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Abstract: Time-based smart home controllers govern their environment with a predefined routine,
without knowing if this is the most efficient way. Finding a suitable model to predict energy
consumption could prove to be an optimal method to manage the electricity usage. The work
presented in this paper outlines the development of a prediction model that controls electricity
consumption in a home, adapting to external environmental conditions and occupation. A backup
geyser element in a solar geyser solution is identified as a metric for more efficient control than a
time-based controller. The system is able to record multiple remote sensor readings from Internet
of Things devices, built and based on an ESP8266 microcontroller, to a central SQL database that
includes the hot water usage and heating patterns. Official weather predictions replace physical
sensors, to provide the data for the environmental conditions. Fuzzification categorises the warm
water usage from the multiple sensor recordings into four linguistic terms (None, Low, Medium and
High). Partitioning clustering determines the relationship patterns between weather predictions
and solar heating efficiency. Next, a hidden Markov model predicts solar heating efficiency, with
the Viterbi algorithm calculating the geyser heating predictions, and the Baum–Welch algorithm for
training the system. Warm water usage and solar heating efficiency predictions are used to calculate
the optimal time periods to heat the water through electrical energy. Simulations with historical data
are used for the evaluation and validation of the approach, by comparing the algorithm efficiency
against time-based heating. In a simulation, the intelligent controller is 19.9% more efficient than
a time-based controller, with higher warm water temperatures during the day. Furthermore, it is
demonstrated that a controller, with knowledge of external conditions, can be switched on 728 times
less than a time-based controller.

Keywords: solar geyser; profile usage; profile weather conditions; fuzzy logic; partial clustering;
hidden Markov model; Esp8266

1. Introduction

Time-based smart home controllers maintain the temperature of their environment
by adopting the use of a predefined routine. However, this is an inefficient process as the
controller activates or deactivates specific applications based on a trigger or time. It does
not alter its predefined algorithm to support changes in surrounding conditions. Finding a
suitable prediction model to predict energy consumption is a significantly more efficient
way in which to control electricity usage. There is also a need to have a model that is able to
adapt to external environmental conditions, occupations and human behavioural patterns.
Yet, modelling human behaviour is challenging in particular, due to the unpredictable
nature of human actions. The study of circadian rhythm is the investigation of behavioural
changes in a human when responding to the solar cycles of light and darkness; where
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activities are synchronized around a biological clock that requires light to reset each
morning [1]. Medical research has demonstrating that the master circadian clock in humans
is the superchiasmatic nuclei (SCN) and ensures that individuals remain in sync with the
external world. Therefore, based on an understanding on of the SCN, it is possible to
predict and model general human periods of activity [2]. This prediction information is
ideal for developing more detailed energy consumption models that cater for the creation of
smart home heating systems. In this paper, the focuses are specifically on the development
of a suitable model to predict energy consumption of solar geyser water heating, which
is able to adapt to external environmental conditions and warm water usage. The system
that forecasts warm water usage and solar efficiency (and controls the standby electrical
element) more efficiently than time-base controllers.

The research methodology investigates a suitable machine learning algorithm to
forecast solar geyser warm water heating. Specifically, the hidden Markov model (HMM)
with fuzzy logic is used to forecast the water consumption trends and solar efficiency
levels. The contribution of this study involves altering the Baum–Welch algorithm, at the
HMM training stage in order to decrease the observation sequence, makes the model more
reactive to sudden weather changes and increasing the efficiency of the prediction model.
The remainder of this paper is as follows: Section 2 discussed the background and related
work. The system methodology is presented in Section 3 and the Data Collection and
Implementation is clarified in Section 4. The Results are presented in Section 5 and the
paper is concluded in Section 6.

2. Background

Time-based smart home controllers maintain their environment inefficient by adopting
the use of a predefined routine. Finding a suitable prediction model, that supports changes
in surrounding conditions, to predict energy consumption is a significantly more efficient
way in which to control electricity usage. Energy efficiency and smart heating systems
are becoming an increasingly in demand technology as urbanisation increases. There is a
need for energy, water and food provision to become smarter, more technologically driven
and less wasteful. Many works have investigated the use of Industry 4.0 technologies
as a solution for this. For example, Dintchev et al. [3], indicate that in summer periods,
the performance of the studied solar geyser is very satisfactory, and the electrical backup
element active time is minimal. It is recommended that, in the summer period, the electrical
element is switched off during the day for maximum solar heating benefits but switched
on when it is dark or when it is cloudy and rainy. During the winter months, the solar
heating is reduced by 70% and the backup element should be controlled by a controller
all the time. Similarly, this research is confirmed by Sauer et al., who employ clustering
and hidden Markov models to determine the levels of solar radiation for a specific location
from temperature, sky coverage and the previous years’ radiation from a national database.
Whereas, Delport et al. [4] indicated that the geyser losses in winter is higher than in
summer and the use of hot water in winter is higher than in summer [5]. LaMeres et al. [6]
presented a fuzzy logic variable power control strategy, where the geyser element power
consumption is controlled, based on information available such as water temperature,
minimum and maximum water temperatures allowed and the distribution level power
demand to improve the load factor of residential load profiles. Catherine et al. [7] researched
the efficiency of a geyser management system through intelligent hot water usage profiling.
Bakker et al. [8] presented the use of artificial neural networks with the previous day and
previous week heat demand profile to predict the following twenty-four-hour heat demand
of individual households.

Saving power consumption can also been achieved by altering the design of the
element. A review written by Hohne et al. [9] indicated that by replacing one 4 kW element
with two 2 kW elements, and each element is controlled by its own thermostat (but one
is set 5 ◦C lower), can reduce the total energy used to heat the water, as now with small
water usage, only one element is switched on to reheat. With a single element, it is found
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that the system overheats by average of 4 ◦C. With the dual element the temperature is
regulated near the set point and overheating temperatures are halved. Another geyser
design changed is researched by Thomas et al. [10], where the hot water is monitored at
different levels in a geyser as cold water remains at the bottom of the cylinder because
it is denser than hot water. The bottom temperature will drop first and by rising the
thermostat will decrease the amount of times that the element is activated to heat up the
water. A notable consideration is to ensure that the geyser water is not below 45 ◦C for
significant periods, as heating water with a solar radiation without electrical backup during
inefficient cycles is dangerous due to a disease known as Legionellosis. Wolter et al. [11]
researched legionnaires disease in South Africa and confirmed it is caused by a bacterium
known as Legionella pneumophila responsible for several fatalities worldwide. Suitable
growing conditions for the bacteria is between 20 ◦C and 45 ◦C. The bacteria die within
5 to 6 h at 55 ◦C, 32 min at 60 ◦C and at temperatures above 70 ◦C the bacteria are killed
immediately [12]. Based on this assessment, the following section proposes a methodology
for the intelligent measure and control of electricity usage in a home environment.

3. Methodology

In this section, the implementation of hardware for measurement, control and commu-
nication is discussed. Figure 1a illustrates a block diagram of the controller that analyses
and records all input data. The recorded data is stored in an SQL database. The data is
analysed with partial clustering to identify specific patterns. The prediction model formu-
lated is a combination of fuzzy logic with hidden Markov model forecast the following
twenty-four hours consumption and solar efficiency. Based on the prediction, the model
controls the output actuator that are a geyser’s electrical element. Figure 1b illustrates a
basic layout between the controller and the IoT devices. The IoT devices can be a Wi-Fi
device with multiple input sensors and output actuators or can also be internet-based, like
weather predictions or a user controlling the setup via a web page. The device caters for
any combination of sensors and they do not need to be of the same type for example control
geyser and room light from the same IoT device.
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Figure 1. (a) block diagram of overview system. (b) controller and devices with sensors.

3.1. Hardware Setup

The research is conducted in Johannesburg South Africa, which lays in the summer
rainfall region. The system is installed in a residential house, which is occupied by four
people busy with their daily routines, which include going to work or school. The hardware
setup involves a 200-litre electrical geyser, with a 4 kW element, controlled with a time-
based controller [13]. The geyser is also connected to an outside solar water collector with
a solar pump. The pump is connected to an external photovoltaic (PV) panel, controlling
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the circulation of the water through the geyser if the outside panel water temperature is
7 ◦C higher than inside the geyser as illustrated in Figure 2.
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Figure 2. Solar geyser setup.

The requirement for the recording device is to record warm water usage, solar heating
and standby electrical heating. This requires temperature sensors recording the geyser
water temperature, warm water pipe temperature and temperature inside the roof. The
ambient roof temperature is needed for calculating geyser heat losses and is presented in
Equation (1) [14].

qloses =
Th− Tambient

∆x
k + 1

h
(1)

where, qloses is the heat loss in W/m2, Th is the water temperature inside the Hot Water
Cylinder (HWC) and Tambient is the air temperature outside the HWC in ◦C, ∆x is the
thickness of insulation in m, k is the thermal conductivity in W/m·K and h is the surface
heat transfer coefficient in W/m2·K.

The devices utilizing electricity also require current sensor recording when an elec-
trical element is switched on, and movement sensors recorded occupation. This requires
the use of IoT-ready technologies. Multiple off-the-shelf home controlling systems were
investigated for this, but none were found to be suitable, as access to recorded data is
required. Therefore, a bespoke setup is employed and Table 1 indicates the specification of
the components used for the IoT sensor set up.

Table 1. Specifications.

Device Description

NodeMCU ESP8266-12E
1 ADC and multiple general function ports

with 2.4Ghz 802.11 b/g/n wireless standard,
flashed with ESP8266-basic [15,16].

LM4052 4 Port Analogue Multiplexer for Current and
Temperature Sensors.

Yhdc Non-Invasive clip-on current sensor 30A/1V Current monitor confirm Element
status as illustrated in Figure 3a.

3xLM317 temperature sensors Recording geyser or Pool water temperatures.

H105F-1 SPST relay Maximum contact current of 40A and average
resistive load of 30A@240V AC.

The ESP8266-12E monitors the geyser element with a sealed electromagnetic H105F-1
SPST relay providing a maximum contact current of 40A and average resistive load of
30A@240V AC. Recording the temperatures is done with three LM317 temperature sensors.
The completed recording device is illustrated in Figure 3.
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3.2. Sensor Registration

The software is implemented in Microsoft Visual Basic Studio 2010 and SQL 2010
on a Microsoft Windows 10 operation system to receive and store data from multiple
devices with multiple sensors. The device must be able to be software defined for multiple
applications and the General Purpose Input/Output (GPIO) pin’s including its feature
must be registered as an endpoint when the sensor registers with the controller. This
scalable design enables the controller to add any future type sensor as illustrated in Table 2.
Figure 4 illustrates the SQL table structure created to support sensor registration and value
recording. When the ESP8266 registers, it requires a unique identification. The device
ID, amount of IO’s, name and IP address are registered. The controller then requests the
information of each endpoint. The endpoint ID, with the devices ID, endpoint type and
endpoint name are stored in the endpoints table. The value of the endpoint is requested,
after the controller associated an endpoint with an application feature.

Table 2. IoT sensor endpoint types.

Description Type ID Direction AnaDig Group

TempGeyserInside 1 I A Geyser
TempGeyserOutside 2 I A Geyser

TempGeyserPipe 3 I A Geyser
CurrentGeyser 30 I A Geyser
Relay Geyser 100 O A Geyser

Pool Temp Inside 4 I A Pool
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The IoT sensors update the server whenever any sensor reading changes. The server
saves all this information into the SQL database to be analysed later.
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3.3. Process Overview

An overview of the three-stage process is as follows.
(1) profiling geyser water usage, which involves (a) fuzzified roof temperature, warm

water pipe temperature and geyser water temperature into crisp warm water usages: None,
Small, Medium and Large (Algorithm 1).

Algorithm 1: Fuzzified geyser, roof and pipe temperatures
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Algorithm 4: Calculate to enable geyser element

Infrastructures 2021, 6, x FOR PEER REVIEW 9 of 28 
 

Algorithm 4: Calculate to enable geyser element 

 



Infrastructures 2021, 6, 67 10 of 27

Algorithm 5: Final prediction to enable geyser element
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4. Data Analysis

Following the methodology outlined previously, this section discusses the process for
profiling the geyser’s warm water usages and solar heating.

4.1. Fuzzified Geyser Usages

Geyser, pipe and roof temperatures with current recording are illustrated in Figure 5,
depicting a clear difference between a shower and bath usage.
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Specifically, Figure 5a illustrates that the geyser temperature dropped by 10 ◦C when
a shower is taken against 20 ◦C in Figure 5b when a bath is taken during one of the winter
months. The same effects are noted during the summer months but with an average 8 ◦C
when a shower is taken compared to 15 ◦C when a bath is taken during the same period.

Fuzzy logic is used to group the geyser usage into fuzzy linguistic terms: None, Small,
Medium and Large. Sensors are used to record a month of data included in the fuzzy set [17].
Fuzzylite 4.0 [18] is used in this research to develop fuzzy sets before it is implemented into
the controller. The delta values for each membership function were taken over five-minute
periods and the highest usage per hour is recorded for further predictions. The shape of
a membership functions is defined mathematically by various shapes and is dependent on
the purpose. Zadeh et al., classified the membership functions into two groups: Linear and
Curved. A membership function µA(x) defines the degree in which x verifies in the fuzzy
set [19], depicted in Equations (2)–(4). Roof temperatures are included in the fuzzy logic
model to determine the difference between water pipe temperature increases and cool down
effects from water usage or weather temperature changes. The roof temperature changes
only influence None and Small usages. The three fuzzy sets created with multiple linguistic
membership functions are illustrated in Figures 6–8:

• DeltaGeyserTemp Set: DropHigh, DropMedium, DropLow and Heatup Membership;
• DeltaPipeTemp Set: CoolDown, Normal, SmallRise and LargeRise Membership;
• DeltaRoofTemp Set: Drop, Constant and Rise Membership function.
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Appendix A displays the thirty rules created from the Fuzzy sets covering all the 
options satisfactory for this purpose. Lastly, defuzzification is the interface between the 
rule base and the application’s physical output control. It converts all the output member-
ship function back to crisp terms using several common defuzzification formulas [17]. By 
means of a simulation-driven process it is determined that the largest of maximum as S-
Norm produced the best outcome from all the sum off all inference calculated [21], as 
illustrated in Figure 9, where the best and largest crisp term is illustrated, and calculated 
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S-NormNone = 0.3335 + 0.3335 + 0.25 = 0.917 (7)
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The pseudo code in Algorithm 1, illustrates the algorithm to “fuzzify”, inference and
“defuzzify” the roof, geyser and pipe temperatures each five-minute interval to give a
None, Low, Medium or Large output according to fuzzy logic controller design procedures.
First fuzzification converts the physical input values into a normalized fuzzy subset and an
associated membership function, which involves allocating suitable linguistic. The main
purpose of this step is to make the input signal compatible with the fuzzy control rule base.
The fuzzy set and the membership function need to be designed for each application and
fuzzified warm water usages are as follows [20]:

µGeyserTemperature = (mx + c)/drophigh + (mx + c)/dropmeduim + (mx+

c)/droplow + (mx + c)/normal + (mx + c)/heatup
(2)

µPipeTemperature = (mx + c)/cooldown + (mx + c)/normal + (mx + c)/smallrise+

(mx + c)/largerise
(3)

µRoofTemperature = (mx + c)/drop + (mx + c)/constant +(mx + c)/rise (4)

Next, the inference process, simulates human decision making based on linguistic
rules to generate a fuzzy response [21]. The rule base depends on the developer expert
knowledge about the specific system. The fuzzy logic controller needs to determine the
choices in input and output variables for the IF THEN rules [17]. With simulations it was
determined that the algebraic product for T-Norm used produced the best outcome during
the inference phase with Equations (5) and (6) illustrating the calculations involved in rule
9 and 14, as shown in Table A1.

T − Norm9 = µDeltaRooTempNotDrop(1− 0.5)× µDeltaGeserTempDropLow(0.5)×
µDeltaPipeTempCooldown(1) = 0.25

(5)

T − Norm14 = µDeltaRooTempDrop(0.5)× µDeltaGeserTempHeatup(0)×
µDeltaPipeTempCooldown(1) = 0

(6)

Appendix A displays the thirty rules created from the Fuzzy sets covering all the
options satisfactory for this purpose. Lastly, defuzzification is the interface between the rule
base and the application’s physical output control. It converts all the output membership
function back to crisp terms using several common defuzzification formulas [17]. By means
of a simulation-driven process it is determined that the largest of maximum as S-Norm
produced the best outcome from all the sum off all inference calculated [21], as illustrated
in Figure 9, where the best and largest crisp term is illustrated, and calculated as follows:

S-NormNone = 0.3335 + 0.3335 + 0.25 = 0.917 (7)

S-NormSmall = 0.25 (8)

S-NormMeduim = 0 (9)

S-NormLarge = 0 (10)
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4.2. Profile Solar Geyser Heating

It is significant to predict the solar efficiency at the start of each day, to determine
the optimal electrical energy that could be added to the water heating system. Partial
partitioning is, therefore, used to create three medoids to simplify the investigation, by
seeking for the relationship between environmental conditions and the solar heating
efficiency [22]. This is needed, as the solar radiation predictions are not commonly available.
Research done by Sauer et al., confirmed this as a suitable approach. By using clustering
and HMMs, solar radiation can be calculated for a specific location [4]. To deal with large
data sets, a sampling method called clustering large application (CLARA) can be used
where only one random sample is taken to calculate the best medoids. This increases the
processing time but decreases the possibility to select the best medoids drastically. An
algorithm called clustering large Application, based upon randomised search (CLARANS),
is used because it is a trade-off between cost and effectiveness. The algorithm selects
n-times a temporally medoid and calculate if the newly selected medoid will improve the
absolute-error criterion. If the error improves, the temporal medoid is chosen as the new
medoid [23].

Instead of recording the weather conditions the official weather predictions are used
as an internet-based sensor. Figure 10 illustrates the graphical interpretation of the xml file
retrieved from openweathermap.org.
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The influence of temperature, humidity, cloud cover and wind speed are investigated
determining the factors required for the prediction algorithm. Maximum weather condi-
tions between 08h00 and 14h00 are used as conditions outside these time periods had little
to no influence on the solar heating as illustrated in Figure 11.
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Figure 11. Roof, water pipe and geyser temperatures.

The historical geyser water temperature could not be used as a reference point, because
it is a combination of electrical and solar energy added to the system. Electrical energy
could have been added to the system if the water is too cold. Taking the water temperature
would indicate a higher temperature as what is possible via solar energy for the day. The
roof temperature is used to calculate the amount of solar energy added to the warm water
(geyser temperature) as there is a close relationship between them illustrated in Figure 11.

The daily maximum temperature, cloud cover, humidity wind speed and roof temper-
ature for 2018 are shown in Figure 12. The green line, labelled A, illustrates the maximum
daily cloud cover and humidity trends, the orange line, labelled B, the recorded maximum
roof temperatures and the red line, labelled C, the maximum temperatures. Cloud cover
and humidity do not have any significant influence during the colder winter month to the
roof temperatures. Label D illustrated from middle April to end October that the cloud
cover is 0%. Investigating the calculated medoids, three seasons are classified:

1. Rainy season: High (January, February, March, April) where cloud cover and humidity
goes above 70%;

2. Rainy season: Low (October, November, December) where only cloud cover goes
above 70%;

3. Rainy season: None (May, June, July, August, September) where cloud cover and
humidity readings are below 70% on average.
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The hidden Markov model is used to predict the solar efficiency from the weather
patterns, as HMM utilizes a double stochastic process with underlying stochastic process
that is not observable. This hidden layer can only be observed through another set of
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stochastic processes that produce the sequence of observed symbols as required [24]. The
probability of the output only depends on the current state in which the Markov vhain is
in [25]. HMM defines the initial state probability, transition probability and observation or
emission probability as:

Initialstateprobability : πi = P[q1 = si], 1 < i < N (11)

Transitionprobability : aij = P[qt = sj|qt−1 = Si], 1 < ij < N (12)

Emissionprobabilities : bj(k) = P[vkatt|qt = Sj], 1 < j < N, 1 < k < M (13)

where, P is the probability, N is the number of hidden states, V refers to the set of distinct
observations observed, M is the number of distinct observations per state, St is the state at
time t, qt is the current state at time t and vk is the kth observation symbol. λ represents the
complete parameter set of the model where [26].

λ = (A, B, π) (14)

Three basic problems must be solved for HMM to be useful in real-world applications.
(1) Evaluation. Given O and λ, how can the probability of a given model producing the
output sequence P(O|λ) efficiently be computed? A solution is the forward algorithm; (2)
Decoding. Given O and λ, how can a given sequence Q = q1, q2 . . . qT best explains the
observations O? A solution is the Viterbi algorithm; and (3) Learning. Given O, how to
choose a model parameter λ to maximize P(O|λ)? A solution is the Baum–Welch algorithm.
Where O is the observation sequence and Λ is the hidden Markov model [27]. In other
studies, ambient conditions are used predicting weather patterns.

In this study, the weather predictions are used as the known observations and the
water heating as the hidden component. First, three HMM modules are built, one per
season which are: High, Low and None. The expected outcome from the HMM is the
probability to maximize the heating process with solar radiation from weather predictions.
In creating the HMM an assumption is made that the normalised values between 0 and
0.32 will be Low, 0.33 to 0.65 Medium and 0.66 to 1 High for temperatures and 0 to 0.69
Low and 0.8 to 1 High for humidity and cloud cover. An assumption is made based
on historical data to classify cloud cover and humidity above 70% together as cloudy,
preventing using multiple order HMM. Figure 13 illustrates the roof and weather HMM
initial state, transition and observation probability distribution for the low rainy season.
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To solve the second HMM problem the Viterbi algorithm, which is a dynamic program-
ming method, is used to find the best possible hidden state path to decode and predict the
roof temperature [28]. Solving the last HMM problem, training, the Baum–Welch algorithm
is used [29].
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5. Results and Discussion

This section covers the HMM training process to predict the geyser’s warm water us-
ages and solar heating. These predictions are calculated when the electrical backup element
must be enabled producing a balance between human convert and saving electrical energy.

5.1. Profile Solar Geyser Heating

Training the HMM, Baum–Welch algorithm was used with the forward/backwards
algorithm. A set of reasonable re-estimation formulas for A, B, π are in [30].

π‘i = expectednumbero f timesSiattime (t = 1) (15)

α = aij =
expected number o f transitions f rom state Si toSj

expected number o f transitions f rom Si
(16)

β = bj(k) =
expected number o f times in state j and observing symbol Vk

expected number o f times in state j
(17)

The first problem encountered, when one year’s data is simulated, is that the module
starts getting stuck into a specific prediction. Investigating the HMM trained transition and
emission values it is found that certain values become zero. Equations (15)–(17) are used to
train the module. It is evident that the values used to multiplying or dividing, resulting in
an outcome of zero or undefined. The outcome is that certain predictions are fixed as a 1 or
0, as shown as prediction b represented by Equation (18).

b′ =

 0 1 0 0
0 1 0 0
0 1 0 0

 (18)

Resolving the stuck in local maxima appearance by first ensures that no HMM model
values are 1 or 0 [31]. Another problem is that after the Baum–Welch algorithm alters the
model values the sum of the normalised values are not always 1; this is referred to as the
label bias problem. First the model values are re-normalised after every Baum–Welch calcu-
lation. Pseudo code in Algorithm 2 shows the solution adopted to ensure no HMM values
are represented by a zero. By subtracting 0.01 from the highest prediction and adding it to
the zero valued probability ensuring the lowest value can only be 0.01. The same process is
followed for the other HMM Initial, Transition and emission values. These modifications
are shown as modification 1:1 to modification 1:3 in pseudo code in Algorithm 3. It also
illustrates a detailed flow chart after observation state Cloudy is calculated. The same
flow chart can be used for other observation states, as WeatherCloudy by replacing it with
WeatherHigh, WeaterMild and WeatherLow depending on the observation states. The
forward algorithm [32] is used determining the re-estimated transition probability α as
illustrated in example 1 in the Appendix B. Partial partitioning medoids did indicate that
yearly historical data indicate a weather trend, but it could not be used to make next day
prediction. If less historical data is used, sudden changes in weather prediction have a
higher accuracy. This however, with the less historical data, lost the knowledge that the
probability is higher for a warm day during the summer than winter months. Through
altering this amount of data, the best Baum–Welch results are obtained by using a combi-
nation of old data and new to an 8:2 ratio illustrated as modification 2, as depicted in the
pseudo code in Algorithm 3 and Mod1 in Figure 14.

Figure 14 illustrates the Baum–Welch border and correct trained prediction comparison
between different observation length and with and without the 8:2 yearly and daily data
used. An observation length of seven days with modification did result in highest correct
and lowest incorrect prediction over 12-month period. Viterbi algorithm is used, predicting
the next day’s solar efficiency from daily HMM trained by Baum–Welch algorithm.
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Figure 15a–c indicates the Baum–Welch output for the trained roof probalities from
high to any, mild to any and low to any, where HML indicates the roof temperatures high,
mild and low. TrHM for example in Figure 15a indicates the transition probabiliy for the
roof temperature changing from a high temperature to a mild temperature. Figure 15a
illustrates the probability for a high following by a high is the best during the summer
and high following by a low during the winter. Point A, illustrates that the probabilities
are low for the entire year for a mild temperature to be followed by a low temperature.
Point B highlights that during spring and early summer the probability is the highest for a
mild roof temperature. During winter, June and July at point C, there are periods where
a Low temperature is the best followed by a Low at point D, but around start July the
probability is better that a mild temperature will follow a Low temperature at point C. An
explanation for that is when the last cold fronts for the winter season passed throught the
area monitored. Figure 15d–f illustrates the emission probabilities between the weather
conditions and the roof temperatures where for example EmCL indicates the probability
that the roof temperature will be low when the weather condition is cloudy. The diagrams
illustrate the HMM model train correctly between seasons and points E illustrates that the
best scenarios for high are during spring and early summer months which are between
September and December. During the rainy season, February to April, the probability
where the best for a mild roof temperature as shown at point F, a mild followed by a low
shown at point G and low temperature during winter shown at point H.

5.2. Warm Water Probabilities

As all the data is processed by means of a fuzzy logic approach, and with no hidden
component, the probability that the water usage is None, Small, Medium or Large is
calculated by the sum per usage, divided by the sum of samples as defined by Bayes’
theorem where [33]:

p(A
∣∣∣∣B) = (p(A) ∗ p〈B|A〉

p(B)
(19)

Keeping track of usage per hour is the most accurate approach, but this also requires
the most processing and memory resources. To investigate Figure 16a further, the readings
are divided into three-hour slots. First, timeslots are created starting from 0h00 to 2h59,
3h00 to 5h59, . . . ., until 21h00 to 23h59, as indicated with the green lines marked as A. The
warm water usage only changes from None too Small between 4h00 and 5h00. The system
must start heating the water before 3h00 to ensure correct water temperature starting
timeslot 3h00 to 05h59. If the timeslots are forwarded with an hour, as illustrated by the
red lines and marked as B, the timeslots will be from 1h00 to 3h59, 4h00 to 6h59, . . . ., until
22h00 to 0h59 presentation the warm water usage better. The Large usages also fall in the
timeslot 19h00 to 21h59, otherwise the system would require heating the water for Large
usage also between 21h00 and 23h00.
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Figure 16b illustrates the warm water usage per three-hour timeslots. It is notable
that the trend of usage per hour and three hours did stay the same with a low level of
loss in weight per category per timeslot. The same principle is used training the water
usage probability per three-hour slots, as heating the water with solar energy by using
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a combination of historical and Baum–Welch calculated values. Figure 17 illustrates the
influence on prediction through two factors. First, the percentage historical with new
seven days calculated prediction. The x-axis category “1 5% 10–90” means the following:
Timeslot 1, highest weight usage 5%, 10% seven day and 90% historical data used. The
label represents the water usage predations where C represents the water usage predicted
correctly, H1—the geyser water is heated one usage class higher, H2—two water usage
classes higher, H3—three water usage classes higher and I—indicates that the water is
heated to cold. An example of one water usage class higher is when the water was heated
for large usage, but only medium water usage was used. The one to eight (x-axis) indicates
the eight timeslots.
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Figure 17 also illustrates the results between 10–90%, 50–50% and 60–40% weight that
the highest number correct predictions were the sum of 50% historical and 50% previous
seven days prediction as indicate with the red highlights. With 50–50% given the highest
correct predictions changing the highest used weight from 5% to 4% the number correct
predictions decrease but also the number of incorrect predictions as indicated by the purple
arrows. A steep increase in H1 (Water heated on class higher then needed), orange arrows
is noted. A small inline is also noted at H2. Lastly, a higher value of the condition “highest
used weight” will produce better power savings but lower human satisfaction, where
lower value of this condition “highest used weight” will produce lower power savings
with higher human satisfaction. By means of simulation it is determined that the highest
percentage usage per timeslot cannot be obtained by using data of the 14 January 2018
Timeslot six for example: None 45%, Small 42%, Medium 8% and Large 4%. The system
could not produce a result of usage that is represented by None. A new variable is included
determine from UsageHigh to UsageLow the minimum percentage used, determining the
usage selection. For example, if the cut-off is 5%, the prediction will be Medium but if the
cut-off is 4% the prediction will be Large.

5.3. Combining Water Usage and Solar Heating Predictions for Controlling Geyser Element

To conclude the combining of the solar geyser heating prediction and warm water
usage prediction together, to determine when and by which factor, an electrical energy
must be injected to the geyser with an electrical standby element if solar energy will
not be sufficient to supply hot water for a specific period. The system did require the
cooling period and some geyser parameters are challenging to collect due to the thickness
of insulation, thermal conductivity and surface heat transfer coefficient. A function is
therefore added to calculate the loss parameter ∆x /k + 1/h in Cm2/J according to Equation
(1) from historical recordings. Investigating the recordings, a suitable condition is found
to be between 24 March 2018 00h30 to 03h30, where the ambient temperature dropped
from 17.2 ◦C to 17.1 ◦C. All the other parameters are predefined and by calculating the loss
parameter as 3.638 × 10−4, resulting in 222.9333 kJ losses per hour. The heating period is
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calculated by how much energy needs to be added to the system with Q = mc∆T where m
is the mass in litres of water, c = 4180 Joules per litre per ◦C [14,34] and ∆T is the change in
temperature in ◦C. The system requires some user input, as there required temperature
for timeslot with prediction None, Small, Medium and High usage for a cold day, which
is lower than 25 ◦C and a warm day. Pseudo code in Algorithms 4 and 5, illustrates the
prediction, if the element must be switched on or off. The algorithm requires knowledge
of when the next timeslot started. Time-based controllers start heating the water at a
specific time of day. This algorithm already has the knowledge of the geyser parameter and
calculates the start time to heat the water, having the correct water temperature entering a
specific timeslot. The following rules are implemented in the prediction model:

• Except for timeslot four to six, no solar heating will be included to determine if geyser
element must be enabled.

• For each timeslot, the current and next timeslot minimum temperatures values
were retrieved.

• Every five minutes or when temperatures changes, the time-period not elapsed in
timeslot and time required to heat water from current temperature to next time slot
are calculated.

If the geyser water temperature is lower than the required temperature and the water
is not busy with cooling down period, the element is switched on. The cool down period is
enabled when required water temperature is reached and disabled when water is cooled
down for 5 ◦C eliminating geyser switch on/off the entire time if temperature drops 0.1 ◦C
and switch of seconds later when required temperature is reached (to implement hysteresis).
The geyser will also be switch on, if the water temperature is correct for required timeslot,
but the time left at current timeslot is less or equal than the time needed to heat the water
to minimum temperature for next timeslot. During timeslot four, the next timeslot which
starts at 10h00, the process changes heating water for the next timeslot. As it is still early
in the morning the element will heat up the water except if the solar prediction is High.
During the middle of the day, which is timeslot five and six, the element will only be
enabled for current and next timeslot temperatures if the solar prediction is Low.

For the most accurate data, the simulations were done continuously from 11 Jan-
uary 2018 until 21 December 2018, and not per day. Figures 18 and 19 illustrates two
samples taken.
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The difference between controlling the geyser element with a time-based controller
against a controller with solar heating and warm water usage that can adopt to external
changing factors are shown in Figure 18 with the same warm water usage. The figure
illustrates the comparison over a weekend starting Saturday with cloud cover up to 90%
during the solar heating time periods. Investigating the effects over two days illustrates a
more accurate representation if solar heating is inefficient. Investigating the 17 March 2018,
it is shown that the algorithm predicts a medium use on a cool day. At 08h00 there is a large
usage and no heating was required before the time. Compare this with the recording it is
notice the water was heated and used just afterwards, indicating that the controller was
override as there was no warm water to use. Afterwards, the water was not heated leaving
the household with cold water the entire day. The simulator did have knowledge of the
weather prediction and heated the water with the element. Both controller and simulator
incorrectly heated the water the afternoon for a large usage, as it was already implemented
earlier the day.

The Sunday, at point A, it is noticeable that the recordings shown between 10h00 and
13h00 an increase in temperature and indicate it is done through the solar collector, as
the element is not activated. As the simulation heat the water at point B and no Large
warm water usage occur, resulting that the water is warmer, as which the solar collector
could heat the water at point A. This indicate in an incorrect prediction to heat the geyser
water at point B, but it did result in warmer water the entire 18 March. Starting at the 17th,
the recordings indicate the water is 2 ◦C higher than the simulation and at the midnight,
the 18th, the recorded temperature is 1 ◦C higher than the simulator with the simulator
activated the element for 3 h against the recorded 3.91 h.

Figure 19 investigates 16 July 2018, illustrates the comparison between the simulator
and recording for a cold clear winter’s day. There are two large usages at 11h20 and again
at 20h40. It is noted that the simulator did heat the water, with higher temperatures as
the recordings with the element activated for 2 h and 10 min against the recorded 5 h and
55 min.

Appendix D illustrates a sample of the calculations of the geyser water usage to
the geyser water prediction training. Figure 20 shows a yearly comparison between the
algorithm simulation and the recordings. As expected, both did activate the element more
during the winter with July, the most and the dry summer month December and January
the least.
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Figure 20. Yearly energy saving time-based vs. prediction model.

The algorithm did activate the element less for all months as can see for example
during Jun the prediction module activated the element 259 timeslots against the actual 371
timeslots, except for September and October where the simulation did activate the element
2 and 26 timeslots more than that was recorded with a time-based controller. The simulator
is activated 728 times 5 min less, result in 61 h per year. As most off the savings in heating
water are already accomplished by installing a solar collector and a warm water time-based
controller. There is no major saving in the electrical bill, but it is proved that a controller
that has knowledge of external conditions switched the element 3024 five-minute intervals
against 3752 five-minute intervals. In the simulation the intelligent controller switched the
element 728 times less and is 19.4% more efficient than a time-based controller with higher
warm water temperatures during the day. The biggest advantage is a higher customer
satisfaction as there are fewer occasions that the controller must manually activated or
re-programmed.

6. Conclusions

The study was applied on a time-based controlled solar heated geyser environment.
Human behaviour was incorporated as a criterion as sensor readings change with the
withdrawal of hot water from the system. Thus, addressing event classification correctly,
for the model to be able to differentiate between sensor reading fluctuations by an event
or environmental conditions. For example, the drop-in temperature during night-time
had the same behaviour on the pipe temperature as the use of a small amount of hot
water. Membership functions were correctly created to categorise changes in water pipe
temperatures as water usage or increase or decrease in ambient temperatures.

Partial partitioning were implemented to analyse the data, creating medoids, simplify-
ing and analysing thousands of recorded entries. This produced a result of a certain pattern
associated per season. Implementing yearly or monthly historical data did not indicate
accurate prediction probabilities for the newly develop prediction model. Analysing the
data, clarified that a combination of all historical data (yearly, monthly, weekly and daily)
must be used with a different weight, to increase the prediction model accuracy.

By implementing the standard Baum–Welch algorithm to resolve hidden Markov
model’s training, it was found that if the observation sequence was too long, the probabili-
ties could become zero, resulting in local maxima appearance. This scenario was a different
outcome to that which was expected based on the related literature, as when the hidden
Markov model is employed in other applications the predictions become more accurate
with larger observation sequences (for example within robotics or speech recognition ap-
plications). The standard hidden Markov model with Baum–Welch was found not to be
suitable to train the model for sudden environmental and human behavioural changes. If
the standard hidden Markov model was used, multiple HMM models were required, as
each season observation was different and did decrease the accuracy of one global model.
Another shortcoming encountered with the standard Baum–Welch backwards algorithm
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was that it did not include the current training forward (α) calculations. This was another
factor that made the standard HMM slow in adopting in sudden environmental or human
behavioural changes.

Combining historic and seven-day historical recordings (with a weight of 90% for all
historic recordings and 10% for the past seven days), made the model sensitive to sudden
changes in weather conditions without the need to develop a new training model. The
modified Baum–Welch algorithm resulted in the use of only one HMM model with no season
specific knowledge with only five incorrect hidden Markov predictions for the year 2019.

Simulations on the overall system did indicate that the geyser controller was up to 20%
more efficient than a time-based controller. However, though savings seemed minimal the
most significant advantage was that more reliable hot water was provided when needed.
New contributions made in this study by implementing the developed prediction model
are as follows:

• Converting sensor readings into linguistic terms simplified the prediction.
• Altering the Baum–Welch algorithm by means of the hidden Markov model training

by decreasing the length of the observations. Thus making the predictions more
accurate through adding different weights to different age emissions and observation
data for prediction models where sudden behavioural changes can occur.

• Proving that an artificial algorithm can be implemented in a smart home or office envi-
ronment with the same comfort levels, but also reducing the electrical power usage.

The same algorithm can be applied to other large power consumption product like a
swimming pool with solar panels. Future research can be done investigating additional
saving by having different HMM’s for workdays, weekends and public holidays.
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Appendix A

Table A1. Fuzzy rules fuzzified Roof, Geyser and Roof temperatures.

Rule DeltaRoof And
DeltaGeyser And DeltaPipe Usage

1 not Drop Heatup Cooldown UseNone
2 not Drop Heatup Normal UseNone
3 not Drop Heatup SmallRise UseSmall
4 not Drop Heatup LargeRise UseMedium
5 not Drop Normal Cooldown UseNone
6 not Drop Normal Normal UseNone
7 not Drop Normal SmallRise UseSmall
8 not Drop Normal LargeRise UseMedium
9 not Drop DropLow Cooldown UseSmall
10 not Drop DropLow Normal UseSmall
11 not Drop DropLow SmallRise UseSmall
12 not Drop DropLow LargeRise UseMedium
13 not Drop DropMedium UseMedium
14 not Drop Heatup Cooldown UseNone
15 not Drop Heatup Normal UseNone
16 not Drop Heatup SmallRise UseSmall
17 not Drop Heatup LargeRise UseMedium
18 Drop Normal Cooldown UseNone
19 Drop Normal Normal UseNone
20 Drop Normal SmallRise UseSmall
21 Drop Normal LargeRise UseMedium
22 Drop DropLow Cooldown UseNone
23 Drop DropLow Normal UseNone
24 Drop DropLow SmallRise UseSmall
25 Drop DropLow LargeRise UseSmall
26 Drop DropMedium Cooldown UseSmall
27 Drop DropMedium Normal UseSmall
28 Drop DropMedium SmallRise UseMedium
29 Drop DropMedium LargeRise UseMedium
30 DropHigh UseLarge

Appendix B

Example 1: Forward algorithm determine α

h = Hot, m= Medium, l = Low
O = H,H,H,H,H,H,H,H
Π =

[
0.48 0.34 0.18

]
A =

 0.75 0.17 0.08
0.19 0.62 0.19
0.22 0.33 0.45


B =

 0 0.96 0.04 0
0.06 0.71 0.23 0
0.11 0.11 0.56 0.22


The first Equation (18) is modified, as illustrated in pseudo code in algorithm 3,

modification 1-x, not consists of any zero’s or one’s.

B =

 0.01 0.94 0.04 0.01
0.06 0.7 0.23 0.01
0.11 0.11 0.56 0.22


The initial forward parameters calculated is based on the first weather observation

and the mathematical formula for the complete process is
αt(i) = π i biO1 where 1 < i < N
The forward values at T = 1 are calculated as follows:
Ot = H where t =1
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α1(h) = πh × bhh = 0.48 × 0.94 = 0.4512
α1(m) = πm × bhm = 0.34 × 0.7 = 0.238
α1(l) = πl × bhl = 0.18 × 0.11 = 0.0198
The next stage is calculating the induction for the following observation sequences as
αt + 1(j) = [ Σ αt(i) aij ] bj Ot + 1
The forward values at T = 2 to T = 8 are calculated as follows:
Ot = H where t = 2
α2(h) = [(α1(h) × ahh) + (α1(m) × amh) + (α1(l) × amh)] × bhh
= [(0.4512 × 0.75) + (0.238 × 0.19) + (0.0198 × 0.22)] × 0.94 = 0.36469744
α2(m) = [(α1(h) × ahm) + (α1(m) × amm) + (α1(l) × aml)] × bhm
= [(0. 4512 × 0.17) + (0. 238 × 0.62) + (0.0198 × 0.33)] × 0.7 = 0.1615586
α2(l) = [(α1(h) × ahl) + (α1(m) × aml) + (α1(l) × aml)] × bhl
= [(0. 4512 × 0.08) + (0. 238 × 0.19) + (0.0198 × 0.45)] × 0.11 = 0.0101486
The same process is followed for O3 to O8

α =

 0.4512 0.3647 0.3061 0.2441 0.1937 0.1534 0.1213 0.0959
0.238 0.1616 0.1215 0.0921 0.0713 0.0558 0.0438 0.0345

0.0198 0.0101 0.0073 0.0055 0.0043 0.0034 0.0026 0.0021


The final likelihood is calculated as
P(O|λ) = Σ αT(i)
The likelihood for the observation sequence is 0.132657661

Appendix C

The backwards algorithm [35] is used determining the re-estimated emission proba-
bility β. It requires the initial, transition and emission probabilities and the observation
sequence and is explained in Example 2.

Example 2: Backwards algorithm determine β

The initial backward parameters calculated is based on the first weather observation
and the mathematical formula for the complete process is

βT(i) = 1 where 1 < i < N.
The forward values at T = 9 is calculated as follows:
Ot = H where t = 8
β8(h) = 1
β8(m) = 1
β8(l) = 1
The next step is calculating the induction for the following observation where
βt(i) = Σ βt + 1(j) aij bj Ot + 1 where 1 < j < N and 1 < t < T − 1
The backwards values at T = 7 to T = 2 are calculated as follows:
Ot = H where t = 7
β7(h) = [(ahh × bhh × β8(h)) + (ahm × bhm × β8(m) + (ahl × bhl × β8(l)]
= [0.75 × 0.94 × 1] + [0.17 × 0.7 × 1] + [0.08 × 0.11 × 1] = 0.8328
β7(m) = [(amh × bhh × β8(h)) + (amm × bhm × β8(m) + (aml × bhl × β8(l)]
= [0.19 × 0.94 × 1] + [0.62 × 0.7 × 1] + [0.19 × 0.11 × 1] = 0.6335
β7(l) = [(alh × bhh × β8(h)) + (alm × bhm × β8(m) + (all × bhl × β8(l)]
= [0.22 × 0.94 × 1] + [0.33 × 0.7 × 1] + [0.45 × 0.11 × 1] = 0.4873
Ot = H where t = 6
β6(h) = [(ahh × bhh × β7(h)) + (ahm × bhm × β7(m) + (ahl × bhl × β7(l)]
= [0.75 × 0.94 × 0.8328] + [0.17 × 0.7 × 0.6335] + [0.08 × 0.11 × 0.4873] = 0.705393
β6(m) = [(amh × bhh × β7(h)) + (amm × bhm × β7(m) + (aml × bhl × β7(l)]
= [0.19 × 0.94 × 0.8328] + [0.62 × 0.7 × 0.6335] + [0.19 × 0.11 × 0.4873] = 0.433862
β6(l) = [(alh × bhh × β7(h)) + (alm × bhm × β7(m) + (all × bhl × β7(l)]
= [0.22 × 0.94 × 0.8328] + [0.33 × 0.7 × 0.6335] + [0.45 × 0.11 × 0.4873] = 0.342683
The same process is followed for O5 to O1
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β =

 0.2200 0.2782 0.3514 0.4431 0.5566 0.6936 0.8328 1
0.1212 0.1540 0.1965 0.2530 0.3313 0.4439 0.6335 1
0.1011 0.1281 0.1629 0.2082 02687 0.3427 0.4873 1


The final likelihood is calculated as follows and must be the same as the forward

likelihood calculated in Equation (13) [23].
P(O|λ) = [(πh × β1(h) × bhh) + (πh × β1(h) × bhh) + (πh × β1(h) × bhh)]
= [(0.48 × 0.2200 × 0.94) + (0.34 × 0.1212 × 0.7) + (0.18 × 0.101 × 0.96)]
= 0.1326576612

Appendix D

Sample of Geyser Usage Training Calculations

Infrastructures 2021, 6, x FOR PEER REVIEW 27 of 28 
 

Appendix D 
Sample of Geyser Usage Training Calculations 

 

References 
1. Rea, M.S.; Figueiro, M.G.; Bierman, A.; Bullough, J.D. Circadian light. J. Circadian Rhythm 2010, 8, 17. 
2. Bea, S.; Fang, M.Z.; Rustgi, V.; Zarbl, H.; Androulakis, I.P. At the interface of lifestyle, behaviour, and Circadian Rhythms: 

Metabolic Implications. Front. Nutr. 2019, 6, 2. 
3. Dintchev, O.D. Solar Water Heating as a Mechanism to Reduce Domestic Electrical Energy Consumption and Its Contribution 

towards South African Maximum Demand. In Proceedings of the 15th Domestic Use of Electrical Energy Conference, Cape 
Town, South Africa, 30 March–1 April 2006. 

4. Sauer, F.J. Predicting Solar Radiation Based on Available Weather Indications. Master’s Thesis, Missouri University of Science 
and Technology, Rolla, MO, USA, 2013. 

5. Delport, J. The Influence of Temperature on Residential Hot Water Load Control. In Proceedings of the 15th Domestic Use of 
Electrical Energy Conference, Cape Town, South Africa, 30 March–1 April 2006; pp. 2–3. 

6. LaMeres, B.J.; Nehvir, M.H.; Gerez, V. Controlling the average residential electric water heater power demand using fuzzy 
logic. Electr. Power Syst. Res. 1999, 52, 267–271. 

References
1. Rea, M.S.; Figueiro, M.G.; Bierman, A.; Bullough, J.D. Circadian light. J. Circadian Rhythm 2010, 8, 17. [CrossRef] [PubMed]
2. Bea, S.; Fang, M.Z.; Rustgi, V.; Zarbl, H.; Androulakis, I.P. At the interface of lifestyle, behaviour, and Circadian Rhythms:

Metabolic Implications. Front. Nutr. 2019, 6, 2.

http://doi.org/10.1186/1740-3391-8-2
http://www.ncbi.nlm.nih.gov/pubmed/20377841


Infrastructures 2021, 6, 67 27 of 27

3. Dintchev, O.D. Solar Water Heating as a Mechanism to Reduce Domestic Electrical Energy Consumption and Its Contribution
towards South African Maximum Demand. In Proceedings of the 15th Domestic Use of Electrical Energy Conference, Cape Town,
South Africa, 30 March–1 April 2006.

4. Sauer, F.J. Predicting Solar Radiation Based on Available Weather Indications. Master’s Thesis, Missouri University of Science
and Technology, Rolla, MO, USA, 2013.

5. Delport, J. The Influence of Temperature on Residential Hot Water Load Control. In Proceedings of the 15th Domestic Use of
Electrical Energy Conference, Cape Town, South Africa, 30 March–1 April 2006; pp. 2–3.

6. LaMeres, B.J.; Nehvir, M.H.; Gerez, V. Controlling the average residential electric water heater power demand using fuzzy logic.
Electr. Power Syst. Res. 1999, 52, 267–271. [CrossRef]

7. Catherin, Q.S. Effective Geyser Management through Intelligent Hot Water Usage Profiling. Master’s Degree, Cape Peninsula
University of Technology, Cape Town, South Africa, December 2009; pp. 51–56.

8. Bakker, V.; Molderink, A.; Hurink, J. Domestic heat demand prediction using neural networks. In Proceedings of the 9th
International Conference of System Engineering, Auckland, New Zealand, 1–3 September 2008; pp. 189–194.

9. Hohne, P.A.; Kusakane, K.; Numbi, B.P. A review of water heating technologies: An application to the African context. Energy
Rep. 2019, 5, 3. [CrossRef]

10. Thomas, R.S.M.; Xia, X.; Zhang, J.F. Energy Efficient Geyser. In Proceedings of the 17th Domestic Use of Electrical Energy
Conference, Cape Town, South Africa; 2008; pp. 3–6.

11. Wolter, N.; Carrim, M.; Cohen, C.; Tempia, S.; Walaza, S.; Cohen, C.; Sibongile, W.; Sahr, P.; Gouveia, L.; Treurnicht, F.; et al.
Legionnaires’ disease in South Africa 2012–2014. Emerg. Infect. Dis. 2016, 22, 131–133. [CrossRef] [PubMed]

12. World Health Organisation. Legionella and the Prevention of Legionellosis; WHO: Geneva, Switzerland, 2007; p. 30.
13. Geyserwise. Available online: http://geyserwise.com (accessed on 24 March 2019).
14. Delport, J. The geyser gadgets that work/do not work. In Proceedings of the 14th Domestic Use of Electrical Energy Conference,

Cape Town, South Africa, 29 March–2 April 2005; p. 3.
15. Tooley, M.; Tooley, R. Exploring the Arduino Part 12: Wi-Fi and the Internet of Things. In Everyday Practical Electronics; Wimborne

Publishing: Wimborne, UK, 2017; p. 41.
16. ESP Basic. Available online: www.esp8266basic.com (accessed on 3 June 2018).
17. Chen, G.; Pham, T.T. Introduction to Fuzzy Sets. In Fuzzy Logic and Fuzzy Control Systems; CRC Press: Houston, TX, USA, 2001;

pp. 147–149.
18. Fuzzylite. Available online: https://Fuzzylite.com (accessed on 19 May 2019).
19. Galindo, José, G. Fuzzy Databases: Modelling, Design and Implementation; Idea Group Publishing: London, UK, 2006; pp. 4–5.
20. Thaker, S.; Nagori, V. Analysis of Fuzzification Process in Fuzzy Expert Systems. In Proceedings of the International Conference

on Computer Intelligence and Data Science, Haryana, India, 7–8 April 2018; pp. 1308–1316.
21. Lee, K.H. First Course on Fuzzy Theory and Applications; Springer: New York, NY, USA, 2005; pp. 254–269.
22. Reynolds, A.P.; Richards, G.; de la Iglesias, B.; Rayward-Smith, V.J. Clustering Rules: A Comparison of Partitioning and

Hierarchical Clustering Algorithm. J. Math. Model. Algorithms 2006, 5, 475–504. [CrossRef]
23. Swarndeep, S.J.; Pandya, S. An Overview of Partitioning Algorithms in Clustering Techniques. Int. J. Adv. Res. Comput. Eng.

Technol. 2020, 5, 1945.
24. Liu, T.; Lemeire, J. Efficient and Effective Learning of HMMs Based on Identification of Hidden States. Hindawi Math. Probl. Eng.

2017, 2017, 1–2. [CrossRef]
25. Schliep, A. A Bayesian Approach to Learning Hidden Markov Model Topology with Biological Sequence Analysis. PhD Thesis,

Faculty of Mathematics and Science, University of Cologne, Düsseldorf, Germany, 2002; pp. 19–23.
26. Rabiner, L.R. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proc. IEEE 1989, 77, 7–12. [CrossRef]
27. Pietrykowski, M.; Salabun, W. Applications of Hidden Markov Model: State-of-the-art. Wojciech Salabun Et Alint. J. Comput.

Technol. Appl. 2014, 5, 1384–1391.
28. Pulford, G.W. Multihypthesis Viterbi Data Association: Algorithm Development and Assessment. IEEE Trans. Aerosp. Electron.

Syst. 2010, 46, 583–584. [CrossRef]
29. Rabiner, L.R.; Juang, B.H. An Introduction to Hidden Markov Model. IEEE ASSP Mag. 1986, 3, 4–16. [CrossRef]
30. Cappé, O.; Moulines, E.; Rydén, T. Main Definitions and Notations. In Inference in Hidden Markov Models; Springer:

Berlin/Heidelberg, Germany, 2007; pp. 35–47.
31. Li, C.; Biswas, G.; Dale, M.; Dale, P. Building models of ecological dynamics using hmm based temporal data clustering. In

Proceedings of the Fourth International Conference on Intelligent Data Analysis, Cascais, Portugal, 13–15 September 2001; pp.
54–55.

32. Soiman, S.; Rusu, I.; Pentiuc, S. Optimizing the Forward Algorithm for Hidden Markov Model on IBM Roadrunner clusters. Adv.
Electr. Comput. Eng. 2015, 15, 103–108. [CrossRef]

33. Downey, A.B. Think Bayes; Green Tea Press: Needham, MA, USA, 2012; pp. 2–4.
34. Melikyan, Z.; Egnatosyan, S. Developing of New Structure of Flat Plate Solar Water and Method for Calculation and Design. Int.

J. Energy Power Eng. 2016, 5, 143. [CrossRef]
35. Razael, V.; Pezeshk, H.; Perez-Sanchez, H. Generalized Baum-Welch Algorithm Based on the Similarity between Sequences. PLoS

ONE 2013, 8, e80565.

http://doi.org/10.1016/S0378-7796(99)00022-X
http://doi.org/10.1016/j.egyr.2018.10.013
http://doi.org/10.3201/eid2201.150972
http://www.ncbi.nlm.nih.gov/pubmed/26692504
http://geyserwise.com
www.esp8266basic.com
https://Fuzzylite.com
http://doi.org/10.1007/s10852-005-9022-1
http://doi.org/10.1155/2017/7318940
http://doi.org/10.1109/5.18626
http://doi.org/10.1109/TAES.2010.5461643
http://doi.org/10.1109/MASSP.1986.1165342
http://doi.org/10.4316/AECE.2015.02013
http://doi.org/10.11648/j.ijepe.20160504.11

	Introduction 
	Background 
	Methodology 
	Hardware Setup 
	Sensor Registration 
	Process Overview 

	Data Analysis 
	Fuzzified Geyser Usages 
	Profile Solar Geyser Heating 

	Results and Discussion 
	Profile Solar Geyser Heating 
	Warm Water Probabilities 
	Combining Water Usage and Solar Heating Predictions for Controlling Geyser Element 

	Conclusions 
	
	
	
	
	References

