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Abstract: The extraction of community-scale green infrastructure (CSGI) poses challenges due to
limited training data and the diverse scales of the targets. In this paper, we reannotate a training dataset
of CSGI and propose a three-stage transfer learning method employing a novel hybrid architecture,
MPViT-DeepLab, to help us focus on CSGI extraction and improve its accuracy. In MPViT-DeepLab,
a Multi-path Vision Transformer (MPViT) serves as the feature extractor, feeding both coarse and
fine features into the decoder and encoder of DeepLabv3+, respectively, which enables pixel-level
segmentation of CSGI in remote sensing images. Our method achieves state-of-the-art results on the
reannotated dataset.

Keywords: remote sensing; community-scale green infrastructure; transfer learning; MPViT-DeepLab;
image segmentation

1. Introduction

Urban green space (UGS) refers to natural environment areas within urban areas,
which typically comprise natural elements, such as trees, grass, gardens, parks, forests,
lakes, rivers, lawns, and more. These green spaces can be located in various parts of the city,
including downtown areas, communities, residential neighborhoods, and industrial zones.
The extraction of urban green spaces can be achieved through traditional methods [1,2] as
well as deep learning-based approaches [3,4]. In [5], the concept of community-scale green
infrastructure (CSGI) is introduced and pertains to public facilities built to promote com-
munity sustainability. Compared to urban green spaces, these infrastructures are smaller in
scale. CSGI extraction is of significant value for community planning, landscaping, and sus-
tainable development. In this paper, we categorize CSGI into five classes based on their
specific functions within the community: Grass, Tree, Bush area, Lake, and Terrace greenery,
which collectively cover over 90 percent of the green infrastructure within the community.

CSGI extraction is a remote sensing semantic segmentation task. Semantic segmen-
tation in remote sensing imagery has long been one of the challenging problems in the
field of computer vision. This difficulty arises from the significant variations in the ap-
pearance of segmented objects and the irregular spatial distribution. Convolutional neural
networks (CNNs), as excellent feature extractors, have been widely applied to remote
sensing image segmentation tasks [6,7]. However, conventional CNNs for classification
often incorporate consecutive pooling and downsampling operations, leading to a decrease
in spatial resolution and a limitation in modeling long-range dependencies. To address this
issue, researchers have attempted to improve the network structure of CNNs. For instance,
U-Net [8], with its encoder–decoder structure and skip connections, performs well in med-
ical image segmentation [9] and remote sensing image segmentation tasks and achieves
promising results in building extraction [10,11]. To give another example, the DeepLab
series of networks [12–15] increases kernel sizes, employs atrous convolutions, and estab-
lishes spatial pyramids to expand the receptive field for pixel-level image segmentation.
These optimizations enhance the long-range dependency of feature maps.
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The Transformer architecture originally gained tremendous success in the field of
natural language processing by stacking multi-head attention modules to model long-range
dependencies, effectively compensating for the limitations of CNN. As a result, the Vision
Transformer (ViT) [16] processes images in the form of token sequences, similar to dealing
with natural language. However, it has a significant drawback in that it requires large
amounts of data and long training times to match the performance of CNNs. The Swin
Transformer [17] introduces the concept of a mobile window to make ViT more efficient.
The Multi-path Vision Transformer (MPViT) [18] takes a different approach by constructing
parallel multi-path structures, simultaneously utilizing the non-local connectivity of convo-
lution and the end-to-end dependency of Transformer, which allows it to represent fine
and coarse features for dense prediction tasks effectively.

CSGI extraction requires attention to both global and local features. Additionally,
the dense and overlapping distribution of segmentation objects in CSGI, coupled with the
difficulty of manual labeling and the scarcity of training data, poses significant challenges
for extraction. The lack of training data and the introduction of new extraction targets led
us to consider transfer learning. Early on, transfer learning found extensive applications
in multi-task learning [19] and domain adaptation [20]. With the rise of deep learning in
the 21st century, researchers have begun to use transfer learning to tackle more complex
tasks and data. Jason Yosinski and his colleagues [21], through experimentation and trials,
provide substantial support and affirmation for the transferability of deep networks. When
transfer learning is appropriately employed, the accuracy of deep learning tasks can be
significantly improved while reducing training time. Transfer learning has found numerous
applications in fields such as medicine [22,23], industry [24], finance [25,26], biology [27],
music [28], environment [29], and computer vision [30,31].

In this paper, we use DeepLabv3+ as the backbone network to compare the segmenta-
tion performance of Mobilenet [32], Resnet101 [33], Xception [34], and MPViT as a feature
extraction network on CSGI. Additionally, we investigate which batch normalization (BN)
layers of MPViT-DeepLab should be frozen during the three-stage transfer learning process.
In summary, the contributions of this paper are as follows:

1. We reannotate a dataset suitable for training in the task of CSGI extraction.
2. We feed the coarse and fine features extracted by MPViT into DeepLabv3+ for pixel-

level segmentation of CSGI in the three-stage transfer learning process.
3. We confirm that three-stage MPViT-DeepLab transfer learning, along with freezing all

BN layers during the second transfer learning, achieves state-of-the-art performance
in the CSGI extraction task on the reannotate dataset.

2. Related Work

The hybrid architecture we employ, MPViT-DeepLab, utilizes DeepLabv3+ as the
backbone with MPViT serving as the feature extractor. In this section, we will provide
a detailed explanation of the specific configurations of the MPViT and DeepLabv3+ that
we use.

2.1. Multi-Path Vision Transformer

In [18], the Multi-path Vision Transformer (MPViT) is primarily constructed using
a Multi-Scale PatchEmbed (MS-PatchEmbed) block and a Multi-Path Transformer (MP-
Transformer) block to build a parallel multi-path structure, capturing both fine and coarse
features for dense prediction tasks. Figure 1 provides a specific illustration of the MPViT
network architecture. We input an image of dimensions H ×W × 3. Initially, the image
undergoes two consecutive convolutional batch normalization (Conv-BN) layers with a
3 × 3 convolution kernel and a stride of 2, which serve to reduce dimensionality and
model parameters. After this stage, the feature size becomes H

4 ×
W
4 × C′, where C’ repre-

sents the channel size for the next stage. The Conv-BN layer consists of a convolutional
layer, a batch normalization layer, and a Handswish activation function. Following this,
the process involves four iterations, each consisting of an MS-PatchEmbed block and an
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MP-Transformer block. The MS-PatchEmbed block can extract image sequences of different
sizes using depth-wise convolution, while the MP-Transformer block processes the image
sequences passed by the MS-PatchEmbed block through a Transformer Encoder, resulting
in the aggregation of local and global features. In the following sections, we will provide a
detailed description of each component.

Figure 1. An overview of MPViT network structure for image classification.

2.1.1. Multi-Scale PatchEmbed Block

The Multi-Scale PatchEmbed block’s specific content is illustrated in Figure 2. It
designs a function Fk×k(·), which employs convolution with overlapping patches. Fk×k(·)
represents a 2D convolution operation with a kernel size of k× k, stride s, and padding p.
When F(·) is given a set of features Xi ∈ RHi−1×Wi−1×Ci−1 as input, the calculation of the
resulting Fk×k(Xi) ∈ RHi×Wi×Ci in terms of height Hi and width Wi is as follows:

Hi =

⌊
Hi−1 − k + 2p

s
+ 1
⌋

, Wi =

⌊
Wi−1 − k + 2p

s
+ 1
⌋

(1)

Figure 2. Specific architecture of the Multi-Scale PatchEmbed block in MPViT.

By adjusting the sizes of k, s, and p, we can determine whether to generate features
of the same size or reduce spatial resolution. When s = 1 and p =

⌊
k−1

2

⌋
, we can use

batches of different sizes to generate features of the same size. The H ×W × C image
features, regardless of whether they pass through 3× 3, 5× 5, or 7× 7 convolutions, will
not change the H and W sizes. This allows visual tokens of the same sequence length to
be passed into the Transformer Encoder. When we need to reduce spatial resolution, we
increase the stride, such as when s = 2, which reduces the spatial resolution to half of its
original value. Within each Multi-Scale PatchEmbed block, we perform two convolutions
with s = 2. For instance, given the feature size Xi ∈ RHi×Wi×Ci , in the next stage, the input

feature size becomes Xi+1 ∈ R
Hi+1

4 ×Wi+1
4 ×Ci+1 .

Stacking convolution blocks allows us to achieve the same receptive field as a larger
kernel with fewer parameters. As a result, our 5× 5 convolution is composed of two 3× 3
convolutions (2× 32 < 52), and similarly, our 7× 7 convolution is formed by stacking three
3× 3 convolutions (3× 32 < 72). The depthwise separable convolutions [34] (depicted as
DWConv-BN in Figure 3) consist of a 3× 3 depthwise convolution and a 1× 1 pointwise
convolution, followed by a batch normalization layer [35] and a Handswish activation
function [36].
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Figure 3. Specific architecture of the multi-path Transformer block in MPViT.

2.1.2. Multi-Path Transformer Block

The structure of the multi-path Transformer block is depicted in Figure 3. The purpose
of the multi-path Transformer block is to capture long-range dependencies while paying
attention to local feature relationships. It mainly comprises two types of modules: the
Depthwise Residual Bottleneck block (DW Residual Bottleneck) and the Transformer
Encoder block. The DW Residual Bottleneck block consists of a 1× 1 convolution, a 3× 3
depthwise convolution, and another 1× 1 convolution [33]. Its primary role is to extract
local features with a relatively lower parameter count and computational cost in both
spatial and channel dimensions. Within the Transformer Encoder block, efficient factorized
self-attention [37] is employed (depicted as the F-MHSA block in Figure 4) to alleviate the
computational burden:

FactorAtt(Q, K, V) =
Q√
C
(softmax(K)>V), (2)

where Q, K, V ∈ RN×C represent linearly projected queries, keys, and values, and N, C
denote tokens and channels. Due to the self-attention mechanism of the Transformer and its
ability to disregard position and sequence size, it exhibits great strength in handling global
features. The Transformer Encoder block is capable of extracting global features in both
spatial and channel dimensions.

Figure 4. Specific network architecture of encoder and decoder of DeepLabv3+.

We denote the extracted local features as Li ∈ RHi×Wi×Ci and the global features as
Gi,j ∈ RHi×Wi×Ci . These features are then concatenated together:

Ai = Concat([Li, Gi,0, Gi,1, ..., Gi,j]), (3)

Xi+1 = I(Ai) (4)
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The path index j corresponds to the position on the path, and the aggregated feature
Ai ∈ RHi×Wi×(j+1)Ci interacts with the feature interaction function I(·) to generate the final
feature Xi+1 ∈ RHi×Wi×Ci+1 with channel dimension Ci+1 of next stage. In I(·), a 1× 1
convolution with a channel number of Ci+1 is used. The final feature Xi+1 serves as the
input for the next stage’s Multi-Scale Patch Embedding layer.

2.2. DeepLabv3+

Deeplabv3+ [15] is a semantic segmentation model that excels in capturing fine details
and context in images. Notable for its dilated convolutions and atrous spatial pyramid
pooling, it effectively addresses challenges in various fields, providing precise object
delineation and high-resolution predictions.

As shown in Figure 4, in DeepLabv3+,the feature extractor feeds the low-level feature
and output feature into the encoder and decoder, respectively. The encoder utilizes atrous
convolutions to compute output features. The features processed by the encoder are
combined with low-level feature passed to the decoder, and after operations such as
upsampling, the model outputs the segmented image result.

3. The Proposed Method
3.1. Dataset

We select the ILSVRC2012 dataset [38] for pretraining, which spans 1000 object classes
and contains 1.2 million training images, 50,000 validation images, and 100,000 test images.
This dataset provides sufficient data for training ViT-based networks. Additionally, we
utilize the DroneDeploy Segmentation Dataset [39], which comprises several aerial scenes
captured with drones. The dataset includes six categories: BUILDING, CLUTTER, VEG-
ETATION, WATER, GROUND, and CAR. Each scene has a ground resolution of 10 cm
per pixel. We chip these aerial images into 300× 300 sizes, resulting in a training set of
over 11,000+ slices and a validation set of over 2000+. Subsequently, cropping is performed
according to the requirements of different network inputs.

CSGI is classified into five categories based on different functions: Grass, Tree, Bush
area, Lake, and Terrace greenery. However, the DroneDeploy Segmentation Dataset is
not fully suitable for CSGI extraction tasks. To adapt to the CSGI extraction task, we use
Labelme [40] to reannotate three iconic remote sensing images from the DroneDeploy
Segmentation Dataset. The samples in the dataset are shown in Figure 5, where Bush area
includes low bushes, flower beds, etc., and Terrace greenery refers to the greenery on the
roofs of community buildings. During the annotation process, we try to ensure that the
contours of each CSGI are clear. For connected trees, etc., we mark them together.

Figure 5. A few samples of reannotated DroneDeploy Dataset, where class labels corresponding to
colors are shown on the right.
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We then divide the reannotated remote sensing images into 300× 300 sizes, removing
slices with a high proportion of background. The remaining slices are split into a training
set and a validation set. Removing slices with a high proportion of background can improve
training accuracy and reduce the impact of the background on calculation. In the end,
we obtain the training set consisting of 300 images and the validation set consisting of
110 images, with a training set to validation set image quantity ratio of approximately 3:1.

3.2. Three-Stage Transfer Learning

MPViT is a multi-path variant of the ViT model, sharing similar characteristics. One
challenge that cannot be avoided is the need for a substantial amount of data and extended
training times to achieve the desired segmentation results. Additionally, CSGI extraction
datasets pose difficulties in annotation, consume a considerable amount of time, and make
it challenging to obtain a large number of labeled samples. In [41], to address the issue of
small-sample data, a multi-stage transfer learning approach is employed. Building upon
this, we have designed a three-stage transfer learning scheme to tackle training difficulties
and data scarcity.

As shown in Figure 6, the three-stage transfer learning method includes three stages:
pretraining, the first transfer learning, and the second transfer learning.

Figure 6. An overview of the three-stage MPViT-DeepLab transfer learning, which includes three
stages: pretraining, the first transfer learning, and the second transfer learning.

Firstly, the pretraining stage is essential. Due to the specificity of MPViT, it needs
extensive training with a sufficient amount of data and time to achieve satisfactory results.
We conduct prolonged training on the ILSVR2012 dataset and use the obtained weights as
initial weights for subsequent transfer learning processes.

Next is the first transfer learning stage. Because of the transition from a classification
task to a segmentation task, MPViT is replaced by MPViT-DeepLab in the following two
transfer learning processes. In MPViT-DeepLab, the fine and coarse features extracted by
MPViT are separately input into the encoder and decoder of DeepLabv3+. In this stage,
we input images from the DroneDeploy Segmentation Dataset into MPViT-DeepLab to
obtain segmentation results for BUILDING, CLUTTER, VEGETATION, WATER, GROUND,
and CAR. This differs significantly from the pretraining classification task. Therefore, in the
first transfer learning, we do not freeze any parameters.

Finally, in the second transfer learning stage, the network architecture is similar to
the first transfer learning, but we choose to freeze all batch normalization (BN) layers in
MPViT-DeepLab. We input the reannotated DroneDeploy Dataset and obtain segmentation
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results for Grass, Tree, Bush area, Lake, and Terrace greenery. In this task, the segmentation
targets partially overlap with the first transfer learning. To fully leverage previous model
information, improve segmentation accuracy, reduce the number of parameters and com-
putational burden, and prevent gradient disappearance or explosion, we freeze all batch
normalization layers in the MPViT-DeepLab network during the second transfer learning.

3.3. MPViT-DeepLab

CSGI exhibits dense distribution and varying scales, making it challenging to achieve
high precision using conventional image segmentation methods. While CNN structures are
well-organized and do not rely on extensive data or long training times, they are unable to
capture long-range dependencies. On the other hand, ViT exhibits end-to-end dependency
but requires a significant amount of data and extensive training time to reach the target
accuracy. In light of this, researchers have attempted to combine CNN and Transformer
architectures to leverage the strengths of both. Zhang C et al. [42] propose a hybrid
network architecture combining CNN and Transformer, using the Swin Transformer as the
feature extractor and a U-shaped architecture for the encoder and decoder, for semantic
segmentation of ultra-high-resolution remote sensing images. In [43], an MPViT-Unet
architecture is used for medical image segmentation. Similarly, in [44], Wang W et al.
employ Enhancing Multi-scale Representations With Transformer for the segmentation of
remote sensing images, achieving promising results.

DeepLabv3+ has become the preferred segmentation model in many research and
application domains due to its outstanding performance and robustness. Azad R et al.
introduce TransDeepLab in [45], utilizing the Swin Transformer to extend DeepLabv3 and
model the Atrous Spatial Pyramid Pooling (ASPP) module, marking the first use of a purely
Transformer-based model to enhance the groundbreaking DeepLab model. Inspired by
these works, we utilize MPViT as the backbone feature extraction network, feeding coarse
features into the decoder of DeepLabv3+ and fine features into its encoder. This leads to
the construction of a hybrid network architecture combining MPViT and DeepLabv3+,
named MPViT-DeepLab.

Figure 7 provides an overview of the proposed MPViT-DeepLab network, where
DeepLabv3+ serves as the backbone and MPViT functions as the feature extractor. Images
first enter the MPViT network. In MPViT, the first Multi-Path Transformer block aggregates
features using patches of size H

4 ×
W
4 , and the last aggregation uses patches of size H

32 ×
W
32 .

Therefore, we consider taking the aggregated coarse features after the first aggregation in
MPViT as low-level features, which are then fed into the decoder. It first goes through a
1× 1 convolution to reduce the channel count, then aggregates with the upsampled result
from the encoder, refines the feature with a 3× 3 convolution, and finally performs bilinear
upsampling to output the segmentation result. Simultaneously, the aggregated fine features
are passed into the encoder for atrous convolution.

The atrous convolutions’ function is to enable us to control the resolution of the convo-
lution features and capture multi-scale information. For the input feature Xi ∈ RHi×Wi×Ci ,
the output feature Yi ∈ RH′×W ′×C′ after the atrous convolution has dimensions H′ ×W ′ × C′,
where the calculations for H′ and W ′ are as follows:

H′ =
⌊

Hi − k
r

+ 1
⌋

, W ′ =
⌊

Wi − k
r

+ 1
⌋

(5)

The calculation formula for the feature Yi after atrous convolution is as follows:

Yi = ∑
k

Xi+r·k ·Wk (6)

In Formula (6), k represents the convolution kernel size, r is the atrous rate, and Wk
represents the corresponding weights. For the MPViT network with an output stride of 16,
we set the atrous rates for the three intermediate atrous convolutions to [6, 12, 18] to expand
the receptive field as much as possible without losing information. We aggregate the
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features after atrous convolutions, reduce the channel count through a 1× 1 convolution,
and then upsample the features.

Figure 7. An overview of MPViT-DeepLab hybrid network architecture.

We denote the output of the atrous convolutions in the encoder with atrous rates 6,
12, and 18 as Yi (i = 1, 2, 3), the result of feature pooling as P, the low-level feature input
to the decoder as Xlow, and the feature input to the encoder as X. Combining the F(·)
functions, Equation (3) and (6) described in the previous sections, the entire process can be
represented as

Rdecoder = F1×1(Xlow), (7)

Rencoder = B(F1×1(Concat([F1×1(X), Y1, Y2, Y3, P])), (8)

R = B(Concat([Rdecoder, Rencoder]) (9)

In Equations (7)–(9), B(·) represents a bilinear upsampled function by 4, Rdecoder
represents the features in the decoder after a 1× 1 convolution, Rencoder represents the
features output by the encoder after upsampling, and R ∈ RH×W×C is the final pixel-wise
segmentation result, where C represents the number of classes for segmentation.

4. Results and Discussion

We implement our method based on Pycharm [46] with Python 3.7.0, and all models
are trained on a single NVIDIA Quadro RTX 5000 GPU.

We use DeepLabv3+ as the backbone network and MobileNet, ResNet101, Xception,
and MPViT as the feature extraction networks (named Mob-D, Res-D, Xce-D, and MPViT-D).
In [18], MPViT is categorized into Tiny, Xsmall, Small, and Base based on parameter sizes.
In our experiment, we chose the Base version as the feature extractor, with layers set
to [1, 3, 8, 3], channels set to [128, 224, 368, 480], and the path of MS-PatchEmbed set to
[2, 3, 3, 3]. We set the total number of iterations to 30,000, a learning rate of 0.01, a batch
size of 4, and an output stride of 16. For MobileNet, ResNet101, and Xception, the crop size
was set to 299, while for MPViT, it was set to 224.
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To compare the segmentation performance of several networks, we use the mean
intersection over union (MIOU) as the evaluation metric. The specific calculation formula
is as follows:

MIOU =
TP

TP + FP + FN
,

where TP means true positive, FP means false positive, and FN means false negative.
Firstly, we choose DeepLabv3+ as the backbone network and trained Mobilenet, Resnet101,

Xception, and MPViT on the DroneDeploy Segmentation Dataset with and without pretrain-
ing. We use image chips of sizes 512× 512, 300× 300, and 224× 224 from the DroneDeploy
Segmentation Dataset, and find that the 300× 300 chip size resulted in the highest training
accuracy. Subsequently, for all following experiments, we select remote sensing images
with a crop size of 300× 300 for training. The training times and MIOU values are shown
in Table 1:

Table 1. Training time (hours) and MIOU (%) of MobileNet, ResNet101, and Xception with
DeepLabv3+ and MPViT-DeepLab with and without pretraining on DroneDeploy Segmenta-
tion Dataset.

Network Time (not pre) MIOU (not pre) Time (pre) MIOU (pre)

Mob-D 5 27.0 3.3 (−1.7) 54.0 (+27.0)
Res-D 8.7 28.0 6 (−1.7) 56.9 (+28.9)

Xcep-D 7.5 33.6 2.7 (−4.8) 50.5 (+16.9)

MPViT-D 10.3 30.4 10 (−0.3) 54.7 (+24.3)

From Table 1, we can see that the training time for each network varies due to differ-
ences in network complexity and the number of parameters. Due to its parallel network
structure and a large number of parameters, MPViT-DeepLab obtained the longest training
time. In general, pretraining is effective in reducing training time and improving training
accuracy. After pretraining, MPViT-DeepLab achieved an MIOU value of 54.7%, which is
only 2.2% lower than the highest MIOU achieved by the Resnet101 network and outper-
forms the other two networks. This indicates that MPViT-DeepLab is suitable for remote
sensing image segmentation tasks.

Similarly, using DeepLabv3+ as the backbone network, we then train them on the rean-
notated DroneDeploy Dataset using their respective pretrained models on ImageNet [38].
We record the intersection over union (IOU) for each combination for the classes Bush area,
Grass, Lake, Terrace greenery, and Tree as well as the overall MIOU for CSGI. The specific
values are shown in Table 2.

Analyzing Table 2, MPViT-DeepLab achieves an MIOU of 85.4%, which is 0.4% higher
than the Xception and DeepLabV3+ combination. Compared to other combinations, MPViT-
DeepLab achieves state-of-the-art results in CSGI extraction. We also observe that MPViT-
DeepLab performs well in the segmentation of Green infrastructure categories, such as
Grass (+0.6%), Terrace greenery (+1.7%), and Tree (+0.1%). The Terrace greenery segmen-
tation task requires the network to consider the relationship between buildings, greenery,
and the environment, and MPViT-DeepLab effectively balances global and local features,
resulting in excellent segmentation performance.

To validate the effectiveness of the three-stage transfer learning method and determine
which parameters to freeze during the second transfer learning process, we utilize the
MPViT-DeepLab parameters trained on the DroneDeploy Segmentation Dataset as the
initial weights for training. We conduct comparative experiments under different scenarios,
including no freezing (named MPViT-D-T), freezing only the BN layers in MPViT (named
MPViT-D-FM), freezing only the BN layers in the DeepLabv3+ (named MPViT-D-FD),
and freezing all BN layers in the MPViT-DeepLab (named MPViT-D-FA). The experimental
results are presented in Table 3.
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Table 2. Class segmentation IOU (%) and image segmentation MIOU (%) of MobileNet, ResNet101,
and Xception with DeepLabv3+ and MPViT-DeepLab on reannotated DroneDeploy Dataset.

Network Bush Area Grass Lake Terrace Greenery Tree MIOU

Mob-D 75.4 92.9 98.6 67.5 89.0 84.7
Res-D 71.4 93.2 98.4 64.1 89.3 83.3
Xce-D 73.9 92.6 98.3 73.1 87.2 85.0

MPViT-D 71.1 93.8 98.2 74.8 89.4 85.4

Table 3. Class segmentation IOU (%) and image segmentation MIOU (%) of no freezing, freezing
only the BN layers in MPViT, freezing only the BN layers in the DeepLabv3+, and freezing all BN
layers in the MPViT-DeepLab on reannotated DroneDeploy Dataset.

Network Bush Area Grass Lake Terrace Greenery Tree MIOU

MPViT-D 71.1 93.8 98.2 74.8 89.4 85.4

MPViT-D-T 73.3 94.3 98.7 66.0 90.8 84.6

MPViT-D-FM 70.5 93.3 98.9 66.8 90.0 83.9

MPViT-D-FD 69.4 93.5 98.7 70.2 89.7 84.3

MPViT-D-FA 72.3 93.4 98.5 73.8 91.5 85.9

The first row of Table 3 corresponds to the last row of Table 2 for reference and com-
parison. Among all the freezing strategies during the second transfer learning process,
the MIOU achieved by freezing all BN layers in MPViT-DeepLab is 85.9%, which is 0.5%
higher than the MIOU obtained with only the first transfer learning (MPViT-D) and 1.3%
higher than the MIOU without freezing any BN layers. Additionally, the strategy of freez-
ing all BN layers in MPViT-DeepLab significantly outperforms the other three freezing
methods in the segmentation of Terrace greenery (+2.6%) and Tree (+0.7%), two classes
of Green infrastructure. The scenario without freezing any BN layers performs poorly in
the segmentation of Terrace greenery, suggesting that, while this approach may have an
advantage in simple scenarios due to retaining the original model information, it is not
proficient in complex segmentation tasks.

Additionally, we analyze the loss reduction in each scenario in Table 3, as illustrated
in Figure 8. According to Figure 8, compared to the approach without the second transfer
learning, the gradient of the loss reduction is larger, and the convergence requires fewer
epochs, regardless of which layers are frozen. It is evident that adopting the second
transfer learning not only improves the accuracy of CSGI extraction but also accelerates the
network’s convergence speed.

Figure 8. Loss reduction of MPViT-DeepLab networks with and without transfer learning.
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Some results of CSGI extraction are displayed in Figure 9.

Figure 9. Some CSGI extraction results of networks in Tables 2 and 3.

5. Conclusions

In this article, we propose a three-stage transfer learning method to address the
challenges of training MPViT and other ViT series networks, which typically require
extensive data and time. Additionally, we introduce a hybrid network architecture, MPViT-
DeepLab, which exhibits superior integration capabilities for both global and local features
compared to traditional neural networks. MPViT-DeepLab achieves state-of-the-art results
in the extraction of CSGI.

While MPViT-DeepLab outperforms traditional networks in accuracy, its parallel train-
ing structure implies increased computational overhead, and the complexity of the network
leads to a higher number of parameters. CSGI extraction holds significant importance in
urban planning, and despite the enhanced accuracy of MPViT-DeepLab, future research
will focus on simplifying the network to achieve better segmentation results with a more
lightweight structure.
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