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Abstract: Road pavement conditions have significant impacts on safety, travel times, costs, and
environmental effects. It is the responsibility of road agencies to ensure these conditions are kept in an
acceptable state. To this end, agencies are tasked with implementing pavement management systems
(PMSs) which effectively allocate resources towards maintenance and rehabilitation. These systems,
however, require accurate data. Currently, most agencies rely on manual distress surveys and as a
result, there is significant research into quick and low-cost pavement distress identification methods.
Recent proposals have included the use of structure-from-motion techniques based on datasets from
unmanned aerial vehicles (UAVs) and cameras, producing accurate 3D models and associated point
clouds. The challenge with these datasets is then identifying and describing distresses. This paper
focuses on utilizing images of pavement distresses in the city of Palermo, Italy produced by mobile
phone cameras. The work aims at assessing the accuracy of using mobile phones for these surveys
and also identifying strategies to segment generated 3D imagery by considering the use of algorithms
for 3D Image segmentation to detect shapes from point clouds to enable measurement of physical
parameters and severity assessment. Case studies are considered for pavement distresses defined
by the measurement of the area affected such as different types of cracking and depressions. The
use of mobile phones and the identification of these patterns on the 3D models provide further steps
towards low-cost data acquisition and analysis for a PMS.
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1. Introduction

1.1. The Need for Low-Cost Automated Pavement Distress Application

Road networks are key drivers towards the economic viability of a country. They provide
movement for users, goods and services as well as providing access to social benefits for commuters [1].
Pavements represent a vital part of the road network, and it is imperative that they are kept in a suitable
condition to avoid accidents and provide efficient access to road users. Road agencies are tasked with
this responsibility and have to make critical decisions to develop road maintenance and rehabilitation
strategies. However, globally it has been noted that there has been a growing reduction in budgetary
allocations for these purposes [2,3].

To achieve suitable maintenance strategies, a pavement management system is commonly applied
by road agencies. The pavement management system (PMS) is seen as the most common and effective
system for crafting maintenance strategies and it can be characterized as one that optimizes road
management to achieve the most effective use of financial resources given the needs of the road
system [4]. The PMS integrates a wide range of functions to give practitioners a decision support
system for effective planning for the large investments required for pavements [5]. However, a PMS
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is reliant on high-quality road condition data. The acquisition of these data can, in turn, be very
expensive, exhaustive, and time-intensive [6]. Given the already strained road agency budgets, this
leads to many authorities not being able to implement an effective PMS as in many instances road
condition surveys are manually carried out [7]. As a result of this, there has been a significant amount
of research carried out to obtain new but accurate and low-cost methods of acquiring road condition
data, specifically data on pavement distresses that are present within a network [8,9].

1.2. Background of Pavement Distress Detection Techniques

The most studied areas of techniques of detecting and analyzing pavement distresses are
techniques involving laser-based systems and those involving imagery from cameras. There are several
commercially available equipment that utilize laser technologies equipped to vehicles for the purpose
of understanding road conditions. The laser crack measurement system (LCMS) [10] is the basis of
many of these systems and relies on the use of high-performance lasers attached to a vehicle that
measures the profile of the road, roughness and slope at a high resolution of 1 mm whilst producing
3D profiles of the pavement. There have also been the development of mobile laser-based systems and
those employing light detection and ranging systems [11,12].

The systems based on lasers are generally thought to be the most accurate techniques for detection
but they are also generally more expensive and this reduces the possibility of road agencies being
able to utilize them [13]. There are also systems that incorporate both imagery and lasers to produce
additional information on the road conditions [14,15].

Given the costs of the laser systems, the option of utilizing only imagery provides an attractive
alternative as costs of camera systems are typically significantly cheaper. Camera-based systems
usually include capturing images of the pavement surface followed by subsequent interpretation and
analysis based on anomalies detected within the images. The interpretation can be done with the use of
algorithms that process the images [16–18]. There is a wide array of image-based technologies that have
been studied for the purpose of detection, classification and analysis of pavement distresses [19]. One
particular low-cost image-based method is stereoscopic surveying including the use of photogrammetry
and structure-from-motion. These techniques aim to recreate 3D models of the object being analyzed
and recent work on this in the field of pavement distress detection has shown the accuracy of utilizing
this method [20]. This field of research provides additional opportunities for the analysis of pavement
distresses as accurately generated 3D models can provide critical metric information on the distress
that can yield effective intervention strategies.

1.3. Using 3D Imagery to Detect and Analyze Pavement Distresses

Structure-from-motion (SfM) is a photogrammetric modelling technique utilized to replicate 3D
models of objects. It is a low-cost method that employs the use of algorithms to reconstruct the object
using simple 2D imagery [21]. Within the technique, overlapping images are typically taken around
the object at different angles. Specific algorithms for image alignment and bundle adjustment are
then applied to establish the object’s position in three-dimensional space [22]. Figure 1 showcases an
example of a dataset obtained across a distressed asphaltic pavement section.

SfM techniques have generally been utilized in other fields such as architecture and archaeology
for the preservation of artefacts and historical figures [23]. There have also been studies on asphalt
pavements wherein the techniques were used for replicating road surfaces and their distresses [16,17]
and other studies have considered using drones to carry out the process [24,25]. Previous works
concluded that there was a lack of available industry tools to utilize the techniques [26]. However, new
developments in processing power and algorithms have made it possible for application to pavement
engineering [20]. Recent studies have shown the accuracy of models by comparing results to those
from laser technologies [27]. This verification of accuracy is in line with typical photogrammetry
accuracy development cases for buildings and other structures [28,29]. With the comparisons made to
lasers, it was established that professional cameras are capable of carrying out the process. However,
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these cameras can still be quite expensive and establishing a pipeline using professional cameras
still requires the procurement of the devices followed by subsequent training on their use by road
agency staff. To this end, if a pipeline could be established using mobile phones then the process can
be considered more operational and the potential for its use is accelerated. Therefore, whilst other
studies have focused on using the techniques with drones and expensive cameras, this study aims
to demonstrate the accuracy of using the techniques with mobile phones to generate 3D pavement
distress models to help bridge this research gap and provide quantitative results on the accuracy of
developing this mobile pipeline. Furthermore, whilst other studies have focused on simple metric
analysis, using metric parameters typically recovered from distresses such as distress dimensions
of length and width, the second goal of the study is to establish methods to critically evaluate the
distress using segmentation and enhancement strategies. This provides therefore, a sectional analysis
methodological point of view. By doing this, distresses can be easily isolated and at this point then the
common metric evaluation can be done. To do these analyses, case studies utilizing different strategies
and distresses are considered for specific distress types.
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Figure 1. Example of dataset during a SfM survey of a distressed pavement section.

1.4. The Use of Image Segmentation in Pavement Condition Evaluations

Whilst it is useful to recreate the pavement distress with 3D imagery, it is also useful to identify
features on these models. Image segmentation is considered for this. It is the process of dividing an
image into smaller related segments for the purpose of analyzing and isolating particular features. With
regards to pavements, the purpose of image segmentation would be to isolate pavement distresses in
order to quickly pinpoint the location of the distress and also for analyzing the type of distress. There
have been several attempts over the years to carry this task out utilizing different datasets. Studies
have tried to extract useful features from drone image data [25], LIDAR point cloud data [30], Google
street view image data [31], 3D laser profilers [32,33], 3D laser images [34] and normal 2D images [35].
There have also been attempts to utilize convolutional neural networks for the purpose of segmenting
pavement images using annotated masks on the images [36].

There are challenges to the acquisition of these types of data sets and then also with regards
to the processing power required to analyze them. To this end, this study focuses on the use of a
low-cost image acquisition pipeline using mobile phones. Mobile imagery data has an advantage
over drone data in that higher resolutions can be yielded given that distance to the object is smaller
and also surveys can be made in areas where drone use is forbidden. When coupled with the SfM
techniques, mobile imagery can be utilized to create point clouds of a distress and these point clouds
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can be segmented without excessive processing power. Point clouds have previously been classified
to produce depth maps and smaller more useful models within the original model in other fields of
study [37]. Generally, the process can function as depicted in Figure 2.Infrastructures 2020, 5, x FOR PEER REVIEW 4 of 25 
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Given these factors, this study aims to generate depth maps and extract and isolate critical
elements and sections from 3D models generated by imagery from mobile phones.

2. Materials and Methods

2.1. Structure-from-Motion Setup and Workflow

Whilst utilizing structure-from-motion techniques, the most critical parameter to be considered is
the ground sampling distance (GSD). This is the typical parameter from which models are interpreted.
It is a representation of the distance between two consecutive pixel centers, with respect to actual
ground measurements. The GSD is considered as a representation of the smallest details that can be
accurately observed on an image [38]. The smaller the value of the GSD, the greater the details that are
measurable. This shows the importance of this value as it will dictate the resolution of the replicated
models and thus the possible level of observable features. For the GSD, it has been demonstrated that
the smallest visible details are two to three times the value of the GSD [39]. Generally, cracks and
common distress are smaller than 0.01 m (10 mm) and with resolutions of 3mm these distresses can be
accurately identified [40]. Therefore, the technique must be able to produce a resolution less than this.
For typical 2D imagery used for detection, a 3 mm resolution is utilized [9]. Given that a detection of 3
mm which would be appropriate for pavement distresses, the GSD should be no greater than 1 mm.
As a lower resolution would be better, a value of approximately 0.5 mm was sought after within this
study. The GSD is related to specific parameters of the camera used and is given by Equation (1) below.

GSD =
D × pxsize

f
(1)

where D = object distance, ƒ = focal length, and pxsize = pixel size (as defined by the ratio of the camera’s
sensor height to the image height). The focal length and pixel size are attributes from the camera and
the other parameters can be manipulated to produce an appropriate GSD. For the purpose of this
study, a GSD of 0.5 mm was aimed for so the object distance was manipulated to ensure this value
was obtained for the survey. Three devices were utilized for the surveys. A professional camera was
used and two different common market mobile phones were used to test the accuracy of the technique
using mobile phones. The camera was used as a control in the experiment. The specifications for
these devices are given in Table 1. Mobile phones were utilized within the study to obtain imagery
because they are typically already in the possession by the average person in today’s society and it has
been shown that the image quality obtained from these devices are now commonly comparable to
even entry-level DSLR cameras [41]. Moreover, the phones used were not the recent most expensive
versions of the flagship phones. Both phones used in the study (Huawei P20 Pro and Samsung Galaxy
s9) have already been superseded by newer models and it is expected that newer models of both
devices will be released shortly. This was done deliberately to show that the process does not require
the most recent model releases and it further shows that as time progresses the then ‘older’ models will
still be able to accurately carry out the process without heavy costs of new models. It is expected that
the specifications of cameras on mobile phones will keep increasing as demonstrated by market trends
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and therefore even the average phone used by anyone will have the capacity to carry out the process.
Additionally, by using mobile devices as opposed to cameras, there is no need for the purchase of
other devices and the process would then therefore possible with the typically used phone device by
any user.

Table 1. Specifications of devices used for SfM surveys.

Device Nikon D5200 Huawei P20 Pro Samsung Galaxy S9

Camera resolution
[Megapixel] 24 40 12

Image Size [pixel] 6000 × 4000 3648 × 2736 4032 × 1960
Focal length used [mm] 24 3.95 4.3

For the surveys, three different sections were chosen for the case study. The section chosen had
distresses comprising longitudinal and transverse cracking, alligator cracking, block cracking and
depressions. The predominant distress type covered within the sections is cracking. Sections with a lot
of cracking were considered as cracking is the most frequently occurring distress in the geographical
region of study [42]. For the actual surveys a typical SfM pipeline was utilized and this is shown in
Figure 3. Images of the pavement sections used in the surveys are shown in Figures 4–6.
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Figure 3. Typical SfM pipeline for generating pavement distress models.

During the survey of the pavements, images were taken in sequence and with the use of coded
markers on the pavement which allowed for scaling of the models. The images were also captured
with an estimated overlap of 80% and slightly varying angles around the pavement distresses. Each
distressed section was surveyed by each device and this was done consecutively to replicate the same
environmental conditions to ensure the results were thus comparable.

The survey was carried out with users operating the devices by hand. The Images were taken from
varying inclined angles in a rotational manner around the distressed section. This was done to capture
details at the crevices of the distresses that are hard to be seen if the image is taken directly vertical
above the object. This methodological choice of using inclined imagery is typical in photogrammetry
to allow for the registration of the small minor details on the object being analyzed. By carrying out
the survey at angles, the minor details along these crevices are easier to collect and the 3D model
generated can be more accurate.
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For each section, the survey took approximately ten minutes per device. It should be noted here
that whilst this length of time can be considered as more than that of a manual survey of a particular
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distress section, this type of survey has the potential to yield results that are not subjective as is often
the case with manual surveys. This is as a result of most used pavement condition indices have input
parameters that rely on a subjective interpretation of the condition by the surveyor. Additionally, this
type of 3D survey will yield results that are not possible as with common manual surveys as a full 3D
metric evaluation is possible with the SfM approach as evidenced by other studies [20]. The speed of
the survey could nevertheless be improved and future studies will consider other data acquisition
strategies such as mounting the mobile device. Once this was completed the images were transferred to
the SfM software, Agisoft PhotoScan where the SfM pipeline demonstrated in Figure 3 was employed
in order to replicate 3D models of each pavement section.

Following the completion of the 3D model generation, the point clouds of each model were
transferred to CloudCompare in order to establish the accuracy of the models derived from the mobile
imagery and to segment the models to analyze the distresses occurring in each section. Before the
segmentation strategies can be employed the accuracies of utilizing the techniques using mobile phones
needed to be established and this was done comparing models from imagery mobile devices against a
model generated using imagery from a professional camera. This methodology to do this is presented
in Section 2.2.

2.2. Assessment of the Accuracy of Models Generated from Mobile Phone Imagery

For a metric evaluation of the differences between models generated by the mobile phones
and those generated by a professional camera, a statistical evaluation of the measured geometric
differences between the models was done utilizing the Weibull distribution. The Weibull distribution
is a continuous probability distribution and it was applied as it is typically used in reliability analyses
and used to determine the accuracies of structure-from-motion models [43]. The distribution is defined
by the probability density function given in Equation (2) below.

f (t) =
β

η
·

(
t− γ
η

)β−1

·e−(
t−γ
η )

β

t > γ; β, η > 0 (2)

where β is the shape parameter, also referred to as the slope of the Weibull plot, η is the scale parameter,
also referred to as the characteristic life parameter and γ is the location parameter, also referred to as
the guaranteed lifetime (typically this value is set to zero). The shape parameter indicates the point at
which the variable is likely to fail in its distribution. A value less than 1 indicates that this failure will
likely occur in the item’s early life. A value of 1 indicates the rate of failure is constant and a value
greater than 1 indicates that the rate is increasing.

With respect to the scale parameter, this value is indicative of 63.2 percentile of the distribution
which means that 63.2 percent of the distribution will have failed before obtaining this value. The
application of the Weibull analysis was carried out within the CloudCompare software. The critical
Weibull distribution shape and scale parameters were ascertained to have an understanding of the
reliability and accuracy of the models generated by the mobile images.

2.3. Application of Random Sampling Consensus (RANSAC) Segmentation Algorithm

Once the accuracy of the models was established, the next step was to focus on segmenting the
3D models. The first strategy analyzed to do this was the random sampling consensus (RANSAC)
segmentation algorithm. The RANSAC was utilized to extract shapes from a derived model. This was
done by assigning sets of points that can define a particular geometric feature type and then extracting
shapes that fit this feature type based on the number of points in the category [44].

The algorithm functions by taking a given point-cloud P = {p1, ..., pN} with associated normals
{n1, ..., nN} giving an output of a set of primitive shapes Ψ = {Ψ1, ..., Ψn} with corresponding disjoint
sets of points PΨ1 ⊂ P, ..., PΨn ⊂ P and a set of remaining points R = P\{PΨ1, ..., PΨn}. For every iteration
of the algorithm, the primitive with the highest score is sought after. The algorithm iteration will
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conclude as soon as the defined minimal shape size is achieved for the point cloud. The definition of
this minimal shape size can be controlled and for this study, this value was based on the size of the
point cloud being analyzed. This process can be visualized in the pseudocode for Algorithm 1 shown
below as created by [44]:

Algorithm 1 Extracting shapes in point Cloud P

Ψ← Ø {extracted shapes}
C← Ø {shape candidates}
repeat
C← C ∪ new Candidates()
m← best Candidate (C)
if P(|m|, |C|> pt then
P← P \Pm {remove points}
Ψ← Ψ ∪m
C← C \ Cm {remove invalid candidates}
end if
until P(τ, |C|> pt

return Ψ

The implementation of this algorithm was done within CloudCompare, utilizing the H-RANSAC
plugin. This process is able to isolate several different shapes from the model in question including
planes, spheres, cylinders, cones, and tori. For the purpose of this study, the focus was on the planes so
as to generate a profile for the pavement to deduce the distressed areas. The purpose, therefore, would
be to identify an appropriate plane to be used as a baseline for creating a road profile and to generate
depth maps of the section which are able to be metrically referenced. Once the maps are created the
particular points of interest on the model can be established and isolated.

2.4. Application of ‘Fit’ Algorithm

As an alternative to the RANSAC segmentation pipeline, another possible way of segmenting
the pavement was utilizing the fit algorithm within the CloudCompare suite. The fit tool creates a
plane based on the points within the point cloud. It, therefore, considers the entire point cloud under
analysis. To do this the process utilizes a standard least square fitting methodology of the points within
the point cloud. This is based directly on the eigenvalues and vectors of the covariance matrix of the
cloud so it can be considered as an efficient process.

Once this tool is applied, the distance of this plane from the point cloud can again be utilized
to create a profile of the measured differences which will generate a depth map to understand the
conditions of the pavement section. The depth maps generated from this simple methodology were
compared to those from the RANSAC.

3. Results and Discussion

3.1. D Pavement Distress Models

3.1.1. Pavement Section 1

For each section under analysis, the results of the mobile imagery were compared to those from
the camera. In Table 2, the specifications and results of the models for each device are shown for the
survey of the first section. It can be observed that the GSD for the camera-based model was the lowest
and this is expected given the higher resolution capable from this device. This is a direct result of the
focal length of a professional camera being substantially higher than a mobile device. This also is the
reason why the professional camera was used as a comparison model. However, the achieved GSD
values for both devices were ~0.5 mm which is sufficient given the requirements for the detection
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of pavement distresses as previously examined in Section 2.1. The other parameter in Table 2 is the
number of mesh faces of each model. This is a parameter that indicates the number of details on the
models. However, it is hard to decipher based on the number and a visual inspection of the model is a
better approach to analyze the models’ details. Images of each replicated model for the section are
given in Figures 7–9. Based on these figures, the details of the cracked section are shown. There were
some differences in the colors of the models and this can be related to the internal parameters of the
camera devices. The visual inspection, however, has no bearing on the accuracy for distress detection
and a metric evaluation is needed to understand accuracies.
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3.1.2. Pavement Section 2

For the second pavement section, the resulting specifications from the models produced are given
in Table 3. Similar to the first section, it is observed that the GSD was smaller for the camera derived
model but the values for the models produced by the mobile phones were once again sufficient for
detecting the pavement distresses.

Table 3. Survey specifications for Distress 2.

Device Nikon D5200 Huawei P20 Pro Samsung Galaxy S9

Distance from the pavement [mm] ~1500 ~1500 ~1500
Number of photos taken [-] 38 58 62
Ground sample distance (GSD) [mm/pixel] 0.322 0.567 0.485
Mesh faces created in SfM software [-] 4,615,825 1,912,697 2,022,877

The models produced by the mobile imagery for this section are shown in Figures 10 and 11. Also
shown are images of the dense clouds produced by mobile imagery. These dense clouds allow for an
inspection of the roughness and texture of the pavement and also allows the user to see clearly the
distressed sections of the pavement. They are visualized here as this section also has a depressed area
within the pavement and with the dense cloud, this is easier to visualize and detect.
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3.1.3. Pavement Section 3

For the third section, the resulting specifications from the models produced are given in Table 4.
Similar to the previous sections, the GSD was smaller for the camera derived model but the values
for the models produced by the mobile phones were once again sufficient for detecting the pavement
distresses. The models produced by the mobile imagery for this section are shown in Figures 12 and 13.
Also displayed are images of the dense clouds produced by mobile imagery. Within the dense clouds,
one can again observe the cracked section and the contours created by these cracks. This visualization
can enable easier segmentation of the section for analysis of the cracks for metric severity analysis.

Table 4. Survey specifications for distress 3.

Device Nikon D5200 Huawei P20 Pro Samsung Galaxy S9

Distance from the pavement [mm] ~1500 ~1500 ~1500
Number of photos taken [-] 42 42 58

Ground sample distance (GSD)
[mm/pixel] 0.318 0.596 0.458

Mesh faces created in SfM software [-] 3,151,044 1,486,123 1,900,926
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3.2. Accuracy of 3D Models Generated by Imagery from Mobile Phones

After the models were replicated using the SfM pipeline, they were then imported into
CloudCompare, which is a software designed to analyze 3D models and point clouds. In the
software, the models derived by the mobile imagery were aligned with the models derived by the
camera. This alignment was done utilizing common points between the models so as to create a
scenario where the two models are effectively overlapped at the correct points. Once the alignment
was complete the distances between them were measured using a metric called C2C (Cloud to Cloud)
absolute distance. This measurement produces a visualization of the measured differences across the
model’s surface. This visualization is also color coded with a color range of blue to red with blue
highlighting smaller differences and red highlighting larger ones. From these differences, a histogram
can be plotted illustrating the differences. Using the differences illustrated, the Weibull distribution
was also applied to determine the Weibull parameters of shape and scale in order to have a statistical
metric understanding of the differences.

3.2.1. Pavement Section 1

For the first section, the visualized differences along with the plotted distribution and Weibull
plot are shown in Figures 14 and 15. The two important resulting parameters from this distribution
are the Weibull shape and scale parameters and the values for these are given in Table 5 where the
scale parameter would be measured in metres and the shape parameter has no dimension. The scale
value typically specifies that 63.2 percentile of the distribution will fail before reaching this point [45].
Given the values in the table, this signifies that for all of the models this value was less than 0.003 m
(3 mm). Furthermore, the value of the shape parameter was also close to 1 which signifies that within
the distribution it is more likely that the majority of the values will occur early in the plot. Therefore, it
can be inferred that for a random point on the model, it is likely that it would have a small measured
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difference as the small differences are the values that occur early in the distribution plot. This helps to
validate the hypothesis of using low-cost mobile imagery for this section. The visualizations provided
also depicted the locations on the pavement where the most change is present. This was generally
along the inside of the cracks as can be demonstrated in Figures 14 and 15. Future work will consider
the range of values of the two Weibull parameters for a myriad of different distresses and phone types
to try and establish more particular correlations and trends of these parameters based on the distresses.
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Weibull Parameters

Phone Shape (a) Scale (b)
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Samsung Galaxy s9 0.981589 0.002794
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3.2.2. Pavement Section 2

For the second section, the visualized differences along with the plotted distribution and Weibull
plot are shown in Figures 16 and 17. The Weibull shape and scale parameters are also given in Table 6.
For this section, the values for the scale were again less than 0.003 m (3 mm). The value of the shape
parameter was again close to 1 which once more signifies that within the distribution it is more likely
that the majority of the values will occur early in the plot. This helps to reinforce the validity of the
methodology for a different section, this one with depressions and cracking. The visualizations for
these two comparisons showed that the most change occurred along the crack but also in the interior
of the depression present in the section.

Table 6. Weibull parameters observed from each model comparison for distressed section 2.

Weibull Parameters

Phone Shape (a) Scale (b)
Huawei P20 Pro 0.941246 0.001772

Samsung Galaxy s9 1.005422 0.001528
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3.2.3. Pavement Section 3

For the third section, the visualized differences along with the plotted distribution and Weibull
plot are shown in Figures 18 and 19. The Weibull shape and scale parameters are also given in Table 7.
For this section the values for the scale were again less than 0.003 m (3 mm). Additionally as was
the case with the two previous sections, the shape parameter was again close to 1 which once more
signifies that within the distribution it is more likely that the majority of the values will occur early in
the plot. Once more this reinforces the validity of the methodology for a different section, this one
with area-wide cracking that are block and alligator-like. The visualizations for these two comparisons
showed that the most change occurred along the interiors of the blocks of the crack

Table 7. Weibull parameters observed from each model comparison for distressed Section 3.

Weibull Parameters

Phone Shape (a) Scale (b)
Huawei P20 Pro 0.725207 0.002148

Samsung Galaxy s9 1.183398 0.001785
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3.3. Application of RANSAC Segmentation

Once the accuracy of the models was demonstrated as shown in the previous section, the next
step was the application of the segmentation strategies to try and isolate the distresses occurring on
each pavement section in the case study. The first considered strategy was the use of the RANSAC
algorithm to extract shapes from the point clouds.

The first step for this implementation was assigning a value of the minimum support points
per primitive. For each of the models being analyzed the total number of points was between 1.4 to
4.5 million points. Additionally, each model assumed a physical distance of about 2 to 4 m2 on ground.
Given these factors, a value of 50,000 was assigned as this would split the object into no more than
90 segments and given the fact that only one plane was required as a reference case this number would
limit the algorithm from producing planes cutting through the model at different mismatched angles.
To ensure this value was correct the algorithm was applied for smaller values of 500, 5000, 10,000 and
each of these scenarios inappropriate planes were generated as shown in Figure 20. This process was
tried for each model and it was shown that with 50,000 points the result would yield an appropriate
reference plane as shown through an example of one of the applications in Figure 21. On this, the plane
appropriately cuts through the model to create a valid reference plane.
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Once this plane was adequately assigned a distance computation between the plane mesh and
the point cloud was done utilizing the C2M distance computation in CloudCompare to produce a
depth map for each distress. The C2M distances represent the depths and filtering this can result in the
segmentation of the model. This is illustrated in Figures 22–24.

Infrastructures 2020, 5, x FOR PEER REVIEW 17 of 25 

 
Figure 20. Application of random sampling consensus (RANSAC) algorithm with too small of a value 
for the number of minimum support points. 

 
Figure 21. Application of plane shape through RANSAC algorithm. 

Once this plane was adequately assigned a distance computation between the plane mesh and 
the point cloud was done utilizing the C2M distance computation in CloudCompare to produce a 
depth map for each distress. The C2M distances represent the depths and filtering this can result in 
the segmentation of the model. This is illustrated in Figures 22–24. 

 
Figure 22. Pavement section 1 with the depth map created. 

Figure 22. Pavement section 1 with the depth map created.



Infrastructures 2020, 5, 6 18 of 25
Infrastructures 2020, 5, x FOR PEER REVIEW 18 of 25 

 

Figure 23. Pavement section 2 with the depth map created. 

 

Figure 24. Pavement section 3 with the depth map created. 

These depth maps now allow filtering to be done by depth and section and allow the model to 
be segmented for the sections to be analyzed. This is easily done by controlling the range of the depth 
map and this is illustrated in Figures 25–27. From the current segmentation result, the process can 
detect typical distresses where there is a change in surface deviation of the pavement. As the major 
groups of pavements distresses are cracking distresses and visco-plastic deformations (which both 
feature this type of deviation), this process and segmentation can account for most distresses. Visco-
plastic deformations include bumps, sagging, rutting, corrugations, depressions, potholes, swelling, 
lane and shoulder drop off, shoving, and stripping. In Figures 25–27, the depth maps for the 

Figure 23. Pavement section 2 with the depth map created.

Infrastructures 2020, 5, x FOR PEER REVIEW 18 of 25 

 

Figure 23. Pavement section 2 with the depth map created. 

 

Figure 24. Pavement section 3 with the depth map created. 

These depth maps now allow filtering to be done by depth and section and allow the model to 
be segmented for the sections to be analyzed. This is easily done by controlling the range of the depth 
map and this is illustrated in Figures 25–27. From the current segmentation result, the process can 
detect typical distresses where there is a change in surface deviation of the pavement. As the major 
groups of pavements distresses are cracking distresses and visco-plastic deformations (which both 
feature this type of deviation), this process and segmentation can account for most distresses. Visco-
plastic deformations include bumps, sagging, rutting, corrugations, depressions, potholes, swelling, 
lane and shoulder drop off, shoving, and stripping. In Figures 25–27, the depth maps for the 

Figure 24. Pavement section 3 with the depth map created.

These depth maps now allow filtering to be done by depth and section and allow the model to be
segmented for the sections to be analyzed. This is easily done by controlling the range of the depth map
and this is illustrated in Figures 25–27. From the current segmentation result, the process can detect
typical distresses where there is a change in surface deviation of the pavement. As the major groups
of pavements distresses are cracking distresses and visco-plastic deformations (which both feature
this type of deviation), this process and segmentation can account for most distresses. Visco-plastic
deformations include bumps, sagging, rutting, corrugations, depressions, potholes, swelling, lane and
shoulder drop off, shoving, and stripping. In Figures 25–27, the depth maps for the pavement sections
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are shown at three different levels of segmentation. In the first image, the entire section is visualized
with the hotspots of the distressed sections highlighted. Given that in this depth map one can see
the particular points of interest, the depth map was then further segmented to remove the parts of
the pavement without distress by using a smaller range on the depth map values. The final image
of the three further adjusts the range of the depth map to then only illustrate the distressed section
with the deepest distress. In Figure 25, the third image highlights the section suffering from not only
cracking but also a significant depression. The same process was carried out for each section and the
visualizations are shown in Figures 26 and 27 also follow the same methodology to allow visualization
of the exact points of distress and to isolate these sections. In Figure 26, the exact section suffering from
a pothole is isolated and in Figure 27, the exact section suffering from excessive cracking is isolated.
The exact metric evaluation of the distress is not shown within the study as the metric evaluation of 3D
models derived from SfM processes has been previously validated using laser equipment to verify the
metric accuracy of the models to determine the closeness of the results from those measured within the
field [20,27]. The semantic color choice of the depth map is up to the user for the visualizations, in
terms of which colors signify positive or negative deviations. Once this segmentation is done, metric
assessments of the segmented portion can be found such as the area and volume of the segmented
region which can either be the section that is distressed or the section that is not. By doing this, a
ratio of the distressed section to non-distressed section can be established and inserted into the asset
database for the road authorities, which is critical for establishing appropriate pavement management
strategies. These critiques are possible as all of the models are scaled and the previous sections have
established the metric accuracy of these scaled models. The dimensional analysis of the sections was
not carried out as the determination of the methodology to arrive at a position at which this type of
analysis is possible was more important to the discussion of the study and the research. Additionally
features such as the depressed section and the crack section be filtered by simply changing the range
of the depth map as shown in the images. From this segmentation, a differentiation of the types of
distresses occurring can be made as well as the particular features of the distress can be more easily
identified as the depth maps shown in Figures 25–27 establish isolation of sections that have related
features. At this point, the user would be able to identify the particular distress type. This will provide
a road agency with exact measurements of the distress which can be utilized for severity assessment
and to trigger times for maintenance and rehabilitation interventions.
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3.4. Application of Fit Segmentation

For the application of the fit algorithm, a similar process was followed to that of the RANSAC
wherein a plane was generated considering the collection of points within the point cloud. This
application can be considered as a simpler method given the fact that it relies on a standard least
square fitting methodology. The application of the fit tool was carried out on each model and this is
demonstrated in Figure 28.
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Following this plane application, the depth maps were generated on each model similar to the
application of the RANSAC. This was done for the same purpose as previously stated to allow for
segmenting particular sections of the pavement sections. This is illustrated in Figures 29–31.
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Similar to the segmented images of the sections by the RANSAC algorithm, these images represent
three levels of segmentation for each distress and highlight the possibility of isolating particular points
of interest by altering the range of the displayed depth map. The segmented images depict particular
points of interest. Each isolation can be measured and the metric value recorded for the purpose of
collecting asset information and storing in within the database of the road authority or agency.

Figure 29 demonstrate the capacity of using the fit plane. In each segmentation particular sections
can be isolated. The sections where there is cracking can be isolated or the sections where there is
a depression. The same can be done for the sections which are in suitable conditions. The results
are similar to those obtained with the RANSAC. A metric difference between the segmented models
was not however done as more examples are needed for this to be done. This will be explored in
future works.
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The essential conclusion from both segmentation applications is that the process has the capacity
to produce the resulting isolated sections of the mobile imagery-based 3D models. These isolated
segments can yield critical metric information as they are scaled and the accuracy of the derived models
was shown to be sufficient for the purpose of detecting pavement distresses. The extraction of the
metric information of the distresses and the segmented sections are not carried out within this study
but the previous analysis of 3D models originating from an SfM pipeline have already demonstrated
this possibility [20]. The methodology of segmenting the imagery and thus exploiting it for further
analysis is the important outcome of this aspect of the study. Additionally, this process was done with
user-friendly algorithms that can be practically repeated and do not require substantial processing
power or exhaustive timelines utilized by other pipelines.

4. Conclusions

This work provided within this paper had two particular purposes: demonstrate the accuracies of
utilizing imagery from mobile phones for creating 3D models of pavement distresses and secondly
to consider practical and efficient means of segmenting these models to isolate pavement distresses.
The purpose, therefore, was to establish a workable pipeline with mobile phone devices. To carry out
these tasks, surveys were carried out on distressed pavement sections within the city of Palermo, Italy
where there are a substantial number of distressed roads. Three sections were considered which had
commonly found pavement distresses. Each section was surveyed with two common mobile phones
and a professional camera was used as a control in the experiment.

Using statistical analysis and comparison, it was found that the SfM techniques discussed can
be utilized with the mobile devices used in the study with accurate models being generated that can
sufficiently detect the precedence of pavement distresses within the sections. The statistical analysis
was done utilizing the Weibull distribution evaluation with comparisons being made from models
generated from the mobile devices to the models generated from a professional camera. The Weibull
parameters yielded in the evaluation detailed that the majority of the deviations between the models
are of very small values, in the range of less than 3 mm. This value allows for authentication of the
pipeline with the mobile devices based on the typical measurement of common pavement distresses.
This represents a novel approach to the problem and based on advances in the phone industry future
results will be even more promising. Furthermore, it should be noted that the mobile phones used in
the study are not the latest flagship models from their respective companies and that there are newer
models currently on the market which have better cameras and therefore, would likely yield models
with greater resolutions. This demonstrates the capacity and sustainability of the pipeline moving
forward. Further work can include further assessments of other mobile phones and more types of
pavement distresses. Additionally, it was must be mentioned that the use of mobile devices poses
advantages to other methods of obtaining imagery such as drones which have legal restrictions in
many countries. For future work imagery from Google Earth’s platform can also be combined with
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imagery from the mobile phones to have a bigger model developed encompassing a full network and
not just a particular section. This is possible as the imagery from Google Earth has been integrated
with on-ground 2D imagery for applications in other fields [46].

After the considerations of the accuracy of the 3D models, the study carried out a brief analysis
of the segmentation of the 3D imagery. Planes were constructed on the models utilizing different
algorithms for the purpose of creating depth maps and these depth maps were then filtered based
on the location and presence of distresses within the pavement section. By filtering the models, the
model was segmented based on similarly observed features which can allow for a differentiation of
the different pavement distress categories. Additionally, the segmentation of the particular points
of interest allows the user to obtain a ratio of the distressed area to the non-distressed area on the
pavement section which is a valuable attribute for the road authority’s database. This demonstrated the
capacity of the segmentation pipeline to pinpoint occurring distresses and obtain metric information
on them. Further work needs to be done on larger sections and more types of pavement distresses
to establish a clear segmentation pipeline for these types of images. Nevertheless, the segmentation
strategies used were demonstrated to be potent enough to isolate the pavement distresses and this
establishes a path forward towards the full low-cost automation of road condition data acquisition and
analysis for a pavement management.
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