphasized the importance of a suitable filter to avoid pulse shape distortion. Concurrently,
as artificial intelligence advances, deep learning can be employed for preprocessing noise
generated by cardiac or respiratory activities. In [9–11], deep learning was introduced for
PPG signal preprocessing and feature extraction, with data input into neural networks to
assist researchers in auxiliary calculations.

Traditional PPG heart rate algorithms can be broadly classified into two categories:
methods based on time-domain features (such as peak number algorithm) and methods
based on frequency-domain features (such as discrete Fourier transform, DFT).

Time-domain methods typically involve extracting heart rate information directly
from the PPG waveform, often employing a two-stage process. The first stage consists
of pre-processing, which filters out disturbances from the PPG signal. The second stage
involves heart rate extraction by decomposing the PPG signal, allowing for peak counting
within the signal. For instance, Khan et al. proposed a method that initially eliminates
runaway errors based on ensemble empirical mode decomposition (EMD), followed by the
use of recursive least squares (RLS) filters to further calculate the heart rate [12]. Ye et al. [13]
proposed a hybrid motion artifact-removal method, combining nonlinear adaptive filtering
and signal decomposition. However, time-domain methods may prove unreliable when
motion noise exhibits periodic and robust characteristics, as extracting a clean PPG signal
becomes increasingly challenging under such conditions.

Frequency-domain methods compensate for the limitations of time-domain approaches,
as periodic disturbances can be more readily removed in the frequency domain than in
the time domain. Salehizadeh et al. [5] proposed a technique for accurately reconstructing
motion-corrupted PPG signals and heart rate based on time-varying spectral analysis. This
approach involves calculating the power spectral density of both PPG and accelerometer
signals for each time shift within a windowed data segment. By comparing the time-
varying spectra of PPG and accelerometer data, frequency peaks resulting from motion
artifacts can be distinguished from the PPG spectrum. Fukushima et al. [14] and Chen
et al. [15] suggested a spectrum subtraction technique to remove the acceleration data
spectrum from the PPG signal. However, frequency domain methods may exhibit limited
effectiveness in the presence of irregular or aperiodic disturbances, such as complex hand
movements encountered while ascending and descending stairs. Under such conditions,
complex methods are often employed, although they generally exhibit high computational
complexity. Salehizadeh et al. [16] proposed a motion artifact-removal algorithm using
Singular Spectrum Analysis (SSA). They utilized SSA to decompose the corrupted segment
adjacent to the clean segment and selected the SSA components in the corrupted segment
with a frequency range similar to the clean adjacent components. Despite their effective-
ness, algorithms based on complex feature extraction tend to have high computational
complexity and lengthy operation times, rendering them unsuitable for long-term use in
wearable devices that require continuous heart rate detection.

In our experiments, the accuracy of heart rate estimation for some samples was found
to be relatively low. This may be attributed to several factors. First, noise could have been
introduced due to changes in the distance between the measurement site and the testing
equipment during physical activity. Second, higher harmonics of respiratory modulations
in frequency, amplitude and baseline [17], as well as neural activities, may have confounded
the results [18,19]. Additionally, we observed that when the low-frequency component
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in the ACC signal is similar to the heart rate, the peak corresponding to the actual heart
rate in the PPG spectrum is subtracted as a motion artifact, causing the algorithm to yield
a value significantly higher than the actual heart rate. This phenomenon occurs during
activities with substantial movement but relatively low heart rate, such as walking up
and down stairs. Upon reviewing the literature, we found that this issue has not been
previously addressed.

To solve the issue caused by the overlap of the PPG and ACC spectra at the actual heart
rate, we propose an improved algorithm framework for PPG-based heart rate measurement.
First, we judge whether there is spectral overlap between the PPG spectrum and the
ACC spectrum. If such overlap exists, we employ the Singular Spectrum Analysis (SSA)
algorithm to remove the time series related to ACC in PPG signal. Subsequently, the
PPG signal is processed using DFT and peak search, culminating in the calculation of
the heart rate. This algorithm eliminates the need to subtract the PPG spectrum from the
ACC spectrum signal in the frequency domain, allowing for accurate heart rate calculation
even in cases of spectral overlap. In conjunction with experimental measurements, the
accuracy of the improved algorithm for heart rate calculation is enhanced by at least 19.01%
compared to the traditional DFT method.

The rest of this paper is organized as follows: Section 2 introduces the experimental
equipment, experimental objects, traditional algorithm process and experiment results;
Section 3 introduces the improved algorithm process and experiment results; Section 4
discusses the comparison between the improved algorithm and the original algorithm; and
Section 5 draws conclusions.

2. Materials and Methods
2.1. Experimental Equipment and Objects

In this study, the experimental setup comprised two bracelets, two Polar H10 heart
rate bands and two Android phones with Bluetooth functionality. The bracelets were
equipped with a green LED sensor and a photodiode (PD) that converted light energy into
electrical signals to collect PPG signals, as well as a LIS2DH12 sensor (STMicroelectronics,
Geneva, Switzerland.) for capturing acceleration data. The Polar H10 heart rate band
(Polar, Kempele, Finland.) was employed to monitor participants’ real-time ECG signals,
which, after processing, served as a standard for heart rate comparison. The mobile phone
received heart rate information from the Polar H10 heart rate band. Figure 1 shows the
heart rate band and bracelet being worn. Figure 2 shows the participants in the experiment.
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Figure 2. Pictures of participants during the experiment. (a) Sitting; (b) Outdoor walking; (c) Walking
up and down stairs.

This experiment involved 20 participants, comprising 11 males and 9 females, all of
Asian descent and residing in China. Their ages ranged from 24 to 32 years old, with male
participants’ heights varying between 165 and 185 cm, and female participants’ heights
between 155 and 170 cm. The average age was 26.35 years, with a standard deviation
of 1.93, while the average height was 168.55 cm, with a standard deviation of 7.81. The
experimental setting was an office building within a research institute. The experimental
process included sitting, daily activities, walking up and down stairs, outdoor walking and
outdoor jogging. In order to mitigate the impact of experimental equipment on the results
of the study, two sets of experimental equipment were utilized. This approach ensured
that the performance of the algorithm was not reliant on the specific hardware employed
during testing. The experimental procedures and standards were modeled after those used
for commercial bracelets. Table 1 displays the test protocol and experimental procedure
used for data collection.



Information 2023, 14, 297 5 of 17

Table 1. Test protocol and experimental procedure of data collection.

Experimental
Items Preconditions Experimental Procedure Judgment Standard

Sitting

Participants were
instructed to remain
calm for at least 2 min
prior to the experiment,
commencing with a low
heart rate of 100 bpm.

The participant places their
hands on their thighs and
sits quietly on a chair for a
duration of 10 min.

When comparing with the
heart rate measured by the
heart rate band, sample
values exhibiting an
estimated heart rate
deviation within ±10 bpm
are considered accurate.

Daily activities The same as above.

1. The participant takes a
seat on the chair in front of
the computer;
2. Repeatedly types the
phrase “Midsummer Night
Dream” for a duration of
2 min using the keyboard;
3. Utilizes the arm wearing
the bracelet to pick up and
put down a pen 20 times
within a 1 min timeframe;
4. Unties and ties their
shoelace 10 times within a
2 min period.

The same as above.

Walking up and
down stairs The same as above.

The participant proceeds to
walk up and down the stairs
at a slow pace, ensuring that
the effective experimental
duration extends
beyond 10 min.

The same as above.

Outdoor
walking The same as above.

The participant walks at a
comfortable pace, typically
on a flat, non-sloping surface
during a sunny day,
allowing both arms to swing
naturally, and maintains this
movement for a duration
of 10 min.

The same as above.

Outdoor
jogging The same as above.

The participant engages in
running on a flat,
non-sloping surface during a
sunny day, with the effective
experimental duration
lasting for more than 10 min.

The same as above.

Participants were instructed to wear both the Polar H10 heart rate band and the
bracelet, ensuring that the bracelet was positioned close to the wrist and away from the
wrist bone. They were asked to follow the test preconditions in Table 1 to rest for at least
2 min to guarantee that their initial heart rate corresponded to their resting heart rate before
they started the test projects. After the experiment, the estimated heart rate measured
by the bracelet was compared with that measured by the Polar H10 heart rate band. The
experiment consisted of 20 participants, each of whom participated in all 5 test projects.
Each activity project is considered as a set, consisting of 20 samples. The heart rate band
calculated heart rate once per second, so each sample consisted of 300 or 600 heart rate
values, depending on the experimental duration. An estimated heart rate was considered
accurate if the difference from the true heart rate was no more than ±10 bpm, and a sample
was considered qualified if over 90% of the estimated heart rates were accurate.

2.2. Traditional Algorithm Architecture

The traditional PPG heart rate extraction algorithm based on Discrete Fourier Trans-
form (DFT) primarily consists of three components: baseline drift removal, discrete Fourier
transform and motion artifact elimination. The algorithm architecture is depicted in
Figure 3. At present, optical heart rate sensors are predominantly worn in the follow-
ing positions: the ear, arm, wrist and finger [20,21]. Earlobe-based PPG sensors are less
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susceptible to motion artifacts than wrist-based sensors and provide a more accurate mea-
surement of PPG signals. However, they may not be as convenient to wear and may require
a tighter fit to the ear to reduce the effects of motion. The arm presents a good location for
PPG measurement, due to its good blood perfusion and relative insensitivity to motion.
Yet, it may be more challenging to access and may not offer the most precise measurement
of PPG signals. The fingertip is a good location for PPG measurement because it has good
blood perfusion and is relatively insensitive to motion. However, the fingertip may be more
sensitive to changes in temperature and may not provide the most accurate measurement
of PPG signals. Wrist-worn PPG sensors, despite being convenient and accessible, may not
provide the most accurate measurement of PPG signals, as the wrist is more susceptible to
motion artifacts. The measurement location or placement of an accelerometer is crucial for
obtaining accurate and reliable data [22]. Depending on the application, accelerometers can
be placed on various body parts. In summary, for the purpose of developing smart sports
bracelets, the wrist was selected as the measurement site for this study’s algorithm.
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First, the bracelet was used to collect the participant’s PPG and ACC signals. In this
study, a mean filter was utilized to effectively mitigate baseline drift. Initially, the raw
signal was introduced into a mean filter featuring a window length of 7, following which
the output of the mean filter was subtracted from the original signal to derive the signal
with the mean value removed. Subsequently, the resultant signal was channeled into an
additional mean filter possessing a window length of 3. The output signal generated in this
stage represents the final signal, successfully devoid of baseline drift. Then the ACC was
used to eliminate the motion artifact present in the PPG signal. Baseline drift is typically
caused by noise with a frequency below 1 Hz, generated by human respiration and friction
between the skin surface and the PPG signal acquisition equipment. This noise manifests as
a low-frequency curve superimposed on the original signal, causing the signal to fluctuate
over time [23]. Based on the definition of baseline drift, high-pass filtering can be employed
to filter out noise below 1 Hz, effectively removing the baseline drift. In order to reduce
computational complexity, baseline drift is removed by subtracting the mean-filtered signal
from the original signal.

Utilizing a sliding window approach for heart rate calculation, increased window
lengths offer enhanced noise resistance and produce smoother heart rate signal curves,
albeit at the expense of greater computational demands. In contrast, shorter window lengths
present the inverse effects. To maintain the algorithm’s robustness without substantially
raising computational requirements, we opted for a window length of 100 data points.
PPG and ACC signals were downsampled to 25 Hz, and heart rate was calculated once
per second. Therefore, the length of the sliding window was set to 25 data points. These
parameters could be adjusted according to measurement requirements. As long as the
window did not reach the end of the signal length, the PPG and ACC signals were averaged
and normalized, followed by the application of DFT and normalization to both PPG and
ACC signals. The PPG signal underwent Fourier transformation to identify the amplitude
in its spectrum. The heart rate corresponding to the frequency with the largest value was
considered the current heart rate. Since heart rate fluctuations occur within a specific range,
the algorithm only needs to operate within a particular frequency interval. The heart rate
of a normal adult during deep sleep is not lower than 60 bpm, and the exercise heart rate
formula indicates that an adult’s heart rate during exercise does not exceed 220 minus
their age [24]. Therefore, we chose a heart rate range of 60-192 bpm, corresponding to a
frequency range of 1–3.2 Hz. As altering the heart rate interval range does not impact the
algorithm’s structure but only affects the accuracy of heart rate calculation, the following
analysis is based on the algorithm’s results within the 60–192 bpm heart rate interval.

The primary causes of motion artifacts encompass the movement of the measured
area and changes in the distance between the PPG signal acquisition equipment and the
measured area, among others. Wiener filtering is generally employed to remove motion
artifacts [25]. The Wiener filter is based on the premise that noise and the original signal
are independent of each other, utilizing their correlation to extract the actual signal from
the noisy observation according to the minimum mean square error criterion. However,
when a PPG signal and an ACC signal share the same frequency, they can no longer be
considered independent during that period, rendering the Wiener filter ineffective for such
artifacts. In light of the Wiener filtering principle, this paper simplified the engineering
approach by subtracting the DFT results of the magnitude of the three-axis accelerometer
signal acceleration (X-axis, Y-axis, Z-axis) from the DFT results of the PPG signal. The
calculation of the magnitude of the three-axis accelerometer signal. This is typically done
by using Equation (1), where ax, ay and az are the acceleration measurements in the x, y
and z directions, respectively. The frequency component with the largest amplitude was
then selected as an estimate based on the threshold value rule, and the heart rate value was
subsequently calculated. A sliding window of 25 points was employed, with calculations
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repeated in a cyclical manner. This method enabled the generation of a heart rate curve
and the determination of the accuracy rate.

magnitude =
√
(ax)2 +

(
ay)2 + (az)2 (1)

2.3. Experiment Results

The accuracy of a sample was determined by the proportion of accurate sample values
to the total sample values. This accuracy served as the direct evaluation criterion for the
effectiveness of the algorithm, with higher accuracy indicating better performance. Out of
the 100 samples, 88 achieved an accuracy rate above 90%, with 8 of these samples achieving
a perfect accuracy rate of 100%. The lowest accuracy rate among these 88 samples was
90.18%, while the average accuracy rate was 96.66%. The remaining 12 samples had an
accuracy rate lower than 90%.

An example of qualified samples is presented with the daily activities of participant
17 shown in Figure 4, which displays the heart rate comparison chart of the PPG-predicted
heart rate and heart rate band. The trend of the two heart rate measurements is approx-
imately the same. Additionally, the spectral of PPG and ACC are shown in Figure 5a,
while Figure 5b shows the spectral difference between PPG and ACC. Typically, the PPG
signal contains two frequency components with a large amplitude, which are reflected in
the spectrum in the wave peak corresponding to the actual heart rate and the wave peak
generated when the bracelet follows the arm movement. The latter peak is eliminated by
subtracting the ACC spectrum, retaining only the wave peak at the actual heart rate, and
the heart rate corresponding to this peak is the estimated heart rate.
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We also analyzed the unqualified samples. Apart from the samples that were unusable
due to poor signal quality resulting from incorrect wearing, two samples showed PPG and
ACC spectra overlapping at the actual heart rate. Figure 6 shows the comparison between
the PPG-predicted heart rate and the heart rate from the heart rate band when participant
9 walked up and down stairs. The PPG-predicted heart rate could no longer follow the
heart rate band. Figure 7a displays the spectral of PPG and ACC and Figure 7b shows the
spectral difference between PPG and ACC. Figure 8 illustrates the comparison between
the PPG-predicted heart rate and the heart rate from the heart rate band when participant
14 walked up and down stairs. The PPG-predicted heart rate could no longer follow the
heart rate band. Figure 9a shows the spectral of PPG and ACC, and Figure 9b displays
the spectral difference between PPG and ACC. The ACC signal contains low-frequency
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components. The PPG and ACC spectra have wave peaks at the actual heart rate, and there
is no wave peak at the actual heart rate after the two are subtracted. Consequently, the wave
peak corresponding to the actual heart rate in the PPG spectrum is reduced as a motion
artifact when the heart rate is not high. The algorithm takes a value far higher than the
actual heart rate, and the accuracy of the heart rate measurement of participant 9 walking up
and down stairs is 23.79%. The accuracy rate of the heart rate measurement of participant
14 is 61.56%. This error is due to the participant’s acceleration coinciding with their heart
rate during exercise. In our sample space, the frequency of this situation is 0.02. Although
this is a low probability event, this problem cannot be avoided by evaluating the signal
quality to determine whether to discard a piece of data before calculation. This problem
is also a common occurrence in engineering, and therefore the impact on measurement
accuracy is critical.
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In summary, while the traditional DFT algorithm has a certain accuracy in measuring
heart rate, it fails to compute the correct heart rate when the PPG spectrum and ACC
spectral overlap at the actual heart rate. Therefore, the algorithm needs to be enhanced to
address the issues related to overlapping spectra.

3. Algorithm Improvement
3.1. Algorithm Improvement Architecture

During the heart rate extraction algorithm experiment using the sports bracelet’s
photoplethysmography on a group of individuals, a practical issue was discovered. The
algorithm faces difficulty in resolving cases where the PPG signal spectrum and ACC signal
spectrum exhibit peaks simultaneously at the actual heart rate. The algorithm eliminates
the PPG spectrum peak at this point, considering it to be a motion artifact, leading to an
incorrect estimated heart rate. To address this issue, the algorithm was improved to enhance
accuracy. This study recruited a total of 20 participants, each of whom was assigned a
unique sequential numerical identifier. The experimental dataset utilized for algorithm
design comprised data collected from participants assigned odd-numbered identifiers,
while the algorithm validation dataset comprised data collected from participants assigned
even-numbered identifiers.

The flow chart for the improved heart rate calculation is presented in Figure 10. To
improve the traditional algorithm’s step of subtracting the DFT results of PPG and ACC,
we first determine the spectral overlap by examining the morphological characteristics
of PPG and ACC spectra. Following the detection of overlap, we incorporate the SSA
algorithm, which does not rely on spectrum subtraction, to recalculate the current heart
rate and remove motion artifacts.
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To address the issue of PPG and ACC spectra overlapping at the heart rate, we first
need to determine if it occurs. As the human heart rate does not change significantly
within 1 s, the difference between the current heart rate and that of the previous second
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should not exceed 10 bpm. Therefore, we only need to detect spectral overlap within the
range of the previous heart rate ±10 bpm. In the spectrum obtained from the Fourier
transform, the amplitude of a peak represents the signal energy of the corresponding
frequency component. The larger the peak amplitude, the greater the signal energy. In the
normalized spectrum, when the peak amplitude is greater than a certain threshold m, the
frequency corresponding to the peak amplitude is considered to be the main frequency
component in the signal. In the 1–3.2 Hz range, the main frequency components of the PPG
spectrum are the frequencies corresponding to cardiac pulsations and motion artifacts, and
the main frequency components of the ACC spectrum are the frequencies corresponding to
motion artifacts. To detect spectral overlap, we need to find n1 and n2, where n1 represents
the heart rate value corresponding to the peak of the normalized PPG spectrum and n2
represents the heart rate value corresponding to the peak of the normalized ACC spectrum.
We calculate the difference of |n1 − n2|. Figure 11 showcases the spectra of participant
9 along with the corresponding parameters. If the difference is less than n bpm, the two
maxima can be considered the same. In this case, the overlap occurs at this moment. After
detecting spectral overlap, we require a new algorithm to calculate the current window
heart rate, which is different from the original algorithm’s method of removing motion
artifacts. Therefore, we introduce the Singular Spectrum Analysis (SSA) algorithm.
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Figure 11. The spectra of participant 9 with corresponding parameters, where n1 and n2 are heart
rates corresponding to peaks and m is the threshold of peaks.

SSA is a method of analyzing nonlinear time series by using matrix singular value
decomposition (SVD) [26]. It constructs a trajectory matrix based on the observed time
series and decomposes and reconstructs the trajectory matrix to extract signals representing
different components of the original time series, including noise signals. The specific steps
are embedding, SVD, grouping and reconstruction.

Embedding: map a time series y = [y1, y2, . . . , yM] of length M into an L-trajectory
matrix Y of size L × K (K = M − L + 1, L < M/2),

Y =


y1 y2
y2 y3

· · · yK
· · · yK+1

...
...

yL yL+1

. . .
...

· · · yM

 (2)
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SVD: singular value decomposition of the matrix Y,

Y =
d

∑
i=1

Yi =
d

∑
i=1

σiuivT
i , d = min{L, K} (3)

Grouping: divide Yi into g groups of different linearly independent sub-matrices; each
sub-matrix is the sum of Yi within the group.

Reconstruction: reconstruct the grouped g sub-matrices into g time series of length M,
then the original time series y can be expressed as the sum of the g time series of length M.

Based on the SSA algorithm, the PPG signal after motion artifact removal is obtained
by eliminating the time series related to ACC from the PPG signal, followed by DFT to find
the peak for heart rate calculation. Unlike the traditional algorithm, this approach does not
require the subtraction of the two frequency domain signals, making it suitable for heart
rate calculation when frequency spectra overlap.

3.2. Experiment Results

Based on the findings from the experimental dataset, we determined the value of
m to be 0.4 and the value of n to be 3. In this scenario, the average accuracy of the
samples without spectral overlap in the experimental dataset reached 95.95%, aligning with
the algorithm results delineated in Chapter 2. Significantly, the accuracy of the samples
exhibiting spectral overlap improved from 23.79% to 61.40%. The experimental results for
participant 9 walking up and down stairs are presented in Figure 12. Figure 12a shows
the accuracy rate obtained using the traditional algorithm, while Figure 12b shows the
accuracy rate of the heart rate calculation result of the improved algorithm for samples
with spectral overlap.
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improved algorithm.

For participant 9 when walking up and down stairs, the spectral overlap phenomenon
occurred. The accuracy rate of the original algorithm in this sample was 23.79%. After
introducing the spectral overlap judgment and the SSA algorithm, the algorithm’s accuracy
rate improved to 61.40%, which is an improvement of 37.61%.

Moreover, after manually checking the PPG and ACC spectra of each point, it was
found that there were 273 points in this sample with spectral overlap. The SSA algorithm
was employed 269 times, and the judgment accuracy was 98.50%. Furthermore, in other
samples without spectral overlap, the SSA algorithm was only applied 11 times in one
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sample, and the number of uses was in the single digits for the rest of the samples, which
demonstrates the accuracy of the spectral overlap judgment.

To validate the accuracy of the improved algorithm, we applied it to the validation
dataset. The average accuracy of the samples without spectral overlap in the validation
dataset reached 97.37%, which aligns with the algorithm outcomes discussed in Section 2.
For the samples exhibiting spectral overlap, the accuracy notably increased from 61.56%
to 80.57%. The experiment results for participant 14, walking up and down stairs, are
presented in Figure 13. The accuracy rate obtained using the traditional algorithm is
displayed in Figure 13a, while the accuracy rate of the improved algorithm for samples
with spectral overlap is shown in Figure 13b.
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The spectral overlap phenomenon appeared in the sample for participant 14 walking
up and down stairs. The original algorithm achieved an accuracy rate of 61.56% for
calculating the heart rate in this sample. After introducing the spectral overlap judgment
and the SSA algorithm, the calculated accuracy rate improved to 80.57%, showing an
improvement of 19.01%.

Furthermore, upon examining the PPG spectrum and ACC spectrum of each point
one by one, it was found that 125 points in this sample had spectral overlap, and the SSA
algorithm was used 116 times with a spectral overlap judgment accuracy rate of 92.80%.
Meanwhile, in samples without spectral overlap, the SSA algorithm was called no more
than 11 times, demonstrating the accuracy of spectral overlap judgment.

This paper addresses the issue of inaccurate heart rate calculation caused by overlap-
ping PPG and ACC spectra at the actual heart rate, by proposing an improved algorithm.
The algorithm detects spectral overlap and utilizes the SSA algorithm to calculate the
heart rate at the current moment without relying on spectrum subtraction to remove
motion artifacts. The experimental results show that the proposed algorithm improves
the accuracy of heart rate calculation by at least 19.01% compared to the traditional DFT
method. The success of this algorithm in solving the issues in the original algorithm has
been demonstrated.

4. Discussion

The traditional heart rate extraction algorithm subtracts the PPG spectrum from
the ACC spectrum to remove motion artifacts. However, when both the normalized
PPG spectrum and ACC spectrum have peaks at the actual heart rate, the traditional
algorithm eliminates the peak at the actual heart rate, considering it a motion artifact. To
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address this issue, we propose an improved algorithm that analyzes the individual signal
characteristics. We partitioned the data into two distinct datasets: an experimental dataset
and a validation dataset. Subsequently, we conducted an analysis of the results derived
from the experimental dataset. Firstly, we judge the spectral overlap according to the
morphological characteristics of the PPG and ACC spectra. We find the local maximums of
the normalized PPG and ACC spectra in the range to detect the overlap. If local maximums
greater than 0.4 are found in the normalized PPG and ACC spectra, respectively, we
calculate the difference between the PPG local maximums and the ACC local maximums.
If the difference is less than 3 bpm, the overlap is detected. Then, we introduce the SSA
algorithm to recalculate the heart rate at the current moment when overlap is detected.
The SSA algorithm removes motion artifacts by decomposing and reconstructing the PPG
signal in the time domain, removing the time series related to ACC. DFT and peak search
are directly performed on the reconstructed signal. The improved algorithm was applied
to participant 9, achieving a spectral overlap judgment accuracy of 98.5%, and the accuracy
increased from 23.79% to 61.40%, improving by 37.61%. To validate the accuracy of the
improved algorithm, we applied it to the validation dataset. The improved algorithm was
also tested on participant 14, achieving a spectral overlap judgment accuracy of 92.8%, and
the accuracy increased from 61.65% to 80.57%, improving by 19.01%.

Table 2 presents a comparison of the proposed algorithm with peak detection of the
PPG signal, the DFT algorithm and the TROIKA framework, which employs the SSA signal
decomposition approach, in terms of accuracy, algorithmic complexity and floating-point
operations (FLOPs). The peak detection algorithm, which counts the number of main
peaks of the PPG signal in one minute, has the lowest algorithmic complexity and FLOPs.
However, its accuracy is much lower than that of the other three algorithms, rendering it not
commonly used for heart rate estimation. The accuracy of samples without spectral overlap
is determined by computing the average accuracy of 10 randomly selected samples from
the validation dataset. In this case, the accuracy of the proposed algorithm is 96.66%, which
is the same as that of the DFT algorithm and only 0.51% lower than that of the TROIKA
framework. In terms of algorithmic complexity and FLOPs, the two terms of the proposed
algorithm are significantly lower than those of the TROIKA framework. In conclusion,
the proposed algorithm solves the problem of spectral overlap that the DFT algorithm
cannot handle, and its accuracy is close to that of the TROIKA framework. Moreover, its
algorithmic complexity is within an acceptable range, making it much easier to use in
wearable devices than the TROIKA framework.

Table 2. Comparison on performance indicators of the proposed algorithm with existing algorithms.

Algorithm Peak
Detection DFT TROIKA Proposed Algorithm

Accuracy
(with spectral overlap) 51.95% 61.56% 82.88% 80.57%

Accuracy
(without spectral overlap) 82.70% 96.66% 97.17% 96.66%

Algorithm complexity N N× log N 3N3 3pN3+(1− p)N×log N

FLOPs 3N − 4 8N×
log2 N

3N3+(13 + log2 N )
×N2+55N

8pNlog2 N +
3pN3+(13p + plog2 N )×

N2+55pN
The algorithmic complexity and FLOPs of the proposed algorithm are given by p×TROIKA + (1 − p) × DFT
where p is the probability of spectral overlap. In this study, spectral overlap is detected in two of the one hundred
samples, so p = 0.02 in the table.

In addition to the algorithms discussed above, current artificial intelligence and ma-
chine learning techniques are extensively used in heart rate extraction from PPG and
ACC data, such as Convolutional-Recurrent Neural Networks (C-RNN) [27], PPG-NeXt
network [28] and Support Vector Machine (SVM) [29]. These methodologies, although
possessing significant potential, require a substantial amount of annotated data for training.
Their accuracy is also often limited by the dataset, making it challenging to obtain sufficient
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data for training in certain uncommon scenarios, such as the spectral overlap problem
mentioned earlier. Simultaneously, complex AI models require considerable computational
resources, making them unsuitable for deployment on wearable devices.

The experimental results demonstrate that the improved algorithm effectively ad-
dresses the issue of incorrect heart rate estimation due to PPG-ACC spectral overlap,
resulting in improved accuracy. However, the algorithm does increase computational com-
plexity due to the matrix operations involved in the SSA algorithm. Nonetheless, as the SSA
algorithm is only applied when spectral overlap occurs, which is a low-probability event, it
does not place excessive computational burden on the overall measurement system.

In future research, we will continue to recruit participants to collect more data and also
consider other factors that may be present during the experiment to make our algorithm
more universal and further enhance its accuracy. We will also investigate the application of
Artificial Intelligence-based techniques to assist in the determination of optimal thresholds.
Additionally, we plan to optimize the proposed algorithm at the hardware level to ensure
compatibility with wearable devices and minimize power consumption.

5. Conclusions

The proposed algorithm is an improvement over traditional heart rate extraction
algorithms, as it effectively tackles the issue of inaccurate heart rate computation when the
PPG and ACC spectra overlap. Initially, the algorithm identifies spectral overlap based
on the morphological characteristics of the PPG and ACC spectra. When overlap is de-
tected, the SSA algorithm calculates the heart rate without relying on spectrum subtraction
to eliminate motion artifacts. In the experimental dataset, the results indicate that the
enhanced algorithm boosts heart rate estimation accuracy, with a 98.5% accuracy rate in
judging spectral overlap for participant 9 and an accuracy rate increase from 23.79% to
61.40% for this participant, yielding an improvement of 37.61%. In the validation dataset,
the accuracy rate of spectral overlap for participant 14 is 92.8%, and the accuracy rate rises
from 61.65% to 80.57%, achieving an improvement of 19.01%. The proposed algorithm effec-
tively addresses the challenges of overlapping spectra and motion artifacts in conventional
algorithms, resulting in substantial enhancements in heart rate extraction accuracy.
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