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Abstract: Quantum information mobilizes the description of quantum systems, their states, and their
behavior. Since a measurement postulate introduced by von Neumann in 1932, if a quantum system
has been prepared in two different mixed states represented by the same density operator ρ, these
preparations are said to have led to the same mixture. For more than 50 years, there has been a lack
of consensus about this postulate. In a 2011 article, considering variances of spin components, Fratini
and Hayrapetyan tried to show that this postulate is unjustified. The aim of the present paper is
to discuss major points in this 2011 article and in their reply to a 2012 paper by Bodor and Diosi
claiming that their analysis was irrelevant. Facing some ambiguities or inconsistencies in the 2011
paper and in the reply, we first try to guess their aim, establish results useful in this context, and
finally discuss the use or misuse of several concepts implied in this debate.

Keywords: quantum pure state; mixed state; density operator; variance of an observable

1. Introduction

Quantum mechanics (QM) was essential in the development of both condensed matter
physics and semiconductor electronics. The growth of telecommunications stimulated
the appearance of the so-called second quantum revolution, particularly an opportunity
for a reconsideration of some basic ideas of QM. Users of QM are familiar with the idea
that if two mixed states, defined by different collections {pi, | φi >} of pure (normed)
states | φi > with probabilities pi, are represented by the same density operator, they
should be considered as the same mixed state. They are most often not aware that this is a
consequence of a specific postulate introduced by von Neumann [1,2], according to which
“the ρ matrix completely specifies all the properties of a quantum ensemble” (cf. Peres,
pp. 75–76 of [3]). It is well known that John Bell criticized the place given to measurements
in QM [4,5]. One may consider that a similar importance should be given to the concept of a
preparation. And already in 1970, Zeh [6], considering the use of the axiom of measurement,
spoke of a circular argument, and considered that “the statistical ensemble consisting of
equal probabilities of neutrons with spin up and spin down in the x direction cannot be
distinguished by measurement from the analogous ensemble having the spins parallel
or antiparallel to the y direction. Both ensembles, however, can be easily prepared by
appropriate versions of the Stern-Gerlach experiment. One is justified in describing both
ensembles with the same density matrix as long as the axiom of measurement is accepted.
However, the density matrix formalism cannot be a complete description of the ensemble,
as the ensemble cannot be rederived from the density matrix” (here, and in subsequent
citations, no part of the original text was stressed). Without any reference to that 1970 paper
by Zeh, Nenashev recently claimed that the state of a system is fully described by its density
matrix [7], but he did not explain why, if several paths (manipulations of a physical system
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initially in one or another state) lead to the same destination (described by identical results
of measurements) and if one wishes to describe the whole story from the beginning of each
journey, then keeping only this final common destination should be the right approach.

In the context of quantum information, a model for quantum computing with initially
mixed states was proposed in 2011 [8]. In the same year, in the more general context of
quantum mechanics, Fratini and Hayrapetyan (denoted as FH in what follows) published
a paper entitled “Underlining some limitations of the statistical formalism in quantum
mechanics” [9]. From the content of [9], FH appear to operate within the whole frame-
postulates and concepts of QM and aim at showing how the point of view of QM may
present limitations. In a 2012 ArXiv article, Bodor and Diosi [10] tried to show that the
conclusions contained in [9] were unjustified. In their 2012 ArXiv reply [11], FH claimed
that they had established that, in their specific instance, involving spins 1/2 and what they
called ensembles A and B, “the variance obtained by analyzing one ensemble turned out
to be different from the variance obtained by analyzing the other ensemble. On the other
hand, the density matrices of both ensembles turned out to be the same”. That FH reply
did not lead to a final agreement between these authors. The present paper tries to clarify
the situation in order to help decide whether the conclusions from [9,11] should be kept.

It is first necessary to specify two points, which, in [9], are implicit. FH consider
spins 1/2 and, in their thought experiment, make them cross “a Stern and Gerlach (SG)
apparatus”. One should understand that particles with the same magnetic moment are
manipulated, since, for instance, an atom with an electron spin 1/2 magnetic moment (e.g.,
a silver atom, as in the 1922 experiment by Stern and Gerlach) and an atom with a nuclear
spin 1/2 (e.g., the isotope 19F) behave quite differently in an SG device, the magnitudes of
their magnetic moments being respectively of the order of µB, the Bohr magneton, and µN ,
the nuclear magneton (µB/µN ≃ 1836). In the following, when we speak of identical spins
1/2, this will implicitly mean identical magnetic moment operators, each one proportional
to a spin 1/2 operator −→s . An SG device was also introduced in [6] without this ambiguity
because Zeh imagined a collection of neutrons.

FH also implicitly consider that these spins are distinguishable. If one mentally thinks
of a collection of SG devices, e.g., “with the magnetic field along the x̂ direction” [9], the
spins are distinguishable by the number given to the SG devices they cross. This is also true
for “particles whose spin states are defined along the ẑ axis” [9]. This is not an academic dis-
tinction: the independent and undistinguishable electron spins of the conduction electrons
in a metal give rise to the temperature-independent Pauli paramagnetism (the spin of the
electron is a fermion), whereas in an ionic insulator, the paramagnetism of non-interacting
electron spins 1/2 (distinguishable through the ion carrying the spin) follows a Curie law
above typically a few Kelvins.

Following FH, we will be interested in a collection of an even number N of distin-
guishable, non-interacting, identical (magnetic moments associated with) spins 1/2. For
brevity, we will call it the spin assembly.

In [9], FH use the concept of polarization without explicitly defining it. The degree of
polarization of a spin 1/2 can be described by its polarization vector −→a ([12], p. 173). The
components of −→a are real, such that 0 ≤ | a |≤ 1, and, in standard QM, the most general
state of a spin 1/2 is described by the density operator ρ = (1+ −→a −→σ )/2, where −→σ is the
Pauli vector (its components are the Pauli operators σx, σy, σz) and 1 is a symbolic writing
for the identity operator in the state space of the spin. The spin is in a totally unpolarized
state when −→a = 0, and then ρ = 1/2. If a collection of N distinguishable and independent
spins is considered, total unpolarization is realized if and only if each spin is in its totally
unpolarized state. This state is described with the density operator I/2N (I: unit operator
in the state space of the spin assembly).

In Section 2, after a reminder about quantum systems and about the pure or mixed
states of these systems, the so-called A and B ensembles introduced by FH will be presented.
The way they are defined by FH somewhat mixes the concept of a quantum system and
one of its possible pure or mixed states, and we will have to try and guess from the content
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of [9], which states FH consider when calculating a variance. Then, a general result
concerning mean values calculated with the statistical operator ρ will be recalled and
justified. It has the important consequence that the difference found by FH in their variance
calculations should a priori be either a false or an ill-interpreted result, which is a motivation
for looking for the origin(s) of the difference they found in their variances.

In Section 3, mean values and variances of spin components will be calculated in
several situations in order to facilitate the analysis of the results given by FH. The origin(s)
of the differences found by FH in the calculation of the variances will be identified in
Section 4. The question of the number of particles in the systems introduced by FH in
the calculation of mean values and the presence of a reference made by FH to a book by
Sakurai [13] will be discussed in Section 5 before a general conclusion about this debate.

2. Of Quantum Systems, Their Pure or Mixed States, and Mean Values in These States

We did not try to systematically keep the notations from [9], as some quantities used
in our paper are absent in [9], and some notations in [9] are ambiguous (e.g., the distinction
between the spin −→si of spin i and the total spin

−→
S = ∑i

−→si of the spin collection). The
dimension of E , the state space of the quantum system of interest ∑, is supposed to be
finite, denoted as d, and a basis of orthonormal kets of E will be denoted as the collection
{| k >}. The completeness relation is expressed as ∑k | k >< k |= I (I: the identity operator
acting in E ). A pure state of a spin 1/2 is usually written, in the Dirac formalism, as a ket
| Φ >= α | + > +β | − > (an element of the state space of the spin, α and β being complex
coefficients with | α |2 + | β |2= 1). When a collection of N identical distinguishable spins
1/2 is considered, then, in order to describe its possible pure states, the tensor product of the
state space of each spin (with dimension d = 2N) is introduced; it is a postulate that every
ket of this space represents a pure state of the spin assembly. A mixed state of a quantum
system (e.g., a single spin or this collection of spins) is a collection of unit-norm pure states
| Φ1 >, ...| Φi > ... of this system, with respective probabilities p1,... pi ... (for each pi,
0 ≤ pi ≤ 1, and ∑ pi = 1). With that mixed state, one may associate the statistical operator
ρ = ∑i pi | Φi >< Φi |; in the specific case of a pure state | Φ >, then ρ =| Φ >< Φ |, the
associated projector.

Before trying to go on clarifying the situations discussed by FH in [9], it is useful to
make some comments about the concepts of pure and mixed states. The expressions “pure
state” and “mixture” (reiner Fall, Gemenge), historically introduced by
Weyl [14], were not used by von Neumann in his 1932 book (1955 English translation
of [1,2]). von Neumann, having introduced the concept of a (pure) state and the probability
content attached to it, presented that of a mixed state, writing (pp. 295–296 of [1,2]) that “the
statistical character may become even more prominent if we do not even know what state is
actually present. For example, when several states ϕ1, ϕ2, ... with the respective probabilities
w1, w2, ...(w1 ≥ 0, w2 ≥ 0, ...w1 +w2 + ... = 1) constitute the description” of the system of in-
terest. The ket formalism, which will be used hereafter, was introduced by Dirac seven years
later [15]. Some 80 years after von Neumann’s book, Weinberg used the same ideas when
writing “Probabilities can enter in quantum mechanics not only because of the probabilistic
nature of state vectors but also because (just as in classical mechanics) we may not know
the state of a system. A system may be in any one of a number of states, represented by
state vectors Ψn that are normalized but not necessarily orthogonal, with probabilities Pn
satisfying ΣnPn = 1” ([16], p. 68). In the meantime, in his 1957 review [17], Fano had also
explicitly used the concept of a pure state when introducing mixed states, writing that “to
calculate the probability of finding a certain experimental result with a system in the mixed
state, one must first calculate the probability for each of the pure states and then take an
average, attributing to each of the pure states an assigned “weight””.

These passages from von Neumann and Weinberg contain an interpretation of the
mixed state concept, implying an ignorance of the experimenter. A brief comment on its
possible use in the context of [9] will be made in Section 5.
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2.1. The Ensembles A and B Introduced by FH

FH define their ensemble A as follows: “N particles whose spin states are defined
along the x̂ axis, N/2 of which are eigenstates of the spin operator Ŝx with eigenvalue
+ℏ/2, while the remaining N/2 are eigenstates of the same operator with eigenvalue −ℏ/2”
(and FH define their ensemble B just by replacing the x̂ axis by the ẑ axis and the total
spin component along x̂ by the one along ẑ). This defines partly ∑ and quite partly its
quantum state. ∑ is a collection of particles with spin 1/2, and the rest of [9] indicates
that FH consider only their spin. It is not explicitly written that they are distinguishable,
but nowhere is any antisymmetry of the fermion states suggested, and their experimental
conditions, with the use of an SG device, clearly suggest that they can be distinguished. This
passage of [9] is ambiguous, as “states are defined along the x̂ axis” may just refer to the
choice of a basis for the description of the spin states. Further in [9], FH give contradictory
precisions on the nature of the state -pure or mixed- of the spin assembly, since they first
claim that “both A and B are totally unpolarized ensembles. In the language of statistical
quantum mechanics, which will be encountered in Section 4, they are also said to be in a
maximally mixed state”. But it is quite difficult to suppose that experimental conditions
not detailed in [9] have resulted in a totally mixed state because precisions then added
in [9] rule out this supposition. More precisely, FH write: “we can pragmatically think of
using, for example, a Stern and Gerlach (SG) apparatus with the magnetic field along the
x̂ direction [20]. The SG apparatus would measure the spin of each single particle of the
ensemble, so that the total spin of the ensemble would then be obtained as the sum of all
the single-particle spin measurements.”, and “Because of the characteristics chosen for
ensemble A, the SG apparatus would exactly separate particle flux into two equal parts,
or, what is the same, it will measure N/2 particles having spin along the +x̂ direction
and N/2 particles having spin along the −x̂ direction. The probability of registering the
outcome ±ℏ/2, when the spin along x̂ is measured on state | Sx, ±1 >, is in fact 1”.
The latter citation leaves no doubt: at the input of the SG device, each spin is either in
its | +x > or | −x > state; this is still true at its output. And in their 2012 reply [11] to
Bodor and Diosi [10], FH do insist that “These two ensembles are definitely not statistical
ensembles”, adding “we considered prepared ensembles”. If in contrast one accepts to
consider that the spin assembly is in the totally unpolarized state ρ = I/2N , then Equation
(8) of [9] is false (this equation states that, for what FH call their ensemble A, the mean
value and the variance of the component Sx of the total spin, which is denoted as SA

x in [9],
are both equal to 0, a result to be opposed to the true result established below in Section 3.3).
Moreover, if one tries to suppose that FH improperly used their expression “unpolarized
ensemble” for their ensemble A in order to describe a pure state with a mean value of their
SA

x equal to 0, one has to give up this assumption when reaching Section 4 of [9], in which
FH consider mixed states, not pure states, then making a confusion between states and
particles when introducing their Equation (7) (think e.g., of a single spin 1/2 in a mixed
state). In Section 5.3, we will suppose that FH adopt the point of view of someone who
ignores that their ensemble A was prepared in a well-defined pure state and then decides
to assume that the collection of N spins is in a mixed state where the 2N states of the Sx
eigenbasis all contribute with the same weight to the statistical mixture (ρ = I/2N). We
will then show that this approach should be discarded.

Faced with these ambiguities and inconsistencies, in Section 3, we will successively
consider the spin assembly in pure or mixed states chosen for their interest in the analysis of
the content of [9] without identifying specifically one of the results with what FH intended
to do.

2.2. More on Pure or Mixed States

FH speak of the “total spin of ensemble A” [9]. Their definition of A suggests us
to introduce the observable Sx = ∑i sxi (we use the standard definition for the ẑ axis),
a linear Hermitian operator acting in the state space E = E1 ⊗ E2⊗... ⊗ EN , and sx1 is a
condensed writing for sx1 ⊗ I2.. ⊗ IN , where e.g., I2 is the identity operator acting in E2. In
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order to make more explicit what seems to have been FH’s aim, we imagine an experiment
with a spin 1/2 crossing an SG device with the field gradient along the x̂ direction, its
downward (−1/2) path being interrupted by the presence of a detector. If a spin 1/2 is
sent into its input and no spin is then detected at the level of the interrupted path, in
experimental conditions when the spin is not lost, one then knows that the spin arrived
at the upward aperture and may say that this SG device prepared this spin in the | +x >
state, where sx | +x >= (1/2) | +x > (we systematically use reduced units, here 1/2 and
not ℏ/2). We now imagine a collection of N such independent SG devices (N even), each
one able to prepare either in the | +x > or in the | −x > state the spin which crossed it,
and N spins 1/2 simultaneously sent, one at the input of each SG device (the spins are
then distinguishable through the number of the SG device they cross). Depending on the
positions of the N detectors, one may obtain 2N such (pure) product-states, each one an
eigenstate of Sx. One of these 2N product-states has all the spins in their | +x > state; one
of them has all the spins in their | −x > state; and a number of them have N/2 spins in
the | +x > state (as in the states in the ensemble A of [9]), e.g., the one with the N/2 first
ones in the | +x > state; the remaining ones in the | −x > state, the following state:

| 1 + x, 2 + x...N/2 − 1 + x, N/2 + x, N/2 + 1 − x..., N − 1 − x, ...N − x >, (1)

a compact writing for the tensor product of N kets, each one defined by the number of the
spin, the fact that it is an eigenstate of the x component of that spin, and the + or − state.
We will call | Ψxδ > the one corresponding to the specific ordered choice, called δ, of the N
individual kets in a given product-state. When FH speak of their ensemble A, composed
of N spins (with N even), and simultaneously write that the result of the measurement of
the x̂ component (of a spin) is surely +h̄/2 or −h̄/2, depending on the number i of the
measured spin, and that the numbers of +h̄/2 and −h̄/2 results are both equal to N/2,
this implicitly means that they consider that the assembly is in one of the pure states just
denoted as | Ψxδ >, and that they do not tell us what specific ordered choice (of the + and
− values) presently denoted as δ is implied.

Since FH also speak of a mixed state, we will also imagine, for the spin assembly,
the mixed state {| Ψxδ1 >, N−1

N/2, ... | ΨxδNN/2
>, N−1

N/2}, each pure state implying N/2

spins with the | +x > state and N/2 with | −x >, all with the same weight N−1
N/2, where

NN/2 = N!/((N/2)!(N/2)!) is the number of distinct orderings of these N spin states
(cf. [18], p. 352: if e.g., N = 4, NN/2 = 6). Such a mixed state therefore mobilizes the whole
collection of distinct | Ψxδ > pure states, all with the same weight in the mixture. Of course,
the statistical operator ρ associated with this mixture is not equal to I/2N , since only part of
the eigenvectors of Sx are of the form | Ψxδ > (e.g., the product-ket Π⊗i | i,+x >, implying
the | +x > state of each spin is not of that form). Consequently, while it is easy to imagine
an experimental device enabling one to get the mixture described by the statistical operator
I/2N (think of the collection of spins in an oven at temperature T, the whole being placed
in a static magnetic field, and the Zeeman energy EZ verifying EZ << kT), getting the
mixed state {| Ψxδ1 >, N−1

N/2, ... | ΨxδNN/2
>, N−1

N/2} necessitates some selection among the
pure states and therefore should be more elaborate.

2.3. A Consequence of the Definition of the Statistical Operator ρ

If Σ is in a pure state described by the normed ket | Φ >, the mean value of an
observable Ô acting on the kets of E is the quantity <Φ | Ô | Φ > . If Σ is in a mixed state
symbolically written {| Φi >, pi}, a collection of normed (but not necessarily orthogonal)
kets | Φi >, weighted by the respective probabilities pi, the mean value of Ô in that mixture
is the quantity:

∑
i

pi < Φi | Ô | Φi >= ∑
i,k,k′

pi < Φi | k >< k | Ô | k′ >< k′ | Φi > (2)

where the completeness relation was used twice. This quantity may be written
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< Ô >= ∑
kk′

ρk′kOkk′ (3)

with
Okk′= < k | Ô | k′ > , (4)

and
ρk′k = ∑

i
pi < k′ | Φi >< Φi | k > . (5)

Okk′ is a matrix element in the chosen basis of the observable Ô, and ρk′k a matrix element
in the same basis of the statistical operator ρ (see e.g., [17]). The mean value may then
be written:

< Ô >= ∑
k′
(ρÔ)k′k′ = Tr(ρÔ) (6)

The statistical matrix may be written as ρ = ∑
k,k′

ρkk′ | k >< k′ |, and using Equation (5),
one finally gets:

ρ = ∑
i

pi | Φi >< Φi | (7)

Therefore, if Σ is in a mixed state (or statistical mixture) {| Φi >, pi}, and if one is interested
in the mean value < Ô > or the variance < (Ô− < Ô >)2 > of Ô or in the mean value of
some function of Ô, then, as a consequence of the definition of the density operator ρ ,
the result calculated directly using the definition {| Φi>, pi} of the mixed state and the
result obtained using the statistical operator ρ and the trace are necessarily equal. This
well-known result, ignored in [9], will be explicitly used in Section 5.

For the definition of a variance in a quantum context, one can see e.g., [12] or [19].
Robertson, when introducing the variance in a quantum context in [20], called the square
root of the variance the uncertainty.

3. Spin Components of the Spin Assembly: Useful Results

We now calculate mean values and variances of spin components of the spin assembly
in some specific pure or mixed states. They will be used in the next section when trying
to explain the origin of the differences found in the values of variances in the 2011 paper
by FH.

3.1. Spin Assembly in the Pure State | ψXδ >

3.1.1. The SX Component and Pure State | ΨXδ >

When the spin assembly is in the pure state | Ψxδ >, calculating the mean value and the
variance of Sx is easy because: (1) Sx is the sum of all sxi components, (2) | Ψxδ > is a tensor
product without partial entanglement, (3) each factor of the product is an eigenket of the
corresponding sxi, and the eigenvalues may be written εi/2, with εi = ±1. Consequently,
for any ordering defined by δ:

Sx | Ψxδ >=
1
2

N

∑
j=1

ε j | Ψxδ >= 0 (8)

because, in the sum ∑N
j=1 ε j, with ε j = ±1, the values 1 and −1 both appear N/2 times.

The mean value of the total spin Sx in any of these pure states is:

< Sx >=< Ψxδ | Sx | Ψxδ >= 0 (9)

since Sx | Ψxδ > is equal to zero. The variance of the total spin Sx in any of these pure
states is:

< Ψxδ | (Sx− < Sx >)2 | Ψxδ >=< Ψxδ | S2
x | Ψxδ >= 0 (10)
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which results from the fact that presently: (1) < Sx >= 0, (2) S2
x | Ψxδ >= Sx(Sx | Ψxδ >),

which equals 0, as Sx | Ψxδ >= 0.
Both the mean value and the variance of Sx are therefore equal to zero. To sum up, Sx

has a zero variance because | Ψxδ > is an eigenvector of Sx for the eigenvalue 0.
Calculating the mean value and the variance of Sx was easy, but it would be wrong

to think that the assembly could be replaced by a single spin. | Ψxδ > describes a pure
state of an N spin 1/2 collection, and the just used sums ∑N

j=1 sjx and ∑N
j=1 ε j mobilize the

whole assembly. For instance, if | Ψxδ > is a state with the first spin in the | +x > state, the
mean value < 1 + x | s1x | 1 + x > is equal to +1/2. This is true, in this specific case, for
< Ψxδ | s1x | Ψxδ >. But < Ψxδ | Sx | Ψxδ >, the mean value of the x component of the
total spin is a sum of N such quantities, with N/2 of them being equal to +1/2 and the
N/2 remaining ones being equal to −1/2.

3.1.2. The SZ Component, and again Pure State | ψXδ >

We first consider a single spin 1/2 in the pure state | ±x >: when acting on
| ±x >, the basis vectors of sx, sz generates the vectors (1/2) | ∓x >, and its mean
value in | ±x > is

< ±x | sz | ±x >=< ±x | sz
| + > ± | − >√

2
(11)

= < ±x | 1
2
| + > ∓ | − >√

2
=

1
2
< ±x | ∓x >= 0 (12)

Its variance in this state is presently equal to the mean value of s2
z , i.e., to

< ±x | s2
z | ±x >=

1
4

(13)

as s2
z | ±x > = sz(sz | ±x >) = sz(1/2) | ∓x >= (1/4) | ±x > .

We now come to the mean value and variance of Sz in the pure state | Ψxδ > . The
mean value of Sz = ∑j sjz is a sum of N contributions, each one equal to 0, and therefore
< Sz >=< Ψxδ | Sz | Ψxδ >= 0.

The variance of the total spin component Sz is:

< Ψxδ | (Sz− < Sz >)2 | Ψxδ >=< Ψxδ | S2
z | Ψxδ > (14)

S2
z introduces two sorts of terms: the sizsjz(j ̸=i) terms, which do not contribute, and the N

terms of the form s2
iz, each one making a contribution equal to 1/4:

< Ψxδ | (Sz− < Sz >)2 | Ψxδ >= N/4

3.2. SX and the Mixed State {| ΨXδ1 >, N−1
N/2, ... | ΨXδNN/2

>, N−1
N/2}

The spin assembly is now supposed to be in the mixed state {| Ψxδ1 >, N−1
N/2, ...

| ΨxδNN/2
>, N−1

N/2}, with the way this mixed state was obtained not being described. As
a first step in the calculation of the mean value and the variance of the total spin Sx, one
has to consider the contribution of a single pure state | Ψxδ > of the mixture to this mean
value and to this variance. Here, the result is simple: from the result obtained in Section 3.1,
both contributions are equal to zero for any δ ordering. Therefore, the mean value and the
variance of Sx in this mixed state, the sum of the corresponding NN/2 contributions, are
again both equal to 0.

3.3. The Totally Unpolarized Mixture

If the spin assembly is in the totally unpolarized mixed state ρ = I/2N , and if one
wishes to calculate the mean value and the variance of Sx, this mixed state may be inter-
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preted as made up of the 2N tensor products | 1 ± x > ⊗ | 2 ± x > ⊗...⊗ | N ± x >, a basis
of eigenstates of Sx, all with the same weight 1/2N . The mean value of Sx is equal to 0
since: (1) Sx is a sum of N terms, each one implying a single spin, (2) the contribution of
any such term to the trace of Sx, calculated in the eigenbasis of Sx , is 0, as there are N/2
diagonal elements equal to 1/2 and N/2 diagonal elements equal to −1/2. The variance
of Sx is here equal to N/4, as the sxisxj(j ̸=i) terms do not contribute, and each of the N
terms of the form s2

xi in the sum ∑i s2
xi makes a contribution to the trace of ρS2

x equal to
(1/2N)2N(1/4)). The same results are obtained for Sz, using the standard basis and the
kets | 1± > ⊗ | 2± > ⊗...⊗ | N± >:

If ρ =
I

2N (totally unpolarized mixture):
{

mean value of Sx = 0
variance of Sx = N

4

and the same is true for Sz.

3.4. Exchanging the Roles of X and Z

The existence and use of the ensemble B in [9] must be taken into account by consider-
ing quantum states, either pure or mixed, and observables (obtained from each situation
already considered in this section) and by calculating the corresponding mean values and
variances once the x̂ axis has been replaced by the ẑ axis and the total spin component Sz
and the pure state | Ψzδ > have replaced Sx and | Ψxδ > . Considering e.g., | Ψzδ >, for a
similar reason to the one found with Sx and | Ψxδ >, now Sz | Ψzδ >= 0, and the mean
value and the variance of Sz in a | Ψzδ > state are equal to zero. Had a difference been
found for the results for the x̂ axis with the total spin component Sx on one side and the ẑ
axis with the total spin component Sz on the other, this would have meant that the isotropy
of space was not respected.

4. The Origins of the Difference in the Values of Variances Found By FH

In Section 3, we found that the mean value and the variance of Sx are both equal
to zero in both the pure state | Ψxδ >, for an arbitrary δ ordering, and the mixed state
{| Ψxδ1 >, N−1

N/2, ... | ΨxδNN/2
>, N−1

N/2}. The origin(s) of the difference in the values of
variances claimed by FH must be identified and explained in some detail. This is not an
easy task, as we showed that their paper [9] contains ambiguous and even contradictory
elements. We first consider the results they get in their Section 3. FH calculate the
variance of the same observable, first for their ensemble A (their Equation (8)) and then for
their ensemble B (their Equation (13)), find that the values differ, and then write “We can
certainly conclude that the two ensembles A and B are not equal”. Speaking of ensembles
that are not equal is using an expression that is not defined within QM. In fact, two quantum
systems may be identical or distinct, and if they are identical, they may be in the same state
or not. In Section 1, we gave reasons why the system considered by FH in [9] is a collection
of distinguishable, independent, identical magnetic moments associated with spins 1/2.
In Section 2.1, we stressed that [9,11] by FH contain ambiguities and inconsistencies. We
then introduced a pure state of the spin assembly, which we called | Ψxδ > and gave
reasons why, when FH speak of ensemble A, it should be understood that the system is
in this pure state | Ψxδ >. In Section 3.1 of [9], FH speak of “the total spin of ensemble
A” and the existence of their Equation (11) with the presence of N (the number of spins)
clearly confirms that, whereas their notation is unclear, they are interested in the mean
value and the variance of the x component of the total spin. It is then interesting to examine
the following two situations: one first considers their ensemble A only and the mean
value and the variance of Sz = ∑i szi in the pure state | Ψxδ >: one gets (cf. Section 3)

< Sz >= 0, < (Sz− < Sz >)2 >=
N
4

, (15)
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to be opposed to
< Sx >= 0, < (Sx− < Sx >)2 >= 0 (16)

One then considers their ensemble B only: the roles of Sx and Sz have only to be ex-
changed, as explained in Section 3.4, and if one defines | Ψzδ > by replacing the kets | ±x >
by the kets | ± > (here keeping the usual notation), the mean values in the pure state
| Ψzδ > are respectively:

< Sx >= 0, < (Sx− < Sx >)2 >=
N
4

(17)

< Sz >= 0, < (Sz− < Sz >)2 >= 0 (18)

Therefore, the mean value and the variance of Sx, instead of those of Sz, are 0 and N/4,
respectively, as can also be obtained using a projector and a trace (cf. Section 2.3). The
difference has two origins: (1) Sx and Sz do not commute and play symmetrical roles;
(2) one compares results in the pure state | Ψxδ > and in the pure state | Ψzδ > .

We then conclude, or rather suggest, that: (1) A and B correspond to two distinct
pure states of the collection of N (distinguishable, identical) spins, which we respectively
denoted as | Ψxδ > and | Ψzδ >, (2) the difference found by FH in their Section 3 is due to
the fact that | Ψxδ > is an eigenstate of Sx (see what they call their ensemble A) but not of
Sz, whereas | Ψzδ > is an eigenstate of Sz (see what they call their ensemble B) but not of Sx.
And the value of the variance of Sz in the first case and of Sx in the second one, N/4, comes
from the fact that Sz = ∑i szi and Sx = ∑i sxi are two sums, implying N spin components,
each related to a single spin. This value N/4 is an exact result, not an approximate one. If
the spin assembly is in the state | Ψxδ > and if one is interested in the mean of Sz then,
focusing on the contribution of szi, one knows that in the tensor product, such as (1), one
may write

| i,±x >=
| i,+ > ± | i,− >√

2
(19)

Then, when one measures szi, the probability of getting +1/2 is 1/2 and −1/2 is also 1/2.
This expresses the principle of superposition in the present situation.

This being said, one now has to examine the content and results of Section 4 of [9].
FH denote the density operator ρ as P̂. If they want to be consistent with what they did
in their Section 3, they should consider, for their ensemble A with (even) N spins, the pure
state | Ψxδ >, and the result obtained with | Ψxδ >< Ψxδ | will be equal to the one obtained
when using the ket | Ψxδ > (cf. Section 2.3). Through their Equation (16), they instead
consider a single spin in the mixed state written, with our notations, as

{1
2

, | +x >,
1
2

, | −x >}

Clearly, the mean value or the variance of sx in this mixed state of a single spin has no reason
why it should be equal respectively to the mean value or the variance of the total spin
component Sx = ∑ sxi in the pure state | Ψxδ > of the collection of N spins. Their approach is
therefore inconsistent, and when, after their Equation (19), they write that “These results
are in stark contrast with Equations (8) and (13)”, their comparison is meaningless.

We are therefore justified in speaking of the origins, rather than the origin, of the
difference in the values of variances found by FH, as there is a double inconsistency in their
comparison: (1) a pure state versus a mixed state and (2) a spin assembly (N spins, with N
even) and a single spin.

5. Discussion

In the previous sections, we started from the content of the 2011 FH paper [9] and
tried to guess the aim of its authors. Some points that were then deferred will be addressed
in the following discussion.
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5.1. Calculations of Variances in a Pure State

Whereas the deep content of QM is still presently largely discussed, through the
expression interpretations of QM, there is a consensus on the general rules of QM. We
examine the following simple situation: a spin 1/2 in the pure state

| V >=
| + > +i

√
3 | − >

2

If this spin is in a pure state and if one then measures sy, the result is, in a random way, either
+1/2 or −1/2. If the experiment consisting of a preparation in state | V >, followed by the
measurement of sy, is repeated M times with M >> 1, one can get (a reasonable estimation
of) the probability of occurrence of the result +1/2 or −1/2. Using these probabilities in
order to calculate the mean value < V | sy | V > would implicitly mobilize the {| +y >,
| −y >} basis. In fact, calculations are often made in a single chosen basis. If one uses the
standard basis | + >, | − > and considers sy, which is an observable that does not commute
with sz, then the following phenomenon is faced: when one has to calculate the mean value
of sy in state | V >, it happens that the so-called interference terms < + | sy | − >
and < − | sy | + > contribute to this mean value, a manifestation of the principle of
superposition. One finally gets < V | sy | V >=

√
3/4.

The variance of sy in this state is (cf. Section 2.3) the following mean value (in
this state):

< V | (sy− < sy >)2 | V >=< V | s2
y | V > −(< V | sy | V >)2 =

1
16

If, keeping state | V > and the same basis, one calculates the mean value and the variance
of sz, diagonal in the {| + >, | − >} basis, instead of those of sy, no interference term
appears. If Equation (4) from FH in [9] is valid for a first observable Ô, then it cannot be
used (keeping the same basis) for a second observable that does not commute with Ô. For
instance, given a pure state of a spin 1/2, e.g., | V >, it cannot be used for both sx and sz.

If one must calculate the mean value or the variance of an observable attached to a
system in a mixed state, each pure state of the mixture brings its own contribution, and
the principle of superposition operates for each such pure state. The mean value or the
variance may be calculated either by summing the contributions of all states in the mixture
(and the calculation of each contribution mobilizes the weight affecting this pure state), or
by using the density operator, a tool for this kind of calculation, as a result of its building
up, as shown in Section 2.3. Then, if, in a given use, the two methods do not give the same
results, at least one mistake has been made.

In [9], speaking of their ensembles A and B, FH write: “We shall focus on deriving,
for both ensembles, the expectation value and the variance of the spin along the x̂ direction.
Both of them are measurable quantities”. In fact, QM introduces so-called measurable
quantities (observables), and associates Hermitian operators with them. sx (or sz) is (associ-
ated with) an observable. Given a pure or mixed state, the expectation value or the variance
of sx (or sz) can be calculated (with the already recalled precautions), but they are not
measurable quantities.

In their reply [11] to [10], FH insist that their “two ensembles are definitely not statisti-
cal ensembles”, and they add “we considered prepared ensembles, because we are basically
free to decide which case study to investigate”. In that paper by FH, the expression “pure
state” does not appear even once, but QM currently considers that a pure state results from
some preparation act, and one should therefore understand that FH here claim that they
consider a spin system in a pure state. It is now possible to comment on the fact that, in the
same paper [11], in a note on page 3, FH add that “In Ref. [1,2], the variance has been
computed by taking the quantum mechanical prediction on the single-particles measure-
ments and by then applying Classical Statistics”. From what has been already detailed in
our present paper: (1) applying classical statistics is meaningful only if one has a mixed
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state, and if quantum calculations have first been performed at the level of each pure state.
In [11], FH eliminate the case of mixed states; (2) in the pure states, which FH consider in [9],
some spin operators have a variance containing a factor equal to N, which means that their
system contains N spins and that the spin operator they consider is a component not of a
single spin but of the total spin, which we denoted as Sz = ∑i szi or Sx = ∑i sxi. This being
said, it cannot be claimed that in the calculation of the variance one should apply Classical
Statistics. It is true that, given the pure states we called | Ψxδ > and | Ψzδ >, the calculation
of the mean value of Sz mobilizes a sum of N simpler quantities. But the calculation of each
of them obeys the usual quantum rules rather than mobilizing classical probabilities.

5.2. FH and the Avogadro Number

We now consider the issue of the reference to the Avogadro number in the second paper
by FH [11]. N is the number of (identical) particles in the physical system. The fact that the
Avogadro number NA is such that

√
NA >> 1 has well-known experimental consequences,

and first in a non-quantum context, e.g., in the fact that fluctuations are very small, except
near phase-transitions. And phenomenological thermodynamics considers macroscopic
systems. Our theoretical results in Section 3 are obtained through considerations implicitly
making use of probabilities, not estimations, and they are true even for N = 2 or 4. In
their 2012 reply, FH write that “In realistic ensembles, N is of the order of the Avogadro
Number (≃ 1023)” [11]. Two practical instances show that this is not true: in the case of
electron spins and ESR experiments, already 50 years ago, under what was called standard
conditions, (which implied diluted samples in order to have weak dipolar broadening
and non-saturating conditions for the ESR signal), it was possible both to detect roughly
1013 spins at 300 K, and therefore even a weaker number of them at 4.2 K, and describe
them theoretically with QM. And roughly 20 years ago, single-spin ESR through scanning
tunneling spectroscopy was developed [21]. In the just mentioned passage from [11], FH
add that (in realistic ensembles) “neither writing nor dealing with its N-particle density matrix is
clearly feasible”. But precisely in the present paper, we did such calculations for both the
mean value and the variance of spin components, which were possible because the spins
were independent, and the results were exact. Two mixed states were considered: (1) the
totally unpolarized case (ρ = I/2N), (2) the mixed state {| Ψxδ1 >, N−1

N/2, ... | ΨxδNN/2
>

, N−1
N/2} (or, of course, the one obtained by writing z instead of x). The density operator ρ

operates in the 2N-dimensional state space of the spin assembly, and should not be confused
with a spin operator operating in the state space of a given spin, even in the specific case of
total unpolarization: ρ = I/2N is then a (tensor) product of N identity operators acting in
the state space of each spin. And, in the case of independent spins, calculations are possible
without writing explicitly the matrix associated with ρ = I/2N in an arbitrary basis, in
which ρ is diagonal.

5.3. Still Trying to Understand the Results from FH

We now come back to a question that was approached at the beginning of Section 2.
In [9], FH describe a process clearly leading to a pure state, but, as mentioned in Section 2.1,
they give contradictory indications on this question; they also suggest that their A and B
are in a mixed state (cf. their writing “Both A and B” ... “are also said to be in a maximally
mixed state”). We may suppose that they adopt the point of view of someone who ignores
that their ensemble A was prepared in a well-defined pure state and then supposes that
the collection of N spins is in a mixed state where the 2N states of the Sx eigenbasis all
contribute with the same weight to the statistical mixture (ρ = I/2N). However, this
supposition should be rejected, since, as mentioned in Section 2.1 it is inconsistent with
Equation (8) of [9].

One may instead imagine a scientist who, ignoring that ensemble A was prepared
in an eigenstate of Sx with the eigenvalue 0, | Ψxδ >, decides that it is in a mixed state
where the eigenstates of the Sx eigenbasis with this eigenvalue equal to 0 all contribute,
with the same weight. Then, if he calculates the mean value of Sx and its variance
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(cf. Section 3.2), he will accidentally find the same results as those obtained for the pure
state | Ψxδ > (cf. Section 3.1.1). If he starts from ensemble B and | Ψzδ >, and similarly
introduces the corresponding mixed state, the same can be said using Sz. One could as-
sume that this reasoning was perhaps held by FH. If so, they confused the pure state
| Ψxδ > and a mixed state exclusively made up of states with the eigenvalue 0 of Sx,
all with the same weight. But this explanation cannot be kept because, as written in
Section 2.1 from their 2012 reply [11], FH insisted that, concerning their A and B ensembles:
“These two ensembles are definitely not statistical ensembles”, adding “we considered
prepared ensembles”, which may be read as meaning that they considered pure states.

5.4. FH and a Book from Sakurai

In both [9,11], FH refer to a book on quantum mechanics by Sakurai [13]. This fact
necessitates a short incursion into a question belonging to the area of the interpretation(s)
of quantum mechanics. It seems that, like Ballentine [12], Sakurai adopted what Ballentine
calls the ensemble interpretation (for more details, see (Ballentine 1998)). Perhaps for
personal pedagogical reasons, and contrary to Ballentine, in his book, Sakurai did not use
the expression “pure state”. Instead, he spoke of a “state ket”, and introduced a “pure
ensemble”, which he defined as “-a collection- of identically prepared physical systems, all
characterized by the same ket | α >”. This led him to introduce the expression of the mean
value of an observable A “taken with respect to state | α >” as the sum of measured values
a′′, each one multiplied by a quantity |< a

′ | α >|2, interpreted as a probability (cf. his
Equation (1.4.6), p. 25), a result obtained under the condition that the kets | a′ > are (a basis
of) eigenkets of A. Therefore, if one considers two non-commuting observables, care
must be taken, as this expression cannot be used for both of them with the same basis.
The approach followed by Sakurai has the effect, both an advantage and a risk, of avoiding
the presence of interference terms. When reading Sakurai, one must also notice that if he
was interested in a single spin 1/2, in a pure state | α >, he introduced the “number of
dimensions, N, of the ket space”, equal to 2 for a spin 1/2, and not to be confused with
the number of spins in the ensemble associated with this spin by Sakurai. In this context
introduced by Sakurai, it is meaningless to speak of the total spin of this collection. Sakurai
described mixed states in his Section 3.4. (p. 178). Then, what is the choice made by FH?
They cite Sakurai in their two papers. They do not speak of a system in a pure state. They
speak of an ensemble—their A or B ensemble—but not of a pure ensemble as Sakurai did;
they do not follow Sakurai’s definition, since all the members of their ensemble have not
been identically prepared. Moreover, they speak of the total spin of their ensemble, which is
contradictory to what Sakurai did. The question is then: do FH, who cite Sakurai in their
two papers, adopt his approach? If the answer is yes, they are speaking of a single spin
1/2; when they speak of a total spin, this is meaningless. Moreover, they are not allowed to
consider a collection of spins not all in the same state. In spite of their reference to Sakurai,
the answer seems to be no. As already said, the way they speak of their ensemble A or B is
ambiguous. In the previous sections, we tried to give a meaning to both the system and its
state, as possibly implicitly used by FH.

5.5. Before Concluding

Arriving here, it should be clear that, in the work proposed by FH, some major points
are wrong, and others are ambiguous and then difficult to analyze. For instance a given
result they obtain for the value of a variance may be exact by accident, or may be wrong
either because the system and its state are ill-defined, and/or because the method they
suggest (they use?) in the calculation of an expectation value and/or a variance is wrong.
And there is a strong ambiguity as to what FH call A or B ensemble, as in their reply [11],
they seem to insist upon the fact they consider what is usually called a pure state, but in
contrast, in their previous paper, they wrote that they were unpolarized (cf. its Section 2:
“Both A and B are totally unpolarized ensembles” and its Section 5: “the two ensembles
considered in this paper are both unpolarized”), therefore not in a pure state.
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Faced with this reality, and with the following passage from BD in [10]: “The mistake
of FH has nothing to do with quantum mechanics rather it is a classical statistical mis-
conception”, we consider that it would be quite hazardous to try and give a meaning to
this passage from the reply [11] by FH: “By “statistical ensemble” is meant an ensemble
whose populations of states are statistically determined by means of a certain statistical
distribution that guarantees random mixing”, without any reference to pure states.

6. Conclusions

In his 1970 paper, Zeh stressed the existence of a possible weakness in the general
postulates of QM when observing that the density matrix formalism cannot be a com-
plete description of a statistical ensemble, as it may happen that this ensemble cannot be
rederived from the density matrix. Some 40 years later, the 2011 paper by Fratini and
Hayrapetyan (FH) was aimed at discussing possible limits of the density operator formal-
ism in QM. But an idea is unfortunately weakened if advocated through the use of false
arguments. In the present paper, it has been shown that the differences in the values of
variances as claimed by FH are wrong results, partly as a consequence of ill-defined and/or
contradictory situations in their definition of both a quantum system and its possible
quantum states and partly as an undue comparison between results obtained in different
situations and systems (e.g., one spin in a mixed state versus a spin assembly in a pure
state). One interest of the paper [10] by Bodor and Diosi is the existence of reply [11]. In that
paper, FH explicitly write “The analysis we carried out in [1] does not include nor mention
statistical ensembles, as we explicitly define and refer only to “prepared ensembles””. If FH
mean that they just manipulated pure states, this means that when using the density matrix
formalism, they have to use projectors; any variance calculated through a projector has the
same value as if calculated directly. In their 2012 reply, FH claim that “density matrices do
not provide a complete description of ensembles of states in quantum mechanics”. This
is perhaps true, but FH failed to show it; therefore, the 2011–2012 discussion initiated by
Fratini and Hayrapetyan neither confirms nor invalidates the 1970 comment by Zeh. The
reader interested in the Zeh problem may read [22], which shows that the use of higher-
order moments of a well-chosen random variable helps solve the question asked by Zeh
for the spin of a collection of neutrons in two statistical mixtures described by the same
density operator.
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