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Abstract: Today, critical infrastructure is more interconnected, which allows more vulnerabilities in
the case of disasters. In addition, the effect of one infrastructure can lead to one or more cascading
failures in another infrastructure due to the dependency complexity between them. This article
introduces a holistic approach using network indicators and machine learning to better understand
the geographical representation of critical infrastructure. Previous work on a similar model was
based on a single measure; such as in fashion, this paper introduces four measures utilized to identify
the most vital geographic zone in the city. The model aims to increase resilience, focusing on the
preparedness phase by assessing the essential nodes of infrastructure, which allows more space
to adopt risk mitigation strategies before any disturbance event. Holding in-depth knowledge of
the vital zones of small scales and accordingly ranking them will positively improve the overall
system resilience.

Keywords: resilience; smart cities; critical infrastructure; dependency risk graphs; graph centrality;
cascading failures

1. Introduction

Today, our countries, national safety, financial success, and social health are primarily
reliant on a collection of highly interdependent critical infrastructures. Numerous cases
containing these systems can be viewed, including the power networks system, natural gas
infrastructure, communication infrastructure, water systems, and transportation systems.
Understanding these infrastructures’ behavior is crucial, particularly when stressed or
under attack. Infrastructures attacks include a wide range of physical attacks and virtual
attacks such as climate change and pandemics. One way to understand such behavior can
be reflected by obtaining resilience. Resilience in this scenario can be defined as the ability
of the system to prepare, absorb, and recover in a reasonable time. Metrics and models
related to infrastructure resilience can exhibit signs that affect the interdependent critical
infrastructures’ performances and operational features. These models and measures require
introducing interdependencies between infrastructures to present detailed descriptions of
infrastructure resilience such as [1,2].

Resilience has also been defined as the capacity of a system to absorb disturbance,
undergo change, and preserve approximately the equivalent function, structure, identity,
and feedback [3]. Resilient infrastructure is different from sustainable infrastructure, which
refers to designing, building, and operating the infrastructure through the day-to-day func-
tion in ways that do not reduce the social, economic, and ecological operations demanded
to maintain human equity, diversity, and the functionality of natural systems. Resilience en-
compasses three primary stages based on the functionality timeline: preparedness, recovery,
and restoration. Preparedness is a significant phase in promoting the function of interde-
pendent critical infrastructures, and for any infrastructure to be prepared, an enhanced risk
mitigation mechanism should be employed to the critical elements of that system.
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Nevertheless, determining the most critical components has been challenging, par-
ticularly in the state of multiple infrastructures. For example, based on the Department
of Homeland Security’s last report [4], there are more than 16 infrastructures that are
considered critical; yet, these infrastructures are not formed in an isolated form but more
in an interconnected fashion, and this raises the complexity of precisely locating the most
critical nodes.

This paper introduces a holistic approach that uses an indicator-based approach,
a network-based approach, and machine learning to better understand the geographical
representation of the critical infrastructures. Understanding such a model will allow for
the accurate measurement of infrastructures elements and determining which part has
the most impact and then will help avoid any future disaster by applying the protection
mechanism on that element.

The remainder of the paper is designed as follows. Section 2 reviews related work on
critical infrastructure analysis to identify the most exposed or significant elements. Section 3
presents our methodology to identify and assess a metropolitan city’s most vital geographic
zones. Section 4 provides numerical results from a case study with our suggested approach,
including a risk analysis. Lastly, Section 5 presents our conclusions.

2. Background and Related Work

One way of modeling infrastructure in literature has been conducted through the
network modeling [5]. By modeling the infrastructure as a network, the implementation
of centrality approaches to critical infrastructure protection and mitigation control can be
applied. However, this approach has been applied to a single infrastructure, and there is no
coherent framework apprehending other interdependent infrastructures as a comprehen-
sive system. In [6], the authors manage to identify essential nodes of critical infrastructure
based on the dependency risk graph by selecting a group of the most vital nodes and sug-
gesting applying risk mitigation strategies for these nodes to enhance the overall resilience.
Furthermore, they used graph centrality metrics to create and assess the effectiveness
of alternative risk reduction plans by examining the relationship between dependency
risk routes and network centrality properties. Nevertheless, several random graphs with
randomly selected dependencies were carried out to verify mitigation strategies. Both data
availability and modeling difficulties are the reason for generating random graphs.

Wang et al. [7] introduced a Node Topology Importance (NTI) method based on
estimating the valuation of physical connectivity of a power grid communication graph
after one node is damaged. The design employs several network measures to recognize
the significance of a node considering the dependency within the power and commu-
nication networks. In a similar work, ref. [8] merged business factors (e.g., change in
revenue/reputation, environmental cost, etc.) with graph metrics (e.g., betweenness cen-
trality) to discover the most critical nodes on a network.

In [9], authors present a method of leveraging deep learning for the detection of
threats to critical infrastructures before failures occur to enhance the overall system re-
silience. An automated review of the power infrastructure employing vehicle-mounted
video acquisition devices is examined, and a machine learning algorithm (deep convolu-
tional neural network) is formed, achieving high efficiency in identifying power-related
infrastructures within images mostly familiar with rural environments. The imaged picture
could be utilized to identify power-related infrastructure and possibly identify and flag
infrastructure at risk of collapsing. Another relevant work seeks to measure the interdepen-
dence between climate change and COVID-19 by providing a combined method for food
security [10]. Yet, there is still a gap in the literature to a unified approach covering the
exact value of links between such infrastructures. All related work has been looked into the
interdependence between one or at most two different infrastructures, such as power and
water, as shown in the example above. In this work, the suggested approach is applicable
to any number of different infrastructures located in the same geographical area, such as
water, power, communication, and healthcare. That is achieved by initiating a connection
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(links) between them and assigning a weight to each connection. The weight of each link
can be represented as the impact of each node on that link to the other (risk assessment
matrix). In the following section, we present a deeper explanation of how to generate such
links and assess and assign the corresponding weights.

3. Criticality Assessment Process Development

The criticality assessment in this work has been categorized into three hierarchical
levels, and each group has several features, as shown in Figure 1. The criticality model
contains three horizontal stages named level 1, level 2, and level 3. First, starting the
assessment of each region with level 3 where the data collection phase occurs based on
the metric type, for example, risk assessment for the examined area. Following that,
level 2 includes grouping the collected data into more organized groups where all data
are normalized and aggregated in this phase. Inside each group, we involve several
stages, which are represented as follows: (1) Select measures; (2) weighting all features; (3)
aggregate and rank measures; (4) feature selection.

Figure 1. Criticality Assessment Model.

3.1. Identify Measures and Data Acquisition

We select four primary measures to understand the geographic location we are endeav-
oring to assess. Every measure reflects a specific aspect related to the critical infrastructure.
The measures and the description are centrality measures, criticality measures, interdepen-
dence measures, and community measures. All measures have been explained in detail
as follows.

3.1.1. Centrality Measures

Employing centrality measures has been applied as a valuable mechanism to recognize
the critical nodes in graph theory. Graph centrality measures are selected here to assess
the relative importance of a node in a graph G. Several centrality methods exist; each has
various features. Three network measures have favored being tested on each graph to
determine the most critical nodes. The measure practiced here is the centrality degree,
betweenness, and closeness. The adopted model was selected based on prior work in [11],
where we used three centrality measures as an index to measure the importance of the
nodes within a specific network and then aggregate the normalized value of each metric to
result in an overall weight of each zone. Nevertheless, we formed each geographical site in
this paper such as zip code and neighborhood as a graph G = (V, E), where V is the set
of vertices or network nodes located in the examined geographical area and E is the set
of edges or links or connections connecting the nodes. Nodes, in this case, contain all the
critical infrastructure elements.
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The geographic area is this work modeled Geoi based on the Nearest Neighbor Al-
gorithm (NNA), which is one of the fundamental algorithms employed to resolve the
traveling salesman problem, where the salesman begins at a random city and frequently
visits the closest approaching city until all have been visited. The algorithm computes
the Euclidean distance [12] from each point in a point pattern to its nearest neighbor (the
nearest other points of the pattern). The nearest neighborhood algorithm helps meet a
location with its nearest k neighbors in a multi-dimensional space. The aim behind using
the NN algorithm is to connect the infrastructure nodes with a virtual link that matches
the physical topology. According to [13], most power stations and cell tower position into
the nearest hospital. In the power scenario, the cost of power transmission is expensive,
and that leads to positioning the power station somewhere near the hospital. However,
in cell towers, positioning is mainly based on increasing the coverage of users.

In this case, every CI node has a directed edge to the nearest CI node based on the real
distance extracted from the geographic data. For example, CIEnergy node has a straight edge
to the nearest CIHealthcare node, as shown in Figure 2. Counting both one-way and two-way
connection, constraints are added into the graphs as follows: 1. Healthcare nodes only
receive a connection from all other infrastructures (water, energy, telecommunication); 2.
healthcare cannot provide any outgoing connection to other infrastructure nodes; 3. water,
energy, and telecommunication include a two-way connection between them; 4. every node
receives only one connection from the nearest infrastructures; 6. centrality measures are
calculated considering both in and out degrees (undirected graph) since every link has an
impact on both sides. By forming the graph in this pattern, an actual graph is generated to
accommodate the required centrality measure as follows.

Figure 2. Network Modeling Showing The Interdependence Links Between Infrastructures.
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Degree Centrality: In a graph, the node degree can be described as the number of nodes
to which a node is directly connected. Accordingly, the degree deg(i) of i ∈ V(G) is the
number of edges attached to i. The degree centrality Ad(i) of node i is given by:

Ad(i) = d(i)/(n− 1) (1)

where di is the cumulative number of edges from the node i and normalized by the
maximum feasible degree (i.e., n− 1). The nodes with the highest Ad(i) are recognized as
more valuable.

Betweenness Centrality: It is another major benchmark for recognizing essential nodes
in a complex network. The node and edge betweenness are described as the number of
shortest paths passing through a node or an edge. The higher the betweenness of a node,
the more critical the node is [14]. The betweenness centrality Ab(i) of a vertex i ∈ V(i)
can be measured as the percentage of shortest paths that cross over i. Hence, Ab(i) can be
formulated as:

Ab(i) = ∑
s 6=i 6=t

σst(i)

σst
, (2)

where σst is the total number of shortest paths between node s and node t, with σst(i)
being the number of these paths that cross through node i. So, the larger Ab(i), the more
significant the node.

Closeness Centrality: In a connected graph, the closeness centrality Ac(i) of node
i ∈ V(G) is the average range or closeness of the shortest path joining the node i and all
other nodes in the graph. The closeness can be represented as:

Ac(i) =
1

∑j dist(j, i)
(3)

where dist(j, i) is the distance of the shortest path joining nodes i and j. The larger the
Ac(i), the more centrally positioned the node is in the graph, and the higher the value.

The cumulative centrality measure A(i) of geographical location Geoi is yielded by:

A(i) =
K

∑
i=1

Ad(i) + Ab(i) + Ac(i) (4)

3.1.2. Criticality Measures

The criticality measures B(i) of geographical location Geoi is given by:

B(i) =
K

∑
i=1

BNumber + BDiversity (5)

where BNumber is the total critical infrastructure nodes located in the same geographical
area. In addition, BDiversity is the total different critical infrastructures involved within the
same zone.

3.1.3. Interdependence Measures

Modeling the interdependence among critical infrastructure has been a considerable
challenge due to the complexity of the connections. There is relevant work in recognizing
and modeling dependencies involves the use of sector-specific designs, e.g., gas lines,
electric grid, or ICT, or more comprehensive methods that are relevant in different models
of CIs [15–17].

An approach to model the interdependency between interconnected critical infrastruc-
ture is the dependency risk approach. This study applies the dependency risk methodology
of Kotzanikolaou et al. [18] for analyzing first-order cascading failures by identifying direct



Infrastructures 2022, 7, 3 6 of 14

relationships between pairs of critical infrastructures as assessed by critical infrastructure
operators; however, in this study, we limit the order to the first order.

The interdependency between nodes in each area are formulated based on a risk
dependency graph. The risk level of the dependency approach in this paper formulated
by developing a similar approach in [18] with the difference in focusing on the first-order
dependency. Dependencies are visualized in a graph G and applied in the graphs produced
for each Geoi by using NNA algorithms in the previous section, where V is the set of
nodes (or infrastructures or elements), and E represent the set of edges (dependencies).
In addition, the weight of each edge is the level of the cascade failure emerging risk
for the receiving infrastructure due to the dependency relies on a predefined risk range
0, . . ., 1. Each dependency represented as a straight edge from a node CIi to a node CIj
assigned to an impact value Ii,j and a likelihood value Li,j. The product of the impact and
likelihood conditions show the dependency risk RDi,j directed to infrastructure CIj and
caused infrastructure CIi as follows:

Where Li,j is the likelihood that defined as the conditional degree of belief that CIj
will become unavailable, due to the unavailability realized in CIi. The likelihood Li,j can
take one of the following qualitative values: V L, L, M, H, V H (from very low to very
high). To simplify the calculation as Table 1 shows, we assign to each likelihood value
in the scale an implied probability range as follows: VL = [0–0.05], L = [0.05–0.25], M =
[0.25–0.5], H = [0.5–0.75], and VH = [0.75–1]). In addition, Ii,j outlines the impact that is
set as the qualitative impact rate that the infrastructure CIj will experience if the link is
unavailable due to a disruption failure in CIi. Table 2 displays a scale from one to nine
indicating the direct correlated impact between i and j.

Table 1. Likelihood Risk Dependence Matrix.

Risk Dependence
(i,j) Likehoodi,j

VL L M H VH

VL 0–0.05 0–0.05 0–0.05 0–0.05 0–0.05
L 0–0.05 0.05–0.25 0.05–0.25 0.05–0.25 0.05–0.25
M 0–0.05 0.05–0.25 0.25–0.5 0.25–0.5 0.25–0.5
H 0–0.05 0.05–0.25 0.25–0.5 0.5–0.75 0.5–0.75

VH 0.05–0.25 0.05–0.25 0.25–0.5 0.5–0.75 0.75–1

Table 2. Impact Risk Matrix.

Risk Dependence
(i,j) Impacti,j

VL L M H VH

VL 1 2 3 4 5
L 2 3 4 5 6
M 3 4 5 6 7
H 4 5 6 7 8

VH 5 6 7 8 9

Note that those values can be assigned to ranges of economic damage or any different
related loss such as the effect on system function or public trust. All these values are speci-
fied based on the knowledge we have, and in addition, the assumption of acquiring such a
model will convince the related sector to release the demanded information appearing in
an absolute result:

RDi,j = Li,j ∗ Ii,j (6)

For a better understanding of the dependencies in interconnected infrastructure, it can
also be visualized through graphs, as shown in Figure 3. An infrastructure is denoted as
a circle and its related risk dependencies representing in, i.e., an outgoing risk from the
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infrastructure CIX to the infrastructure CIY. The quantity in each link points to the level of
the incoming risk (cascading failure) for the end-node due to the dependency, based on
a risk scale (1–9). For example, CIE has an incoming dependency risk RA,E = 3 from the
infrastructure CIA. The risk assessment indicates the likelihood of a disrupted event from
CIA to cascade to CIE(LA,E), as well as the societal impact caused to CIE in the case of such
failure at the source of the dependency (the infrastructure CIA). After measuring all the
risk dependency values for every edge, a total edge value is then calculated, ending in an
overall risk value per graph (Geoi) as follows:

C(i) =
K

∑
i=1

RDi,j (7)

Figure 3. Dependency Risk Graph Between CIs Framework.

3.1.4. Community Measures

Community measures are limited to include community-based indicators for every
geographic zone Geoi, such as poverty level and population. Due to data availability, six
various features have been selected in this measure and aggregated collectively, appearing
in Di and serving the community rate for the defined Geoi as follows:

D(i) =
K

∑
i=1

DR + DTEU + DF + DPop + DPov + DTEC (8)

where DR is the total risk value assigned based on the risk assessment matrix that is based
on earlier work in [19]. The DR value conducted for the geographical region so that every
Geoi has a specific risk value based on several terrestrial factors such as flooding type
and frequency. DTEU is the total electricity use in million kWh. Flooding level, as well,
describes DF based on the most advanced map given by DHS [4] and categorized into
three classes (>0.1, 0.1 > Flood > 0.02, <0.02). DTEC is the total energy consumption
in MMBtu) Million British thermal unit, which is the universal unit of heat and globally
employed as a unit of estimating energy consumption. DPop is the total population for each
Geoi and likewise with DPov representing the poverty percent.

3.2. Weighting and Ranking Critically Factors

At this point, it is addressed the determination of the features, measures, and levels.
For each feature in level 3, a weight value based on feature scaling has been utilized [20] to
deliver all values into a standard scale by employing the z-score normalization procedure
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based on the mean and standard deviation of each node metric over all nodes v [21] as
determined for feature Ad(v):

Adnorm =
Ad(v)−mean(Ad(v))

standard deviation(Ad(v)
(9)

Consequently, before aggregating the features into its corresponding measure, a nor-
malization is first implemented, resulting in a normalized list of nodes (Vs)norm.

Now, each feature in level 3 contains a normalized value and is ready to be summed
to the correlated feature and then aggregated to its corresponding measure in level 2. We
consider the use of the simple additive weighting, which is a well-known approach for
scoring and ranking alternative options based on multiple attributes. Following that level 2
has four measures each representing different areas, an equivalent calculation from level 3
is employed for all four measures and aggregated to level 1, resulting in a C.A. value:

C.A.(Geoi) = Ai(v) + Bi(v) + Ci(v) + Di(v) (10)

3.3. Feature Selection

After having the aggregate value of each measure, we now apply a machine learning
method termed featured selection to distinguish the essential feature that holds the most
influence on the total value. The future selection has been implemented in data mining
research in current years, and it is one of the standard approaches to select the most
important feature out of the data scientifically.

Automatic feature selection techniques can be applied to produce various models with
varying subsets of a data set and recognize those attributes that are needed to develop
an accurate model. The model was developed applying multiple linear regression algo-
rithms [22], where the dependent variable in this case is the overall criticality assessment
value C.A., and all other features are the independent variables. The typical machine
learning rule has been practiced to carry the coefficient of each feature and then compare
them as follows: (1) pre-processing the data set such as standardization, (2) splitting the
data into training and testing data, (3) fitting the model into the test set, (4) performing
model performance evaluation such as R2 and t-value, and finally, (5) performing feature
ranking based on the importance according to the model.

We apply the same model into each measure separately (community, criticality, inter-
dependency, and centrality) to identify which measure has the most impact on the overall
criticality assessment value and, similarly, to identify which feature has the highest impact
on the corresponding measure.

4. Case Study

In order to illustrate the applicability of the proposed model, we present an application
scenario, based on data provided by DHS [4] for the city of Pittsburgh. For simplicity goals,
we narrowed our study to four central critical infrastructures: energy, telecommunication,
water, and healthcare. The initial step is data collection for all four measures (centrality,
critically, interdependence, and community) for greater Pittsburgh. The primary motivation
behind utilizing the current data is data availability; however, the proposed holistic method
in this work can be applied for similar data for other cities. Furthermore, more infrastruc-
tures can also be added once the data are available and there is a solid interdependence
between them.

We begin by calculating the centrality measure that includes the degrees, betweenness,
and closeness of each node. We model each zip code node as a graph to handle the
required measures. Every critical infrastructure node implies a specific vertex in the graph
connected to other nodes based on a well-known algorithm KNN, as described in Section 3.
For instance, a power substation is connected to the nearest healthcare node in the network.
While using a directed graph, many links represent a two-way link. For example, there is a
two-way link between every power and telecommunication node; there is just a one-way
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link from the power network to a healthcare node. By creating such a model, we can exact
node centrality measures efficiently, as shown in Table 3, which indicates the network
centrality measures for 10 zip code areas in Pittsburgh, USA. BNumber in the table indicates
the total node number (entire infrastructures nodes) located in that zip code.

In addition, we collect the data related to the interdependence measures, which
measure the cascading effects in case of the failure of one system to another, applying a
risk dependency graph as described in Equation (7), and the risk caused and effective risk
assessments were conducted for each Geoi (zipcodes, neighborhoods, and city districts).
One example of the results after modeling the network for one zip code is shown in Figure 4,
which uses 29 nodes from 4 different infrastructures. In addition, in Table 4, the 15106 zip
code was selected to demonstrate the risk dependency matrix and used to estimate the
overall risk value for the zip code.

Table 3. Centrality Measures.

Zip Code BNumber Ad Ab Ac

15211 13 6 0 0.90
15235 28 14 0 0.4
15106 8 24 0 0.28
15214 6 20 0 0.53
15216 13 38 11 0.20
15206 27 88 35 0.08
15217 23 82 18 0.11
15205 29 88 87 0.07
15203 13 40 26 0.18
15219 24 68 157 0.08

Table 4. Interdependence Risk Graph based values.

Sector Zip Code Coennected
Nodes Impact Likehood RD C

communication 15106 6 9 0.25 2.25

9.5

Energy 15106 5 6 0.5 3
Energy 15106 5 6 0.5 3

Healthcare 15106 2 1 0.25 0.25
Healthcare 15106 2 1 0.25 0.25
Healthcare 15106 2 1 0.25 0.25
Healthcare 15106 2 1 0.25 0.25
Healthcare 15106 2 1 0.25 0.25

In community-based measures, the data were obtained through open source online
city data [23]; for all other measures, we followed the data given by the DHS, which include
1290 critical infrastructure nodes. Table 5 indicates 10 randomly picked zip codes, each
with the corresponding community-based values. For example, DTEC represents the total
electricity use for the corresponding zip code.

The feature selection algorithm is then performed after building the model employing
multiple linear regression. All features selected in level 3 confirmed to effect the criticality
assessment value (C.A.), and based on that, we proceed in aggregating all the features
into level 2 (measures) without eliminating any of them; however, some features achieved
higher importance value than others, such as the number of nodes, interdependence,
and degree centrality. Feature selection aims to show which feature impacts the overall
model performance. Every ranking method has a different way of selecting the feature,
such as comparing based on R2 or standard coefficients. The features importance ranking
algorithms are defined as follows:

• Method LMG: Based on sequential R2 but takes care of the dependence on orderings
by averaging over orderings;
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• Method Last: Measures the increase in R2 for each regressor when including this
regressor as the last of the p regressors;

• Method First: To compare the R2 values from p regression models with one regres-
sor only;

• Method Pratt: Multiply the standardized coefficient with the marginal correlation.

Table 5. Community Based Measures.

Zip Code DR DTEU DF DPop DPov DTEC

15206 9 215.5 2 31,216 24.65% 2,861,972
15203 12 361.8 1 32,482 23.17% 1,401,579
15210 3 172.5 3 28,320 29.10% 1,890,664
15205 4 250.3 3 13,352 34.05% 2,870,500
15208 4 183.5 4 31,850 23.82% 1,052,736
15201 12 365.9 1 22,586 13.04% 1,919,123
15216 4 114.8 4 19,204 34.50% 1,656,714
15213 4 155.2 4 24,691 9.52% 4,615,921
15219 16 86.0 1 1,999 28.46% 3,576,810
15120 6 593.8 2 9,613 19.99% 1,393,654
15222 16 74.1 1 29,621 8.61% 2,897,465

Figure 4. Top Ten Critical Zip Code in Pittsburgh City.

In addition to examining each feature, we explore the importance level of each feature
corresponding to the measures using the same model. Table 6 shows the importance of
each feature when compared with other features within the same category. For example,
node numbers achieved a slightly higher value than node diversity in criticality measures.
The table also shows the effects of each measure on the overall criticality value C.A.; for
instance, interdependence seems to have the most impact on the C.A. value.
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Table 6. Importance Level Corresponding To Each Measure.

Feature Importance Measure Importance

Number of Nodes 1.178 Criticality 1.216Diversity of Nodes 1.177

Degree 2.563
Centrality 1.614Betweeness 2.861

Closeness 3.008

Interdependence - Interdependence 2.828

Risk Value 3.299

Community 1.156

Electricity Use 6.739
Flooding Level 3.355
Population 7.271
Poverty Percent 7.524
Energy 8.393

5. Result

After adding all the measures into the criticality assessment value, the C.A. of each
Geoi location and each geographic area’s importance and risk can be recognized by its
corresponding value. An extended analysis has developed to a different geographical scale
called neighborhood and city district and then compared with the Zip Code based graph.
All three scenarios have been visualized with the ArcGIS tool produced by Environmental
Systems Research Institute (ESRI) [24] following the same geographical scale, which is
9 km2 to include the greater Pittsburgh area as follows.

5.1. Zip Code Based

A ZIP Code is a postal code used by the United States Postal Service (USPS). It was
chosen to suggest that the mail travels more efficiently and quickly when senders use the
code in the postal address. [25]. Figure 4 shows the visualization of the top 10 critical
zip codes in the Pittsburgh area. Each geographical zip code is highlighted based on the
corresponding C.A. values. We can outline that most zip codes are in downtown and
uptown areas. Nevertheless, several zip codes were selected outside the city center, which
reflects that some areas are not considered critical despite their importance. These zip
codes have to consider risk mitigation strategies since they are all interconnected, and any
cascade failure, if started in one of the critical zip codes, can develop very fast and impact
the nearest critical zip code.

5.2. Neighborhood Based

Generally, neighborhood development followed ward boundaries, although the City
Planning Commission has established some neighborhood areas in the post-industrial
era [26]. We apply the model on the neighborhood boundaries to understand the most
critical neighborhood in the city that needs the best risk strategies to reduce the impact
resulting from any cascading failure. Figure 5 shows the visualization of city neighborhoods
that are falling in the range of 2–7 in terms of C.A. value.
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Figure 5. Most Critical Neighborhoods.

5.3. City Council District

The City Council districts are developed based on political boundaries and serve as
the legislative body in many US cities. For this case study, Pittsburgh consists of nine
districts, and each covers several neighborhoods [27]. Figure 6 shows the C.A. value of the
most critical districts in Pittsburgh city.

Figure 6. Most Critical City Districts

By comparing results from the above three geographical scale representations, we can
conclude that there is an overlap of 50% between them, especially in the downtown area.
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According to feature selection, the number of nodes plays a high factor in determining the
overall C.A., and most of the downtown areas have large nodes. The exact reasons apply
to other areas such as the Oakland and north shore areas.

By recognizing the critical geographical zones within the city scale, it becomes more
accessible for the policymakers to leverage appropriate risk mitigating strategies such as
security control for the critical region. Furthermore, this will intensify the overall resilience
of interdependent critical infrastructure due to the complexity of the interdependent con-
nectivity among them. Collecting the before-mentioned measures based on precise values
such as critical nodes can develop in implementing the most reliable security control
strategies to avoid future disaster events such as cascading failures. It can also assist in
understanding the characteristics of the geographical territory, which presents us with the
necessary information to enhance resilience in the critical infrastructures. Following the
dependency and the complexity between essential nodes of infrastructure open the room
for more tools to heighten all infrastructure resilience appearing in more sustained and
resilient cities. However, just four central city-based infrastructures have been used in this
work due to the data availability. The addition of more infrastructures will allow for more
precise and accurate results. In addition, more measures will be added in the future to
include other city aspects such as poverty and pandemics areas.

6. Conclusions

The criticality assessment methodology defined in this work extends the approach of
Alqahtani et al. [19] by combining both graph centrality measures and dependency risk
graphs as additional criteria for evaluating alternative critical geographical nodes strategies
for interdependent critical infrastructures. The model aims to improve the preparedness
phase resilience by assessing the critical zones of infrastructure, which allow for more space
to adopt risk mitigation strategies. Future work can include applying more infrastructures
and comparing the result with other cities or regions depending on the data availability
and accuracy.
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