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Abstract: Style transfer is a technique that learns style features from different domains and
applies these features to other images. It can not only play a role in the field of artistic
creation but also has important significance in image processing, video processing, and
other fields. However, at present, style transfer still faces some challenges, such as the
balance between style and content, the model generalization ability, and diversity. This
article first introduces the origin and development process of style transfer and provides
a brief overview of existing methods. Next, this article explores research work related to
style transfer, introduces some metrics used to evaluate the effect of style transfer, and
summarizes datasets. Subsequently, this article focuses on the application of the currently
popular deep learning technology for style transfer and also mentions the application of
style transfer in video. Finally, the article discusses possible future directions for this field.

Keywords: style transfer; CNN; GAN; video consistency

1. Introduction
Artists and designers have always explored how to blend different styles of artistic

elements into their work, creating artworks with unique charm. In the field of computer
vision, early research primarily focused on image analysis and recognition, including areas
like object detection, image classification, and object segmentation. These two domains
naturally converged. Artists employed various techniques to achieve this goal, such as
shape and texture techniques. The inspiration for style transfer technology stems from
these artistic practices. It seeks to emulate the creative process of human artists by applying
different artistic styles to real-world images, thus creating images with an artistic flair.

Style transfer can apply the style of one image to another. Specifically, it can transfer
the style features of one image, such as color, texture, composition, etc., onto another
image, making the latter appear as if it has been re-rendered in the new style of the former.
Gatys [1] defined style transfer as the process of transforming the content of one image
into the style of another image while preserving the content information of the original
image. They achieved this goal by using neural style transfer methods that leverage deep
convolutional neural networks.

The importance of style transfer lies in its ability to bring innovation and novelty not
only to artistic creation but also to various practical applications. For instance, in the field
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of image editing, style transfer can quickly transform the style of an image into the desired
aesthetic, providing users with more creative and imaginative possibilities. In the realm
of movie special effects production, style transfer can make movie scenes appear more
realistic and vivid. Additionally, style transfer can be applied in areas like virtual reality
and augmented reality, transforming videos of real scenes into cartoon or watercolor styles,
offering users a richer and more immersive virtual reality experience.

Image style transfer is a research area that spans multiple fields, including computer
vision, computer graphics, and machine learning. Its development has evolved from
traditional texture-based methods to deep learning-based approaches. The earliest texture-
based methods primarily relied on texture matching to achieve style transfer but had some
limitations, such as an inability to handle global structure and semantic information.

With the rise of deep learning, researchers began applying convolutional neural net-
works (CNNs) to style transfer, improving the algorithms’ ability to capture global structure
and semantic information, leading to more natural and realistic results. Simultaneously, as
deep learning algorithms continued to advance and evolve, deep learning-based image
style transfer methods also improved and were optimized. Techniques such as adver-
sarial training and multi-scale processing were introduced to generate more realistic and
detail-rich images.

The current style transfer techniques can be classified according to the categories
shown in Figure 1. In this paper, these classifications will be detailed and discussed.

Figure 1. An overview of style transfer methods, divided into traditional machine learning image
transfer, deep learning image transfer, and video transfer.
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In traditional style transfer methods, early researchers used rules and mathematical
models to simulate the creative process of artists. In 1995, Heeger [2] introduced a pyramid-
based texture analysis and synthesis method. These methods primarily relied on texture
analysis and synthesis techniques. They analyzed the textures in artworks and then
synthesized these textures into a new image to achieve style transfer. Texture synthesis laid
the foundation for the development of style transfer techniques. However, this method
required manual selection of the number of levels in the pyramid and the size of each
sub-image at each level, and these parameter choices could impact the synthesis results.

In 1999, Efros [3] proposed a non-parametric sampling-based texture synthesis method.
This method generated new texture images by sampling from given texture samples
and constructing statistical models. Their approach involved analyzing local statistical
information in images and then synthesizing this information into a new image, enabling
content synthesis. This content synthesis method provided more inspiration and ideas for
the development of style transfer techniques.

In 2004, Lowe [4] introduced an image stitching method based on the SIFT algorithm,
providing important ideas for feature extraction and matching in subsequent image style
transfer tasks. Then, in 2007, Hays [5] built upon the SIFT algorithm and proposed an
image composition algorithm based on local feature matching, capable of automatically
composing scenes. Both of these methods involved extracting features from artworks and
applying these features to new images to achieve image style transfer.

With the increasing demands for various applications, the limitations of traditional
style transfer methods have become more apparent. While traditional methods have
their value in certain scenarios, they struggle to handle complex artistic styles, require
manual feature extraction, and cannot express high-level semantic information [6]. On
the other hand, deep learning techniques have achieved significant success in the fields
of image processing and computer vision. They are capable of automatically learning
feature representations and semantic information from images. Naturally, deep learning
techniques have found their way into the field of style transfer [1]. Deep learning-based
style transfer methods offer greater flexibility and effectiveness, as they can automatically
learn image features and high-level semantic information. They can also handle more
abstract and complex artistic styles. Therefore, the transition from traditional style transfer
methods to deep learning-based methods is a natural development trend [7].

Therefore, it is crucial to review the research progress in the field of style transfer, as it
not only systematically summarizes and organizes the current methods and technological
developments but also guides future research directions and innovations. Through an
in-depth analysis of the merits, challenges, and respective solutions of different methods,
these reviews facilitate academic and industrial collaboration, while providing essential
resources for education and training. This effort has profound significance in advancing
and influencing the field of style transfer, as evidenced by the diligent efforts of numerous
scholars in this domain.

In 2021, Pang [8] conducted a review of image-to-image translation, presenting var-
ious image translation techniques, including methods based on Generative Adversarial
Networks (GANs), conditional generative models, image super-resolution, and image
semantic segmentation. Their work provided an important overview of research in the
field of image-to-image translation. Expanding on the topic of style transfer, Chen [9]
categorized style transfer into two main classes: traditional image style transfer and deep
learning-based image style transfer. Deep learning-based image style transfer was further
subdivided into convolutional neural network-based style transfer and Generative Adver-
sarial Network-based style transfer. Additionally, Zhao [10] introduced significant deep
learning-based image style transfer algorithms, including Neural Style Transfer, WCT Style
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Transfer, Fast Style Transfer, and CIN Style Transfer, while comparing and analyzing their
respective strengths and weaknesses.

However, they did not categorize the deep learning style transfer methods in detail,
and as time progresses, more emerging technologies are being applied to the field of
style transfer, making a comprehensive review of style transfer techniques increasingly
important once again. This paper will classify deep learning-based style transfer algorithms
in detail, and sequentially introduce style transfer algorithms under CNN, GAN, attention
mechanisms, and the diffusion model.

Jing [11] categorized the architecture of deep learning neural network style transfer.
As of 2019, they divided neural network style transfer into two main categories: slow
image stylization transfer algorithms based on online image optimization and fast image
stylization transfer algorithms based on offline model optimization. Furthermore, they
further subdivided these two categories into the following subclasses: slow stylization
transfer algorithms based on statistical distribution parametrization, non-parametric slow
stylization transfer algorithms based on Markov Random Fields (MRF), and fast stylization
transfer algorithms with a single model and style, fast stylization transfer algorithms with
a single model and multiple styles, and fast stylization transfer algorithms with a single
model and arbitrary styles.

However, their research primarily focuses on neural network-based style transfer, with
limited exploration of style transfer using generative adversarial networks (GANs). This
paper aims to enhance the discussion by delving into GAN-based style transfer algorithms,
attention mechanisms, and the diffusion model in greater detail. It seeks to provide readers
with a more comprehensive overview of the development of style transfer techniques.

Chen [12] provided a comprehensive overview of the development and applications of
adversarial learning-based image transformation methods in recent years. The introduction
of Generative Adversarial Networks (GAN) rapidly found applications in the field of style
transfer. On the other hand, Jiao [13] highlighted the challenges that deep learning faces
in image processing, including issues such as insufficient data, overfitting, limited model
generalization, long runtime, and poor interpretability. Jing [11], proposed future research
directions, emphasizing the need to focus on addressing practical issues in style transfer,
such as improving image resolution and accelerating algorithm runtime.

The article will continue to delve into key issues facing the current style transfer field,
exploring possible solutions and future directions. By systematically analyzing the limita-
tions and challenges of existing methods, the paper aims to reveal the latest advancements
in style transfer technology. It will discuss strategies for improving generation quality,
achieving more flexible style control, and enhancing widespread practical applications.
This effort aims to lead research and technological innovation in the field of style transfer,
promoting its further application and development in areas such as computer vision, artistic
creation, and image processing.

With the development of image style transfer techniques, the field of video style
transfer has also shown immense potential. Video style transfer, as an extension of image
style transfer, aims to blend the style of one video segment with another video or image,
generating a video with a new style. Initially, video style transfer methods applied image
style transfer to each frame, but this approach was computationally intensive, inefficient,
and unsuitable for real-time video processing.

With the advancement of deep learning technology, convolutional neural network-
based video style transfer methods have emerged. Examples include the Fast Style Transfer
Network and Multi-Style Generative Network. These methods leverage convolutional
neural networks to extract features from video frames and maintain the continuity and
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stability of the video by considering the relationships between consecutive frames and
temporal information, and thus achieving video style transfer.

Furthermore, there have been specific video style transfer methods tailored for par-
ticular application scenarios, such as 3D model-based video style transfer and semantic
segmentation-based video style transfer, among others.

In 2022, Liu [14] provided an overview and summary of color transfer and style
transfer in the video domain in their paper, introducing the development and various
methods of video style transfer. However, they did not delve specifically into video style
transfer in great detail. With the continuous advancement of technology, the application
of deep learning in video style transfer has become more widespread. Therefore, there is
a need for a more comprehensive summary of style transfer, including both image style
transfer and video style transfer, to assist researchers and students working in the field of
style transfer and to gain a more comprehensive understanding of the knowledge related
to style transfer, providing an overview of this broad field.

Therefore, this article comprehensively updates and supplements the development
of style transfer technology. The article sorts out machine learning-related technologies
and uses artificial intelligence as a tool to solve application problems in the field of style
transfer. In addition, the article classifies these from the perspective of deep learning and
explores the progress of CNN, GAN, attention mechanism, the diffusion model, etc., in
this field, focusing on improving the quality and effect of style transfer by improving the
network architecture, loss function design, training strategy and evaluation method.

The paper divides style transfer into two main sections: image style transfer and video
style transfer. Within image style transfer, it further distinguishes between traditional image
style transfer and deep learning-based image style transfer. This segmentation aims to help
readers better understand the directions of style transfer and grasp future development
opportunities in this area.

In this paper, we make the following contributions to the state of the art:

1. This paper takes an application-oriented approach and builds on algorithms to provide
a more comprehensive review of the development of style transfer.

2. It places special emphasis on video style transfer in the field of deep learning, offering
detailed insights into style transfer in the context of videos.

3. The paper also updates the latest developments in video-style transfer technology.

In the Section 2, this paper introduces the work related to style transfer, including
research on datasets, evaluation methods, and Citespace analysis. In the Section 3, tradi-
tional machine learning-based style transfer methods are discussed. While traditional style
transfer methods perform well in experimental results, they can only modify low-level
features; hence, there is a need to introduce deep learning-based image style transfer.

The Section 4 divides deep learning-based image style transfer into convolutional
neural network-based style transfer, Generative Adversarial Network-based style transfer,
and attention mechanism-based style transfer. These three techniques have played a
significant role in advancing style transfer. Following the application of image style transfer
techniques, deep learning technology further extends to the realm of videos. This paper
focuses on video style transfer, introducing video style transfer technologies.

Finally, the paper summarizes the current research work and highlights future research
directions in the field of style transfer.

2. Related Work
2.1. Related Datasets

In deep learning, the scale and quality of the dataset are crucial for the performance
and effectiveness of the model. An excellent dataset should reflect the diversity and
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variability of the real world and must be carefully curated and labeled to ensure its quality
and effectiveness. Large-scale datasets like ImageNet [15], representing one of the world’s
largest visual recognition application datasets with over one million high-resolution images
labeled, have become the standard benchmark dataset in the field of computer vision in
recent years, driving research and development in image recognition and classification
algorithms.Additionally, Tan [16] presented the WikiArt dataset, which comprises over
150,000 art paintings collected and curated by enthusiasts and volunteers.

Isola [17] used four paired image datasets for supervised training in pix2pix, ensuring
that each input image has a corresponding target image. Additionally, Zhu [18] employed
four style transfer datasets to validate their method and model’s effectiveness in the
CycleGAN paper. It is worth noting that the key innovation of CycleGAN is its ability
to perform unpaired image translation, so the images in these datasets do not need to be
forced to correspond one-to-one.

When performing style transfer, learning the textures of images is crucial, and this
requires the use of large-scale image texture datasets. In 2005, Caputo [19] introduced the
KTH-TIPS dataset, which consists of 11 material categories, with multiple samples in each
category taken in different poses, under different lighting conditions, and at different scales.
Subsequently, Sharan [20] used the FMD dataset in their research, which was contributed
by users from the Flickr community. It includes various real-world material images, such
as plastic, metal, leather, and fabric, with 1000 images in total covering 10 different objects,
each having 100 images. This dataset can be used for training visual material classification
models. Additionally, in 2009, Quattoni [21] employed the MIT-Indoor dataset to address
indoor scene recognition, comprising 67 indoor categories with a total of 15,620 images.
The number of images varies among different categories, but each category contains at
least 100 images.

In 2014, Cimpoi [22] created a texture database known as the Describable Textures
Dataset (DTD). This database consists of 5640 images categorized into 47 types of textures
inspired by human perception, including wood, stone, fabric, carpet, glass, metal, and more.
Each category contains 120 images. This database provides a rich set of texture samples
and offers detailed descriptions of the textures, enabling researchers to conduct various
texture-related tasks. However, sometimes the scale of these datasets may still not meet the
requirements. Therefore, in 2015, Bell [23] created the Materials in Context (MINC) dataset,
a new, large-scale, open material dataset comprising 3 million material samples. MINC is
an order of magnitude larger than previous material datasets and is more diverse, making
it valuable for material recognition and texture learning tasks.

COCO (Common Objects in Context) is a widely used computer vision dataset de-
signed to advance research in image-understanding tasks. Provided by Microsoft Research,
the COCO dataset contains over 330,000 images, with 200,000 of them annotated with object
labels. The images in the dataset cover 80 different object categories, including people,
animals, vehicles, and everyday items, and depict a wide range of environments and scenes.
Its diverse image content, including humans, objects, and various scenes, makes it an ideal
source of content images for style transfer. Researchers can combine real-world images
from COCO with artistic style images to generate creative and artistic works through
style transfer.

LAION-5B dataset [24] is a large-scale open multimodal dataset introduced by the
LAION team in 2022, containing over 5 billion pairs of images and text. LAION also pro-
vides various subsets, including the LAION-Aesthetics subset, which consists of 120 million
aesthetic images focused on high-quality and aesthetically pleasing visuals. By offering rich
aesthetic ratings and related information, this dataset supports various image generation
and analysis tasks. It provides high-quality and aesthetically pleasing images as references,
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allowing trained style transfer models to generate images that not only match the desired
style but also exhibit high aesthetic value. This enhances the visual quality and detail
representation of generated images.

These datasets provide a wealth of diverse image examples, encompassing various
styles, content, and features. They enrich the training data for models, enabling them to
learn how to capture and transform information from different styles while preserving
the key characteristics of the original images. Additionally, these datasets contribute to
the evaluation and improvement of style transfer algorithms. By providing standard test
images and target styles, researchers can quantify the performance of models and make
comparisons. Therefore, datasets play an indispensable role in style transfer research,
laying a solid foundation for creating higher-quality and more diverse style transfer results.
The database information is provided in Table 1.

Table 1. Database description and address.

Database Content References

ImageNet Over 1 million tagged high-resolution images. [25]
WikiArt Contains more than 150,000 art paintings. [26]
Pix2pix 4 paired image data sets. [27]

CycleGAN 4 non-required paired data sets. [28]
KTH-TIPS Multiple samples for each of the 11 material categories. [29]

FMD 1000 pictures of ten objects; 100 pictures of each object. [30]
MIT-Indoor 67 indoor categories; 15,620 images in total. [31]

DTD Composed of 5640 images, organized according to 47 textures inspired by
human perception.

[32]

MINC 3 million material samples. [33]
COCO Contains more than 330,000 images, of which 200,000 are annotated with objects. [34]

LAION-Aesthetics Contains 120 M aesthetic samples. [35]

2.2. Evaluation Method

The problem of style transfer has been around for several decades. Over the past few
decades, many excellent algorithms have emerged, and while their development directions
vary, each algorithm has, to varying degrees, propelled the rapid advancement of style
transfer technology. Each algorithm should be fairly compared. However, there is currently
no universally recognized style transfer evaluation standard. Traditional subjective visual
assessment relies on direct human observation of the visual effects of images or videos to
determine whether the desired effect has been achieved, but this evaluation lacks objectivity.
Therefore, more objective data and methods are needed to assess the quality of style transfer.
Various data and methods now exist to provide objective evaluation criteria.

In 2004, Wang [36] introduced the Structural Similarity Index (SSIM), a metric for
evaluating image quality. It is designed to measure the structural similarity between two
images, thus assessing the level of distortion in images, and it correlates reasonably well
with human subjective perception. SSIM provides an accurate measure of image distortion,
enabling a more precise evaluation of image processing algorithms. As a commonly used
image quality assessment metric, SSIM calculates a score between 0 and 1 by comparing
the similarity of two images in terms of brightness, contrast, and structure. A higher score
indicates greater similarity between the two images.

Zhang [37], building upon SSIM, introduced a new evaluation metric called Col-
orization Error. This metric maps the generated images and original images to the Lab
color space and calculates the mean squared error of the luminance channel (L) and the
weighted sum of SSIM for the chrominance channels (a and b). This metric aims to provide
a more comprehensive assessment of image quality, including both brightness and color
information, offering a quantitative measure of image color accuracy.
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Gatys [38] introduced two evaluation metrics: content loss and style loss. Content
loss is used to measure the distance in feature space between the generated image and the
original image, while style loss is used to measure the distance in feature space between
the generated image and the reference image. These two metrics help quantify the simi-
larity between the generated image and the original image as well as the reference image,
providing quantitative criteria for evaluating style transfer algorithms.

Content Loss
LContent = ∑(Fl − Pl)2 (1)

The process involves taking the input image and passing it through a VGG-19 network
to obtain the feature maps at various layers, denoted as P (the feature map of layer l
is represented as Pl). Simultaneously, through the same VGG-19 network, randomly
generated white noise images also acquire feature maps at different layers, denoted as F
(the feature map of layer l is represented as Fl). Therefore, the content loss for an image
can be defined as the mean squared error (MSE) between the feature representations of the
image and the target image at a specific layer.

Style Loss
LStyle = ∑

l
wlEl (2)

Error
El = sum(GL − AL)2 (3)

The feature maps from each layer are further used to calculate the Gram matrix,
denoted as A, where the matrix for the l-th layer is represented as AL, The Gram matrix
A captures the style information from the style image. The feature maps F from various
layers are also used to calculate the Gram matrix, denoted as GL. The weights wl represent
the weights of the error El for each layer.

LContent and LStyle result

Ltotal = αLContent + βLStyle (4)

Among them, α and β are used to balance the weight of the content and style. If the
similarity places more emphasis on content, α can be set as the larger, and if the similarity
places more emphasis on style, β can be set to be larger.

The Inception Score (IS) [39] can serve as an auxiliary evaluation metric in style
transfer tasks to measure the clarity and diversity of generated images, especially when
the generated images exhibit prominent style features, as it reflects the effectiveness of
the transfer. It uses an Inception Network trained on the ImageNet dataset to classify the
fake images generated by the evaluated model. Then, the metric measures the average
Kullback–Leibler (KL) divergence between the marginal label distribution p(y) and the
conditional label distribution p(y | x) based on the generated samples.

IS = exp(Ex[DKL(p(y | x)∥p(y))]) (5)

p(y | x) is the predicted label distribution for the image, and Ex represents the expectation
over all generated images. DKL(p(y | x)∥p(y)) is the KL divergence for each image. A
lower IS value indicates that the generated data are more similar to real data, meaning
higher realism.

Fréchet Inception Distance (FID) [40] is an improved IS evaluation metric, which
mainly addresses the issue that IS does not consider real data. Compared to IS, FID has a
more reasonable theoretical foundation and can better capture the distributional differences
between generated and real images. The core idea of FID is to measure the distributional
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difference between real and generated images in feature space using the Fréchet distance
(also known as the 2-Wasserstein distance). The formula is as follows:

FID = ∥µreal − µfake ∥2 + Tr

∑
real

+ ∑
f ake

−2

(
∑
real

∑
f ake

)1/2
 (6)

where ∥µreal − µfake ∥2 is the squared Euclidean distance between the means of the two
distributions; Tr represents the trace of the matrix, which calculates the difference between

the covariance matrices;
(

∑real ∑ f ake

)1/2
is the “square root” of the covariance matrices,

computed using matrix decomposition methods. The lower the FID value, the more similar
the generated data are to the real data, indicating higher realism.

Learned Perceptual Image Patch Similarity (LPIPS) [41] is used to measure the differ-
ence between two images. LPIPS measures the content fidelity between a stylized image
and its corresponding content image. The core idea is to assess the perceptual similarity
of images by comparing their deep features rather than pixel-level differences. It uses
deep convolutional neural networks, such as VGG, to extract features from the images and
calculates the differences in these features at different layers. The formula is as follows:

LPIPS(x, y) = ∑
l

ωl · ∥∅l(x)− ∅l(y)∥2
2 (7)

where ∅l(x) and ∅l(y) are the feature representations of images x and y at layer l (extracted
through a convolutional neural network), ∥∅l(x)− ∅l(y)∥2

2 represents the L2 norm, i.e., the
Euclidean distance, used to calculate the difference between feature vectors, and ωl is the
weighting coefficient for each layer’s feature. These weights are learned during training to
adjust the relative importance of features at different layers. A lower LPIPS value indicates
that the two images are more similar, while a higher value indicates greater difference.

In style transfer evaluation, the style information of an image may influence the LPIPS
score as it tends to focus on texture features. To reduce the impact of style information
on the evaluation, Content Feature Structural Distance (CFSD) was proposed, which is a
new distance metric that only considers the spatial correlation between image patches. The
formula is as follows:

CFSD =
1

h̄w

hw

∑
i=1

DKL(Sc
i ∥Scs

i ) (8)

In this context, Sc
i represents the i-th element of the correlation matrix for the content

image, and Scs
i represents the i-th element of the correlation matrix for the style image.

DKL denotes the Kullback–Leibler divergence. By capturing the structural and detail
differences between style-transferred images, CFSD can effectively assess whether the
image successfully conveys the target style while maintaining a balance between style and
content and preserving the structural features of the original image. This approach focuses
on spatial correlations, making it more robust to variations in texture and style, which are
common in style transfer tasks.

In recent years, text-to-image generation techniques have garnered increasing attention.
The CLIP model (Contrastive Language-Image Pretraining) [42], introduced by OpenAI
in 2021, is a multimodal model trained through contrastive learning on a large corpus
of image–text pairs. It can understand and associate images with textual descriptions by
encoding both into a unified high-dimensional space. The similarity between images and
text can be measured by the distance in this space.
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The CLIP model is applicable to style transfer tasks, assessing the effectiveness of
a style transfer or image edit. It achieves this by calculating the distance between CLIP
embeddings of the target style or edited image and the CLIP embedding of the original
image. This evaluation method effectively measures how well the generated images
match the description of the target style, facilitating optimization and helping to assess the
accuracy and style consistency of style transfer results.

When it comes to video style transfer or dynamic image style transfer, two types of
errors, temporal errors and warping errors, are commonly encountered. These are mainly
used to measure visual quality issues caused by different factors during the time sequence
or image transformation process. Temporal errors primarily involve consistency issues in
the time dimension, especially in video style transfer tasks. When style transfer is applied
to each frame in a video, differences in the style transfer between frames may occur. To
measure the temporal consistency within a video sequence, temporal errors are usually
calculated based on the similarity between adjacent frames.

Ltemporal = ∑
t
∥It − It−1∥2

2 (9)

It and It−1 represent the style-transferred images at time points t and t − 1, respectively.
Temporal errors measure the difference between adjacent frames, with the goal of minimiz-
ing the visual differences between consecutive frames to ensure temporal consistency in
the video.

Warping errors typically affect the transformation differences between images, espe-
cially during the process of image content alignment or spatial mapping. The formula is
as follows:

Lwarping = ∑
t

∥∥Tt(It)− Ît+1
∥∥2

2 (10)

Tt represents the spatial transformation of image It at time t, and Ît+1 is the target image of It

at time t + 1 after spatial transformation. Warping errors focus on the spatial transformation
consistency of the image content. By minimizing warping errors, spatial consistency can be
maintained during the image content transfer process, preventing visual distortion caused
by inconsistent transformations.

Currently, there are various evaluation methods for style transfer, each focusing on
different aspects. While significant progress has been made, there are still certain limitations.
Pixel-based evaluation methods, such as Mean Squared Error (MSE) and Peak Signal-to-
Noise Ratio (PSNR), are typically used for content preservation but fail to effectively
assess the visual quality and artistic perception of images. They struggle to capture the
high-level features of style transfer. Perceptual difference evaluation methods (such as
LPIPS) measure the perceptual differences between images by extracting features through
deep learning networks, providing an evaluation standard that aligns better with human
visual perception. These methods have become mainstream for style transfer evaluations.
However, perceptual evaluation methods are still dependent on specific network models
and may be limited by the network architecture and training data. For video style transfer,
temporal consistency and spatial consistency errors, as new evaluation dimensions, ensure
image stability during dynamic changes. However, these evaluation methods are still in
the exploratory stage and require further optimization and research. Additionally, human
evaluation relies on subjective standards, providing intuitive feedback from the perspective
of artistry and visual effects, but lacks repeatability and standardization. Overall, the
current style transfer evaluation methods still have certain shortcomings, especially in
terms of comprehensiveness and consistency. In the future, further integration of automated
evaluations and human assessments will be needed to develop a more complete and
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systematic evaluation framework.The summary of style transfer evaluation indicators is
shown in Table 2.

Table 2. Summary of style transfer evaluation methods.

Evaluation Methods Algorithms Focus

SSIM Measuring the structural similarity between two images to
assess the degree of image distortion.

Evaluating the visual quality of
generated images.

Colorization Error

Map the generated image and the original image to the Lab
color space, calculate the mean square error of the brightness

channel L and the weighted sum of the SSIM of the color
channels a and b.

Measure the color difference
between the generated image and

the original image.

Content loss, Style loss

The content loss is used to measure the distance between the
generated image and the original image in the feature space,
while the style loss is used to measure the distance between
the generated image and the reference image in the feature

space.

Measuring content and style
characteristics of generated images.

IS

The generated fake images are classified and the average KL
divergence between the marginal label distribution p(y) and

the conditional label distribution based on the generated
samples p(y|x) is measured.

Measuring the clarity and diversity
of generated images.

FID
The Frechet distance is used to measure the distribution

difference between the real image and the generated image in
the feature space.

Better capture of the distribution
difference between generated

images and real images

CLIP
Calculate the distance between the CLIP embedding of the
target style or edited image and the CLIP embedding of the

original image.

The model’s semantic
understanding and accuracy of the

visual content of the generated
image or video.

LPIPS Evaluate the perceptual similarity of images by comparing
their deep features rather than pixel-level differences

Content fidelity between stylized
images and corresponding content

images

CFSD Distance metrics that take into account spatial correlation
between image patches

Conveys the target style and
preserves the structural features of

the original image

Temporal error Based on the similarity between adjacent frames Temporal consistency in video
sequences

Warping error Differences in transformations between images, especially
during image content alignment or spatial mapping

Spatial consistency in video
sequences

2.3. CiteSpace Research

Style transfer has been used in extensive applications in the field of computer science.
As shown in Figure 2, in the Web of Science Core Collection, this study conducted a
keyword search using “style transfer” and found nearly a thousand related papers. Based
on these data, a keyword heat map was generated. In the map, the size of the circles
represents the frequency of keyword occurrences, while the layers of circles, from inner
to outer, represent the progression of time from the past to the present. Lighter colors
indicate more recent years, and the connecting lines represent the correlations between
different keywords.
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Figure 2. Hot words in the field of style transfer.

From Figure 2, it can be observed that machine learning played a significant role in the
field of style transfer from 2013 to 2017. Machine learning methods such as texture analysis
laid a solid foundation for early implementations of style transfer. Since 2016, with the
advancement of deep learning, deep learning methods have gradually dominated the field
of style transfer. Simultaneously, the field of style transfer has become increasingly popular,
with convolutional neural networks and generative adversarial network algorithms playing
increasingly important roles.

In addition to deep learning technologies, a variety of diverse techniques and meth-
ods have emerged in the style transfer field. This richness in methodologies enhances
the options for implementation strategies in style transfer, not only advancing model
performance and effectiveness but also promoting the widespread application of style
transfer technology across multiple domains, such as artistic creation, image processing,
and visual effects.

From the above figure, it is clear that there is a significant connection between the
development of style transfer and deep learning. This connection is also evident in the
trends of publication years observed in academic papers. The study investigated two
databases, Web of Science and CPCI, which encompass over 10,000 journals from four
major citation indexes (SCIE, SSCI, A&HCI, ESCI) and two chemical databases (CCR, IC).
It also included records from over 225,000 international conferences spanning various
disciplines such as the natural sciences, social sciences, and humanities.

The analysis counted the number of papers related to style transfer published in
relevant journals and conferences. As depicted in Figure 3, the quantity of papers related
to style transfer is rapidly increasing alongside the continuous development of the deep
learning field. The reason for the decline in 2024 is that statistics for December are not
available yet.
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Figure 3. The number of papers on style transfer published in relevant journals and conferences.

Based on the aforementioned data, it is clear that with the advancement of deep learn-
ing, the field of style transfer has made unprecedented progress, reflecting its increasing
importance and growth in both academic research and applications. This trend not only
demonstrates the widespread attention to and active exploration of style transfer technol-
ogy by researchers but also underscores its potential applications in fields such as image
processing, artistic creation, and visual effects.

The increased number of publications also indicates that researchers are exploring
new algorithms, improving existing methods, and applying innovations, thereby driving
advancements in the field and maturing its technologies. The combination of deep learning
and style transfer has become a highly regarded research area, and it is likely that it will
continue to be a popular topic of interest.

The increase in the style transfer literature reflects the outstanding contributions of
numerous scholars to the fields of style transfer and deep learning, driving continuous
development in this area. This paper categorizes the progress of style transfer into different
domains and showcases the contributions of various scholars in each domain. These
contributions have transformed image style transfer from purely an area of research into
one with practical application prospects, providing vast possibilities for creative and
innovative image processing.

This section of the paper aims to enable interested readers to track the latest develop-
ments in this field by following the work of these leading scientists. Additionally, the paper
draws on previous work to highlight current challenges in the field of style transfer and
potential future directions.

3. Image Style Transfer Algorithm Based on Traditional Machine Learning
Before the rise of deep learning, traditional machine learning methods for image

style transfer primarily relied on the construction of physical models and the synthesis of
textures. These traditional methods conducted in-depth research on physical models and
image textures. While traditional style transfer methods performed well in experiments,
they had limitations in that they could only achieve changes in style at a low-level feature
level. Furthermore, the manual effort required to construct these methods and the need for
labeled datasets in supervised methods were incalculable.

3.1. Computer Graphics

In 1962, E. Sutherland at the Lincoln Laboratory of MIT coined the term “computer
graphics” and demonstrated in his paper that interactive computer graphics was a feasible
and useful research area [43,44]. This marked the recognition of computer graphics as an
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independent branch of science. In the field of computer graphics, graphic style transfer falls
under the category of non-photorealistic graphics (NPR), which can be roughly divided
into three main methods: stroke-based rendering, image analogy-based methods, and
image filtering-based methods.

3.1.1. Stroke Rendering

Stroke rendering is a technique used to render images or videos in a hand-drawn
artistic style and has widespread applications in the field of image style transfer. This
technique can closely mimic the characteristics of hand-drawn art, including the shape,
color, and width of the strokes, to produce images that resemble hand-drawn artwork.
While this method has relatively few computational resource requirements, the resulting
image effects are often relatively simple and may struggle to achieve high-quality artistic
style effects.

In 1998, Hertzmann [45] introduced an early stroke-based rendering algorithm, which
was a method for simulating the effect of oil brushstrokes. This algorithm employed curved
brushes of various sizes to achieve its effect. The key steps of this algorithm involved
converting the input image into two channels representing color and brightness and then
using brushes of different sizes along with their corresponding stroke directions to render
the image.

Later, in 2002, he proposed a fast oil brushstroke rendering algorithm [46]. This
algorithm involved preprocessing and storing the original image, allowing for the quick
extraction and application of brushstroke textures during the rendering process. This
approach combined fast multi-resolution image pyramids with local texture mapping
techniques, resulting in an efficient oil painting rendering effect.

In 2003, DeCarlo [47] introduced a novel stroke-based rendering technique known
as “Implicit Contours”. This method simulated hand-drawn effects by extracting and
enhancing suggestive contours within the image. This technique significantly improved
the visual quality and expressiveness of images while also possessing robust real-time
rendering capabilities.

In 2012, Lu [48] introduced a pencil sketch generation technique that combined line
art and grayscale tones. This technology could automatically transform a color photograph
into a pencil sketch while preserving the original image’s tones and details. To further
enhance the accuracy of style transfer, in 2018, Jing [49] demonstrated that the aspect ratio
of the style image indeed affects the effectiveness of style transfer. To achieve a style transfer
effect with mixed brushstrokes, they designed the network structure depicted in Figure 4.

The network architecture mainly consists of three modules. The stroke pyramid
module aims to change the size of convolutional kernels, allowing each stroke branch to
have a larger receptive field than the previous branch. It encourages consistency between
adjacent stroke branches. The pre-encoder module provides layers that share weights
between different stroke style branches, enabling the learning of semantic information
from the content image and the basic representation of the style image. The stroke-decoder
module decodes the stroke results into style results based on the corresponding stroke
size. Through these structural strategies, the network in the paper can achieve continuous
variations in stroke sizes and generate different stroke sizes in different spatial regions
within the same output image.

To control different stroke sizes, the network is divided into multiple branches with a
pyramid structure. Each branch is trained with a corresponding stroke size. Subsequently,
a gating function (⊕) is used for interpolation between the feature maps output by the
different branches in the StrokePyramid. This allows for feature interpolation and the
continuous control of stroke sizes, enabling smooth transitions between different stroke
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scales in the generated styled images.By combining these modules, the network is able to
generate fine-grained, adjustable brush strokes that are responsive to both the content and
style information, facilitating a more flexible and detailed style transfer.

Figure 4. Mixed stroke network structure. Includes three modules: StrokePyramid module, pre-
encoder module and stroke-decoder module.

Stroke-based rendering methods have several main drawbacks in style transfer. Firstly,
they often have high computational costs and long running times, resulting in low efficiency.
Secondly, since these methods rely on modeling specific painting styles, they may be
limited by the model’s constraints, reducing their versatility. Additionally, the output
results of stroke-based rendering methods can be influenced by the quality of the input
image, potentially leading to loss of details or inaccurate rendering. Finally, these methods
typically require manual adjustments and parameter tuning, which may not be suitable for
the needs of the average user. A summary of relevant articles is provided in Table 3.

Table 3. Summary of brushstroke rendering methods.

Author Algorithm Contribution

Hertzmann [45]
Simulate the stroke effect of oil painting based on a

combination of curve brushes and brushes of various
sizes.

Early stroke rendering algorithms.

Hertzmann [46] Preprocess and store raw images to quickly extract and
apply stroke textures at the render time.

Fast oil painting stroke rendering algorithm
to achieve efficient rendering.

Decarlo [47] Simulate a hand-drawn effect by extracting and
enhancing suggestive contours in images.

Improve the visual quality and
expressiveness of images, and have strong

real-time rendering capabilities.

Lu [48] Pencil drawing production technology that combines line
drawing and grayscale tones.

Automatically convert a color photo into a
pencil drawing while retaining the tones

and details of the original image.

Jing [49]
The proposed network structure mainly has three parts,

StrokePyramid module, pre-encoder module, and
stroke-decoder module.

Achieve continuous changes in stroke size
and produce different stroke sizes in

different spatial regions within the same
output image.
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3.1.2. Image Analogy

Image analogy is a concept in image processing that involves applying the structural
and texture characteristics of one image to another. In the context of style transfer, image
analogy algorithms can be used to apply the style of a reference image to a target image,
creating a new image that incorporates the stylistic elements of the reference image.

In the field of style transfer, the Image Analogies algorithm proposed by Hertzmann in
2001 [50] is a typical approach based on the concept of image analogy. This method involves
comparing a pair of reference images, typically an input image and an output image, to
find the similarities between them. Then, using this similarity information, it generates
a new target image that is similar to the reference input image in both style and content.
Furthermore, in 2001, Ashikhmin [51] introduced a texture synthesis method based on the
Image Analogies algorithm. This approach involves aligning, comparing, transforming,
and synthesizing input and target textures to achieve high-quality texture synthesis.

In 2001, Efros [52] introduced an image synthesis method based on the Image Analo-
gies algorithm, known as “image quilting”. This technique involves partitioning, selecting,
and stitching operations on input and target images, resulting in high-quality image syn-
thesis and style transfer. In 2004, Agarwala [53] presented an interactive digital montage
technique that allows users to create high-quality image montages by selecting and arrang-
ing image elements. However, this method is primarily suitable for static images. In 2012,
Darabi [54] introduced a novel image fusion method called “Image Melding” based on
Digital Photomontage. Unlike traditional techniques, Image Melding applies not only to
static images but also to video images. It can combine two or more incompatible images,
producing incredible results.

In 2017, to keep pace with the advancements in deep learning, Liao [55] introduced a
style transfer method based on the deep image analogy, which combines image analogy
with feature extraction in deep convolutional neural networks. The core algorithm of this
paper is the NNF algorithm (Nearest Neighbor Field). It starts by extracting features using
VGG19, initializing A and B′. Then, a forward NNF is computed to establish mappings
between them, including current layer upsampling as the initialization for the next layer.
These mappings and extracted features are used to reconstruct the next layer’s A′ and B,
eventually generating the images A′ and B. The network structure is depicted in Figure 5.

Figure 5. Deep image analogy style transfer using NNF.

While image analogy methods have many advantages in style transfer, such as control-
lability, flexibility, and efficiency, they also come with some drawbacks. Firstly, they require
matched pairs of images and manually annotated matching points, which can be time-
consuming and requires expertise. Secondly, this method is typically limited to specific
application scenarios and may be challenging to apply to large-scale image datasets. Finally,
because the approach relies on local matching, it may encounter issues when attempting
to achieve global consistency in style transfer. A summary of relevant articles is given in
Table 4.
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Table 4. Summary of image analogy methods.

Author Algorithm Contribution

Hertzmann [50]
Compare a pair of reference images to find similarities

between them. Use this similarity information to generate
a new target image.

Proposed Image Analogies algorithm.

Ashikhmin [51]
High-quality texture synthesis is achieved by aligning,
comparing, transforming, and synthesizing the input

texture and the target texture.

Proposed texture synthesis method based
on the Image Analogies algorithm.

Efros [52]
Perform operations such as the blocking, selection, and
splicing of input images and target images to achieve

high-quality image synthesis and style transfer.

An image synthesis method based on the
Image Analogies algorithm is proposed,

called “image collage”.

Agarwala [53] Select, delete, modify, and recombine multiple images to
create a composite image.

An interactive digital collage technology is
proposed that allows users to create

high-quality image collages by selecting
and arranging picture elements.

Darabi [54] By rearranging patches to minimize discontinuities in the
fusion result.

Not just for still images, but for video
images as well.

Liao [55]
NNF algorithm first uses VGG19 to extract features in

advance, initialize A′ B, and use forward NNF to calculate
the mapping between them.

Match image analogies with features
extracted from deep convolutional neural

networks.

3.1.3. Image Filtering

In style transfer, image filtering is a commonly used technique. It can be employed to
smooth and blur images, reducing noise and details, resulting in a smoother style. In certain
cases, image filtering can also be used to enhance features such as edges and textures in an
image, leading to a more pronounced and clear style.

In 1987, Burt [56] introduced an image compression method based on Gaussian
and Laplacian pyramids, where the Gaussian pyramid is constructed through successive
downsampling and Gaussian filtering. This pyramid structure is effective in extracting
features from images and can be applied in style transfer applications. However, the
decomposition of the image into different scales using Gaussian pyramid filters may result
in the loss of some fine details, leading to potential blurriness or distortion in the style
transfer results.

Tomasi [57] introduced the method of bilateral filtering. Bilateral filtering is a nonlinear
filter that takes into account both the spatial distance and grayscale differences between
pixels. As a result, it effectively balances preserving image details while smoothing the
image, making it widely applied in the field of image style transfer. In this paper, the author
applied bilateral filtering to grayscale and color images and validated its effectiveness
through image-denoising experiments.

The advantage of bilateral filtering is its ability to smooth while preserving edge
information, avoiding the blurring that traditional filters may cause during the smoothing
process. However, its disadvantage is that it can lead to higher computational complexity
when dealing with large images. In 2006, Winnemöller [58] attempted to use bilateral
filtering in combination with Gaussian difference filters to extract image contours, thus
achieving the rendering of image contours.

Following the application of deep learning in the field of style transfer, image filtering
was actively combined with it. In 2017, Semmo [59] integrated neural networks with image
filtering to achieve style transfer functionality. This combination leverages the strengths of
both artistic rendering paradigms: deep convolutional neural networks can transmit style
features globally, while image filtering can simulate artistic media phenomena locally.
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To address the issue of customizing filter styles, in 2020, Yim [60] introduced Filter
Style Transfer (FST), with a network structure depicted in Figure 6.

Figure 6. FST network structure. Extract custom filter style from filter style image and apply it to
content image.

FST has the ability to extract custom filter styles from a reference style image and apply
them to a content image. First, a custom photo filter is extracted from a single reference
image (I) and applied to a new reference image (X). FST recovers the original image (O)
from I, which is referred to as defiltering in the paper. Then, using both images, the filter
parameters w are obtained, which is referred to as filter style estimation. Finally, the filter
function designed using w can be used to filter the user’s original image (X) into a newly
stylized image (Y).

In style transfer, image filtering is often used to remove high-frequency noise and
details from images, reducing artifacts and textures to obtain cleaner and smoother images.
This helps improve the stability and effectiveness of style transfer algorithms, making the
transferred images appear more realistic and natural while preserving the original image’s
structure and semantic information. However, traditional image filtering algorithms are
typically based on fixed filter kernels, making it challenging to find a universal filter
kernel that works well for all style transfer tasks. Today, image filtering is more frequently
combined with deep learning methods to develop new image-filtering techniques and
applications. A summary of relevant articles is given in Table 5.

Table 5. Summary of image filtering methods.

Author Algorithm Contribution

Burt [56]

An image compression method based on Gaussian and
Laplacian pyramids is proposed, where the Gaussian

pyramid is implemented by stepwise downsampling and
Gaussian filtering.

The pyramid structure can effectively
extract features in images and can be used

in style transfer applications.

Tomasi [57] Proposed the method of Bilateral Filtering.
Avoids the shortcomings of traditional
filters that blur the image during the

smoothing process.

Winnemöller [58] Extract image contours using a bilateral filter combined
with a Gaussian difference filter. Render image outlines.

Semmo [59] Combining neural networks with image filtering to
achieve style transfer.

Has the advantages of both artistic
rendering paradigms.

Yim [60] Extract custom filter styles from filter style images and
migrate them to content images. Solve the problem of custom filtering style.

3.2. Texture Transfer

Texture transfer is the process of applying the texture from one image to another image.
Texture can be thought of as the local visual patterns within an image, typically composed
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of repeating elements such as patterns, shapes, and lines. Texture transfer can further be
categorized into single-style texture transfer and multi-style texture transfer.

3.2.1. Single-Style Texture Transfer

Single-style texture transfer refers to the process of applying the texture from one
image to another to make the output image have the same texture style as the input image.

In 1995, Heeger [2] introduced a pyramid-based texture analysis/synthesis method for
generating new texture images from a single texture sample. In 2005, Kwatra [61] proposed
an example-based synthesis algorithm designed to generate new textures by optimizing
input example textures. This method decomposes the input example textures into disjoint
patches and then reorganizes them to create new textures.

The aforementioned methods were based on traditional signal processing techniques,
requiring manual parameter tuning and feature computation. While capable of generating
texture images, they were computationally intensive, operationally complex, and challeng-
ing to apply in practical scenarios. With the advancement of deep learning technology,
texture transfer methods based on deep neural networks have gradually gained popularity.

In 2017, Elad [62] introduced a new method based on texture synthesis called STTS
(Style Transfer via Texture Synthesis). This approach leverages texture synthesis techniques
to combine the style of a given style image with the content information of a target image,
resulting in a new image that possesses both style and content characteristics. However,
since it relies on texture synthesis, it may not perform well when dealing with non-textured
images, leading to the generation of images with pronounced textures. It might also suffer
from overfitting, where the generated images overly depend on the style image and lack
unique features.

While single-style texture transfer can produce excellent results in certain contexts, it
also comes with several significant limitations. The most prominent drawback is its lack
of diversity and flexibility, as it cannot simultaneously incorporate multiple styles or offer
a higher degree of customization. Additionally, this method demands high standards in
the selection and quality of style images, and some complex textures and styles may be
challenging to accurately capture and synthesize. Therefore, in certain specialized applica-
tion scenarios, more advanced texture transfer methods may be required. A summary of
relevant articles is given in Table 6.

Table 6. Summary of single-style texture transfer methods.

Author Algorithm Contribution

Heeger [2]
Use the Gaussian pyramid to decompose the input image,

perform texture analysis, and synthesize a new texture
image.

A pyramid-based texture
analysis/synthesis method is proposed.

Kwatra [61] Break the input sample texture into small, disjoint tiles
and rearrange them to create a new texture.

An example-based synthesis algorithm is
proposed that aims to generate new
textures by optimizing input sample

textures.

Elad [62]
Generate a new image with style and content information
using the given style image and the content information

of the image to be processed.

Proposed a new method based on texture
synthesis called STTS.

3.2.2. Multi-Style Texture Transfer

Multi-style texture transfer refers to the process of applying the texture features from
multiple style images to a single target image, generating a new image with diverse texture
styles. Unlike single-style style transfer, multi-style texture transfer combines texture
features from different styles into one target image, resulting in a texture effect that is more
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diverse and rich. The significance of multi-style texture transfer lies in its extension of
traditional single-style style transfer methods, allowing users greater freedom to choose
multiple styles for generating texture effects.

In 2001, Efros [52] introduced a method that decomposes the texture of an input
image into multiple small texture patches and then finds the best-matching patches on an
output image, applying them to create the output image. By assembling texture patches,
this approach achieves natural texture synthesis and transfer, and is capable of handling
various scales and orientations of texture variations. However, during the process of patch
assembly, unnatural seam artifacts can occur, resulting in less realistic texture synthesis and
transfer effects.

In 2009, Barnes [63] introduced a randomized algorithm called PatchMatch. The
core idea behind PatchMatch is to optimize global matching using local matching. It
divides an image into multiple blocks and then matches each block with other blocks in the
image, ultimately establishing correspondences between the blocks. When multiple texture
styles are required for texture synthesis, the PatchMatch algorithm can be used to find the
best-matching style for each pixel and perform cross-synthesis between matching styles,
resulting in a new image with multiple texture styles.

In 2017, Song [64] introduced a comprehensive image appearance transfer method
that combines color and texture. The workflow of this method involves the following steps:
first, initializing the image using color information, then performing texture synthesis
using a texture-based approach to obtain an image with synthesized textures. Finally, the
synthesized textures are combined with the color information from the original image to
achieve the ultimate appearance transfer result.

As time has progressed and technology continued to advance, an increasing number
of researchers have turned their attention to multi-scale texture transfer methods based on
deep learning. Currently, deep learning-based multi-scale texture transfer algorithms have
become one of the mainstream approaches in this field.

In 2017, Huang [65] introduced a multi-style texture transfer algorithm capable of
achieving real-time texture transfer in scenarios with high-speed requirements. Then, in
2018, Men [66] proposed a general solution for interactive texture transfer problems, which
is more suitable for transfer environments with various textures. The core idea of the
universal framework in this paper is to use multiple customized channels to dynamically
guide the synthesis process, as depicted in Figure 7.

In the paper, the spatial distribution of stylized textures is controlled through semantic
channels. The automatic extraction and propagation of structural guidance information
obtained through two stages provide prior knowledge for initialization. This information is
used to search for the nearest-neighbor fields (NNF) with structural consistency, preserving
significant structural features. Additionally, texture consistency is utilized to maintain styles
similar to the source image. Ultimately, the method presented in the paper demonstrates
efficiency and an outstanding performance in various scenarios.

The evolution of multi-style texture transfer has gone through various stages, including
those based on texture patches and neural networks, gradually improving the quality and
efficiency of texture synthesis. While existing algorithms have achieved significant success,
there are still some challenges and issues to address, such as the inability to handle large-
scale images and the naturalness of the synthesis results. Further research and exploration
are needed to address these challenges and continue advancing the field. A summary of
relevant articles is given in Table 7.
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Figure 7. Multi-channel implementation of arbitrary texture migration flow chart.

Table 7. Summary of multi-style texture transfer methods.

Author Algorithm Contribution

Efros [52]
The texture of the input image is broken down into

several small texture blocks, and then the best matching
block is found on the output image.

Texture synthesis and transfer are achieved
by assembling texture patches.

Barnes [63]

The local matching is used to optimize the global
matching, the image is divided into multiple blocks, and

the corresponding relationship between the blocks is
finally established.

Introduced a randomized algorithm called
PatchMatch.

Song [64]
The color information is used to initialize the image and

then texture synthesis is performed using a texture-based
approach.

A comprehensive image appearance
transfer method is introduced that

combines color and texture.

Huang [65] Generative Adversarial Network (GAN)-based multi-style
texture transfer algorithm.

Achieves real-time texture transfer in
scenarios with high-speed requirements.

Men [66] Utilize multiple customized channels to dynamically
guide the synthesis process.

A general solution for interactive texture
transfer problems.

4. Image Style Transfer Algorithm Based on Deep Learning
In recent years, deep learning has found widespread application in image processing

due to its powerful performance and learning capabilities. Deep learning-based style
transfer is a technique that transforms the content and style of an image using deep neural
networks. It leverages pre-trained convolutional neural networks (CNN) or generative
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adversarial networks (GAN) to combine the content of one image with the style of another,
generating synthetic images with unique styles. Depending on the specific deep learning
network model, these methods can be categorized into convolutional neural networks
(CNN), generative adversarial networks (GAN), and attention-based methods.

4.1. Convolutional Neural Network Method

The pioneering work of deep learning in style transfer was introduced by Gatys in
2016 [38]. This work is considered a significant breakthrough in the field of deep learning
for style transfer and laid the foundation for subsequent research and methods. This
approach uses convolutional neural networks (CNN) to achieve style transfer in images.
It combines features representing both image content and style and generates synthetic
images through optimization algorithms. In neural network-based style transfer, there are
distinctions between single-network neural style transfer and multi-network neural style
transfer depending on the network structure.

4.1.1. Single-Network Neural Style Transfer

The term “single-network neural architecture” refers to the use of only one neural
network for the entire style transfer process without involving additional networks. This
network plays the dual role of both a content feature extractor and style feature extractor
and is responsible for combining content and style features to generate the final style
transfer result. The single-network neural architecture consists of a convolutional neural
network (CNN), typically composed of multiple convolutional layers, pooling layers, and
fully connected layers, for learning the feature representation of the input image. In style
transfer, this single network generates an output image with the target style based on the
content and style of the input image.

1. VGG network

In 2014, Simonyan [67] introduced a deep convolutional neural network architecture
known as the VGG network, which was designed for image classification and recognition
tasks on large-scale image datasets. The VGG network achieves an increased depth by
stacking multiple convolutional layers and pooling layers while using small-sized convolu-
tion kernels and smaller strides to maintain high-resolution feature representations. Due to
its outstanding performance in image processing, the VGG network was quickly adopted
for style transfer applications.

The primary reason for using the VGG network lies in its powerful feature expression
capabilities, allowing it to extract multi-level feature representations that capture both
content and style information from images. Therefore, the VGG network has become
a commonly used feature extractor and foundational network structure in the field of
style transfer.

Gatys [38] took a significant step in style transfer applications by utilizing the VGG
network and introducing the network structure depicted in Figure 8, which has been widely
disseminated and employed. In this network, the input consists of a base image composed
of noise, while the constraints are Style Loss and Content Loss, used to optimize the style
of the style image and the content of the target image, respectively. The workflow of the
network involves starting with a base image made up of random noise and then iteratively
updating this base image by calculating Style Loss and Content Loss. This process aims to
make the base image increasingly similar to the Style Image in terms of style texture while
maintaining its similarity with the original photograph in terms of content.
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Figure 8. Style transfer through VGG. Input a base map composed of random noise, and continuously
update the base map iteratively by calculating Style Loss and Content Loss to make it similar to the
Style Image in style and texture, and similar to the original photo in content.

After Gatys [38] introduced the VGG network into style transfer, the application of
the VGG network gradually expanded. Initially, the VGG network was used as a feature
extractor in style transfer methods to extract content and style features from images. In
2016, Gatys [68] further improved the style transfer method based on the VGG network, ad-
dressing the issue of color distortion in the original method. Subsequently, Li [6] combined
the traditional Markov Random Field with the VGG style transfer method, proposing an
image synthesis method based on Markov Random Field. This method not only preserves
the content and style of the image but also considers global consistency, thereby enhancing
the quality of the synthesized image.

In the same year, researchers continued to make improvements to the VGG network.
Novak [69] enhanced traditional style transfer methods to improve the quality and effi-
ciency of synthesized images. Traditional methods often lose some detailed information
while maintaining global consistency during style transfer. This paper modified the style
representation to capture more information, imposed stricter constraints on style transfer
results, and generated more detailed and realistic synthesized images.

In 2022, Tan [70] introduced the Faster-CNN model, which aimed to reduce storage
space and computational costs. By compressing the CNN model and employing matrix
factorization methods, including Singular Value Decomposition (SVD) algorithms, it not
only significantly reduced the time required for image feature recognition, improving
efficiency, but also optimized the model’s recognition performance, better supporting the
artistic style transfer of painted images.

With the continuous advancement of technology, the scope of application of VGG
networks has expanded. In 2017, Luan [71] modified the VGG network and successfully
achieved high-quality photo style transfer by combining deep learning techniques with
local adjustments. In 2020, Kolkin [72] argued that explicit content loss was unnecessary
and proposed Neural Neighbor Style Transfer (NNST)—a direct method based on nearest
neighbors that achieved higher-quality stylization than previous works without sacrificing
content preservation. Good transfer results were produced without using content loss, as
shown in Figure 9.

Furthermore, in 2022, Wang [73] presented the application of VGG networks in cartoon-
style transfer. VGG networks play a crucial role in cartoon-style transfer due to their
image feature extraction capabilities. These applications demonstrate the versatility and
applicability of VGG networks in various domains.
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Figure 9. NNST effect diagram.

As mentioned earlier, the VGG single-network architecture is a commonly used con-
volutional neural network architecture in style transfer, employed for extracting feature
representations from images. The straightforward structure and powerful feature extraction
capabilities of the VGG single-network have established it as a classic model in the field of
style transfer, providing an effective approach for image style transformation. A summary
of relevant articles is shown in Table 8.

Table 8. Summary of VGG network style transfer method.

Author Algorithm Contribution

Gatys [38] Applying the VGG network to style transfer. A breakthrough in style transfer in the field of
deep learning.

Gatys [68] Based on the VGG network, the style transfer method is
further improved.

Solved the problem of color distortion in the
original method.

Li [6] Combining the traditional Markov random field and VGG
style transfer method.

Retain the content and style of the image while
maintaining overall consistency.

Novak [69] Modify the style representation to impose tighter
constraints on the results of style migration.

Generate more detailed and realistic composite
images.

Tan [70] Proposed Faster-CNN model. The process of image feature recognition is greatly
reduced and the efficiency is improved.

Luan [71] Deep learning technology combined with local
adjustment. High-quality photo style transfer achieved.

Kolkin [72] a direct method based on nearest neighbors achieved higher-quality stylization than previous
works without sacrificing content preservation

Wang [73] VGG networks play a crucial role in cartoon-style transfer
due to their image feature extraction capabilities.

Introducing the application of the VGG network in
cartoon-style transfer.

2. ResNet network

The ResNet network, introduced by Kaiming He [74] in 2015, is a deep residual
network designed to address the issues of gradient vanishing and network depth. It
introduces residual connections, allowing for the training of much deeper networks. In
style transfer, ResNet networks are often used as feature extractors to capture the content
features of images. However, directly applying the ResNet architecture to style transfer
often results in the style of the original image being prominently preserved with little
style transfer. Is there a method to adapt the ResNet architecture for style transfer with
appropriate adjustments?

In 2019, Ilyas A [75] demonstrated that adversarial examples can be directly attributed
to the presence of non-robust features—these features exhibit high predictability but are
fragile and not interpretable by humans. It was speculated that VGG, which is unable
to capture non-robust features in images as ResNet does, may perform worse in image
classification accuracy but better in style transfer tasks. Subsequently, Nakano R [76]
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conducted experiments and found that, in cases where the network architecture is identical,
the code for performing style transfer is identical, and only the weights differ; robust
ResNet models show significant improvements compared to regular ResNet models. In
2021, Wang [77] delved further into this issue and proposed a simple yet effective solution
to enhance the robustness of the ResNet architecture: a softmax transformation based
on feature activations to increase feature entropy. The network structure is illustrated in
Figure 10.

Figure 10. Stylization via ResNet.

The experimental results demonstrate that such a minor modification can significantly
enhance the quality of stylized results, even for networks with randomly initialized weights.

Therefore, ResNet has found widespread applications in the field of style transfer.
In 2019, Li [78] introduced a method for fusing infrared and visible light images based
on ResNet and ZCA. This approach combines the feature extraction capabilities of deep
learning with image processing techniques, improving image quality and enhancing object
recognition performance. In 2023, Wang [79] applied ResNet to the development of willow
pattern recognition, conducting image recognition experiments using Convolutional Neural
Networks (CNN) ResNet and applying it to a Funan willow pattern.

The advantage of using a single ResNet network for style transfer lies in its powerful
feature extraction capabilities and excellent transfer results. It can handle larger-sized
images and, to some extent, mitigate the vanishing gradient problem. However, the
limitations of the single ResNet network are revealed when dealing with complex styles and
multi-style scenarios, where its performance may not be as strong as methods employing
multiple network structures. Additionally, it requires a substantial amount of training
data and computational resources to ensure high-quality transfer results. Therefore, in the
field of style transfer, the single ResNet network can be considered a simple and effective
approach, but for more complex tasks, it may benefit from being combined with other
techniques or network structures to enhance transfer performance. A summary of relevant
articles is shown in Table 9.

Table 9. Summary of ResNet network style transfer method.

Author Algorithm Contribution

He K [74] Introducing residual connections to solve the problems of
gradient disappearance and network depth.

Allows the network to be trained in more
depth.

Ilyas A [75] Exploring non-robust characteristics.
Demonstrate that adversarial examples can

be directly attributed to the presence of
non-robust features.

Wang P [77] The softmax transformation based on feature activation
enhances the entropy of Resnet.

Greatly improve the quality of Resnet
stylized results.

Wang T [79] ResNet image recognition experiment applied to Funan
wicker pattern.

Provides a more comprehensive and rich
set of new materials for the creation of

wicker patterns.

Nakano R [76] Robust ResNet model compared to conventional ResNet
model.

The robust ResNet model shows a huge
improvement.

Li H [78] Infrared and visible light image fusion method of ResNet
and ZCA.

Improve image quality and enhance target
recognition performance.
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4.1.2. Fast Style Transfer from Pre-Trained Networks

Single networks typically suffice for simple style transfers. However, as the demand for
real-time and diverse styles grows, pre-trained networks have emerged. Fast-style transfer
with pre-trained networks is a specific approach. It involves training a forward network
so that an image can be reconstructed in a single forward pass, followed by optimization
under various constraints. The effectiveness of this approach depends on how many
different styles the pre-trained network has learned as classification criteria. Therefore,
based on the number of styles a pre-trained network can handle, these algorithms can
be further categorized into single-style, multi-style, and arbitrary-style fast-style transfer
algorithms [11].

1. Single-style fast transfer

The single-style fast-style transfer method aims to quickly transform an input image
into a specific single style. The core idea is to train a separate forward network for each style
image. In this way, during testing, you only need to input the image into the corresponding
model for a single forward pass to obtain the output result.

In 2016, Johnson [80] introduced a loss function called “Perceptual Losses” and a
pre-trained forward network to achieve real-time style transfer and super-resolution re-
construction. This network uses a pre-trained VGG network as the feature extractor and
optimizes the generated image by minimizing the perceptual loss, making it closer to the
target image in terms of perception. The network’s performance is shown in Figure 11.

Figure 11. Fast style transfer effect diagram.

Compared to the model proposed by Gatys, the key difference in this method is that
the input is no longer a noisy base image but the target image itself. Additionally, it
includes a forward network in the form of an autoencoder to fit the style transfer process.
Other core ideas remain consistent: the loss function is still extracted by another neural
network (usually VGG), including the content loss and style loss, collectively referred to as
perceptual loss, and texture modeling is represented using Gram matrices. The network
structure is shown in Figure 12.

Figure 12. Fast style transfer network. A forward network in the form of an autoencoder is added to
the VGG network to fit the style transfer process and achieve real-time purposes.



Information 2025, 16, 157 27 of 63

In 2016, Ulyanov [81] adopted a feedforward neural network approach that could
directly synthesize textures and stylized images. Similar to Johnson’s work, the core idea
of these two methods is that they both use a feedforward network to learn styles. However,
the difference lies in the fact that this method employs a multi-layer convolutional neural
network (CNN) as the generator. It generates synthesized texture images by learning the
feature representations of input texture images.

In 2016, Li [82] proposed the method of Adaptive Batch Normalization (AdaBN),
which reduces interference from the source domain and better adapts to the data in the
target domain, thus improving the effectiveness of style transfer. In 2017, Ulyanov [83]
made two key improvements to Texture Networks: Instance Normalization and Spatially
Adaptive Denormalization. Instance Normalization is applied to each channel of the
generator network to normalize the statistical distribution of generated features. Spatially
Adaptive Denormalization, on the other hand, introduces a parameterized denormalization
operation that allows the generator network to dynamically denormalize at each pixel
position based on the input image’s features. As a result, Improved Texture Networks can
generate more realistic, diverse, and detailed synthetic images.

With the advancement of technology, single-style transfer methods have also become
more diverse. In 2019, Li [82] introduced a fast style transfer method based on linear
transformations. This method achieves faster transfer speeds and a reduced computational
complexity by learning linear transformations to convert the style transfer for images and
videos into linear operations. While maintaining transfer quality, this approach significantly
improves speed and efficiency.

The advantages of single-style fast transfer include its speed, simplicity of imple-
mentation, and ability to achieve real-time style transfer effects. However, it also has
some limitations, such as a lack of diversity (limited to a single style transfer), potential
constraints imposed by pre-trained models making it challenging to achieve fine-grained
control, and issues like texture distortion and content loss that still need to be addressed.
Therefore, future research directions are focused on enhancing the diversity, controllability,
and quality of style transfer to better meet the needs of various application scenarios. A
summary of relevant articles is shown in Table 10.

Table 10. Summary of single style fast transfer methods.

Author Algorithm Contribution

Johnson J [80] A forward network is added to fit the style
transfer process. Real-time style transfer.

Ulyanov [81] A multi-layer convolutional neural network (CNN) is
used as the generator.

Directly composite textured and
stylized images.

Li [82] Proposed the method of Adaptive Batch
Normalization (AdaBN).

Reduce interference in the source domain
and better adapt to data in the target

domain, improving the effect of
transfer learning.

Ulyanov [83] Two key improvements are introduced to address the
shortcomings of Texture networks.

Ability to generate more realistic, diverse,
and detailed synthetic images.

Li [82] A fast style transfer method based on linear
transformation is proposed.

Dramatically improve speed and efficiency
while maintaining migration quality.

2. Multiple-style fast transfer

Single-style transfer involves applying a single, specific style to an image. In contrast,
multi-style transfer, as compared to single-style transfer, is capable of handling features
from multiple styles. Multi-style transfer refers to the ability to simultaneously process
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various styles within a single model. This means that the model, after being trained, can
handle features from multiple styles and apply these styles to style transfer for images.
Multi-style transfer allows you to choose different styles for transfer or blend multiple styles
to generate images with elements from various styles. The underlying concept behind
multi-style transfer is to use a single network to accomplish the transfer of multiple styles.

Initially, people attempted to achieve multi-style fast transfer by using different parts
of a single network. In 2016, Dumoulin [84] proposed an approach where multiple styles
share one model. Dumoulin’s method drew inspiration from previous research on fast-style
transfer network architectures [80,81]. By studying the normalization operations within
style transfer networks, they discovered that all convolutional weights of a style transfer
network could be shared across many different styles. After normalization, only affine
transformation parameters needed to be adjusted for each style. They named this method
Conditional Instance Normalization (CIN). This means that by associating a small set
of affine transformation parameters in the CIN layer with each style, and training only
these parameters for each new style, it is possible to achieve multi-style transfer within a
single network.

The implementation formula for CIN is as follows: building on Ulyanov’s earlier work,
selectrows in the γ and β matrices that correspond to a specific style ‘s’ to obtain γ and β

parameters, making them N × C matrices, where N is the number of styles to be modeled,
and C is the number of output feature maps.

z = γs((x − µ)/σ) + βs (11)

In 2017, Chen [85] achieved multi-style fast transfer by utilizing different parts of a
single network. They introduced a new StyleBank module to explicitly model styles. In the
StyleBank layer, they represented and classified input styles using StyleBank. Each Style-
Bank represents a specific style. For example, if there are 50 different styles, there would
be 50 StyleBanks, and each StyleBank contains several convolutional kernels, with each
representing a texture element. These texture elements perform convolution operations
with feature maps. During the style transfer process, by selecting appropriate convolutional
kernels within the StyleBank module, they could transform the style of the input image into
the desired target style, enabling multi-style transfer. The network architecture is illustrated
in Figure 13.

Figure 13. StyleBank fast multi-style migration network. Each StyleBank represents a style. Selecting
the appropriate convolution kernel in the StyleBank module can convert the style of the input image
into the target style.
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As shown in Figure 13, the network consists of two branches: an autoencoder and a
stylization branch, which are trained alternately. ⊗ represents the StyleBank Layer. In this
layer, StyleBank convolves with the feature maps obtained from the Encoder applied to the
input image to generate style-transformed features, which are then fed into the decoder to
obtain the stylized result. Therefore, it is necessary to define two separate loss functions for
each branch.

For the autoencoder branch, we measure the loss using the Mean Squared Error (MSE)
between the input image I and the output image O:

Lτ(I, O) = ∥O − I∥2 (12)

In the stylization branch, we use the perceptual loss LK, which consists of the content
loss LC, style loss LS, and total variation regularization loss Ltv(Oi):

LK(I, Si, Oi) = αLC(Oi, I) + βLS(Oi, Si) + γLtv(Oi) (13)

LC(Oi, I) = ∑
l∈{lc}

∥∥∥Fl(Oi)− Fl(I)
∥∥∥2

(14)

LS(Oi, Si) = ∑
l∈{ls}

∥∥∥Gi

(
Fl(Oi)

)
− Gi

(
Fl(Si)

)∥∥∥2
(15)

where I, Si, and Oi are the input content image, style image, and stylized result (for the i-th
style), respectively. Ltv(Oi) denotes the total variation regularization loss used. Fl and Gi

represent the feature maps and Gram matrices computed from the VGG-16 network. lc and
ls are used to compute content loss and style loss, respectively, at VGG-16 layers.

In 2017, Wang [86] introduced a multi-modal training strategy. This strategy involves
joint training of multiple subnetworks and utilizes various style images to enhance the
network’s generalization ability and style transfer performance. In 2019, Huang [87]
introduced the application of semantic awareness in multi-style transfer. They proposed a
semantic-aware multi-style transfer network called Style Mixer, which is used to achieve
multi-style transformations of images. These methods are based on unsupervised learning.
Then, in 2021, Kim [88] introduced a pseudo-supervised learning framework for semantic
multi-style transfer. By incorporating the idea of pseudo-supervised learning, their goal
was to achieve supervised control over image styles.

As time has passed, an increasing number of techniques have been applied to the
field of multi-style transfer. In 2022, Alexandru [89] employed geometric deformation
techniques to achieve multi-style transfer. Their architecture takes multiple style images
and one content image as input and then applies geometric deformations to the style images
from different artists. This paper extended the research in the direction of Deformable Style
Transfer (DST), providing an intriguing approach to multi-style transfer.

Multi-style fast transfer offers the advantages of speed, convenience, and user-
friendliness, allowing for the quick transformation of images into multiple styles. It is
suitable for various image processing and artistic creation applications. However, it still has
certain limitations and drawbacks, including limited style choices, constraints on creating
new styles, style consistency issues, and a lack of personalized customization. In certain
situations, users may require more flexibility and personalized style transfer options.The
summary of relevant articles is shown in Table 11.
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Table 11. Summary of multi-style fast transfer methods.

Author Algorithm Contribution

Dumoulin [84]

Binding the relatively few parameters in the CIN layer to
each style allows for training only these parameters for
each new style, enabling multi-style transfer within a

single network.

The approach of having N styles share a
single model, along with the application of

CIN, was proposed.

Chen [85]
In the StyleBank layer, StyleBank is used to classify and
represent the input styles, with each bank representing a

specific style.

Achieving multi-style fast transfer using
different StyleBanks within a

single network.

Wang [86]
Enhancing the network’s generalization ability and style

transfer effectiveness by jointly training multiple
subnetworks and utilizing various style images.

Proposing a multi-modal training strategy.

Huang [87] Applying the semantic-aware multi-style transfer network
called Style Mixer.

Introducing the application of semantic
awareness in multi-style transfer.

Kim [88]
(i) The pseudo-ground truth (pGT) generation stage and

(ii) the Semantic Multi-Style Transfer (SMST) learning
stage, two distinct stages.

Introducing a pseudo-supervised learning
framework for Semantic Multi-Style

Transfer (SMST).

Alexandru [89]

An architecture that takes multiple style images and one
content image as input, and applies geometric

deformations to images with different styles from
various artists.

Deformable Style Transfer (DST) extends
the direction of style transfer, offering an

approach for multi-style transfer.

4.1.3. Arbitrary Style Fast Transfer

The demand for more flexible and personalized style transfer gave rise to Arbitrary
Style Fast Transfer. Arbitrary Style Fast Transfer allows for the transformation of input
images or videos into outputs with any desired style while maintaining the consistency of
the image content. The key to Arbitrary Style Fast Transfer lies in learning the representation
of styles through pre-trained neural network models and applying these representations to
input images or videos.

How can one match when using arbitrary styles in a network? In 2016, Chen [90]
first introduced his idea. He proposed a patch-based arbitrary style transfer method that
matches the features of the target image with those of the style image, before exchanging the
features of the target image and the style image to achieve arbitrary style transfer. However,
this method still comes with a certain time cost and has not yet met the requirements for
real-time processing.

In 2017, Huang [91] introduced a real-time arbitrary style transfer network that
achieved a faster style transfer. The author demonstrated in the paper that normaliza-
tion (IN) achieves style normalization by standardizing feature statistics. Therefore, the
author innovatively proposed the AdaIN layer for style transformation. In Conditional
Instance Normalization (CIN), the network learns affine transformation parameters β and
γ. However, the AdaIN layer proposed by the author does not need to learn these two
parameters and directly uses the feature mean and standard deviation of the style image.
Its formula is as follows:

AdaIN(x, y) = σ(y)((x − µ(x))/σ(x)) + µ(y) (16)

In the formula, µ(x) and σ(x) represent the mean and standard deviation of the fea-
tures of the content image, while µ(y) and σ(y) represent the mean and standard deviation
of the features of the style image. This formula can be understood as first normalizing
the content image (subtracting its mean and dividing by its standard deviation) and then
stylizing it to match the style of the style image (multiplying by the standard deviation
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of the style image and adding its mean). The network architecture in the paper is as
following Figure 14.

Figure 14. AdaIN arbitrary style migration network.

During the training process, features are first extracted from the content image and
style image using the VGG network. These features are then manipulated within the AdaIN
module. Subsequently, the processed features are input into a symmetric Decoder network
to reconstruct the image. These reconstructed images are then fed back into the VGG
network to calculate both content loss and style loss.

The total loss is defined as:
L = LC + αLS (17)

LC represents the content loss and LS represents the style loss, weighted by the
style loss coefficient α. The content loss LC is the Euclidean distance between the target
features and the output image features. The article uses the AdaIN (Adaptive Instance
Normalization) output t as the content target, rather than the conventional feature responses
of the content image:

LC = ∥ f (g(t))− t∥2 (18)

As the AdaIN (Adaptive Instance Normalization) layer in the article only transfers
the mean and standard deviation of style features, the style loss only matches these statisti-
cal data:

LS =
L

∑
i=1

∥µ(∅i(g(t)))− µ(∅i(s))∥2+

L

∑
i=1

∥σ(∅i(g(t)))− σ(∅i(s))∥2

(19)

Each ∅i represents a layer in VGG-19 used to compute the style loss.
It is worth noting that the parameters of the VGG network are not updated during the

training process. The primary goal of training is to obtain an excellent decoder network.
The key advantages of this method are its ability to achieve real-time performance and
flexibility. The introduction of AdaIN successfully enabled fast transfers to arbitrary styles,
making a significant contribution to the field of real-time arbitrary style transfer.
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To achieve arbitrary style fast transfers, other researchers proposed various methods.
In 2017, Ghiasi [92] introduced an approach that trains a style prediction network to
generate feature vectors for each style image. They proposed the Style Prediction Network,
which is trained on a large number of content and style images. In the same year, Li [93]
presented an arbitrary style fast transfer method based on feature transformation. This
method utilizes Whitening and Coloring Transforms (WCT) to operate between the encoder
and decoder. This approach offers broad applicability and flexibility but tends to be slower.

In 2018, Gu [94] introduced a method called feature rearrangement to achieve arbitrary
style transfer, which involves reordering image features in the spatial domain. The re-
search showed that the Gram matrix of the rearranged image features remains unchanged,
ensuring overall consistency between the generated image and the style image. In 2020,
Jing [95] proposed a novel normalization module called Dynamic Instance Normalization
(DIN) to effectively achieve arbitrary style transfer. In 2022, building on the use of AdaIN,
Zhang [96] introduced Adaptive Style Modulation (AdaSM) to provide more precise con-
trol over global style. In the same year, Wang [97] incorporated contrastive learning into
arbitrary style transfer. They used contrastive learning to model both style and content,
constraining contrastive style loss and contrastive content loss and, thus developing a style
transfer framework suitable for arbitrary styles.

Compared to single-style and multi-style transfer, arbitrary style transfer offers greater
flexibility and artistic creativity, making it a promising field for future development. How-
ever, the current techniques for arbitrary style transfer still require further research and
development to address the challenges related to algorithm real-time performance, ac-
curate transfer results, and detail preservation. This will enable wider applications and
higher-quality style transfer effects in the future. A summary of relevant articles is shown
in Table 12.

Table 12. Summary of arbitrary fast style transfer methods.

Author Algorithm Contribution

Chen [90]

Any style transfer is achieved by matching the
characteristics of the target image with the characteristics
of the style image and then exchanging the target image

and the style image.

Any style migration is achieved, but the
speed still does not meet the

real-time requirements.

Huang [91] The AdaIN layer is proposed to achieve style conversion. Realized real-time migration of any style.

Ghiasi [92] Proposed a style prediction network, which is trained by
inputting a large number of content maps and style maps.

Train a style prediction network and let it
generate feature vectors for each

style image.

Li [93] Perform WCT operations between Encoder and Decoder
to achieve arbitrary style migration through WCT.

Quick transfer of any style through feature
transformation.

Gu [94] Use feature reshuffle to rearrange image features in the
spatial domain.

Proposed a feature reshooting method for
arbitrary style transfer.

Jing [95] Dynamic Instance Normalization (DIN).
A new general normalization module is

proposed to achieve arbitrary style
migration more efficiently.

Zhang [96] Adaptive Style Modulation (AdaSM) is proposed. Achieved more precise control over
global style.

Wang [97]
Modeling style and content using contrastive learning,
constrained by contrastive style loss and contrastive

content loss.

Introducing contrastive learning to
arbitrary style transfer.
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4.2. Generative Adversarial Network Method

With the continuous advancement of technology, Generative Adversarial Networks
(GANs) have made significant progress in the field of style transfer. GANs offer multiple
advantages in style transfer, including the ability to work without paired data, diverse
style transformations, high-quality image generation, real-time performance, and efficiency.
These advantages have significantly enhanced the application of style transfer techniques
in the fields of image processing and computer vision.

The emergence of GANs has not only improved the quality and efficiency of style
transfer but has also expanded its application areas, making image style transformation
more flexible and diverse. Particularly noteworthy is Liang’s 2020 review of GAN net-
works [98], where GAN and its important branch networks are listed, with CycleGAN
being highly favored in the field of style transfer due to its ability to achieve high-quality
style transfer without the need for paired data. Next, we will analyze the development
of GANs in the field of style transfer from two aspects: variant networks of GANs and
CycleGAN networks.

4.2.1. GAN Network Variants

In 2014, Goodfellow [99] introduced the Generative Adversarial Network (GAN)
model, which marked a significant breakthrough in the field of generative models. The
goal of style transfer is to transfer the style features of one image to another image to create
new images or change the style of images. GANs provided a powerful framework for
style transfer by training generative models adversarially to produce highly realistic style
transfer results. As a result, GAN networks naturally became important models in the field
of style transfer.

The core idea of GAN is to employ two adversarial networks: the Generator and the
Discriminator. The Generator’s task is to generate realistic data samples from random
noise, while the Discriminator is responsible for distinguishing whether a given sample is
a real one or a generated one. In the process of these two networks competing and playing
against each other, the Generator gradually learns to produce more realistic samples,
and the Discriminator continuously improves its ability to discriminate. This adversarial
training process drives the Generator to approximate the real data distribution, resulting
in the generation of increasingly realistic samples. The structure of a GAN network is
as following Figure 15.

Figure 15. GAN network.

Variant networks of GANs have extended the application of GANs in the field of style
transfer by introducing methods such as image synthesis, attention mechanisms, and image
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translation. These variants offer more flexibility and controllability in style transfer, making
image transitions between different styles appear more natural and realistic.

In 2016, Wang [100] introduced the S2-GAN model, which decomposes the image
generation process into structure and style, with two separate GAN networks responsible
for the different aspects. This approach leads to more realistic image generation. In 2019,
Karras [101] introduced StyleGAN, which utilized a multi-level generator network, with
each level corresponding to a specific image resolution. StyleGAN achieved high-quality,
diverse, and controllable image generation.

To further enhance the quality of generated images, In 2020, Li [102] introduced an
approach called SDP-GAN, aiming to achieve high-perceptual-quality style transfer while
emphasizing the retention of significant details. In 2023, Han [103] designed the Deep
Extraction Generative Adversarial Network (DE-GAN) specifically for artistic style transfer.
DE-GAN proposed a multi-feature extractor to extract color features, texture features, depth
features, and shape masks from style images, resulting in higher-quality style images that
better conform to aesthetic characteristics.

In 2014, alongside GAN networks, Conditional Generative Adversarial Networks
(cGAN) [104] were introduced. In cGANs, both the generator and discriminator receive
conditional information as input and use this information to guide the generation and
discrimination processes during training. By introducing conditional information, cGANs
can generate specific types of samples based on the given conditions, offering more control
and flexibility.

In 2019, Mao [105] utilized cGAN models for image synthesis tasks, addressing issues
with model collapse in cGAN networks and ensuring the quality of image synthesis. In
2021, Lv [106] introduced a novel multi-style unsupervised image synthesis model using a
Generative Adversarial Network (MSU-GAN). This model addressed the issue of training
data pairing and was capable of generating high-quality images with multiple styles.

As style transfer extended to the field of image translation, GANs found broader appli-
cations. In 2017, Dong [107] introduced a general approach based on deep convolution and
conditional generative adversarial networks to address image translation problems. They
developed a two-step (unsupervised) learning method that transformed images between
different domains using unlabeled images, successfully making the model versatile.

Similarly, in 2018, starGAN [108] was introduced to tackle multi-domain image trans-
lation problems. It used a shared generator and a shared discriminator to achieve image
translation across multiple domains, offering a unified solution for multi-domain image
translation. In 2020, Hicsonmez [109] proposed GANILLA, a method based on cGANs
for automated image-to-illustration transformation, achieving highly realistic photo-to-
illustration conversion. In 2021, Roy [110] presented Trigan, a Generative Adversarial
Network-based Multi-Source Domain Adaptation (MSDA) approach capable of producing
good image translation results across multiple sources.

GANs achieve optimization by introducing competition between a generator and a dis-
criminator. This competitive mechanism enables GANs to learn the mapping relationship
between input images and target styles and generate high-quality, realistic style transfer
results. However, GANs may face challenges such as training instability and mode collapse
during the training process. Future directions in this field include improving the stability
and quality of GANs, increasing the application scenarios and domains, and considering
integration with other technologies to further enhance the effectiveness and practicality of
style transfer. A summary of relevant articles is shown in Table 13.
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Table 13. Summary of GAN-related style transfer methods.

Author Algorithm Contribution

Goodfellow [99] The generator and the discriminator compete with each other. Proposed the GAN model.

Wang [100] S2-GAN model, there are two different parts of GAN network the
model.

Generate more realistic images.

Karras [101] StyleGAN uses a multi-level generator network to a specific
image resolution.

Achieve high-quality, diverse image
generation.

Li [102] The method of SDP-GAN is proposed, which introduces a
saliency network.

Solve the problem of significant detail loss
in traditional style transfer methods.

Han [103] Designed a deep extraction generative adversarial network
(DE-GAN) and proposed a multi-feature extractor.

Generate higher-quality, more aesthetically
pleasing style images.

Mirza [104] In conditional GAN, both the generator and the discriminator
receive condition information as input.

Conditional GAN has higher control and
flexibility.

Mao [105] Image synthesis tasks through the cGAN model.
Solve the problem of cGAN network model

collapse and ensure the quality of image
synthesis.

Lv [106] Multi-style unsupervised image synthesis model based on
MSU-GAN. Solve training data matching problem.

Dong [107] A general method for solving image translation problems. Successfully made the model universal.

Choi [108] Image conversion between multiple domains is realized through
shared generator discriminator.

Provides a unified solution for
multi-domain image translation.

Hicsonmez [109] GANILLA, an automatic image-to-illustration conversion
method based on GAN.

Achieve very realistic conversion of photos
into illustrations.

Roy [110] Proposed Trigan, a multi-source domain adaptation (MSDA)
method. Enables better image translation results.

4.2.2. CycleGAN

Due to the excellent scalability of Generative Adversarial Networks (GANs), many
outstanding GAN extension networks have emerged, and CycleGAN is one of them.
CycleGAN is an unsupervised image translation method based on Generative Adversarial
Networks (GANs), used to perform image translation between two different domains, such
as turning horses into zebras or apples into oranges, and so on. In 2017, Isola [17] proposed
the pix2pix network. Pix2pix is based on the GAN architecture and uses paired images
for image translation, where the input consists of two different styles of the same image,
making it suitable for style transfer. A facades style transfer of the pix2pix network is
shown in the following Figure 16.

Figure 16. pix2pix sample.
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However, pix2pix requires a paired dataset, which is not very convenient to use.
Therefore, Zhu [18] proposed the CycleGAN framework, which enables style transfer
between unpaired images. The structure of CycleGAN is shown in Figure 17.

Figure 17. CycleGAN network.

CycleGAN consists of two generators and two discriminators. In the CycleGAN
framework, one generator transforms images from one domain to another, while the other
generator reverses this process. The discriminators were used to assess the authenticity
of the generated images and provide feedback signals for training the generators. One of
the core ideas of CycleGAN is cycle consistency loss, which ensures that the transformed
images can be mapped back to the original domain while preserving the content and style as
closely as possible. In the same year, DiscoGAN [111], DualGAN [112], and CycleGAN all
shared the same network architecture, but their implementation details differ significantly,
demonstrating that the use of a dual-network architecture is a viable approach for solving
problems in unsupervised networks.

Based on CycleGAN, researchers have made various improvements and extensions. In
2020, Tu [113] proposed a multi-style CycleGAN image transmission system by introducing
conditional constraints on the target style feature map, achieving more efficient image trans-
mission and processing. In 2021, Zhang [114] introduced spectral normalization in each
convolution kernel of the discriminator, so that the parameter matrix of the convolutional
neural network satisfies the Lipschitz constraint. This method helps to better preserve the
facial features and was therefore successfully used in human cartoonization applications.
In addition, Liu [115] introduced noise constraints and the LBP texture features of the pro-
totype into the loss function of CycleGAN, which improved the edge and texture intensity
of the image after the oil painting style was transferred.

In 2022, Liao [116] used the UNET neural network to replace the original RESNET
neural network to train the generator model and then built a discriminator network model
based on standard convolution and depth-separable convolution. In addition, Wang [117]
proposed a cycle-consistent generative adversarial network (ESA-CycleGAN) based on
edge features and self-attention. In this network, a self-attention mechanism module is
added to obtain more correlations in the image, thereby improving the image quality
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and better retaining the details of the image. A summary of relevant articles is shown
in Table 14.

Table 14. Summary of CycleGAN-related style transfer methods.

Author Algorithm Contribution

Isola [17] Pix2pix is based on GAN architecture and uses paired
images for image conversion. Proposed pix2pix network.

Zhu [18]
CycleGAN uses a bidirectional transformation process
that can self-correct and learn mapping relationships

between domains.

The CycleGAN framework is proposed to
achieve style transfer between unpaired

images.

Tu [113] Add conditional constraints to the target style feature
map.

Implemented a multi-style CycleGAN
image transmission system.

Zhang [114] Spectral normalization is introduced in each convolution
kernel of the discriminator.

Better retain facial features and successfully
cartoonize humans.

Liu [115] Introducing the LBP texture features and total variation of
the prototype into the CycleGAN loss noise constraint.

Better image oil painting style transfer and
reconstruction performance, image oil

painting style transfer and reconstruction
effect is better.

Liao [116] The discriminator network model is established by using
UNET neural network in generator model.

Improves the efficiency of the network and
effectively completes the task of style

migration.

Wang [117] Propose a cycle-consistent GAN (ESA-CycleGAN) based
on edge features and self-attention.

Improved image quality and
better-preserved image details.

4.2.3. New Applications of GAN

With the continuous advancement of technology, GAN networks are continuously
exploring and pioneering new application scenarios and creative approaches in the field of
style transfer. These new applications have expanded the scope of GAN networks in style
transfer, providing people with fresh ideas and perspectives. Among them, cartoonization
has become an important branch of style transfer. Transforming images into a cartoon style
brings people incredibly creative and visually appealing experiences.

In 2017, Zhang [118] proposed a style transfer method specifically for anime sketches.
This approach combined an enhanced residual U-Net with an Auxiliary Classifier GAN
(ACGAN) to achieve the transformation of anime-style rendering. In 2018, Chen [119]
introduced a generative adversarial network called “Cartoongan”, designed specifically
for converting photos into a cartoonized style. Cartoongan adopted the cGAN form, using
input photo images as conditional labels to guide the generator in creating images with
the desired cartoon style. However, due to the characteristic smooth surfaces, lack of
pronounced color variations, and sharp edges often found in cartoon-style images, it may
sometimes be challenging to generate entirely satisfactory cartoon images.

To address this issue, in 2021, Dong [120] introduced a Generative Adversarial Net-
work (GAN) called CartoonLossGAN, which is based on a cartoon loss. This novel approach
utilizes a unique cartoon loss function that mimics the sketching and coloring process when
generating cartoon-style images. This method results in smoother surfaces and finer color-
ing in cartoon-style images, leading to the creation of more exquisite cartoon-style images.
In the same year, Shu [121] proposed an innovative Multi-Style CartoonGAN architecture,
MS-CartoonGAN. This can transform input photos into various cartoon styles, offering
greater flexibility and expressiveness compared to other methods.

In 2016, Li [122] introduced the Markovian Generative Adversarial Network (MGAN).
By combining precomputation with GAN networks, this method efficiently achieves tex-
ture synthesis, allowing for the real-time generation of high-quality texture images. The
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emergence of MGAN brought new solutions to the field of texture synthesis. GANs have
also found application in the realm of ink painting. In 2018, He [123] proposed ChipGAN,
an architecture based on an end-to-end generative adversarial network designed for trans-
ferring photos into the style of Chinese ink paintings. The application of this architecture
provided new perspectives and methods for the transfer of Chinese ink painting styles.

GANs have also found applications in the realm of human facial expression portraiture.
In 2020, Yi [124] introduced APDrawingGAN++, a GAN designed to transform facial photos
into artistic portrait drawings (APDrawings). This method addressed several significant
challenges, including highly abstract style conversion, variations in artistic techniques for
different facial features, and sensitivity to perceptual artifacts. To further encompass various
portrait styles, in 2021, Song [125] proposed AgileGAN, a framework that can generate
high-quality stylized portraits through reverse-consistent transfer learning. AgileGAN
achieved higher portrait stylization quality.

The development of GANs in the field of style transfer has indeed seen continuous evo-
lution and innovation. From the earliest GAN models to the present day, many researchers
have delved deep into various aspects of GANs, leading to constant improvements in their
style transfer performance. Looking forward, as GAN technology continues to advance
and further research is conducted, it is believed that style transfer techniques will find
applications in even more domains, continuously enhancing the quality and efficiency of
image generation. A summary of relevant articles is shown in Table 15.

Table 15. Summary of new applications of GAN in style transfer.

Author Algorithm Contribution

Zhang [118] Use enhanced residual U-Net combined with auxiliary
classifier GAN to achieve animation-style conversion.

Proposed a style transfer method for
animation sketches.

Chen [119] Cartoongan uses cGAN to guide the generator to generate
images with the style of the target cartoon.

Turn real-world photos into cartoon-style
illustrated images for photo cartoonization.

Dong [120] CartoonLossGAN is proposed for cartoonization, using a
novel cartoon loss function.

Mimic the coloring process to produce a
more elegant cartoon-style image.

Shu [121] Proposed a novel multi-style generative adversarial
network (GAN) architecture called MS-CartoonGAN.

Photos can be converted into a variety of
cartoon styles.

He [123] Proposed ChipGAN, an architecture based on end-to-end
generative adversarial networks.

Realize the transfer of photos to Chinese
ink painting style.

Yi [124] APDrawingGAN++ is proposed for transforming facial
photos into artistic portraits.

Addresses highly abstract styles, painting
techniques of different facial features, and

sensitivity to artefacts.

Song [125] A framework for generating high-quality style portraits
through reverse consistent transfer learning.

Better encoding of different levels of detail,
resulting in higher-quality portrait

stylization.

4.3. Attention Mechanism

The Attention Mechanism is a method that emulates human visual attention to enhance
a model’s focus on important parts of input data, thereby improving its ability to handle
complex information. It allows models to prioritize important information relevant to
the task at hand, improving model performance and efficiency. In style transfer, attention
mechanisms can be employed to enhance a model’s focus on different regions of an image,
thereby facilitating more effective style transfer. The application of attention mechanisms
in style transfer enables models to flexibly transform different regions of an image with
varying styles, ultimately enhancing the quality and expressiveness of style transfer. It
leverages both local and global features in images, enabling models to better handle intricate
style transformation tasks.
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4.3.1. Neural Network Applications

The application of attention mechanisms in neural networks has become highly preva-
lent, with these serving as a powerful tool for optimizing and improving models. This
has significantly advanced the field of neural networks, particularly in the context of
style transfer.

In 2019, Park [126] proposed an intriguing Style-Attention Network (SANet). This
method introduced a unique attention mechanism called the “style-attention module”,
allowing the network to adaptively select different styles at each pixel level. The innovation
of this approach lies in the incorporation of attention mechanisms to enhance the modeling
and control of styles, thereby making style transfer more precise and flexible for arbitrary
styles. The network architecture is shown in Figure 18.

Figure 18. SANet.

The network primarily consists of an encoder, SANet (Style-Attention Network), and
a decoder. The encoder utilizes a pre-trained VGG19 model to extract features from the
content and style images. SANet is responsible for combining the Style feature map and
Content feature map from VGG19 based on their respective attention. The decoder’s
network structure mirrors the encoder’s, allowing it to reconstruct images using the com-
bined feature maps to obtain stylized images. The final SANet architecture effect is shown
in Figure 19.

Figure 19. SANet effect.

This algorithm leverages the features output from two layers of the VGG19 model:
Relu4-1 and Relu5-1. The reason for this choice is that using only Relu4-1 effectively
preserves the global structure of both style and content images but may not perform well
when representing local style effects. On the other hand, Relu5-1 has a larger receptive field
and is better at expressing local style effects. ⊕ is used to combine features from multiple
different sources, which are then passed as input to the subsequent layers of the network.
Therefore, by using the features from Relu4-1 and Relu5-1, and combining them through
two SANet modules before integration, the final stylized image is obtained.
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In SANet, its inputs Fc and Fs are the feature maps of the content image and style
image output by VGG19. The formula is as follows:

Fi
cs =

1
C(F) ∑

∀j
exp( f (F̄i

C)
T g(F̄j

S))h(Fj
S) (20)

C(F) = ∑
∀j

exp( f (F̄i
C)

T g(F̄j
S)) (21)

C(F) serves as a normalization factor. SANet can learn to map the relationship between
content and style feature maps (e.g., similarity) to embed the appropriate style features at
each position of the content feature map. The loss function in the paper consists of three
parts: traditional style and content losses, as well as the newly proposed identity loss.

L = γCLC + γSLS + Lidentity (22)

The role of identity loss is to calculate the differences between the generated stylized
image and the original image at both the pixel level and perceptual level. The formula is
as follows:

Lidentity = λidentity1(||ICC − IC||2 + ||ISS − IS||2)+

λidentity2

L

∑
i=1

(||δi(ICC)− δi(IC)||2+

||δi(ISS)− δi(IS)||2)

(23)

where IC (IS) represents the original content (style) image, and ICC (ISS) represents the
output image synthesized from the image pair (content or style). However, SANet still
faces distortion issues in local style transfer. Therefore, in 2021, Liu [127] proposed a
new AdaAttN module for arbitrary style transfer, which focuses on both shallow and
deep features to better balance global and local style transfer effects. In 2020, Deng [128]
introduced a multi-adaptive network that includes two self-adaptive (SA) modules and
one cooperative self-adaptive (CA) module. This approach further enhances the accuracy
and flexibility of style transfer.

In 2022, Zhu [129] introduced a Lightly Progressive Adaptive Instance Normalization
(LPAdaIN) model that combines Adaptive Instance Normalization (AdaIN) layers with
Convolutional Block Attention Modules (CBAM). This model alleviates the structural
distortion in stylized images. In the same year, Li [130] proposed a style transfer attention
network based on Unbalanced Optimal Transport, which increases the global distribution
similarity and enhances the robustness of the results. In 2023, Ye [131] utilized Conditional
Instance Normalization (CIN) layers and Convolutional Block Attention Modules (CBAM)
in the stylization network. This approach not only achieves multi-style transfer but also
successfully preserves the semantic information of the original image, enabling natural
transitions between stylized regions in the artwork.

By introducing attention mechanisms, neural networks can dynamically adjust their
focus on different parts of the data, thereby handling complex data and tasks more effec-
tively and ultimately improving model performance and generalization. In the field of
style transfer, attention mechanisms have demonstrated extensive potential applications,
providing powerful tools for model optimization and improvement. Overall, the inte-
gration of attention mechanisms has led to significant advancements in neural networks
across various tasks, further driving the continuous development and innovation of neural
network technology. A summary of relevant articles is shown in Table 16.
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Table 16. Summary of the application of neural network attention mechanisms.

Author Algorithm Contribution

Park [126] Introducing an attention mechanism called “Style
Attention Module”.

Introducing attention mechanism to
enhance style modeling and control.

Liu [127] Arbitrary style transport using a new AdaAttN module. AdaAttN better balances global and local
style transfer effects.

Deng [128] Two adaptive (SA) modules and one cooperative adaptive
(CA) module are used.

Arbitrary style transfer via multiple
adaptive networks.

Zhu [129]
LPAdaIN model combining adaptive instance

normalization (AdaIN) layers and convolutional block
attention modules (CBAM).

The LPAdaIN model alleviates the problem
of image structure distortion.

Li [130] Style transfer attention network based on imbalanced
optimal transfer.

It better ensures the similarity of global
distribution and improves the robustness of

the results.

Ye [131]
CIN layers and convolutional block attention modules
(CBAM) are used to achieve multi-style transfer while

retaining the original semantic information.

The generated works maintain the original
salient semantic and visual characteristics

of the content image and achieve
regional stylization.

4.3.2. Applications of GAN

In the field of GAN, the incorporation of attention mechanisms makes GANs more
flexible and intelligent in processing images. This mechanism allows models to dynamically
focus on the crucial information within an image, thereby enhancing the quality and
diversity of image generation. Additionally, attention mechanisms can boost the model’s
focus on input images, playing a vital role in applications like style transfer.

In 2019, Zhang [132] proposed a method called “Self-Attention Generative Adver-
sarial Network” (Self-Attention GAN), which combines self-attention mechanisms with
Generative Adversarial Networks (GANs). In Self-Attention GAN, both the generator
and discriminator include self-attention modules that can learn the global dependencies
in images. This approach is better equipped to capture the global structure and details
of images.

To extract key semantic information, Tang [133,134] introduced a novel Attention-
Guided Generative Adversarial Network (AGGAN and AttentionGAN), which can detect
the most discriminative semantic objects and minimize unnecessary variations in semantic
operations. However, at times, attention mechanism network models can become overly
large. Therefore, in 2022, Zhao [135] proposed a lightweight Domain Attention Generative
Adversarial Network (LDA-GAN). This model achieves fewer parameters and reduces
memory usage by introducing an improved Domain Attention Module (DAM) to establish
remote dependencies between two domains, resulting in a lightweight attention-based
generative adversarial network.

In 2022, Zhang [136] introduced a new Generative Adversarial Network that embeds
channel attention mechanisms between the upsampling and downsampling layers of
the generator network. This approach aims to avoid increasing model complexity while
preserving the complete details of low-level information. This method prevents the model
from becoming overly complex. In 2023, Zhang [137] combined Convolutional Block
Attention (CBA) modules with a Generative Adversarial Network, proposing a new model
called Convolutional Block Attention Generative Adversarial Network (CBA-GAN). This
model is capable of transforming real photos into cartoon images.
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The application of attention mechanisms in GANs enhances the focus of both the
generator and discriminator on crucial information within images, thus improving GAN
performance and generation quality. By introducing channel and spatial attention, GANs
can dynamically adjust the feature maps of the generator and discriminator, allowing the
generator to prioritize important features during image generation and the discriminator to
focus on critical regions during image recognition. The integration of attention mechanisms
provides powerful tools for optimizing and improving GANs, driving the development
and application of GAN technology, and achieving significant progress in fields like style
transfer. A summary of relevant articles is shown in Table 17.

Table 17. Summary of GAN attention mechanism application.

Author Algorithm Contribution

Zhang [132] The method of Self-Attention GAN combines the
self-attention mechanism and GAN.

Has better visual quality and realism, able
to capture the global structure and details

of the image.

Tang [133,134] Proposed a novel attention-guided generative adversarial
network (AGGAN and AttentionGAN).

Detect the most discriminating semantic
objects and minimize unwanted changes.

Zhao [135] A lightweight domain attention generative adversarial
network (LDA-GAN).

Fewer parameters and lower
memory usage.

Zhang [136]
The channel concern mechanism is embedded between

the upper and lower sampling layers of the
generator network.

Successfully avoided model complexity
and found a balance between content

and style.

Zhang [137] The CBA is combined with GAN to propose a new
model called CBA-GAN.

The ratio of edge, texture and smoothness
in image effect can be adjusted flexibly,

which has good performance
and robustness.

4.4. Diffusion Model

To address the issues of training instability and poor quality when generating high-
quality data using Generative Adversarial Networks (GANs), diffusion models have at-
tracted attention. Diffusion models define a forward process of gradually adding noise
and a reverse process of gradually removing noise to generate images. This approach
not only stabilizes the generation process but also better preserves image details. The
key characteristics of diffusion models include step-by-step generation processes, strong
interpretability, high-quality generation, and training stability. Moreover, diffusion models
excel in style transfer tasks by operating in latent spaces, enabling more flexible and efficient
style transfer processes, thereby producing images with enhanced stylized effects.

In 2015, Sohl-Dickstein [138] introduced diffusion models, which generate high-quality
data by defining forward diffusion and reverse denoising processes. This seminal paper
laid the foundation for subsequent diffusion models and related research, significantly
advancing the field of generative models. Building upon this work, in 2020, Ho [139]
proposed the Denoising Diffusion Probabilistic Models (DDPM). DDPM employs a step-
by-step denoising approach to generate high-quality and detail-rich images, achieving
impressive generation results across multiple datasets. Ho’s work introduced the frame-
work of forward noise addition and reverse denoising, contributing to a more stable and
interpretable generation process within the field of generative models.

Diffusion models are closely related to style transfer tasks through their iterative
generation and denoising processes, operations in latent space, and flexible generation and
editing capabilities. In style transfer, diffusion models can progressively transform the style
features of images while preserving their content features, thereby achieving high-quality
style transfer effects. In 2023, Wang [140] first introduced diffusion models into the field of
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neural style transfer. He proposed a new C-S disentangled style transfer framework that
leverages the powerful style removal and generation capabilities of diffusion models. This
framework explicitly extracts content information and implicitly learns complementary
style information, enabling interpretable and controllable C-S disentanglement and style
transfer. The network architecture is shown in Figure 20.

Figure 20. C-S disentangled style transfer framework.

The network consists of a style removal module and a style transfer module. The con-
tent image IC and style image IS are first fed into the diffusion-based style removal module
to explicitly extract domain-aligned content information, resulting in decolorized images
FSC and FCC. Then, FCC content is input into the diffusion-based style transfer module to
obtain the stylized result ICS. During training, we fine-tuned the style transfer module by
coordinating CLIP-based style disentanglement loss LSD with pre-reconstruction style.

To appropriately transfer disentangled style information to other content, the paper
defines an L1 loss:

L1 = ∥DCS − DS∥ (24)

DCS represents the disentangled style information of ICS, and DS represents the disen-
tangled style information of IS. Therefore, L1 achieves minimal absolute pixel difference
but does not guarantee the generation of stylized images, potentially leading to stylis-
tic deviations. To address this issue, the paper further constrains the disentanglement
direction:

L2 = 1 − DCS · DS

∥DCS∥∥DS∥
(25)

L2 aligns the direction of transferring content from the content image to its stylized
counterpart (i.e., stylized result) with the direction of transferring content from the style
image to its stylized counterpart (i.e., the style image itself). Together, L1 and L2 achieve
an exact one-to-one mapping from content in the content domain to stylization in the
style domain.

Finally, the style disentanglement loss is defined as the composition of L1 and L2:

LSD = αL1 + βL2 (26)

where α and β are the hyperparameters set in the experiments. Because style information
arises from differences between the content and its stylized result, it can be deeply under-
stood through learning the relationship between C-S. The paper suggests that image styles
can naturally and harmoniously transfer into content, thereby producing better stylized
images. Ruta [141] similarly combines neural style transfer networks with diffusion models,
intertwining pre-extracted content noise for shape and composition with style attention
values from style images and extracting content and style information from interleaved
data to generate the final stylized image. However, these methods depend on the quality
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and diversity of the training data. Insufficient or imbalanced training data may affect the
quality of the generated images.

In many applications, obtaining thousands of required style images may not be feasible.
Everaert [142] proposed a style adaptation method in 2023 that modifies the initial latent
distribution. The method adjusts the diffusion model using noise and sampled initial latent
tensors, requiring only a relatively small number of target images, typically between 50
and 200, to complete style transfer tasks. This fine-tuning approach improves the diffusion
model’s performance in style transfer but still demands significant computational resources.

In the same year, Yang [143] introduced a zero-shot contrastive loss diffusion model
that eliminates the need for additional fine-tuning or auxiliary networks. This method uti-
lizes block-wise contrastive losses between generated samples from a pretrained diffusion
model and original images to generate images with identical semantic content to the source
image in a zero-shot manner.

In 2024, Chung [144] proposed a new artistic style transfer method based on a pre-
trained large-scale diffusion model. This method employs the feature of self-attention layers
as a cross-attention mechanism, substituting the value of style imagery for the value of
content during the generation process. Both methods reduce computational costs, shorten
training times, and achieve better style transfer results through pretrained models.

Arbitrary style transfer is an important research direction within the field of style trans-
fer, garnering attention from many researchers. In 2023, Hamazaspyan [145], based on the
characteristics of stable diffusion algorithms, derived a new diffusion-enhanced template
matching algorithm called DEPM (Diffusion-Enhanced Pattern Matching). DEPM captures
high-level style features while preserving fine-grained texture details of the original image.
By supporting arbitrary style transformation during the inference process, DEPM makes
the style transfer process more flexible and efficient.

In addition, LDMs (Latent Diffusion Models) significantly reduce computational com-
plexity and achieve better results by employing diffusion processes in latent representation
space, generating more detailed images. Therefore, they have attracted attention in the field
of arbitrary style transfer. In 2023, Chen [146] proposed a new method called ArtFusion,
which provides a flexible balance between content and style. It utilizes a dual conditional
latent diffusion probability model (Dual-cLDM) to reduce repetitive patterns and enhance
subtle artistic aspects such as brush strokes and specific types of features.

Furthermore, in 2024, Wang [147] introduced a new semantic-based stylization method
called HiCAST. This method allows for the explicit customization of stylized results based
on different semantic clues. A notable feature of this method is the introduction of style
adapters, which match multi-level style information with intrinsic knowledge in LDM,
enabling the flexible manipulation of output results.

The introduction of diffusion models into the field of style transfer enables stable
incremental generation processes and flexible operations in latent space, achieving high-
quality and controllable style transformations. This enhances detail preservation and style
consistency in image generation and editing. Future developments in style transfer under
diffusion models aim to improve computational efficiency, enhance the decoupling of style
and content features, and expand the model’s applications in more complex and diverse
style transfer tasks. This will further drive innovation in visual creation and artificial
intelligence. A summary of relevant articles is shown in Table 18.



Information 2025, 16, 157 45 of 63

Table 18. Summary of Diffusion Model Style Transfer.

Author Algorithm Contribution

Wang [140] A new C-S disentanglement style transfer framework
is proposed.

The diffusion model was first introduced into the
field of neural style transfer.

Ruta [141]
The final stylized image is generated from the

content and style information extracted from the
interleaved data.

Combining Neural Style Transfer Networks with
Diffusion Models.

Everaert [142] Fine-tuning the diffusion model using the noisy and
sampled initial latent tensor.

Only relatively few target images are needed to
complete the style transfer task.

Yang [143] A diffusion model with zero-shock contrast loss
is proposed.

No additional fine-tuning or auxiliary networks
are required, reducing computational costs.

Chung [144] A new artistic style transfer method based on
pre-trained large-scale diffusion model is proposed.

Shortened training time and achieved better style
transfer results through pre-trained models.

Hamazaspyan [145] A new Diffusion-Enhanced Pattern Matching
algorithm (DEPM) is derived.

Supports arbitrary style conversion during
inference, making the style transfer process more

flexible and efficient.

Chen [146] A new method ArtFusion is proposed.
Repetitive patterns are reduced and subtle artistic

aspects such as brushstrokes and type-specific
features are enhanced.

Wang [147] Propose a new semantic-based stylization method,
HiCAST. Allows users to flexibly manipulate output results.

5. Video Style Transfer
5.1. Video Transfer and Flickering Issues

With the continuous advancement of technology, style transfer on images has gradually
extended to the realm of videos, giving rise to video style transfer. Video style transfer is
a process of applying artistic styles or appearances to videos, thereby altering the visual
effects in the original video.

In the early days of technology development, people tried to use traditional machine
learning algorithms to complete the task of video stylization. In 2011, Cao [148] proposed
an automated algorithm to achieve video stylization tasks through the MRF model and
optical flow estimation method. However, due to the difficulty in accurately capturing
style features, the resulting stylization was not obvious. In 2012, Kyprianidis [149] re-
viewed the style transfer task in the field of non-photorealistic rendering (NPR). The article
pointed out that in ensuring the stability of vision-based video stylization is still a largely
unsolved problem.

These articles show that due to the complex spatiotemporal features and highly
nonlinear mapping relationships in video data, traditional machine learning algorithms
often find it difficult to effectively capture and process these features. In addition, video
style transfer requires large-scale data and efficient computing power to learn complex
model parameters. Traditional machine learning algorithms have limitations in their ability
to process large-scale data and complex computing tasks, and it is difficult to meet the
requirements of a real-time and stable style transfer. Therefore, traditional machine learning
algorithms are not very suitable for video style transfer.

In contrast, deep learning excels in video style transfer because it can effectively
capture and express the complex spatiotemporal features in videos through hierarchical
feature learning and nonlinear modeling. Deep learning not only enables end-to-end
learning and the optimization of models but also adapts well to large-scale data and
complex computational tasks. This capability allows for high-quality video transformations
with artistic styles.
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Video style transfer is a process that applies artistic styles or appearances to videos,
resulting in visual effects distinct from the original footage. However, video style transfer
faced certain issues in its early stages, with one of the most significant problems being
the potential for unstable or discontinuous results in the transformed videos, commonly
referred to as the “flickering problem” [14].

In 2016, Ruder [150] introduced style transfer techniques to the domain of videos
to apply an artistic style from a single image to an entire video sequence. However,
independently processing each frame of the video could lead to flickering and erroneous
inconsistencies. To address this issue and ensure smooth style transitions, the paper
introduced temporal constraints, penalizing differences between adjacent frames. This
approach combined image style transfer and optical flow estimation techniques, resulting
in continuous artistic style transformations within videos.

To achieve stronger consistency between adjacent frames, the paper introduced an
explicit consistency penalty into the loss function. The temporal consistency loss function
penalizes deviations in distorted images within regions of consistent and high-confidence
optical flow estimates:

Ltemporal(x, ω, c) =
1
D

D

∑
k=1

ck · (xk − ωk)
2 (27)

c ∈ [0,1]D represents the weight of each pixel for the loss, where D = W × H × C
represents the dimension of the image, x is the stylized frame, and ω is the optical flow in
the forward direction.

The overall loss is computed using the following losses:

Lshortterm(p(i), a, x(i))

= αLContent(p(i), x(i)) + βLStyle(a, x(i))

+ γLtemporal(x(i), ωi
i−1(x(i−1)), c(i−1,i)) (28)

p(i) represents the i-th frame of the original video. This approach ensures temporal
consistency by having the style transfer be influenced by the previous frame, helping to
control the occurrence of flickering issues in style transfer.

In 2017, Huang [151] explored the possibility of using a feedforward network for
video-style transfer. They employed a feedforward network and trained it to ensure tem-
poral consistency between consecutive frames. This method enables real-time processing
and produces high-quality style transfer results. The network architecture is depicted in
Figure 21.

The style transfer model consists of two main components: a stylization network and
a loss network, as shown in the above figure. Firstly, the stylization network takes one
frame as thr input and generates the corresponding stylized output. Then, features of
the stylized output frame are extracted from a loss network pre-trained on the ImageNet
classification task, and loss values used for training the stylization network are computed.
These loss values include spatial loss, which assesses the quality of style transfer in the
spatial domain and is a weighted sum of content loss and style loss. Content loss measures
the high-level content similarity between the input image and stylized output, while style
loss quantifies the similarity of style features between the given style image and stylized
output. Additionally, the model introduces a new temporal sequence loss to enhance the
temporal consistency between consecutive outputs.
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Figure 21. Fast video-style migration network.

As one of the most critical perceptual factors in videos, temporal consistency needs to
be taken into account. Therefore, the paper defines a combined loss:

Lhybrid = ∑
i∈(t,t−1)

Lspatial(Xi, X′
t, S) + λLtemporal(X′

t, X′
t−1) (29)

Xt is the video input frame at time t, X′
t is the corresponding output video frame, and

S is the given style image. The paper introduces a new temporal loss to ensure temporal
consistency between adjacent stylized output frames, and the temporal loss formula is
as follows:

Ltemporal(X′
t, X′

t−1) =
1
D

D

∑
k=1

ck · (X′
tk − f (X′

t−1k))
2 (30)

f (X′
t−1k) is a function that distorts the stylized output based on precomputed optical

flow from time t − 1 to t, c ∈ [0,1]D represents the optical flow confidence for each pixel,
D = W × H × C represents the dimension of the image.

Other researchers have also proposed methods for achieving real-time video-style
transfer. Chen [152] introduced a coherent and real-time video-style transfer method.
This approach uses a feedforward network and offers a speed improvement of thousands
of times compared to optimization-based style transfer methods. Additionally, in 2021,
Xia [153] proposed a novel real-time algorithm based on deep neural network architecture.
This algorithm transfers the artistic style of semantically meaningful local regions of an
image to corresponding local regions of the target video while preserving their realism.

Similar to image style transfer, video style transfer has also rapidly developed methods
for multi-style and arbitrary-style transfer. In 2020, Gao [154] introduced a framework called
Video Multi-Style Transfer (VMST) that enables fast and versatile video transfer for multiple
styles within a single network. This paper designed a Multi-Instance Normalization block
(MIN-Block) to learn examples of different styles and used two ConvLSTM modules to
address flickering issues.

In 2021, Liu [127] introduced a novel Adaptive Attention Normalization (AdaAttN)
module that can perform attention normalization adaptively based on the conditions of
each point, enabling arbitrary video style transfer. In the same year, Deng [155] utilized
multi-channel techniques for arbitrary video style transfer. Their paper proposed a Multi-
Channel Correlation Network (MCCNet) that can train the network to fuse example style
features and input content features efficiently, achieving effective video style transfer. In
2023, Kong [156] made improvements to the MCCNet network and introduced an intra-
channel similarity loss during training. Qualitative and quantitative evaluations showed
that MCCNet performed excellently in arbitrary video and image style transfer tasks.
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To overcome the flickering issue in video style transfer, more and more researchers
have been working on improving video style transfer algorithms. In 2020, Wang [157,158]
introduced a novel time consistency regularization strategy and designed a zero-shot video
style transfer framework to better accomplish the task of video style transfer. In the same
year, Chen [159] proposed a method to train a lightweight video style transfer network
using the knowledge distillation paradigm. This approach enhances the performance of the
student network through a teacher network, allowing it to generate stable videos without
the need for optical flow modules and with faster processing speeds.

In 2021, Liu [160] introduced global content loss and local region structure loss to train
models, aiming to improve their robustness and preserve image structures. Additionally,
Xu [161] proposed an online video style transfer method called VTNet, which is based on
self-supervised spatiotemporal convolutional networks. VTNet utilizes coherent loss to
address the flickering issue. In 2023, Lin [162] made improvements to the base transfer
module of MCCNet to preserve semantic structures. They introduced skip connections
based on AdaIN and self-similarity loss to further alleviate the flickering problem.

While there have been significant advancements in the field of video style transfer, the
challenging flickering issue still exists. Future research directions could include further ex-
ploring more accurate optical flow estimation methods, designing more effective temporal
consistency constraints, and integrating other computer vision tasks like object detection
and motion segmentation with video style transfer to enhance its quality and stability. A
summary of relevant articles is shown in Table 19.

Table 19. Summary of video style transfer algorithm.

Author Algorithm Contribution

Ruder [150] A temporal constraint is introduced to penalize the deviation
between two frames. Apply style transfer to the video.

Chen [152] Ensures consistency over longer periods by incorporating
short-term consistency and propagating short-term consistency. Coherent and real-time video-style transfer.

Huang [151] It is trained by forcing the output of successive frames to be
consistent in time. It can run in real time.

Xia [153] A real-time algorithm based on deep neural network
architecture is proposed.

Enable real-time video migration while
maintaining a sense of realism.

Gao [154] MIN-Block learns different styles of examples and two
ConvLSTM modules to solve flicker problems.

Enables fast and multi-style video
transfer over a single network.

Liu [127] A novel adaptive attention normalization (AdaAttN) module
is proposed. Achieve arbitrary style video transfer.

Deng [155] A multi-channel correlation network (MCCNet) is proposed. Use multiple channels for arbitrary
video-style transfer.

Kong [156] MCCNet introduces intra-channel similarity loss. Improvements were made to the
MCCNet network.

Wang [157,158] Proposed a new regularization strategy and designed a zero-shot
video style transfer framework. Better realize the task of video-style transfer.

Chen [159] This paper proposes to learn lightweight video transmission
network through knowledge sublimation paradigm.

Achieve stable video generation without
an optical flow module, and run faster.

Liu [160] Introducing global content loss and local region structure loss to
train the model.

Improve the robustness of the model
and preserve the image structure.

Xu [161] Design coherence loss to make the migration result closer to the
original video. VTNet is proposed.

Lin [162] Maintain semantic structure during stylization using
AdaIN-based skip connections and self-similarity loss. Further, reduces flickering issues.
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5.2. New Applications for Video Transfer

The application of artificial intelligence is increasingly playing a crucial role in creative
production [163]. Video style transfer, as a creative and artistic technology, will continue to
attract the attention of researchers and application developers. Through continuous inno-
vation and improvement, people actively seek new approaches to address the challenges of
video style transfer and strive to expand its applications into new domains.

Video style transfer is currently most commonly achieved using neural networks [164],
but researchers are continually exploring various new methods for video transfer. In 2020,
Aberman [165] introduced an innovative unpaired method aimed at transferring motion
styles from videos to animations. This unpaired approach provides a new solution for
applying motion styles from videos to the animation domain. As early as 2013, Bonnel [166]
proposed an example-based video color adjustment method that automatically adjusts
the color of an entire video based on given sample images. In 2019, Jamriška [167] went
further by introducing a new example-based video stylization method that selects key
frames from the input video and learns style information from example images for stylizing
videos. In 2022, Way [168] used semantic segmentation for video style transfer, enabling
the separation of foreground and background to achieve different stylization effects.

Video style transfer has evolved from its initial basic applications to explore new
domains. In 2018, Ruder [169] introduced a spherical convolution operation specifically
designed for handling style transfer on spherical images. This paper provided valuable
methods and insights for further research and applications of artistic style transfer on
spherical images. In 2022, Yang [170] introduced a new VToonify framework for exploring
challenging high-resolution portrait video style transfer. The framework leveraged Style-
GAN’s mid-to-high-resolution layers to maintain the integrity of the portrait region in the
output transferred video, thus achieving portrait video style transfer.

The research directions in video style transfer are focused on improving the quality and
computational efficiency of algorithms, addressing issues related to temporal continuity
and consistency, and expanding application scenarios. Additionally, integrating video
style transfer with other computer vision tasks such as object detection and semantic
segmentation will also drive the development of video style transfer further. A summary
of relevant articles is shown in Table 20.

Table 20. Summary of video style transfer applications.

Author Algorithm Contribution

Aberman [165]
An innovative pairing-free approach based on GAN

designed to transfer motion styles from videos
to animations.

Applying the motion style in the video to
the field of animation provides a

new solution.

Bonnel [166] Automatically adjust the color of the entire video based
on a given sample image.

An example-based video color adjustment
method is proposed.

Jamriška [167] Select key frames from the input video and learn style
information from sample images to stylize the video.

Introducing a new example-based
approach to video stylization.

Way [168] Semantic segmentation for video style transfer. The foreground and background can
be separated.

Ruder [169] A spherical convolution operation suitable for the special
properties of spherical images.

It provides valuable methods and ideas for
studying and applying style transfer of

spherical image.

Yang [170] A new VToonify framework to study challenging
controllable high-resolution portrait video style transfer. Complete portrait video style migration.
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6. Style Transfer Experimental Performance
In the field of style transfer research, experimental performance evaluation is crucial

for understanding and comparing the effectiveness of different methods. Through a
comprehensive analysis of metrics such as image quality, style accuracy, diversity in
generated outputs, and efficiency, trends in technological advancements and innovative
directions can be revealed.

The evaluation of style transfer can be categorized into qualitative and quantitative
approaches, with both complementing each other to provide a comprehensive understand-
ing of the algorithm’s performance. Qualitative evaluation typically focuses on assessing
the quality of generated images through human visual perception. In the context of style
transfer, qualitative evaluation often relies on intuitive observation of the generated images,
emphasizing whether the resulting images or videos retain the stylistic features of the
target style while preserving the content and structure of the source image. This evaluation
method is concerned with the visual effects of the images or videos, such as whether the
generated images appear natural and smooth, whether the style transfer aligns with the
expected artistic style, and whether there are any noticeable visual discomforts, such as
color distortion or texture fragmentation. Furthermore, qualitative evaluation is often
conducted through user surveys or visual rating methods, where human observers score
multiple style transfer results to gather subjective feedback. This approach is highly flexible
and can reflect human perception of image quality; however, due to its reliance on subjec-
tive judgment, its accuracy and consistency may be influenced by individual differences
among observers.

In contrast, quantitative evaluation focuses on measuring the effectiveness of style
transfer using a set of objective numerical metrics. Common quantitative evaluation
metrics include perceptual loss, structural similarity index (SSIM), and style loss, which
are primarily used to quantify the quality of the transferred image and the extent to which
the style is preserved. For example, perceptual loss measures the difference between the
generated image and the target image based on the features extracted by convolutional
neural networks, while SSIM evaluates the similarity between the two images in terms of
luminance, contrast, and structure. Through these metrics, quantitative evaluation provides
more objective and reproducible results, avoiding the biases that may arise from subjective
assessments. However, quantitative evaluation also has its limitations, particularly in tasks
like style transfer, which is highly artistic and visual in nature. Some traditional evaluation
standards, such as MSE or SSIM, may fail to capture the differences in style and artistic
expression adequately. Therefore, it is often necessary to combine multiple evaluation
metrics to achieve a more comprehensive assessment.

Currently, the field of style transfer has not established a unified and universally
accepted quantitative evaluation standard, primarily due to the inherent diversity and
complexity of style transfer itself. Style transfer is not merely a simple image transforma-
tion task; it involves balancing multiple aspects such as content, style, and details, and
these aspects are often assessed based on varying domain-specific and application-driven
requirements. For example, the goal of style transfer might be to generate an image visually
resembling the style of a particular artist, or to create a video that is stylistically consistent
while still maintaining coherent motion. In such cases, different tasks and objectives result
in variations in evaluation standards. Therefore, existing evaluation methods are largely op-
timized for specific needs, such as image style transfer, video style transfer, or image detail
preservation, which may require different quantitative evaluation metrics. This chapter will
explore the objective experimental performance of various methods in the field and discuss
their significant role in advancing both academic research and practical applications.
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6.1. Image Style Transfer Experimental Performance

In the field of image style transfer, evaluating experimental performance is crucial for
assessing and comparing the effectiveness of different methods. Through a comprehensive
analysis of metrics such as the visual quality of generated images, accuracy of style transfer,
preservation of content, and generation speed, we can delve into the practical effects of
various algorithms in applications like artistic creation and image editing. This section
will explore the experimental performance of the current image style transfer methods,
providing a more intuitive comparison of the strengths and weaknesses of each algorithm.

In the field of deep learning, key metrics used to evaluate style transfer include
image quality, style accuracy, content preservation, and generation speed. Image quality
is typically assessed using traditional metrics such as PSNR (Peak Signal-to-Noise Ratio)
and SSIM (Structural Similarity Index), as well as emerging perceptual quality evaluation
metrics like FID (Fréchet Inception Distance) and IS (Inception Score).

The “Perceptual Losses” method proposed by Johnson [80] yields a PSNR of 22.54 and
an SSIM of 0.5526 on the BSD100 dataset. The relatively low PSNR indicates a loss in image
quality, while the low SSIM suggests weaker structural similarity between the generated
image and the original. Liao [116] introduced the Unet-CycleGAN model, which achieves
a PSNR of 19.50 and an SSIM of 0.6893. While the higher SSIM indicates good structural
preservation, the low PSNR suggests poor retention of image details. In comparison,
Zhu [129] proposed the LPAdaIN model, which performs significantly better with a PSNR
of 26.5 and an SSIM of 0.787, showcasing clear advantages in both image quality and
structural fidelity.

Li [102] introduced the SDP-GAN model, which achieved an Inception score (IS) of
5.77 ± 0.78 and a Fréchet Inception Distance (FID) of 112.42. While the higher IS indicates
good diversity of the generated images, the higher FID suggests that there is a considerable
distribution gap between the generated and real images. Wang [117] presented the ESA-
CycleGAN model, which achieved an IS of 5.2392 and a lower FID of 101.6921. Despite the
slightly lower IS, the lower FID shows that the generated images are closer to the real ones,
indicating better similarity to real image distributions.

Liu [127] introduced the AdaAttN module, which achieved a motion flow error of
0.0391 in arbitrary style transfer, suggesting that the method can effectively preserve the
motion information in images, ensuring higher transfer accuracy. Li [93] proposed a feature
transformation-based rapid style transfer method, achieving a covariance matrix difference
(Ls) of 6.3, indicating excellent performance in maintaining style accuracy during the
transformation. Lastly, Tan [70] developed the Faster-CNN model, which achieved a style
recognition transfer rate between 77% and 79%, demonstrating high stability and accuracy
in style recognition tasks.These results illustrate the various strengths and trade-offs of
different methods in style transfer, highlighting the importance of selecting appropriate
evaluation metrics based on the task and application needs.

With the application of diffusion models in style transfer, evaluation methods specific
to these models have emerged, such as CLIP and LPIPS. CLIP uses joint understanding
of images and text to assess the semantic coherence and visual quality of generated im-
ages. LPIPS, based on perceptual image similarity learning, measures the visual similarity
between the generated image and the target style, capturing finer perceptual differences.
Lower LPIPS values typically indicate higher image quality, with better retention of the
target style and details, while higher LPIPS values may suggest significant deviations in
quality, with style or details not being preserved well.

In terms of specific results, the evaluation results of the C-S disentangled style transfer
framework proposed by Wang [140] on 512 × 512 pixel images show an SSIM of 0.672 and
a CLIP score of 0.741. This indicates that the method performs well in structural fidelity
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and semantic consistency. The higher CLIP score (0.741) suggests that the generated image
aligns well with the textual description semantically, meaning the image effectively reflects
the semantic content described by the text in terms of style and content, while the moderate
SSIM value indicates that the structural similarity is acceptable, though there may be
some loss of details. Chung [144] defined the KL-divergence (CFSD) between content and
stylized images and proposed an art style transfer method based on a pre-trained large-scale
diffusion model. Its CFSD value is 0.2281, and the LPIPS value is 0.5055, indicating high
stability in style transfer. The lower CFSD value suggests that the style transfer method
performs well in maintaining a balance between content and style, while the LPIPS value
of 0.5055 shows a relatively high perceptual similarity in the generated image.

The DEPM algorithm proposed by Hamazaspyan [145] has an average LPIPS loss
of 0.596 over 100 images, indicating high visual consistency in the style transfer task.
The higher LPIPS value suggests some loss in visual quality of the generated image,
but compared to other methods, it performs better in perceptual consistency, effectively
preserving style features in the image. However, there may be some trade-off in terms
of detail, resulting in slightly lower perceptual similarity.The HiCAST model proposed
by Wang [147] has an LPIPS loss of 0.658, indicating lower visual quality in style transfer.
Although this method performs well in generating large-scale images, it may need further
optimization in terms of style consistency and perceptual quality.

Image style transfer, despite having various objective evaluation methods, still heavily
relies on subjective observation and human perception for evaluation. With technological
advancements, researchers and developers are looking forward to introducing more effec-
tive objective evaluation methods to accurately measure the visual quality of generated
images and the fidelity of artistic styles.The experimental results of image style transfer are
shown in Table 21.

Table 21. Summary of image style transfer experimental results.

Author Method Database Result

Tan [70] Faster-CNN MNIST, URLs,
CIFAR-10, ImageNet Identify mobility (%): 77–79

Johnson [80] Perceptual Losses ImageNet, BSD100,
COCO PSNR: 22.54 SSIM: 0.5526

Li [93] Arbitrary style fast transfer method based on
feature transformation DTD, COCO Log(LS): 6.3

Li [102] SDP-GAN CycleGAN IS: 5.77 ± 0.78 FID: 112.42

Liao [116] Unet-CycleGAN monet2photo PSNR: 19.50 SSIM: 0.6893

Wang [117] ESA-CycleGAN orange2apple IS: 5.2392 FID: 101.6921

Liu [127] Arbitrary style transfer with the AdaAttN
module MSCOCO, WikiArt Optical flow error: 0.0391

Zhu [129] LPAdaIN MSCOCO, WikiArt IS: 5.2392 FID: 101.6921

Wang [140] C-S Disentanglement Style Transfer
Framework ImageNet PSNR: 26.50 SSIM: 0.787

Chung [144] Artistic style transfer method based on
pre-trained large-scale diffusion model LAION CFSD: 0.2281 LPIPS: 0.5055

Hamazaspyan [145] DEPM PascalVOC, WikiArt LPIPS: 0.596

Wang [147] HiCAST MSCOCO, WikiArt LPIPS: 0.658
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6.2. Video Style Transfer Experimental Performance

Compared to image style transfer, evaluating algorithms for video style transfer
involves greater complexity and challenges. This is because it not only considers image
quality and style fidelity but also factors like temporal continuity and motion consistency.
Research in video style transfer aims not only to produce visually appealing results but
also to maintain the dynamic characteristics and content consistency of the original video.

Video style transfer evaluation criteria typically include Temporal error and Warping
error. Temporal error measures the frame rate consistency and motion smoothness between
the generated video and the original video, ensuring that the temporal continuity of the
video is not broken or inconsistent during the style transformation. This reflects the
smoothness and consistency of the generated video in the time dimension, preventing
issues like stuttering or unnatural motion due to style transfer. Warping error, on the other
hand, focuses on the accuracy of geometric deformation and motion paths in the generated
video, ensuring that style transfer does not introduce excessive distortion or deformation.
A lower warping error indicates that the shapes, textures, and movements in the video
maintain good fidelity during the style transfer process.

In terms of specific evaluation results, the feedforward network style transfer model
proposed by Huang [151] was tested on the Sintel dataset, and the average Temporal
error across five videos was 0.04968. This indicates that the model performs well in
ensuring temporal consistency, effectively avoiding significant temporal discontinuities
or motion stuttering in the generated videos. The warping error of the video multi-style
transfer (VMST) framework proposed by Gao [154] was 0.0370, showing that the method
preserves video geometry well during style transfer with minimal distortion, maintaining
low levels of geometric distortion throughout the process.The novel real-time algorithm
based on deep neural network architecture proposed by Xia [153] achieved warping error
and Temporal Consistency Change (TCC) scores of 0.0009 and 0.688, respectively. These
results demonstrate strong performance in both accuracy and temporal consistency, with
the model especially excelling in maintaining motion paths and temporal continuity. The
MCCNet method proposed by Deng [155] calculated the mean and variance between
adjacent frames after rendering, with values of 0.0297 and 0.0054, respectively. This shows
that the model performs well in avoiding geometric deformation and maintaining frame-
to-frame continuity, further proving its stability and effectiveness in practical applications.

In the future, the evaluation standards for video style transfer may evolve towards
more comprehensive and multidimensional directions. In addition to the current focus
on temporal error and warping error, there may be introductions of finer-grained metrics
for temporal continuity, such as quantitative assessments of motion smoothness, and
more detailed analyses of motion consistency. Furthermore, with advancements in deep
learning technology, there could be the development of more sophisticated perceptual
quality metrics, such as deep neural network-based assessments of video realism, to better
capture perceptual differences in generated videos. The experimental results of image style
transfer are shown in Table 22.

Table 22. Summary of video style transfer experimental results.

Author Method Database Result

Huang [151] Feedforward Network Style Transfer Model Video.net Temporal error: 0.04968

Gao [154] VMST COCO Warping error: 0.0370

Xia [153] New real-time algorithm for deep neural
network architectures DAVIS 2017 Warping error: 0.0009 TCC: 0.688

Deng [155] MCCNet MSCOCO, WikiArt Mean: 0.0297 Variance: 0.0054
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7. Summary and Future Outlook
Style transfer is a technique that transfers the style of one image or video to another.

It holds significant importance in the fields of computer vision and image processing
and finds applications in creating artistic effects, image enhancement, image editing, and
more. This paper is application-oriented and algorithm-based. It more comprehensively
analyzes the development of style transfer and pays attention to the latest progress in style
transfer. Moreover, this article pays special attention to the field of video style transfer and
introduces the development and new applications of video style transfer in more detail to
help people better understand the importance of video style transfer and its broader future
development prospects.

This article divides style transfer into image and video directions, providing a detailed
overview of image style transfer. It analyzes the development of image style transfer based
on applications and algorithms. The article also focuses on the development of video style
transfer in the deep learning field, serving as a foundation to better understand the evolu-
tion of video consistency issues and guide new directions in style transfer. Throughout the
article, it is observed that style transfer methods in various domains have their limitations.

Style transfer methods in machine learning were primarily based on rules and feature
engineering, often requiring expertise and complex algorithm design. These methods need
to be adjusted and adapted for different styles and tasks, constrained by domain-specific
rules and assumptions. Traditional machine learning-based style transfer algorithms, such
as stroke rendering, image analogy, image filtering, and texture transfer, each have their
strengths and weaknesses. Stroke rendering creates a highly artistic style but tends to
distort when handling complex images. Image analogy preserves the details and structure
of the content but requires significant computational resources. Image filtering is simple
and efficient but fails to express complex styles, resulting in a more limited effect. Texture
transfer enhances texture details but may lose the original image’s structure, leading
to unnatural results. Overall, traditional methods excel in efficiency and specific style
representation, but often lack the flexibility and intricacy of deep learning approaches when
dealing with complex artistic styles.

However, with the advancement of deep learning, style transfer has gradually shifted
from traditional rule-based and feature engineering approaches to methods based on deep
neural networks, achieving significant progress.

Deep learning methods have overcome many of the limitations of traditional ap-
proaches, offering greater flexibility and generalization capabilities, leading to significant
achievements in image and video style transfer tasks. Deep learning-based style trans-
fer algorithms, such as single-network style transfer, fast style transfer, GAN-based style
transfer, and attention mechanism-based style transfer, each have distinct advantages and
disadvantages. Single-network style transfer learns both content and style features simul-
taneously by training a single network, which helps preserve the structure and details of
the image during the style transfer process. However, it requires longer training times
and higher hardware demands. Fast style transfer accelerates the style transfer process by
utilizing a pre-trained network, enabling real-time style conversion and making it suitable
for efficiency-demanding applications. However, its transfer results may not be as refined
as traditional methods, and the style representation is limited by the network architec-
ture. GAN-based style transfer generates more natural and detailed style images using
generative adversarial networks, producing more realistic and intricate effects, especially
in generating complex styles. Nevertheless, it suffers from training instability and is prone
to mode collapse issues. Attention mechanism-based style transfer focuses on key regions
of the image, allowing for more precise style transfer and the better handling of local
details and overall style balance. However, it comes with high computational costs and
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its effectiveness depends on the design of the attention mechanism and the stability of the
training process. Overall, deep learning methods excel in achieving superior style transfer
results, capable of handling more complex and diverse styles, but they face challenges in
computational cost and training stability.

This shows that deep learning style transfer methods still have some shortcomings.
Firstly, these methods often require large amounts of training data and computational
resources, especially for complex style transformations or diverse style transfer tasks.
Secondly, the training process of deep learning methods can be unstable, and prone to
issues like mode collapse or non-convergence, necessitating careful hyperparameter tuning
and training techniques. Additionally, the results generated by deep learning methods may
lack consistency and controllability, making it challenging to achieve fine-grained control
over the generated images.

In summary, deep learning-based style transfer methods still face challenges related
to training difficulties, instability, consistency, and controllability. Further research and
improvements are needed to address these issues. Therefore, the development of style
transfer technology can be further strengthened in the following directions:

1. Orthogonality between style transfer algorithms: In the future development of style
transfer technologies, considering the orthogonality of different methods is crucial.
This means that various techniques should be combined in a way that allows each
to leverage its strengths for different objectives while avoiding conflicts and mu-
tual exclusions. For example, generative adversarial networks (such as CycleGAN)
could be combined with traditional convolutional neural networks (such as VGG)
to separately handle style transfer and content preservation. On the other hand,
there is a contradiction between content preservation optimization based on deep
convolutional neural networks (DCNN) and content loss (such as VGG feature loss)
and extreme style transfer. When the weight of content preservation is too high, the
style transformation is suppressed, leading to a lack of sufficient style features in the
image. Conversely, if the weight of style is too dominant, the content information of
the original image might be lost, making it difficult to achieve a balance between the
two. It is essential to properly manage the orthogonality between different methods
to maintain a balance between style and content, thus enhancing the diversity and
accuracy of the generated results.

2. Data sets and training strategies increase the diversity of training data and enhance
the generalization and adaptability of the model. In addition, more effective training
strategies are designed to improve the stability and convergence of the model.

3. Model architecture and loss function design: Developing a more powerful and flexible
network architecture and exploring new loss functions and optimization objectives
can improve the quality, consistency, and controllability of the generated images.

4. Adversarial training and generator optimization: It is critical to improve the stability
and convergence of adversarial training to mitigate problems such as mode collapse
and training instability. Design a more efficient generator optimization algorithm to
improve the quality of the generated images.

5. Cross-domain and multi-modal style transfer: Researching cross-domain and multi-
modal style transfer can enable models to flexibly transform between different do-
mains and styles. For example, exploring domain adaptation and transfer learning
methods can help to achieve effective style transfer between different domains.
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Abbreviation Meaning
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AGGAN Attention-Guided Generative Adversarial Network
BSD Berkeley Segmentation Dataset
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CGAN Conditional Generative Adversarial Network
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ESA-CycleGAN Self-Attention Based Cycle-Consistent Generative Adversarial Network
FFHQ Flickr-Faces-HQ
FID Fréchet Inception Distance
FMD Flickr Material Dataset
FST Filter Style Transfer
GAN Generative Adversarial Network
IS Inception Score
LAS Laser absorption spectrometer
LDA-GAN Lightweight Domain-Attention Generative Adversarial Network
LPIPS Learned Perceptual Image Patch Similarity
LSTM Long Short-Term Memory
MCCNet Multi-Content Complementation Network
MGAN Markov Generative Adversarial Network
MINC Materials in Context Database
MRF Markov Random Field
MSDA Multi-Source Domain Adaptation
MSU-GAN Multi-Style Unsupervised Generative Adversarial Network
NNF Nearest Neighbor Field
SA Self-Adaption
SANet Self-Attention Generative Adversarial Networks
SDP-GAN Saliency Detail Preservation Generative Adversarial Networks
SSIM Structural Similarity Index
STTS Style Transfer via Texture Synthesis
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SVD Singular Value Decomposition
VAE Variational Auto-Encoders
VMST Video Multi-Style Transfer
VTNet Visual Transformer Network
WCT Whitening and Coloring Transforms
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