
Citation: Karras, A.; Karras, C.;

Sioutas, S.; Makris, C.; Katselis, G.;

Hatzilygeroudis, I.; Theodorou, J.A.;

Tsolis, D. An Integrated GIS-Based

Reinforcement Learning Approach

for Efficient Prediction of Disease

Transmission in Aquaculture.

Information 2023, 14, 583. https://

doi.org/10.3390/info14110583

Academic Editors: Agnes

Vathy-Fogarassy and János Abonyi

Received: 12 September 2023

Revised: 12 October 2023

Accepted: 19 October 2023

Published: 24 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  information

Article

An Integrated GIS-Based Reinforcement Learning Approach for
Efficient Prediction of Disease Transmission in Aquaculture
Aristeidis Karras 1 , Christos Karras 1 , Spyros Sioutas 1,* , Christos Makris 1 , George Katselis 2 ,
Ioannis Hatzilygeroudis 1 , John A. Theodorou 2 and Dimitrios Tsolis 3

1 Department of Computer Engineering and Informatics, University of Patras, 26504 Patras, Greece;
akarras@ceid.upatras.gr (A.K.); c.karras@ceid.upatras.gr (C.K.); makri@ceid.upatras.gr (C.M.);
ihatz@ceid.upatras.gr (I.H.)

2 Department of Fisheries and Aquaculture, University of Patras, 30200 Mesolongi, Greece;
gkatselis@upatras.gr (G.K.); jtheo@upatras.gr (J.A.T.)

3 Department of History and Archaeology, University of Patras, 26504 Patras, Greece; dtsolis@upatras.gr
* Correspondence: sioutas@ceid.upatras.gr

Abstract: This study explores the design and capabilities of a Geographic Information System (GIS)
incorporated with an expert knowledge system, tailored for tracking and monitoring the spread
of dangerous diseases across a collection of fish farms. Specifically targeting the aquacultural
regions of Greece, the system captures geographical and climatic data pertinent to these farms. A
feature of this system is its ability to calculate disease transmission intervals between individual
cages and broader fish farm entities, providing crucial insights into the spread dynamics. These
data then act as an entry point to our expert system. To enhance the predictive precision, we
employed various machine learning strategies, ultimately focusing on a reinforcement learning
(RL) environment. This RL framework, enhanced by the Multi-Armed Bandit (MAB) technique,
stands out as a powerful mechanism for effectively managing the flow of virus transmissions within
farms. Empirical tests highlight the efficiency of the MAB approach, which, in direct comparisons,
consistently outperformed other algorithmic options, achieving an impressive accuracy rate of 96%.
Looking ahead to future work, we plan to integrate buffer techniques and delve deeper into advanced
RL models to enhance our current system. The results set the stage for future research in predictive
modeling within aquaculture health management, and we aim to extend our research even further.

Keywords: Geographical Information Systems; reinforcement learning; Q-Learning; Multi-Armed
Bandit; disease transmission; aquaculture

1. Introduction

A plethora of works exist in the literature dealing with applications of machine learn-
ing in intelligent fish aquaculture. In [1], a review and analysis of the developments of
machine learning in fish-intelligent aquaculture was conducted; the work emphasized the
application and use of deep learning and neural network that has expanded the scope
for intelligent application in fish aquaculture and improved the efficiency and benefit
of breeding. The applications included fish biomass detection, identification, and clas-
sification of fish, behavior analysis, and water quality parameter prediction, while the
machine learning models were mainly CNN models and then SVM, BPNN, BM, KNN, RF,
AdaBoost, YOLOv3, RNN, and XGBoost. In [2], the authors reviewed the application of
deep learning in aquaculture and categorize research by aquatic products (i.e., fish, shrimp,
scallops, coral, jellyfish, aquatic macroinvertebrates, phytoplankton, and water quality),
presenting examples of current research such as (among others) fish behavior monitoring,
fish fillets defect detection, shrimp disease research, activity monitoring of cold water coral
polyps, classification, phytoplankton classification, trend prediction of red tide biomass,
dissolved oxygen content prediction, temperature prediction, and marine floating raft
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aquaculture monitoring. Of particular interest in the specific paper is the reference to works
for water quality prediction, with various of its applications: Dissolved Oxygen prediction,
Chlorophyll-a Content Prediction, Temperature Prediction.

In [3], algorithms for determining the mean transmission distances (and variability
around the mean) of the pathogen cohorts were developed. The authors compared a
computational modeling procedure, which is a computer program that simulates the
spread of disease, and an analytical expression model, which is a mathematical equation
that can be used to calculate the transmission of pathogens. The authors employed a
mathematical model (discrete-time Susceptible-Exposed-Infectious-Recovered (SEIR)) to
avoid the risk of infection that takes into account the transmission, expression, recovery, and
decay of pathogens, as well as the movement of water between farms. The specific model
also simplifies the hydrodynamics of water movement to account for residual advection,
tidal advection, and turbulent diffusion. The model was compared to a more complex
numerical model and was found to be comparable.

In [4], the project VECA was developed with the goal to improve the surveillance
aquaculture system in the Spanish aquaculture sector. The proposed approach aimed at the
creation of an interactive and participatory disease surveillance system for aquaculture in
Spain and it can identify and characterize diseases laying the groundwork for preventing
future diseases that could cause significant economic losses. The proposed system can gen-
erate qualitative environmental variables, quantitative environmental variables, husbandry
management, and health management at the farm, production unit, and batch of animals;
technical tools include relative frequencies for qualitative variables, and mean, standard
deviation, minimum, and maximum for quantitative variables.

In [5], modifications to a proposed “risk of flooding” project were proposed based on
whether the farm has experienced flooding before. The initial categorization of flood farms
(“null” risk and “low” risk) was revised to take into account the flooding hazard maps
of each Swiss canton. These maps classify geographic areas into no or negligible hazard,
residual hazard, minor hazard, medium hazard, and considerable hazard. There were no
significant fluctuations in the risk categorization due to natural and seasonal factors during
the project period, hence the proposed model can be considered to be stable over short
time periods.

In [6], a spatiotemporal stochastic model for the spread of pancreas disease (PD) in
marine fish farms producing salmonids, i.e., Atlantic salmon (Salmo salar) and rainbow
trout (Oncorhynchus mykiss), was proposed in Norway.

The model is mainly mechanistic, taking into account potential transmission pathways
between farms, as well as factors affecting susceptibility or infectiousness, such as the
number of farm animals. The within-farm infection was modeled using an internal SIR
model, and the model was formulated using a Bayesian framework. Finally, the estimation
of the model parameters took place from available data using Markov Chain Monte Carlo
(MCMC) techniques.

Research papers have highlighted the potential of integrating GIS-based reinforcement
learning with existing disease transmission prediction models to enhance decision-making
in disease control. Wan et al. proposed a multi-objective model-based reinforcement
learning framework aimed at minimizing the overall long-term cost of implementing
infectious disease control measures [7]. Haddad et al. introduced a GIS-based spatial-
temporal simulation approach and software that aids public health decision-making in
the context of communicable diseases in urban areas [8]. Raissi et al. emphasized the
significance of determining model parameters for disease transmission prediction through
optimization, deep learning, and statistical inference methods [9]. Additionally, Firestone
et al. conducted a comparative analysis of nine transmission network models based on
foot-and-mouth disease outbreaks simulated in a previously free country, coupled with
corresponding simulated phylogenies and genomic samples from animals on infected
premises [10]. These research findings collectively suggest the promising potential of
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GIS-based reinforcement learning in advancing disease transmission prediction models,
providing valuable support for decision-making in disease control strategies.

The remainder of this article is structured as follows: Section 2 presents the background
and existing works in the field of aquaculture, GIS systems, and disease transmission,
as well as some case studies. In Section 3, we present our proposed method, which
is comprised of subsections such as Section 3.1, which presents a concise overview of
materials and methods utilized and their applicability in aquaculture. Section 3.2 describes
Reinforcement Learning and its application to aquaculture while highlighting its structure
and fundamentals in our case study. Section 4 conducts experiments to illustrate the efficacy
of the proposed method for predicting disease transmission in fish ecosystems. In Section
5, a discussion takes place in which the methods and their results are explained more
thoroughly. Finally, Section 6 concludes the paper, discussing potential future research and
the significance of our proposed method in the field of epidemic modeling in aquaculture
and fishery farms.

2. Background and Related Work

Section 2 provides a structured overview of essential concepts and methodologies
relevant to this study. Within Section 2.1, the dynamics of disease transmission in aqua-
culture are discussed. This discussion is followed by Section 2.2, which details the role of
Geographic Information Systems (GIS) in disease transmission analysis. The application
of Reinforcement Learning in disease control is presented in Section 2.3. Following that,
Section 2.4 highlights the potential integration of GIS and Reinforcement Learning. Prac-
tical instances from the industry are elaborated upon in Section 2.5, showcasing relevant
case studies and applications. Finally, Section 2.6 points out existing research gaps and
establishes the motivation for this study.

2.1. Introduction to Disease Transmission in Aquaculture

Navigating disease transmission in aquaculture is challenging, given the multifactorial
nature of fish diseases and their sensitivity to environmental conditions. The aquaculture
industry, responsible for cultivating entities such as fish, shellfish, and aquatic plants, is
integral to the global food system. However, the inherent conditions of aquaculture, char-
acterized by close confinement and high densities, accentuate the potential for expedited
disease spread. Consequently, a thorough understanding and precise prediction of disease
trajectories are imperative to mitigate the associated economic and ecological impact.

The importance of forecasting disease transmission in aquaculture is emphasized
by its pivotal role in ensuring the industry’s economic sustainability. Disease outbreaks
can lead to substantial losses for aquaculture farmers, resulting in decreased production,
elevated mortality rates, and financial instability. Swift and accurate prediction models
enable the timely implementation of intervention strategies, including quarantine protocols,
vaccination initiatives, and enhanced biosecurity measures. These proactive measures can
considerably reduce the risk and severity of disease outbreaks, thereby safeguarding the
livelihoods of aquaculture producers and fostering sustainable industry growth.

Furthermore, accurate disease transmission prediction holds broader implications
for food security and public health. As aquaculture continues to play a pivotal role in
global seafood supply, ensuring the health and well-being of farmed aquatic organisms
is paramount. Diseases affecting aquaculture species not only impact the availability and
affordability of seafood but may also pose risks to human health if zoonotic diseases are
transmitted through the consumption of infected fish. Consequently, precise disease trans-
mission models contribute to the production of safe and wholesome seafood, addressing
worldwide food security concerns and minimizing public health hazards.

Addressing these challenges in disease transmission prediction requires interdisci-
plinary efforts and innovative approaches. Notable research studies contribute valuable in-
sights. Dunstan et al. proposed utilizing trophic ecology to underpin ecosystem approaches
for disease transmission prediction, emphasizing the importance of understanding species
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interactions [11]. Peeler and Taylor discussed risk-based approaches for aquatic animal
health management and their application to disease transmission prediction [12]. Murray
and Peeler provided a framework for understanding emerging diseases in aquaculture, em-
phasizing the need for proactive surveillance [13]. Moreover, Georgiadis et al. highlighted
the role of epidemiology in disease control in wild and cultured fish populations [14].

On the other hand, Baud et al. demonstrated that disease transmission prediction
is crucial in aquaculture to mitigate the impact of outbreaks, and discussed that accurate
estimation of mortality rates is essential for effective management strategies [15]. Murray
et al. highlighted that disease burden is a significant global issue, and accurate prediction
and management of diseases is crucial for reducing mortality and disability rates across
different industries, including aquaculture [16]. Bondad-Reantaso et al. addressed disease
and health management in Asian aquaculture, and examined that the implementation of
effective disease prediction and control measures is necessary to ensure sustainable and
profitable aquaculture production [17]. Peeler et al. investigated the role of non-native
aquatic animal introductions in driving disease emergence in Europe, and demonstrated
that controls are essential to prevent further spread and protect aquaculture systems [18].

In addition, recent research by Alaliyat et al. introduced an agent-based model for
predicting pathogen transmission patterns in Norwegian fjords [19]. Liao et al. developed
a mechanistic population dynamics model to predict the effect of heavy-metal stresses
on susceptibility to pollution-associated infectious diseases [20]. Stärk et al. emphasized
the role of molecular and genomic data for disease surveillance [21]. Pérez-Sánchez et al.
discussed biological approaches for bacterial disease prevention and control [22].

Recent studies emphasize on the complex challenges inherent in predicting disease
transmission within aquaculture contexts. Mugimba et al. highlighted the rising complexi-
ties associated with emerging viral diseases, wild reservoirs, and diagnostic limitations [23].
Sabo-Attwood et al. examined the nuances of managing aquatic disease agents, explor-
ing nanotechnology’s potential to enhance disinfection and early warning systems [24].
Ahmed et al. introduced a promising machine-learning technique for timely fish disease
identification [25]. Romero et al. contributed a simulation framework for modeling wa-
terborne pathogen spread in marine aquaculture, a tool valuable for assessing control
strategies [26].

Ultimately, these studies collectively underscore the necessity of a multifaceted ap-
proach in predicting disease transmission within aquaculture. This demands cohesive
strategies, including biosecurity policies, rigorous implementation of measures, vaccine
advancements, strategic medication and probiotic use, selective breeding, advanced di-
agnostics, vigilant surveillance, and prudent husbandry. Such a holistic strategy fortifies
aquaculture’s resilience against disease complexities, securing its future sustainability. As
disease transmission intricacies persist, accurate prediction models are imperative. Ad-
dressing challenges and enhancing predictive capabilities are pivotal to sustaining the
aquaculture industry’s profitability, ensuring food security, and safeguarding public health.

2.2. The Role of Geographic Information Systems (GIS) in Disease Transmission Analysis
in Aquaculture

Aquaculture, a critical domain in sustainable food production, is increasingly relying
on Geographic Information Systems (GIS) for disease transmission analysis. GIS, an
advanced digital mapping and analytical tool, not only helps visualize the geographical
spread of diseases but also discerns patterns and offers predictive insights. By integrating a
variety of datasets, from environmental to biological, GIS enables comprehensive analysis
of disease risk zones, facilitating preemptive measures and efficient resource allocation.
As the literature suggests, this technology’s value in aquaculture disease management is
significant, evolving, and is indispensable for ensuring a healthy and sustainable future in
this sector. Studies have used GIS for site selection of aquaculture, mapping groundwater
quality, predicting marine fish production [27,28], and spatial analysis [29,30].
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The literature underscores the efficacy of Geographic Information Systems (GIS) in the
sector of aquaculture, particularly concerning the analysis of disease dissemination. Evi-
dently, works by McLeod et al. [31], Ross et al. [32], Falconer et al. [33], and Nath et al. [34]
all combine the promising capabilities of GIS as a mechanism for detailed aquaculture
planning and robust decision-making support. Such systems facilitate the pinpointing of
areas optimal for aquaculture activities while equipping practitioners with tools to tackle
multifaceted spatial management dilemmas. Significantly, Nath et al. [34] offered an im-
mersive user-centric approach to GIS applications, underscoring the essential importance
of harmonizing the perspectives of end users, domain experts, and analysts throughout the
project lifecycle.

Norstrøm posits that the utilization of GIS facilitates an enhanced spatial representa-
tion of farms and their associated infrastructures, thereby optimizing responses to disease
outbreaks and establishing preventive strategies against infectious pathogens [35]. In a par-
allel investigation, Simms underscores the role of GIS in monitoring soft-shell clam habitats,
with an emphasis on its capability to rigorously evaluate water quality and sustainability
metrics of the resource [36]. Expanding on this discussion, Kapetsky’s research et al. in
[37,38] provided a comprehensive assessment of the extent to which GIS has been embed-
ded within the developmental and managerial landscapes of aquaculture. Kapetsky et al.
highlighted the numerous potential benefits of this integration, particularly in tackling
pressing sustainability challenges.

An overview of the prominent aspects, their descriptions, and corresponding refer-
ences are summarized in Table 1.

Table 1. Key Aspects in the Role of GIS in Disease Transmission Analysis in Aquaculture

Key Aspect Description Reference

Disease Detection and Management

GIS aids in spotting disease patterns,
predicting outbreaks, and devising
management strategies. It also helps in
understanding the environmental
factors influencing disease proliferation.

[39]

Spatial Analysis

GIS offers a visual representation of
disease spread, streamlining outbreak
detection, and monitoring
spatial-temporal dynamics of disease
transmission.

[40–43]

Risk Management

GIS is pivotal for marking out risk zones,
which in turn helps allocate resources
efficiently for disease control and offers
predictions under various conditions.

[44–46]

Data Integration

GIS has the capability to merge varied
datasets like disease, environmental,
biological, and geographical data for a
rounded analysis.

[47–50]

Strategic Decision-making

Using GIS, stakeholders can make
well-informed decisions for disease
control and prevention strategies in
aquaculture.

[51–53]

Concluding from the examination of research studies, GIS is recognized not merely as
a tool but as an integral component in the academic discourse of disease analysis within
aquaculture. Its ability to offer a detailed spatial database combined with its capacity for
virtual modeling underlines its importance. Collectively, these capabilities enable more
precise assessments and interventions concerning disease outbreak patterns in aquaculture.
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2.3. Reinforcement Learning in Disease Control

Reinforcement learning, a specified domain within machine learning, engages agents
in decision-making processes governed by received rewards or penalties from environmen-
tal interactions. Its applicability spans diverse fields, notably aquaculture and healthcare.
Within aquaculture, research proposed in [54] underscores the efficacy of reinforcement
learning in monitoring fish growth trajectories and optimizing feeding control mechanisms.
Sources have advocated for the use of model-based reinforcement learning (MBRL) in
infectious disease control to help reduce the overall cost of interventions.

Additionally, RL emerges as a powerful tool in optimizing disease control strategies in
aquaculture, as illuminated by the collective findings of several academic papers. Notably,
Chahid et al. showcased the development and implementation of Q-learning algorithms
tailored for optimizing feeding control policies, both in caged fish growth rate environ-
ments and tank-based fish growth rate settings with optimal temperature profiles. The
simulation outcomes affirm the algorithms’ ability to achieve precise trajectory tracking
while conserving feed. Similarly, Kuroki et al. presented the conception of an automatic
feeding system for Sillago japonica using reinforcement learning, underscoring the grow-
ing influence of this technology [55]. Palaiokostas furthers this narrative by revealing the
efficacy of machine learning models in anticipating disease resistance among aquaculture
species [56].

While the prowess of reinforcement learning is evident, a broader scope of research
accentuates the value of varied approaches in disease control. Chinabut et al. comprehen-
sively detailed multiple strategies, spanning from antibiotics and probiotics to biocontrol,
bioremediation, and vaccination [57]. Villena introduced the potential of in vitro methods
in pioneering safe therapeutants and enhancing disease control methodologies [58]. Park
gave an overview of Korean aquaculture practices, emphasizing chemotherapeutics, herbal
immunostimulants, and vaccination [59]. In the same scope, Assefa et al. offered a com-
prehensive review of epidemiological methods, spotlighting vaccination and biosecurity
measures as key components in combating infectious diseases [60].

Furthermore, Schryver et al. emphasized the importance of integrating ecological
theory into disease management, proposing microbial management strategies for disease
prevention in larviculture [61]. Pérez-Sánchez et al. presented a balanced overview of the
triumphs and hurdles associated with biological methods for bacterial disease prevention
in aquaculture. Xiong et al. delved into the utility of probiotics in shaping desired gut
microbiota compositions in shrimp, identifying the larval stage as an opportune period for
introducing specific probiotics into the rearing water [62]. In closing, Subasinghe accen-
tuated the critical role vaccination plays in ensuring aquatic animal health in aquaculture
settings [63].

The research studies generally demonstrate a multi-pronged approach to disease con-
trol in aquaculture, which combines cutting-edge technologies, ecological understanding,
and biological interventions.

2.4. Integration of GIS and Reinforcement Learning

The integration of Geographic Information Systems (GIS) and Reinforcement Learning
(RL) represents a promising avenue in the realm of disease transmission prediction and
strategy formulation. GIS, fundamentally an assembly of tools designed to collate, analyze,
and illustrate spatial or geographical data, provides a comprehensive landscape of disease
spread patterns and affected regions. Meanwhile, RL, nested within the broader domain of
machine learning, operates on a framework where agents are trained to make informed
decisions by processing the consequences in terms of rewards or penalties. When the fields
of GIS and RL converge, they create a robust and sophisticated mechanism that can be
used to understand current disease spread, anticipate future transmission trajectories, and
empower stakeholders to make proactive and informed interventions

Several notable benefits arise from this integration:
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• Precision Enhancement: The integration of GIS’s spatial data with RL’s decision-
making abilities has the potential to improve disease spread predictions by providing
a more complex understanding of the factors that influence disease transmission.

• Optimal Resource Deployment: RL is adept at optimizing the distribution of re-
sources based on the data at hand. For instance, by analyzing spatial data, agents can
determine the best locations for establishing vaccination centers.

• Agile Decision Processes: One of the strengths of reinforcement learning (RL) is its
ability to make adaptive decisions. This means that RL agents can learn and improve
their strategies over time, even as situations change. For example, if there is a sudden
spike in cases in a particular region, an RL agent could recalibrate its strategy to focus
more on that region.

• Cost-Efficiency: The combination of GIS’s spatial intelligence and RL’s optimization
abilities can lead to more cost-effective strategies for health infrastructure planning.
For example, by determining the most strategic locations for hospitals and clinics, we
can save money on transportation, staffing, and other costs.

Several studies in the academic area underscore the potential of GIS and RL in disease
control. For example, Palaniyandi [64] and Bouwmeester et al. [65] showed that GIS can be
used to monitor and predict the spread of diseases, and to identify critical intervention areas
for disease control. Li et al. proposed an evolutionary ensemble model based on a Genetic
Algorithm (GA) to predict the transmission trend of infectious diseases, which utilizes
the strong global optimization capability of GA for tuning the ensemble structure [66].
Sadilek et al. proposed a probabilistic model that uses social networks to predict disease
spread [67]. Chae et al. used deep learning algorithms and big data to predict infectious
diseases, which can help eliminate reporting delays in existing surveillance systems [68].
Peng et al. described the design and development of an AIDS Transmission Management
and Spatial Decision Support System based on GIS, which allows for the prediction of
future trends of the AIDS epidemic [69].

More specifically, in the context of aquaculture, a plethora of studies have shown
the potential of using GIS and related technologies to improve aquaculture practices. For
example, Navas et al. showed that combining GIS with neuro-fuzzy modeling can be used
to classify areas particularly vulnerable to pollutants, which can inform policy decisions
for aquaculture site selection [70]. Martínez demonstrated that GIS-based models can be
effective for helping the decision-making process of site selection in aquaculture planning
and management [71]. Kriaridou et al. suggested that genomic selection can improve
disease resistance in aquaculture breeding programs, and that this can be achieved at
lower SNP densities and at lower cost [72]. Villanueva et al. showed that genome-wide
evaluation of breeding values offers new opportunities for using variation within families
when dealing with dichotomous traits such as resistance to disease, and that the threshold
liability model used fits very well with the BayesB model of GWE [73].

The use of GIS and machine learning techniques to study disease transmission in
aquaculture has been well-documented. However, the application of reinforcement learning
(RL) and GIS to this field is still in its early stages. Khiem et al. used GIS and machine
learning to predict the occurrence of three serious diseases of shrimp in Vietnam, and found
that the neural network model outperformed other methods in predicting infection [74].
Greed developed a stochastic metapopulation model of infectious disease in aquaculture,
and found that concentration of production into separate areas successfully slows the
spread of simulated disease [75]. Silva et al. used GIS to predict fish yield in Sri Lankan
reservoirs, and found that highly significant relationships existed between fish yield and
different land-use patterns [76]. Finally, Zambrano et al. studied the use of machine
learning techniques to model the dynamics of water quality variables in fish farming, and
found that random forests can be used to forecast dissolved oxygen, pond temperature,
pH, ammonia, and ammonium when the water pond variables are measured only twice
per day [77].
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The collaborative potential between GIS and RL stands out prominently in current
research trends, offering promising avenues for enhancing predictive modeling and devis-
ing nuanced disease control strategies. However, within the research community, there is a
noticeable lack of substantial studies or applications that integrate reinforcement learning
with GIS, particularly within aquaculture. Moreover, the research landscape remains rather
limited in terms of publications applying Q-learning and multi-armed bandit techniques to
aquaculture. Such limitations extend to predicting disease spread in animals and, more
broadly, to applications in agriculture and livestock farming.

2.5. Case Studies and Applications in Aquaculture

The intersection of Geographic Information Systems (GIS) and reinforcement learning
(RL) offers a promising avenue for enhancing disease control strategies in aquaculture. The
application of such integrative methodologies, however, remains in nascent stages, with
only a few studies delving deep into this interdisciplinary approach.

In this study [78], the researchers explore the use of GIS-based AHP and data-driven in-
telligent machine learning algorithms for irrigation water quality prediction in an agricultural-
mine district within the Lower Benue Trough, Nigeria. The study identified the most in-
fluential water quality parameters and reclassified the six water quality criteria into four
major hazard groups. The results of the irrigation water quality suitability assessment for the
Okurumutet-Iyamitet agricultural-mine district showed that the water quality was generally
unsuitable for irrigation due to high levels of salinity, sodium adsorption ratio, and residual
sodium carbonate. The study highlights the importance of resilient and sustainable water
management in agriculture and provides insights into effective water quality prediction and
management strategies.

In the study by [79], a combination of machine learning, remote sensing, and GIS
data was applied to enhance the mapping of landslide susceptibility in the Abbottabad
district of Pakistan. This area is particularly vulnerable to landslides due to factors such
as heavy monsoon rainfall, varied terrain, earthquake events, and human activities. The
incorporation of machine learning models increased the accuracy of the susceptibility
maps, offering essential data for disaster management teams, researchers, and government
officials. These maps can guide land use planning efforts, aiming to minimize potential
human and economic losses. The research stands out by addressing a specific need for
improved landslide mapping in the Abbottabad region and underscores the benefits of
using modern technological methods in predicting and managing landslide risks.

In the study by [80], a novel framework is introduced which seamlessly merges IoT,
ML, and GIS with geospatial methodologies to ensure the sustainable management of
aquaculture resources. This approach prominently features the utilization of intelligent
sensors for meticulous data gathering, coupled with cloud-supported analysis, paving the
way for informed decision-making regarding feeding and monitoring fish health. Such
integration with geospatial methods notably enhances the precision in pinpointing ideal
fish habitats, culminating in a comprehensive database tailored for aquaculture resource
management. Furthermore, the research elaborates on the synergy of GIS and GPS in
sculpting a web-based platform for the fisheries domain. The outcomes of this research
underscore the framework’s prowess in discerning potential fishing areas and resource
management, thereby shedding light on the transformative power of technological and
geospatial advancements in bolstering the fishing sector while championing environmen-
tal sustainability.

2.6. Research Gap and Motivation

The prediction of disease propagation within aquaculture systems stands as a central
issue that directly affects the industry’s economic and ecological viability. Historically,
conventional models provided overarching insights into long-term disease patterns but
operated under limited data scopes [81]. Alternatively, while machine learning techniques
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excel in generating detailed short-term forecasts, they require a comprehensive historical
data set and often present challenges in model interpretability [82].

Innovative academic approaches underscore the promise of integrating Geographic
Information Systems (GIS) with reinforcement learning as a means to navigate these
challenges [83]. Specifically, this amalgamation aims to utilize GIS’s capacity for spatial
data analysis alongside the adaptive decision-making faculties of reinforcement learning.
As a result, this integrative model is anticipated not only to capture a macroscopic view of
disease trajectories but also to discern nuanced, region-specific variations [84].

The dynamic complexities of aquaculture, shaped by factors ranging from water
quality fluctuations to interspecies dynamics and human interventions, warrant predictive
models that are both comprehensive and adaptive. By fusing the spatial intelligence of GIS
with the feedback-driven mechanisms of reinforcement learning, the integrated approach
offers the potential for a refined, holistic strategy to address disease transmission intricacies
in aquaculture [85].

The aquaculture sector, pivotal in meeting global seafood needs, faces significant
challenges from disease outbreaks. The evolving nature of disease patterns in aquaculture
demands a more responsive and adaptive prediction mechanism. GIS emerges as a solution,
offering insights into spatial patterns of diseases, influenced by factors such as water cur-
rents and temperature variations. However, while GIS offers an advanced understanding
of spatial dynamics, real-time decision-making in disease management requires a more
dynamic approach.

Integrating reinforcement learning (RL) with GIS offers notable advantages. RL, a
machine learning subset, optimizes decisions using feedback from new data. By combining
GIS’s spatial capabilities with RL’s decision-making mechanisms, we aim to enhance our
predictive accuracy and response efficiency in managing aquaculture diseases.

2.7. State-of-the-Art Techniques for Prediction of Disease Transmission in Aquaculture

Effective management of disease in aquaculture involves both acting on current issues
and planning ahead to prevent future problems, highlighting the importance of using
advanced technologies and methods. The presented table (Table 2) represents various inno-
vative techniques that are essential in today’s aquaculture disease detection and control.
For instance, diagnostic technologies are pivotal, providing crucial information by precisely
identifying bacterial strains in fish, while also ensuring that the specifics of the bacterial
strain are thoroughly understood, as seen in reference [86]. Techniques like remote consul-
tation systems and real-time PCR have also shown their worth by improving how we share
vital information and rapidly and accurately detecting aquatic diseases, respectively [87,88].
The continued use and advancement of these technologies and diagnostic approaches
will be crucial to maintaining the health, sustainability, and productivity of species within
aquaculture, underlining the necessity of intertwining technology and practical approaches
to safeguard our aquatic environments and organisms.

Table 2. Overview of techniques for predicting disease transmission in aquaculture.

Tec. App. Sp. Adv. Lim. Findings Fut. Apps. Ref.

Diag. Tech.
Bacteria
detection, char-
acterization

Fish High
specificity

Special.
equipment Bacterial ID Enhanced

detect [86]

Remote
Consult.

Distance info.,
consultation Various Data sharing Tech

dependence
Disease mgmt.
improve.

Aquaculture
mgmt. exp. [87]

Real-time PCR RSIV detection Red Sea Bream High
specificity

Sensitivity to
inhibitors

Varied sample
detection

Routine
screening [88]

Hist. Obs. &
SEM

WSSV
detection Shrimp Visual conf. Time-

consuming Virus verif. Pathogenicity
db [89]
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In the multifaceted arena of aquaculture, ensuring the health and vitality of aquatic
species is paramount, thereby accentuating the significance of proficient disease manage-
ment and control. A nuanced approach to this endeavor involves leveraging technological
innovations, particularly embedding machine learning (ML) methodologies, to detect,
predict, and ultimately mitigate disease transmission and proliferation within aquaculture
environments. ML, characterized by its various techniques, including image-based learn-
ing, support vector machines, and intricate deep learning models, serves as a formidable
tool, facilitating meticulous monitoring and the management of aquatic health and environ-
mental parameters. This technological amalgamation into aquaculture not only enhances
the capability to identify potential outbreaks but also institutes a proactive stance toward
disease containment and prevention.

A discerning exploration into specific applications of ML in aquaculture presents its
impactful utility and transformative potential in this sector. For instance, machine learning,
with its predictive capabilities, has been utilized to forecast disease outbreaks within
rainbow trout farms, an application that intricately associates pathogenic bacterial profiles
with corresponding water quality parameters [90]. This methodology not only enables a
proactive approach towards disease management but also embeds a systemic resilience
within the operational framework of aquaculture enterprises. Furthermore, image-based
ML has been adeptly employed to identify and discern infected fish, providing an avenue
for early intervention and thereby constraining potential disease spread within aquaculture
populations.

Moreover, ML’s applicability extends to the vital domain of water quality prediction
within aquaculture, a critical determinant of the overall health and productivity of aquatic
species [91,92]. Ensuring the optimization of water quality parameters intrinsically mit-
igates stress and reduces susceptibility to diseases among aquaculture species, thereby
exemplifying ML’s crucial role in enhancing and safeguarding aquatic environments and
organisms. As research and development in ML applications within aquaculture con-
tinue to evolve, it is imperative that these technological advancements are cohesively
integrated with biological understanding, paving the way toward sustainable, productive,
and resilient aquaculture ecosystems.

The table presented in Table 3 offers a comprehensive comparison of diverse meth-
ods employed in aquatic analysis and disease transmission prediction. These methods,
spanning from clustering approaches to advanced machine learning classifiers, have been
tailored and fine-tuned to cater to specific applications in the aquatic realm. For instance,
the clustering method, such as the improved K-means, has been utilized for water quality
analysis and has been reported to exhibit high accuracy and stability. On the other hand,
the Gabor filter K-means approach is more aligned with discerning fish patterns. The
threshold methods, based on contour techniques, and carp classifications, each cater to
specific problem domains within the broader aquatic context. Each of these methodologies
comes with its own set of advantages and limitations. For instance, while the SVM for carp
classification exhibits high precision on smaller datasets, it is susceptible to overfitting in
the presence of noise.

One standout observation from the table is the performance and applicability of
various algorithms on specific aquatic datasets. Deep learning frameworks, especially Con-
volutional Neural Networks (CNN), have been harnessed for underwater fish classification,
boasting advanced feature extraction capabilities. However, they are computationally
intensive. Another pivotal point is the introduction of our approach, leveraging the Re-
inforcement Learning (RL) Multi-Armed Bandit algorithm for understanding ecosystem
dynamics. Notably, our method has recorded an impressive 96.81% in terms of accuracy, un-
derlining its effectiveness. This approach is especially tailored for dynamic, non-stationary
environments, albeit requiring a delicate balance between exploration and exploitation. The
broad spectrum of methods and their nuances depicted in the table showcases the depth
and breadth of computational techniques in the field of aquatic analysis and predictions.



Information 2023, 14, 583 11 of 30

Table 3. Comparison of various methods in aquatic analysis and disease transmission prediction.

Application Methods Segment./Class. Findings/Acc. Advantages Disadvantages Ref.

Clustering
Method

Improved
K-means Water Quality High accuracy,

stability Simple; fast Sensitive to
initial k, outliers [93]

Clustering
Method

Gabor filter
K-means Fish Patterns High-quality

segmentation
Improved
clustering

Not always
accurate [94]

Threshold
Method

K-nearest
neighbors,
K-means
algorithm

Image
classification

Shortens running
time

Simple; robust to
certain image
contrast and
brightness
changes

Difficult real-time
use, many
calculations,
needs optimal
threshold

[95,96]

Based on
Contour

Active contour
segmentation Aquatic Plants

Improved
efficiency,
accuracy

Better regional
characteristics in
small/continuous
space

Can cause
excessive
segmentation

[97,98]

Carp
Classification SVM Carp Type A 94% High precision

on small datasets
May overfit on
noisy data [99]

Carp
Classification Naive Bayes Carp Type B 96.80% Efficient with

large datasets
Assumes feature
independence [99]

Carp
Classification

CNN deep
learning
framework

Carp Type C 89% Effective on
image data

Requires
substantial
training data

[99]

Carp
Classification SVM Non-breeding

Fish Class. 84.78% Can handle
non-linear data

Needs parameter
tuning [99]

Carp
Classification Naive Bayes Non-breeding

Fish Class. 87% Scalable; good
with multi-class

Might be too
simplistic [100]

Carp
Classification MLP Non-breeding

Fish Class. 83.7%
Capable of
complex
representations

Risk of
overfitting [100]

Carp
Classification Random forest Rainbow Trout

Class. 86.95% Handles missing
data well Not interpretable [100]

Carp
Classification Decision tree Rainbow Trout

Class. 81.52% Easily visualized Prone to
overfitting [100]

Carp
Classification

Convolutional
neural network

Underwater Fish
Class. 96.51% Advanced

feature extraction

High
computational
needs

[101]

Our approach RL Multiarmed
Bandit

Ecosystem
Dynamics 96.81%

Applicable to
dynamic,
non-stationary
environments

Requires
balanced
exploration-
exploitation

-

3. Methology

The Methodology Section 3 details our research approach, focusing on the integration
of GIS with reinforcement learning to predict disease transmission in aquaculture. The
Materials and Methods Section 3.1 outlines the primary resources and processes used
in our study. In the Reinforcement Learning Section 3.2, we discuss key strategies such
as Markov Decision Processes Section 3.2.1, Q-Learning Section 3.2.2, and Multi-Armed
Bandit Section 3.2.3. The Description of Tools Section 3.3 introduces the GIS and other
software tools we utilized. Finally, the Implementation Description Section 3.6 explains
the practical steps taken to merge GIS with reinforcement learning, aiming for an effective
solution for disease spread prediction in aquaculture.

3.1. Materials and Methods

As presented in the introduction, pathogen transmission is directly linked to the rear-
ing environment. The visualization of epidemiological and of environmental data selected
and embedded into the Expert System contributes to the upgrade of the intelligent system



Information 2023, 14, 583 12 of 30

making decision-making a friend regarding the spread and management of diseases both at
the unit level as well as at the level of regions (POA), but also of wider geographical units.

In particular, the aim of the present paper is to develop a GIS in which weather
forecasting will help predict the speeds of water currents in a network of fish farming
units. These units are represented as subgraphs (disjoint each other) with nodes substations
with specific spatial coordinates and edges with specific water currents whose direction
is always constant, just changing their speed. This rate would be very important in order
to predict virus transmissions affecting fish within these substations. That is, the VIRUS
is transferred through these EDGES but each time at a different speed. The developed
Geographical Information System is adapted to the needs of Greek fish farming [102] in
which spatiotemporal dispersion is taken into account for diseases. The basic infrastructure
of our system is shown in Figure 1.

Figure 1. The basic infrastructure.

In the proposed approach, in order for diffusion in fishery data to be handled, we
should create clusters that contain fishery bots of subgroups. The whole area is partitioned
into a set of clusters and each cluster contains more than three fishery farms. In order
to find correlations among clusters, we embed extract information in each cluster. The
clustered regions contain their region (e.g., KEF for Kefalonia, etc.). Finally, we aim to
predict the effect of diffusion and based on the regions we created lines that represent the
diffusion phenomenon.

In order to proceed with the system we need workable solutions. We proceeded
according to three solutions:

• Solution 1 (Additive barrier): We can use a barrier that will control the diffusion
phenomenon of the form:

(average cost value in the neighboring cells)× (distance between cell centers)

This type of barrier is the simplest one.

• Solution 2 (Cumulative barrier): We can use another type of barrier that is of the form:

(difference between cost values in the neighboring cells)+ (distance between cell centers)

This type of barrier will create a more realistic scheme.

• Solution 3 (Flow barrier):

Indicator× (cost values in the to neighboring cell− cost values in the from
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neighboring cell) + (distance between cell centers)

This type of barrier will also show the direction of the phenomenon.

In the prototype built, we plan to follow the above solutions and built upon them our
final solution.

• Solution 1: Will work as it should but in case there is land between or there are regions
that overlap (KEF and ECH) this solution might fail.

• Solution 2: This will be a distance-based solution counting the distance of the cluster
centers.

• Solution 3: It appears to be the more realistic as per diffusion properties and the
direction of the wind/water, etc. The predictive scheme will inform more accurately
the nearby fishery spots of potential dangers.

It would be beneficial to implement three specific scenarios, with a focused exami-
nation of a distinct region, such as KEF or ECH. The aim is to simulate a case of disease
spread, initiating from a region with a high concentration of fish farming. This exercise is
undertaken to understand whether and how such a scenario would influence other regions.

As a part of this study, the speed of disease transmission is to be considered. Is it
constant, or does it diminish relative to the distance from the source? This aspect is crucial
to the comprehensive understanding of disease propagation dynamics. In our approach,
we utilize solution 3 in order to make a real-world use case which takes into account various
factors and not only distance.

Moreover, the spread of disease is of major importance in aquaculture regions for
various reasons:

1. Economic Impacts: The spread of diseases can cause significant losses in fish produc-
tion, as it affects the growth, health, and survival of fish. This could lead to lower
income for aquaculturists and increase production costs.

2. Veterinary Impacts: The spread of diseases in aquaculture requires the intervention of
veterinarians and the use of drugs for the treatment and control of diseases, increasing
costs and risks to public health due to antibiotic resistance.

3. Environmental Impacts: Diseased fish can affect the quality of water and the ecosys-
tem around aquacultures, as they excrete pathogens and other waste that can affect
the environment and other marine life. This could cause water pollution, loss of
biodiversity, and changes in the structure of ecosystems.

4. Social Impacts: The spread of diseases in aquaculture can lead to job losses and affect
the local economy, as fish farmers are significant producers and employers in many
coastal communities.

In our study, we concentrated on understanding how diseases propagate from specific
clusters, gauging their subsequent influence on neighboring regions. Through simulations
facilitated by the ArcGIS platform, our objective was to discern whether the disease dis-
semination was consistent or if external factors, such as distance between clusters, played a
role. After meticulously integrating pertinent data points, clusters, regions, and directional
pathways, we transitioned this framework to a cloud-based platform. This strategic move
not only enhanced system functionality but also facilitated data input by registered users.

In the subsequent stages of our research, we diversified our focus to encompass
additional fish species that are cultivated in Greece, aiming to provide a multifaceted tool
for disease management across a broader spectrum of species. Additionally, to refine our
system’s forecasting capabilities, we contemplated the integration of analytical models that
would consider variables like prevailing climatic conditions and water current patterns.

3.2. Reinforcement Learning

Reinforcement learning (RL) is an optimization framework. A problem can be consid-
ered a reinforcement learning problem if it can be framed in the following way: Given an
environment in which an agent can take actions, receiving a reward for each action, and a
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policy that maximizes the expected cumulative reward that the agent will obtain by acting
in the environment. The preceding framework is illustrated in Figure 2.

Figure 2. Reinforcement learning loop.

The most fundamental mathematical structure to represent a reinforcement learning
environment is to model the problem using Markov Decision Processes.

3.2.1. Markov Decision Processes

In [103], the authors introduced the concept of a Markov Decision Process (MDP) as
an extension of the famous mathematical construct of Markov Chains.

Markov Decision Processes are a widely-used model for sequential decision-making
and control problems. In particular, an MDP is defined by a 5-tuple in the form of
(S ,A,P(· | ·, ·),R(·, · · ·), γ) where:

• S is the set of states s ∈ S of the underlying Markov chain, where st ∈ S represents
the state of the environment at time t.

• A is the set of actions a ∈ A which are the transition labels between states of the
underlying Markov chain. At ⊂ A is the subset of available actions in state st at time
t. If a state st has no available actions, it is said to be a terminal state. Terminal states
are equivalent to absorbing states in the Markov Chain literature.

• P(st+1 | st, at) ∈ [0, 1], where st, st+1 ∈ S , at ∈ A. P is the transition probability
function (The function P is also known in the literature as the transition probability
kernel, the transition kernel, or the dynamics of the environment in model-based
contexts. The word kernel is a heavily overloaded mathematical term that refers to
a function that maps a series of inputs to value in R). It expresses a distribution
over states. It defines the probability of transitioning to state st+1 from state st after
performing action at. Thus, P : S ×A×S → [0, 1]. Given a state st and an action at at
time t, we can find the next state st+1 by sampling from the distribution st+1 ∼ P(st, at).
The environment is said to be deterministic if P(st, at) is deterministic.

• Reward Function: R(st, at, st+1) ∈ R, where st, st+1 ∈ S and at ∈ A. The reward
functionR represents the immediate reward the agent obtains after performing action
at in state st and transitioning to state st+1. The real-valued reward, denoted as rt,
is typically in the range [−1, 1]. The reward function R : S × A × S → R. If the
environment is deterministic, the reward function can be expressed asR(st, at).

• γ ∈ [0, 1] is the discount factor, which represents the rate of importance between
immediate and future rewards. If γ = 0 the agent cares only about the immediate
reward, if γ = 1 all rewards rt are taken into account. γ is often used as a variance
reduction method, and aids proofs in infinitely running environments [104].

There are also two optional parameters to an MDP which are sometimes omitted in
the literature. These are the initial state distribution ρ0 and the time horizon T:

• ρ0(s0) ∈ [0, 1], where s0 ∈ S , is the initial state distribution, representing the probabil-
ity of starting an episode on a given state s0. It is from this distribution that the initial
state is sampled from s0 ∼ ρ0.

• T ∈ N, represents the finite time horizon, the number of steps over which the agent
will try to maximize its cumulative reward. It serves a similar purpose to the more
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common discount factor γ in that they are both used as a variance-bias trade-off and
are needed for proofs of convergence over infinitely long-running tasks.

3.2.2. Q-Learning

Q-learning, a model-free reinforcement learning algorithm, is invaluable in the context
of disease transmission prediction. By leveraging the Q-function, we quantify the expected
cumulative reward for each state-action pair, providing a means to capture the dynamics of
disease spread. The Q-function is defined as:

Q(st, at) = R(st, at) + γ max
a∈A

Q(st+1, a) (1)

The Q-learning algorithm, adapted to predict disease transmission, can be outlined
as follows:

1. Initialize the Q-table with zeros for all state-action pairs.
2. For each episode in the environment:

• Begin from an initial state.
• Until a terminal state is reached:

– Choose an action based on an epsilon-greedy policy from the current Q-
table.

– Execute the action and observe the reward and new state.
– Update the Q-value using the equation:

Q(st, at)← (1− α)Q(st, at) + α

(
R(st, at) + γ max

a∈A
Q(st+1, a)

)
(2)

where α denotes the learning rate.

Given the spatial nature of disease transmission in aquaculture and specific attributes
of fishery spots, we introduce F as a set of influential factors. These could encompass
water quality, density of fishes, and proximity to other potentially infected regions. By
integrating these factors into the Q-function, we achieve a more nuanced understanding of
the disease transmission pathways:

Q(st, at) = R(st, at) + γ max
a∈A

Q(st+1, a) + ∑
f∈F

ω f · f (st) (3)

where:

• ω f denotes the weight associated with factor f , representing its influence on the
Q-function.

• f (st) symbolizes the value of factor f within state st.

3.2.3. Multi-Armed Bandit

The Multi-Armed Bandit (MAB) approach, a simplified form of reinforcement learning,
requires an agent to select among various strategies (the bandit’s arms) to optimize a reward
over time. Each arm, in the context of disease spread in fisheries and aquaculture, could
represent a distinct preventive strategy.

The goal is to determine the arm (strategy) that minimizes disease transmission,
striking a balance between the exploration of new strategies and the exploitation of known
effective ones. The action-value function for MAB is:

Qt(a) =
sum of rewards when arm a was chosen up to time t

number of times arm a was chosen up to time t
(4)

The MAB problem for disease transmission prediction can be tackled using the Upper
Confidence Bound (UCB) algorithm:

1. Initialize each action’s value to zero.
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2. For every time t = 1, 2, 3, . . . , n:

• Choose an action at that maximizes:

Qt(a) + c

√
ln t

nt(a)
(5)

where nt(a) represents the number of times action a was chosen up to time t, and
c determines the exploration extent.

• Obtain the reward for the selected action, subsequently updating the action–
value estimate.

In the MAB approach, each arm could potentially signify a preventive strategy catered
to specific fishery spot parameters. Here, the reward is influenced by the spatial effective-
ness of a chosen strategy, given the unique conditions of the aquaculture environment.

To capture this, we introduce a spatial influence function, I:

R(a, s) = r(a, s)× I(s) (6)

where:

• R(a, s) is the modified reward for choosing action a at spot s.
• r(a, s) is the basic reward of action a at spot s.
• I(s) embodies the spatial influence at spot s.

Subsequently, the action–value function for the MAB is:

Qt(a, s) =
sum of rewards R(a, s) when arm a was chosen up to time t at spot s

number of times arm a was chosen up to time t at spot s
(7)

For choosing the most optimal action at a particular fishery spot using the UCB
algorithm:

at = argmax
a∈A

[
Qt(a, s) + c

√
ln t

nt(a, s)

]
(8)

where:

• nt(a, s) stands for the number of times action a was chosen up to time t at fishery
spot s.

In this context, the reward could inversely correlate with disease occurrences, meaning
strategies that effectively prevent disease obtain higher rewards. Such a method ensures
dynamic adaptation to evolving environmental conditions and disease dynamics.

3.3. Description of Tools

The code constitutes a simulation program for the spread of a disease across farms,
utilizing the geographic fields in ArcGIS. The simulation commences from the user, who
must specify the initial disease appearance points at several farms. The program utilizes
farm coordinates to compute distances between them and determine which farms have
been infected by the disease. Libraries such as arcpy and numpy are employed to carry out
the simulation [105].

More specifically, the arcpy library provides the necessary tools for interacting with
geographic data within ArcGIS [106–111]. The primary functions provided by the library
include reading and writing data, executing spatial analyses, creating maps, and represent-
ing data. On the other hand, the numpy library is employed for the execution of scientific
computational analyses.

Typically, computational environments such as Jupyter Notebook, Spyder, or other
Integrated Development Environments (IDEs) like PyCharm are used for conducting
scientific computational analyses. The libraries used depend on the purpose of the scientific
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analysis, but generally include NumPy and Pandas for data processing, Matplotlib and
Seaborn for data visualization, Scikit-learn for data analysis, and Keras and TensorFlow for
training neural networks.

In the code under analysis, some additional Python libraries are also employed.

• The operation begins with the employment of the arcpy library from Esri. This
comprehensive library, packed with a multitude of functions and tools tailored for
geographical data processing within the ArcGIS setting, serves as the indispensable
groundwork for the intricate spatial data handling needed in the study.

• For addressing certain computational hurdles, such as measuring distances between
farms, the study leans on the haversine library. The use of this library is pivotal in
conducting spatial processing and analysis. In addition, the random library is utilized
for the creation of random values, an essential factor in simulating the inherent
randomness found in natural phenomena.

• For a variety of mathematical computations, such as extracting square roots or calcu-
lating logarithms, the Python math library is used. This fundamental library enhances
the project’s efficiency by providing pre-built functions for common mathematical
operations.

• The study incorporates the use of the matplotlib library for graphically presenting
data. Due to its comprehensive nature and capacity to generate a broad selection
of premium visuals and charts, it significantly enhances the effective conveyance of
research findings.

• Additionally, the study’s utilization of ArcGIS extends beyond the arcpy library.
Different feature classes within ArcGIS, including those that symbolize farms, infected
farms, and certain geographical coordinates, are each leveraged to fulfill distinct
roles within the research. For instance, the feature class representing farms is crucial
for calculating inter-farm distances, the infected farm feature class is important for
maintaining key information about the location of diseased farms, and the coordinate
feature class plays a pivotal role in creating accurate and informative maps.

• Lastly, the Pandas library is heavily relied upon for the generation, modification, and
scrutiny of data. This dynamic and flexible library offers a multitude of functionalities
for dealing with Python datasets. To augment the analytical capabilities of Pandas,
the study again utilizes Matplotlib, this time to produce informative graphs from the
analyzed data.

• In addition, other Python libraries such as NumPy and DateTime are utilized for their
respective capabilities. NumPy offers advanced mathematical operations on large,
multi-dimensional arrays and matrices, while DateTime is used to manipulate dates,
an essential aspect of data in a temporal context.

• Extending the arcpy library’s capabilities, geoprocessing tasks such as creating and ma-
nipulating feature classes and rasters are efficiently carried out. These capabilities al-
low for a more nuanced and sophisticated exploration of the geographic data involved.

Furthermore, ArcGIS Pro capabilities, including the management and analysis of
sensor data, offer unprecedented opportunities for researchers to explore and analyze rich,
real-time data from a variety of sensors. These sensors, which provide invaluable data on
the environment and climate conditions, enable researchers to deepen their understanding
of the complex interactions between the environment, human activity, and disease trans-
mission. This, in turn, allows for more informed and effective decision-making processes
in response to virological outbreaks.

3.4. Incorporating Clustering with Reinforcement Learning

Incorporating the concepts of additive barrier, cumulative barrier, and flow barrier
into a Multi-Armed Bandit (MAB) scenario, especially within the context of spatial disease
transmission in aquaculture, offers a strategy for optimizing decision-making under uncer-
tainty. The additive barrier can be construed as a critical threshold that restricts or penalizes
the actions of the agent in the MAB, which might increase the risk of disease transmission.
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For example, in the exploration–exploitation dilemma, the agent may consider the
additive barrier as a determining factor for selecting arms (strategies) that mitigate imme-
diate risks, perhaps by minimizing movement between different aquatic regions. On the
other hand, the cumulative barrier can be implemented as a long-term constraint within the
MAB to manage the cumulative risk or impact of selected actions over numerous iterations,
ensuring that the overall strategies adopted do not amass unsafe levels of exposure or
vulnerability to the fish populations in the given spots.

The flow barrier could be particularly pivotal in a spatially-considered MAB scenario,
influencing the decision-making process by dictating the pathways of possible disease
spread through water currents or fish migrations. Thus, an arm of the MAB that represents
a strategy involving altering the fish movement or managing artificial current flows might
dynamically adjust to minimize the risk of widespread disease transmission.

In essence, by judiciously integrating these barriers within the MAB framework, we
developed a sophisticated, adaptive, and preventative disease management strategy in
aquaculture that is capable of dynamically responding to spatial and temporal variations
in risk, thereby safeguarding both the aquatic life and the associated economic activities
from the detrimental impacts of widespread disease outbreaks. This method ensures that
decision-making not only considers the immediate rewards but also navigates through the
spatial constraints and barriers that impact the longer-term consequences of those actions
in the defined space.

3.5. Model Parameters, Training, and Testing

The exploration and optimization of a model’s parameters represent a critical element
in its predictive capabilities and overall performance. In this research, the scrutiny extended
towards understanding and calibrating model parameters goes beyond mere numerical
adjustments. It permeates into discerning how each parameter potentially interacts with
the dynamics of spatial disease transmission in aquaculture and fishery spots, thereby
determining the trajectory and magnitude of disease spread within the system.

The model parameters, such as learning rate, action–value function estimates, and
exploration–exploitation trade-off in the context of reinforcement learning, are meticulously
tuned. They are adapted not merely based on generalized presumptions or previous litera-
ture but are empirically derived through iterative simulations and evaluations, ensuring
they are aptly suited to the unique and specific dynamics of our focused environment.

The establishment of a reliable and valid model inherently relies on a rigorous ap-
proach to the division of data into training and testing sets, often referred to as the train/test
split. The training data serve as the foundation upon which the model learns the intrin-
sic dynamics of spatial disease transmission in aquaculture by identifying patterns and
establishing predictive pathways within the data.

For the training phase, we used a substantial portion of the data (70%) allocated to
the training phase. Testing, conversely, utilizes the remaining 20% of the data, acting as a
previously unseen dataset against which to validate the model’s learned behaviours and
predictions. This bifurcation ensures the model’s ability to generalize learned behaviours
to new, unexperienced scenarios, and safeguards against overfitting.

In order to affirm the model’s predictive proficiency and reliability across diverse
circumstances, a 10-fold cross-validation technique was employed. This method entailed
partitioning the data into ten unique subsets, systematically training the model on nine
and validating on the one left out, cycling through all folds to meticulously gauge model
performance across various training and testing sets. This rigorous approach to validation
does more than substantiate the model’s predictive efficacy; it bolsters its real-world appli-
cability and robustness by ensuring its predictive capabilities remain consistent and reliable
across different scenarios. Consequently, the model not only emerges as theoretically robust
but also demonstrates practical viability in tangible, operational contexts, bridging the gap
between theoretical soundness and pragmatic utility.
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3.6. Implementation Description

The Python code implemented serves as a simulation of the spread and transmission
of a virus among farms and GIS points. This simulation is grounded on an algorithm that
monitors the status of farms daily and calculates the number of infected farms.

The steps of the code implementation are as follows:

1. The first step involves defining the variables required for the simulation. These include
specifying the workspace, the project file, the feature class of the farms, the virus
transmission rate, the search radius for infected neighbors, and the number of initially
infected farms, as well as the variables that will be employed in the simulation.

2. Next, the farm information is retrieved. In this step, the necessary details for each
farm are defined, such as its name, coordinates, and whether it is infected or not.

3. The initially infected farm is determined. In this step, the user is asked to input the
name of the initially infected farm. Upon the entry of this name, the code checks if
it exists in the farm list and assigns the appropriate value to the “chosen_farm” tag,
which represents the initially infected farm. If the corresponding farm is not found,
the program prints an error message and terminates the execution.

4. The program then sets the initially infected farm as infected, with an infection day
equal to 1, and enters the corresponding values into the “chosen_farm” tag. Addition-
ally, the program identifies the initially infected farm with the number that has been
set in the “initial_infected_farm_index” variable.

5. Subsequently, the program initiates a virus spread simulation for 14 days. Each day, it
checks the state of each farm and calculates the number of its infected neighbors. It
then calculates the probability of the virus transmission to an uninfected farm based
on the number of its infected neighbors. This probability is calculated as 1 − (1 −
transmission_rate) înfected_neighbors, where transmission_rate is the probability of
the virus transmission from an infected to an uninfected farm, and infected_neighbors
is the number of a farm’s infected neighbors.

• If this calculated probability is greater than a random number between 0 and
1, the farm is considered infected, and the “infected” variable of the farm is set
to True.

• If a given farm is deemed infected, its “days_infected” variable is set to the
current day, and the “infected_day” variable is set to the day that the farm
became infected.

• Depending on the number of newly infected farms each day, the infected farms
are stored in a list named “infected_farms_per_day”. Subsequently, a new feature
class named “InfectedFarms” is created to store the infected farms per day.

6. To add the infected points to the new feature class, the InsertCursor is utilized. The
feature class is opened for the insertion of new records, and the field values for each
infected point are added to the appropriate column. For each day, each infected point
is examined, and the coordinates, name, and day of infection of the point are added
to the feature class.

7. In the final stages, the novel feature class is incorporated into the project, positioning
it at the pinnacle of the project’s layer list before saving the project in its entirety.

8. In summary, the code constructs a feature class that comprises infected farms along
with their corresponding infection day for every day of the simulation. The simulation
employs the distance between farms to compute the likelihood of a farm succumbing
to infection via its contaminated neighbors. It then computes the daily count of fresh
infections and the total number of infected farms for each simulation day.

9. In essence, the code also constructs a new feature class within the geodatabase file,
representing the daily tally of infected farms. It proceeds to input the geographical
elements of the infected farms into this feature class. Finally, this new feature class is
incorporated into the ArcGIS project document which is then preserved by saving.
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These steps contribute to a detailed tracking system that incorporates geographical
information, infection status, and time data, thereby providing a comprehensive view of
the simulation’s progress and results.

3.7. Computational Complexity

In our implementation of the Multi-Armed Bandit (MAB) model, we had to consider
its inherent computational complexity. We designed our MAB algorithm to balance explo-
ration and exploitation, cycling through potential actions to ascertain the most rewarding
outcomes. For every iteration, we had to evaluate each arm, leading to a foundational
complexity of O(t× k) for t time-steps and k arms. Nevertheless, we adopted optimization
strategies to minimize the number of arms assessed at every stage. While the base compu-
tational overhead is linear with respect to the number of arms and iterations, real-world
complexity in our model can vary based on factors such as the type of reward distribu-
tions, the set convergence criteria, and the specific MAB variant we have incorporated.
Ultimately, we ensured that our MAB model remains computationally efficient for a range
of scenarios, but we also recognize the need to continuously adapt its structure in response
to the evolving scale of problems and available computational power.

4. Results

For the empirical evaluation of the model, the simulation is run by selecting a random
point (for example, cage No. 24), and the infected areas are printed in three scenarios.
Specifically, the following scenarios are examined:

• The best-case scenario, which includes low transmission rates, a short timeframe for
spread, and a small radius of transmission.

• The average scenario, encompasses moderate transmission rates, an average timeframe
for spread, and an average radius of transmission.

• The worst-case scenario, entailing maximum transmission rates, the longest timeframe
for spread, and the largest radius of transmission.

The goal of this methodology is to measure the array of potential outcomes and grasp
how different factors guide the disease’s spread. The evaluation metrics employed for
assessing the model’s performance are listed below:

• Accuracy: Measures the proportion of predictions that the model correctly identified.

Accuracy =
Number of correct predictions

Total number of predictions
(9)

• Precision: Quantifies the number of true positive predictions in the set of all predicted
positives. It is indicative of the reliability of a model when it predicts an instance to
be positive.

Precision =
True Positives

True Positives + False Positives
(10)

• Recall: Often termed Sensitivity or True Positive Rate, Recall determines the number
of true positive predictions in the set of all actual positives. It provides insight into the
model’s capability to detect all potential positive instances.

Recall =
True Positives

True Positives + False Negatives
(11)

• F1-score: The F1-score is the harmonic mean of Precision and Recall. It offers a balance
between Precision and Recall and is particularly valuable when the class distribution
is imbalanced.

F1 = 2× Precision× Recall
Precision + Recall

(12)
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However, for the most comprehensive assessment of our model performance, espe-
cially in the context of imbalanced datasets, it is paramount to consider all these metrics
collectively. Relying exclusively on accuracy can sometimes result in a skewed perception
of the efficacy of the model.

As part of our evaluation, we present the results of the proposed RL algorithmic model
in Table 4. This table showcases the performance metrics for each model, specifically, their
accuracy, precision, recall, and F1-score. We assessed various methods for this evaluation,
including Random Forest, Support Vector Machines (SVMs), Neural Networks, the Markov
Process, a basic RL model (Q Learning), and our proposed Multi-Armed Bandit approach.

Table 4. Performance metrics of various algorithmic choices for disease transmission.

No. Algorithm Accuracy Precision Recall F1 Score

1 RandomForest 0.90 0.91 0.92 0.91

2 SVM 0.88 0.87 0.89 0.88

3 Neural Network 0.92 0.92 0.93 0.92

4 Markov Process 0.89 0.89 0.86 0.85

5 RL Model (Q-Learning) 0.93 0.93 0.94 0.93

6 Multi-Armed Bandit 0.96 0.96 0.95 0.95

The results are also illustrated in Figure 3, where all methods are accessed and their
evaluation metrics are presented.
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Figure 3. Graphic representation of results for various methods.

Under the best-case scenario, the disease is relatively controlled due to the low trans-
mission rate and narrow transmission radius, resulting in a smaller impact area. In the
average scenario, the disease extends to a wider region, affecting more locations because
of a higher transmission rate and a more extended period. The radius of transmission is a
key factor here, allowing for a larger area of potential spread. In the most severe scenario,
the disease spreads rapidly and widely due to the high transmission rate, longer duration,
and large transmission radius. This situation represents a significant outbreak where the
infection rapidly reaches many locations over a wide area.

This analysis is crucial for assessing the model’s stability, understanding the spread
patterns of the infection, and planning necessary actions for each scenario.

In Figure 4, the initial point of disease spread is depicted. The point indicated by the
red arrow signifies the selected cage of transmission.

Following that, in Figure 5, the best-case scenario is depicted and modeled. As
illustrated in the figure, only the neighboring cages of this area are affected, while cages in
other zones (such as those in Kefalonia, for example) remain unaffected.
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Figure 4. Initial point of virus spread.

Figure 5. Best-case scenario for disease spread.
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In Figure 6, the average-case scenario is depicted. In this case, as seen, cages in other
zones have been influenced as the spread in this scenario is greater and the radius of
transmission is also larger.

Figure 6. Average scenario for disease spread.

Figure 7 illustrates the worst-case scenario. As seen in the figure, in this scenario zones
that are quite distant are affected, specifically cages in the wider area of Patras as well as
the Corinthian Gulf.

Table 5 represents a scenario of the program execution. As seen in the execution,
the program calculates the best, average, and worst-case scenarios, and also prints the
optimal action (whether neighboring areas should be informed or the fish should be moved
higher up).

Table 5. Scenario of program execution for a use-case.

Scenario New Infections per Day Total Infected Farms Optimal Action Optimal Reward

Best-case [1, 32, 94, 31, 28] 160 notify neighbors +1

Average-case [1, 171, 30, 1, 0] 205 notify neighbors 0

Worst-case [1, 663, 23, 0] 689 pick up fish −1
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Figure 7. Worst scenario for disease spread.

As we can observe in the best-case scenario, the total number of infected farms is 160,
where the optimal action is to notify the neighboring farms that there is an outbreak. In
the second scenario, the number increases to 205 and the optimal action is the same with a
neutral reward. Lastly, in the worst-case scenario, the outbreak is greater with 689 farms
infected, and the optimal action is to pick up fish as there is too much outbreak and will
affect all neighboring fishery spots.

5. Discussion

The empirical assessment of our model provides a comprehensive understanding of
disease transmission under varying circumstances, as delineated by the best-case, average,
and worst-case scenarios. The intrinsic characteristics of these scenarios, ranging from
transmission rates to transmission radius, serve as vital factors in determining the extent
and magnitude of the disease’s spread. The consequences of these factors are manifest in
the contrasting spatial patterns depicted in the figures corresponding to each scenario.

A fundamental observation from the best-case scenario, as portrayed in Figure 5, is
the limited spatial spread of the disease. This confinement is attributed to the low trans-
mission rates combined with a shorter timeframe and a smaller transmission radius. Such
scenarios are indicative of the potential controlled spread under stringent interventions or
in the presence of effective preventive measures. On the other hand, the average scenario
(Figure 6) offers insights into a situation that might be seen in a real-world context without
any interventions. The escalation in the transmission rate and a wider radius presents a
more challenging scenario, with the disease affecting a broader geographical area. Such
an understanding is essential for policymakers and health authorities to anticipate and
prepare for average disease outbreaks. The worst-case scenario, however, represents a
pressing concern. As seen in Figure 7, the rapid and widespread dissemination of the
disease is accentuated by the maximum transmission rates, the longest duration for the
spread, and the extensive transmission radius. Such situations necessitate immediate and
robust response mechanisms, particularly in regions exhibiting similar environmental and
contextual factors as the model’s setting.

Turning our attention to the algorithmic assessment, our results (Table 4) suggest
that the RL Model, specifically Q-Learning, outperforms other tested algorithms across all
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metrics, including accuracy, precision, recall, and F1-score. As per the best performance, it
appears on our proposed Multi-Armed Bandit approach with 95% accuracy and superior
performance across all metrics. Such results reinforce the efficacy of reinforcement learning
in modelling and predicting complex processes like disease transmission in aquaculture.
Particularly, its adaptive nature and the capability to make decisions based on iterative
feedback possibly contribute to its superior performance. However, it is noteworthy
that while accuracy was high across all models, relying solely on accuracy, especially
in disease modelling, can be misleading. The consequences of false negatives in this
context—erroneously predicting an area as disease-free—could be critical. Thus, precision,
recall, and F1-score, which provide a more rounded view of performance, should be taken
into account. For instance, the high recall value for the RL model suggests its capability to
detect most of the positive cases, a crucial aspect in epidemic modelling.

Furthermore, the optimal action printed during program execution implies a crucial
actionable insight. Determining whether neighbouring areas should be informed or if
preventive measures such as moving the fish higher up are required are immediate actions
that can be extracted from the model. Such outputs not only enhance the utility of the
model for real-world application but also underscore its role in decision-making processes
during outbreaks.

6. Conclusions

Through our research, we have developed an advanced predictive system that models
the spread of diseases within aquaculture facilities. The flexibility of our model enables
users to simulate various disease spread scenarios from a given origin point, highlighting
its practicality. The user-driven input for the outbreak’s starting location and the system’s
adeptness at forecasting subsequent points of vulnerability underscore the model’s robust-
ness. With the capacity to process scenarios of simultaneous outbreaks and the variable
timeframes for projection, our tool offers a holistic perspective into potential pathways
for disease transmission. This predictive prowess facilitates early interventions, thereby
safeguarding the aquaculture’s health and vitality.

An explicit achievement of our study is the evident efficacy of the Multi-Armed
Bandit (MAB) technique. Although the data indicates its superior performance metrics
compared to other methodologies, it is crucial to acknowledge that each algorithm has its
own strengths and weaknesses and that the superiority of MAB was context-specific. While
our primary focus was aquaculture, the underlying principles of our tool possess potential
applicability to other sectors. This adaptability might lead to innovative predictive models
that can transform risk management strategies across different industries.

Future Work

Building on the findings and insights from our current study, several avenues of
exploration present themselves for the future. A pressing consideration is the integration
of buffer techniques, poised to refine our model’s accuracy, especially during high data
influxes. Although the MAB technique emerged as a strong contender in our current
configuration, the vast expanse of reinforcement learning holds potential alternatives and
enhancements. We are keen to explore other advanced RL techniques, such as Proximal
Policy Optimization (PPO) or Twin Delayed Deep Deterministic Policy Gradient (TD3),
to ascertain if they offer further advantages. Incorporating finer variables influencing
disease spread, like farm quality indices, geographical nuances, and proximity factors,
will lend more depth to our projections. Our system’s evolution must factor in preventive
measures, using simulations to forecast the ripple effects of interventions like vaccinations
or quarantines. Recognizing the intricate dance between climatic factors and disease
dynamics, weaving in meteorological data will be a pivotal next step. Expanding the data
spectrum from historical disease patterns to viral genetic nuances can push our model’s
predictive acumen to newer heights.
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As the global narrative shifts towards climate change and its interplay with disease
patterns, our research could be at the cusp of significant breakthroughs. With the chal-
lenges posed by changing environmental patterns, the adaptability and refinement of our
model becomes paramount. As we venture into uncharted territories, incorporating buffer
techniques, leveraging advanced RL algorithms, and assimilating diverse datasets, our
path ahead is both challenging and exhilarating.
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