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Abstract: Progressing digitalization and networking of systems and organizations representing 

Critical Infrastructures opens promising new potentials and opportunities, which on the downside, 

are accompanied by rising complexity and increasingly opaque interdependencies. The conse-

quently increasing lack of knowledge leads to uncertainties affecting risk assessment and decision-

making in case of adverse events. This trend motivated recent discussions and developments in risk 

science, emphasizing the need to handle such uncertainties. Complementarily, research in the resil-

ience domain focuses on system capabilities to handle surprising hazardous situations. Several 

frameworks presented in the literature aim at combining both perspectives but either lack the focus 

on operational management, have a rather theoretical approach, or are designed for specific appli-

cations. Based on this observation, we propose an approach that integrates resilience management 

into the actual operation of Critical Infrastructure Systems and Organizations by providing an op-

erational process that coordinates the fundamental resilience capabilities of responding, monitor-

ing, anticipation, and learning. Furthermore, we tackle the challenge of uncertainties resulting from 

a lack of knowledge by aligning the concepts of digital twin and resilience management. The pro-

posed framework is extensively discussed, and required processes are presented in detail. Eventu-

ally, its applicability and potential are reviewed by means of a complex hazardous situation at a 

Bavarian district heating power plant. 

Keywords: resilience; risk; resilience management; digital twin; uncertainties; operational  

framework 

 

1. Introduction 

Modern societies critically rely on the supply of a variety of goods and services, such 

as energy and government. Most societies agree on a similar set of these goods and ser-

vices to be defined as critical for societal and economic well-being [1]. Thus, the infra-

structures responsible for the provision of such goods and services are identified as Crit-

ical Infrastructures (CI). Correspondingly, such infrastructures are found in different sec-

tors of modern societies, e.g., energy or water supply, governmental institutions, or secu-

rity and defense authorities [2]. Consequently, CI cannot be assigned to a specific type of 

system or organization. In general, the various Critical Infrastructure Systems and Organ-

izations (CISOs) serve to securely provide the variety of critical goods and services men-

tioned above [3,4]. 

Due to its nature, it is of utmost importance to provide solutions that enable such 

CISOs to deal with corresponding risks and vulnerabilities. The International Organiza-

tion for Standardization (ISO) defines risk as the effect of uncertainty on goals [5]. The 
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Society of Risk Analysis (SRA) has developed a more comprehensive definition to give 

more attention to the diversity of uncertainties and objectives [6,7]. Risk concepts are now 

addressed in all areas of a CI, for example in commercial sector [8,9], chemical sector 

[10,11], public health [12,13], transportation [14–17], information technology [18,19] and 

water systems sector [20,21]. The examples also illustrate the great variety of risk assess-

ment and risk management approaches developed to analyze and manage risk. Therefore, 

it is not surprising that in the last decade, a risk science has emerged and established, 

which deals with the development of generic concepts, theories, principles, methods, 

frameworks, procedures, and models to enhance the understanding, assessment, model-

ling, controlling and management of risks [7,22–24]. This development has been even 

more promoted by the ongoing digitization of organizations and the increasing intercon-

nectedness of technical and socio-technical systems. Increasing complexity and growing 

interdependencies lead, in addition to other things, to uncertainties in the modeling, un-

derstanding, and assessment of risks [7,11,12,23–26]. It is now undisputed that uncertain-

ties reflect the knowledge or lack of knowledge in risk analysis. Therefore, the amount of 

uncertainty consequently determines the informative value of the risk assessment result 

that should be communicated to decision-makers. Uncertainty assessment and its consid-

eration in risk-related decision-making are current fields of research and development 

becoming even more important due to the COVID-19 pandemic [23,24,26–28]. 

In recent decades, a complementary line of development has emerged that results 

from the rising interest in the concept of resilience. It focuses on practicable approaches 

that enable the effective handling of surprises originating from uncertainties induced by 

lacking knowledge about interdependencies, changes, and prospects [29–31]. Analogous 

to risk science, research activities were either dedicated to fundamental questions, such as 

the definition, characteristics, concepts, and cornerstones of resilience [30–34], or aimed at 

providing methods and frameworks for analyzing or managing resilience [33,35–42]. The 

wide variety of fields of application and perspectives in which resilience in socio-technical 

systems is considered has led to different definitions. For example, the European Com-

mission defines resilience as the “ability of an individual, a household, a community, a 

country or a region to withstand, to adapt, and to quickly recover from stresses and 

shocks” [43], reflecting a rather societal view. In contrast, the International Maritime Or-

ganisation (IMO) took a more technological view on resilience and defined it as the “abil-

ity of a system to detect and compensate external and internal disturbances, malfunction 

and breakdowns in parts of the system”, preferably without loss of functionalities and any 

degradation of their performance [44]. Woods proposed that the label “resilience” shall be 

reserved for the ability of a system to deal with disturbances and interruptions outside 

the range of the nominal system capabilities and nominal use conditions [45]. Hollnagel 

defined resilience as “the intrinsic ability of a system to adjust its functioning prior to, 

during, or following changes and disturbances so that it can sustain required operations 

under both expected and unexpected conditions” [42]. In parallel, academic discussions 

started on whether resilience analysis and management should be seen as an extension of 

risk analysis and management or as an integral part of it [29,46,47]. However, a unifying 

goal of risk and resilience science is to ensure the operationality and reliability of vital 

Critical Infrastructure Systems and Organizations (CISO) regardless of whether the focus 

is rather on preventing or averting adverse events and consequences. To achieve this goal 

effectively and efficiently, the close relationship between risk and resilience strategies in 

their many forms must be tapped, coordinated, and exploited [29]. For this, it is also nec-

essary to consider all aspects of the CISO whose resilience is to be consolidated or in-

creased. Häring et al. provided a framework and principles for generic resilience manage-

ment that was derived from the standardized risk management process [38]. Within this 

framework, they identified nine iterative steps that enable resilience quantification and 

development. Additionally, the authors provided a comparison of several resilience as-

sessment methods. The authors put high emphasis on analyses and decisions during sys-

tem design, while process steps during operation are unified in a single process 
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responsible for monitoring and review. In addition, a variety of resilience frameworks 

have been developed in recent years that focus on either the analysis [33,35,37,41,48–50], 

assessment [51–53], or management [36,40] of resilience, or a combination thereof [39]. 

The solution approaches are often discussed rather theoretically at the algorithm and 

method level [33,50] or in the application context [35–37,39,42,48–51,53–56].  

Driven by Hollnagel’s ability-oriented definition of the resilience concept, this paper 

introduces a framework for the operational management of the resilience capabilities of 

Critical Infrastructure Systems and Organizations (CISO). To the best of our knowledge, 

this is the first framework for operational resilience management that integrates the con-

cept of digital twins and, thus, allows for the comprehensive and timely preparation and 

response to emerging threats. 

The remainder of this work is organized as follows. Section 2 briefly presents back-

ground information on concepts and cornerstones related to resilience and specifies the 

requirements for operational resilience management. Section 3 introduces the proposed 

operational resilience management framework and its main components. The following 

Section 4 presents and discusses in detail the tasks within the proposed operational resil-

ience management process. Section 5 provides application examples to illustrate the ad-

vantages of this approach, and Section 6 concludes this work. 

2. Background 

2.1. Challenge 

Hollnagel identified four cornerstones that are essential for the resilience of a CISO 

[32]: The first is the ability to respond to permanent as well as sudden onset disruptions, 

disturbance, and changes.  

The second is the ability to monitor both the system state, including technical and 

human components and the environmental conditions in which the system operates, in 

particular dynamic changes in performance demand. This enables the detection of realiz-

ing hazards and the identification of emerging threats. The third is the ability to anticipate 

positive as well as negative developments to protect the system’s performance and to 

search for new opportunities. The last is the ability to learn from the past to extend or 

adjust the employed competence model of the CISO. However, the presence of these four 

abilities alone is not enough to ensure a desired level of resilience. Furthermore, it is nec-

essary to find operationally feasible solutions for the desired capabilities and to coordinate 

their use, considering dependencies and interactions as well as current and future situa-

tions. The framework for operational resilience management proposed in this paper ad-

dresses this challenge and provides a process-based approach for effective handling of 

adverse events, unexpected developments, and other surprises. 

2.2. Operational Management and Requirements 

Considering a CISO at initial operation, it can be justifiably assumed that the con-

struction and operation of the CISO correspond to the state-of-the-art and, thus, to the 

state of knowledge. This applies to measures implemented to minimize risks, mitigate 

damage, detect, and respond to changes with risk potential. It also holds true for actions 

designated to achieve rapid recovery of CISO functionality following the occurrence of 

destructive events. In summary, the ensemble of all measures represents the level of risk 

and resilience management supported by the CISO.  

The likelihood of a failure in risk and resilience management increases in situations 

where the CISO enters into unanticipated states or the management itself is confronted 

with surprising events, e.g., known or unknown hazards or threats.  

In the case of complex and interconnected CISOs, there are various reasons for the 

possible emergence of hazards or threats of high impact with uncertain or possibly sur-

prising occurrences:  
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 CISOs tend to operate as a complex network of subsystems serving a higher purpose. 

Lacks of knowledge about the system behavior, e.g., evoked by undesired interac-

tions between subsystems, can potentially lead to the emergence of unanticipated 

incidents, which then may turn into adverse events, such as threats and damages [26–

28,31,32,45–47]. 

 In case of emerging unanticipated incidents, situation analysis and assessment are 

afflicted with uncertainty resulting from insufficient information provision. Addi-

tionally, forecasting potential scenario developments is limited by epistemic uncer-

tainties. Not only that such incidents must be detected, but decisions have to be taken 

under stress with incomplete or non-existing situation analysis and assessment in the 

early stages of a developing incident. Hence, selecting appropriate means and 

measures to avoid a transition from incident to adverse events becomes a decision 

under (severe) uncertainty. This also applies in particular to the prevention of cas-

cading effects [11,12,20,26–28,40,45–47]. 

 Uncertainties at the time of decision making also exist regarding the availability and 

effectiveness of identified and selected measures as well as associated resources. For 

this reason, decisions that have already been made and their outcome must be mon-

itored and reviewed so that they can be adjusted if necessary. This applies equally to 

activities aimed at mitigating risks as well as to restoration and recovery activities.  

Therefore, it is not surprising that both risk and resilience research are looking for 

solutions that enable them to act effectively despite uncertainties in situation awareness 

and regarding possible development [28,45–47]. Resilience-based approaches have been 

developed to improve the handling of challenges originating from epistemic uncertainty 

caused by insufficient knowledge about current and future situation development 

[29,31,34]. The four resilience cornerstones specify a methodical approach for the im-

provement of CISO resilience in a generic manner [32]. Implementation of these four cor-

nerstones into a CISO requires a framework that facilitates the accumulation and utiliza-

tion of knowledge for the improvement of resilience capabilities and their coordinated 

use. Consequently, it is necessary that the four cornerstones are functionalized. This can 

be conducted via machine functions, human tasks, or a mixture of both in combination 

with control and decision activities [57,58]. In this context, a strict distinction between the 

complementary activities of risk and resilience management is neither considered useful 

nor conducive to the goal. As both aim to avoid negative consequences of adverse events, 

risk can be considered as the operative term for both methodologies [42]. 

Operationalizing resilience management requires consideration of the dynamic na-

ture of evolving situations caused by constant changes within the CISO, its environment, 

and the knowledge associated with both. Scenarios are used to describe possible CISO 

behavior over time as a function of specific influencing factors. As a scenario unfolds over 

time, more information becomes available about both the scenario and the response of the 

CISO. Comparative analyses create new information supporting the inherently dynamic 

process of decision making as well as reducing initially existing knowledge gaps [28]. In 

summary, operational resilience management must not only coordinate the resilience ca-

pabilities of a CISO but additionally enable adaptation to developing situations, new in-

formation, and related uncertainties.  

The coupling of these assumptions to the fundamental resilience cornerstones by 

Hollnagel [32] implies a number of general deductions regarding resilience management:  

 Monitoring of developing scenarios and available knowledge requires a knowledge 

base that comprises available actual and historical data and information 

 Prediction or Anticipation demand profound knowledge about system behavior and 

real-time information about the system state and its environment 

 Responding to hazards or threats in a flexible and correctable way needs a dynamic 

informed decision support incorporating uncertainties 
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 Learning about the complex behavior and response of systems to hazards or threats 

as well as countermeasures requires the ability to feedback real system behavior and 

related information to the knowledge base used, e.g., modeling or analysis purposes 

 The adaptation of employed models and methods to the latest knowledge requires 

self-controlling processes for the alignment to real-system developments  

Following these deductions, Table 1 provides an initial list of requirements for oper-

ational resilience management. Here, Hollnagel’s cornerstones are understood as core 

functionalities that have to be applied to various objects in order to fulfill one or more 

purposes. 

Table 1. Requirements for operational resilience management based on Hollnagel’s four corner-

stones of resilience [32]. 

Cornerstone Objects (Excerpts)  Purpose 

Monitoring 

 Status and behavior of 

CISO 
Providing the information needed for situation awareness and 

assessment of developing scenarios including indication of the 

quality of information.  

Information may be used to improve modeling. 

 Environmental factors 

 Knowledge 

 Interdependencies 

Recognition 

 Current and emerging 

threats Tools and skills for comprehensive situation awareness and 

assessment regarding risk potential of events and changes as 

essential input for operative decision making in the context of 

risk/resilience management. 

 CISO changes 

 Environmental changes 

 Changing criticality of 

interdependencies 

Learning 

 CISO behavior and 

response to hazards and 

threats 

Advancement of skills, means, and measures for operational 

resilience management based on the extension of knowledge in 

relation to changes of any kind. 

 Possibilities of controlling 

and management  

 Reliable recognition of 

hazards and threats 

 Suitable countermeasures 

and effectiveness 

 Administration of 

knowledge 

 Decision support and self-

monitoring of 

effectiveness  

Anticipation 

 Prediction of CISO 

behavior 

Provision of skills, means, and measures to predict and assess 

potential scenario developments (CISO, environment, and 

dependencies) and to support the decision making around CISO 

adjustments regarding prevention and mitigation of risks as well 

as reduction and avoidance of negative consequences. 

 Forecasting of 

environmental influences 

 Simulation and analysis of 

hazardous events 

 Simulation and 

assessment of means and 

measures for danger 

prevention and mitigation 
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2.3. The Digital Twin Concept in Resilience Management 

Digital Twins (DT) are usually defined as a virtual representation of physical objects 

across their lifecycle. The DT concept is composed of a physical object in real space and 

its digital counterpart, both connected via data flows. The digital representation consists 

not only of data but can inherit models and algorithms or other software characterizing 

the properties and behavior of the real physical object [59,60]. All kinds of data gathered 

by sensors or other sources of information are employed for the simulation of the behavior 

of the real system in real-time or serve, in combination with historical data, for prediction 

purposes. Analysis and information fusion are then used to optimize the real system in a 

feedback loop. In this way, DT are nowadays used in design, simulation, monitoring, and 

optimization in a variety of fields. Due to their data-driven architecture and the rising 

capabilities in information technology, e.g., big data processing and storage, DT are espe-

cially of interest in domains of complex systems [61]. 

When first introduced by Grieves in 2002, the DT concept was proposed to improve 

product lifecycle management [60]. In the meantime, DT play an important role in the 

concept of Industry 4.0 [62–64]. Recently, the DT concept also emerged in different other 

fields [65–69]. Although DT are utilized in the context of failure prediction and predictive 

maintenance, application in the resilience domain is rare. An approach developed by 

Ivanov et al. uses a DT to manage the resilience of supply chains against disruptions [70], 

while Bécue et al. focused on the resilience of factories [71]. Lately, the concept has also 

appeared in the context of smart cities [72–75]. 

Surprisingly, the above-introduced properties of the DT concept substantially match 

the requirements for the operational resilience management derived in Section 2.2 

 DT can be considered as an evergrowing knowledge base consisting of gathered data 

and information covering the whole lifecycle of the real object. 

 DT comprise models that allow simulation and prediction of system behavior, espe-

cially of complex systems, based on actual and historical data. 

 The influence of the environment on the DT behavior is captured by the real-time 

gathering of data and information through the sensor network. Additional models 

can support the integration of environmental information. 

 Feedback of the behavior of the real system to the models and analysis within the DT 

is a basic feature of the DT concept and its flow of actual data and information from 

a variety of sources. 

In summary, it appears rational to include the DT concept in further considerations 

of a framework for operational resilience management. Moreover, the need for a compre-

hensive knowledge base as well as tools for dynamic feedback loops and model alignment 

renders the DT concept an integral component. The following Section 3 specifies in detail 

how resilience management requirements affect the conception of a DT. 

3. Resilience Management Framework 

This section introduces the framework for Operational Resilience Management 

(ORM) and presents its two basic components—a Data and Information Base (DIB) and a 

resilience management process. 

3.1. Thematic Classification 

The aim of resilience management is to coordinate the recognition, monitoring, an-

ticipation, and learning as core competencies of resilient Critical Infrastructure Systems 

and Organizations (CISO) [31]. Although Woods suggested that the label “resilience” 

should refer more to the management of disruptions and interruptions outside the nomi-

nal operational area [34], it is hardly useful to consider nominal and abnormal conditions 

separately. It is rather important that the CISO is aware of its own competencies and ca-

pabilities in terms of detection, monitoring, and anticipation. The CISO must also be able 

to identify both systemic and environmental situations that deviate from the valid 
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specification of nominal conditions. For these, it is necessary to assess whether the anom-

aly may cause additional risks. If this question is answered in an affirmative manner, then 

appropriate measures must be identified to reduce the resulting risks and mitigate their 

negative consequences. Therefore, the framework proposed and discussed in this paper 

should facilitate operation under rated conditions and the detection of and adaptation to 

abnormal conditions.  

Learning is represented in the framework rather indirectly. The design and operation 

of the CISO with all its functions, methods, and measures is only possible with qualified 

personnel whose qualification is the result of an ongoing learning process. Learning is 

also part of the recognition of anomalies, the evaluation of their criticality as well as iden-

tification and evaluation of potential mitigation measures, and thus, serves to build com-

petencies. The effectiveness of what is learned is determined to a large extent by how these 

competencies can be maintained, adjusted, and retrieved. For this reason, it is necessary 

that the framework is also designed to manage and develop competencies efficiently. 

3.2. Data and Information Base 

The presented requirements on the ORM framework strongly motivate the availabil-

ity of a Data and Information Base (DIB) that contains knowledge of the CISO’s ACTUAL 

and TARGET behavior, environment, and interdependencies. The TARGET behavior is 

defined by the performance requirements for the CISO services and the target conditions 

and influences assumed in the design phase. In contrast, the ACTUAL behavior is de-

scribed using appropriate models parameterized with measured values. 

Therefore, the CISO should be designed and operated based on state-of-the-art com-

petence models, which cover the CISO, environmental conditions, and practicable resili-

ence capabilities. Furthermore, the proposed framework requires that the model of the 

CISO is a digital representation of the reality in terms of components, functions, and pro-

cesses. Compared to what was presented in Section 2.3, one can note that these require-

ments match the digital twin (DT) concept. Additionally, processable environmental mod-

els (EM) are needed to describe relevant environmental conditions in all their diversity 

and variability that can significantly affect the functionality and performance of the CISO.  

In general, DT and EM are composed of descriptive and predictive models. Descrip-

tive models ensure that the diversity of components and aspects is sufficiently depicted. 

These models describe the system’s behavior based on historical as well as actual data and 

information [76]. Predictive models are able to explain changes based on causes, depend-

encies, and interactions. Hence, these models enable the investigation of “what will hap-

pen” and “what should be done to make or to avoid it happening” [77]. However, the 

consequent complexity of predictive models is significantly higher compared to descrip-

tive models. Descriptive as well as predictive models should reflect the current state and 

behavior of the CISO and environment, including intrinsic interactions, through appro-

priate model parameterization and real-time monitoring of the model parameters (MPRT). 

Furthermore, the nominal behavior should be characterized by nominal values for the 

model parameters (MPN). 

The described features of the DT concept are useful for the implementation and real-

ization of advanced resilience capabilities. In the simplest case, the monitoring of MPRT 

and the comparing analysis between MPRT and MPN should enable the recognition of reg-

ular as well as irregular disruptions, disturbances, and changes. A more challenging ap-

proach analyses the changes within the CISO and environment in order to anticipate the 

emerging risks in time. This requires constant monitoring and assessment of the observed 

and expected behavior of the CISO as well as its response to environmental changes. This 

provides the necessary lead time to decide on the appropriate use of adaptive measures 

and to implement them. The anticipation skills can be further improved if DT and EM are 

connected to a suitable simulation environment. This enables the combined consideration 

of systemic/organizational and environmental aspects in their complexity and in relation 

to the diversity of potential scenario developments. Such scenario developments are also 
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an appropriate means to perform a predictive assessment of the effectiveness of potential 

decisions and adaptive measures.  

Core elements of the DT and the EM are modelling methods, ideally provided as 

executable software, whose corresponding properties are described in the model docu-

mentation (D). Furthermore, both models are parametrized by the model parameters (P). 

The model data of these parameters can be real-time data (RT) or nominal data (N). A DT 

or EM that is parametrized with RT reflects the current state of the CISO or environment. 

In contrast, a parametrization with N represents the intended or typical behavior. The 

features and model data of the DT and EM are stored in a respective data and information 

base (see Figure 1a,b), which enables further analysis and processing. 

 

Figure 1. Data and information base (DIB) of the proposed resilience management: (a) the digital 

twin models, (b) environmental models, (c) sensor systems, and (d) scenario spaces. 

The real-time data (RT) are gathered by the sensor systems (SeS), which are either 

part of the actual CISO or are operated by external service providers (Figure 1c). In this 

paper, a sensor system is used as a synonym for any information source that is needed to 

collect information about the situation-related system status or environmental conditions. 

The specified sensor system ultimately determines which information is applicable in or-

der to perform monitoring, assessment, controlling, and decision-making processes 

within the system or organization. It is mandatory that the SeS is able to provide the re-

quired data in the desired quality and frequency in order to assure that later analysis and 

processing are executed on the actual state of the CISO. A SeS is characterized by its pa-

rameters (P) and the corresponding documentation. The parameters can be of a different 

type, e.g., configuration data, control data, or the performance data of the sensor system, 

and enable the evaluation of the usability of the sensor system. Similar to the DT and EM, 

this comprises real-time data (RT) or nominal data (N). Please note that the actually meas-

ured values and attained information of the SeS are not located together with these pa-

rameters but are stored as the RT of the DT or EM. 

Morphological analysis [78] is a promising approach for scenario modelling, e.g., as 

applied in [79]. The resulting scenario space contains all scenarios and may be described 

by the available parameters (P) of DT and EM and their feasible characterizations. Analo-

gously to a morphological space, P and their characteristics are brought into relation to 

each other. Thus, different combinations within the space enable a derivation of scenarios. 

Consequently, a scenario can be described by certain parameters (P) that should be docu-

mented (D). From these parameters, the so-called Key Impact Factors (KIF) can be derived, 

which enable the sufficient characterization of a scenario. That means each scenario is 
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described by a certain setup of KIF. Again, the setups can be based on real-time data (RT), 

nominal data (N), or already investigated scenarios (A). The corresponding information 

and database (DIB) are depicted in Figure 1d. 

3.3. Resilience Management Process 

The purpose of this section is to provide an overview of the resilience management 

process at a somewhat abstract level to illustrate the main tasks and their relations (Figure 

2). The subsequent Section 4 details the main tasks and describes the required functions 

as well as inherent interactions. 

 

Figure 2. Cycle and main tasks of the resilience management process. 

The basic structure of the process follows classical risk management [5] and the pro-

posal of Häring et al. [38]. However, the proposed framework puts a strong emphasis on 

the actual operability of resilience management processes and thus has to be considered 

as an additional contributor to the resilience of the CISO. As a consequence, the 



Infrastructures 2022, 7, 70 10 of 28 
 

framework focuses on the implementation of the required process and its tasks into a re-

silience-enhancing operating procedure. 

In this context, it is notable that the system boundaries of a CISO are primarily deter-

mined by the components and functions required to fulfill the core task of the CISO, the 

provision of one or more services. Events that lead to disruptions of these services should 

be detected predictively or reactively by the framework in order to be able to initiate ap-

propriate recovery measures. The execution of these recovery actions only partially takes 

place within the system boundaries of CISO and is rather to be considered as an additional 

service that requires further resources and specific expertise. The proposed ORM frame-

work can provide support for such a service but cannot replace it. The case discussed in 

Section 5 illustrates the applicability of the framework to CISO operation as well as recov-

ery. 

The task “Context specification” provides the evaluation of the framework employed 

for the resilience management of the CISO under consideration of new or modified chal-

lenges on the CISO (blue circle in Figure 2). It is executed whenever changes occur in the 

CISO, in the environment, or in the requirements of the CISO. Changes can be intentional, 

e.g., modernization, automation, new standards, and regulations, or quite unexpected, 

e.g., increased wear out of components, limited supplies, economic embargos. The imple-

mentation of such changes is executed in the task “Adjust DIB for resilience assessment”, 

which administrates the adaptation of the employed models (DT, EM), the sensor system, 

and the applicable scenario spaces (orange circle in Figure 2). This task, which is usually 

implemented with the help of external service providers, can be initiated by all other tasks 

with the exception of “Evaluation of Risk Mitigation Measures (RMM)” and “Anticipation 

of risk developments”. 

“Data acquisition and management” and “Situation Analysis” are recurring tasks 

that relate to the operation of the monitoring capability of the CISO (green circle in Figure 

2). Both are (re)started by the “Context specification”, and thus, both tasks. “Data acqui-

sition and management” continuously provide real-time data from the sensor system to 

the data and information base. In contrast, “Situation Analysis” continuously monitors 

and analyses situational changes. It is a central element of resilience management as it 

enables the identification of critical situations and developments. Its main purpose is the 

detection and description of anomalies and the identification of how an anomaly relates 

to the scenario space. The results of this task are then investigated by the following resili-

ence assessment tasks. 

Similar to the generic resilience management process proposed by Häring et al. [38], 

the resilience assessment is carried out with the help of the three consecutively executed 

tasks (beige circles in Figure 2). However, in the proposed scheme, the emphasis of the 

tasks is again on the actual operability of resilience management. The task “Anticipation 

of risk developments” focuses on the anticipation of potential risk developments with the 

help of scenario analysis. A possible outcome of this analysis might be that the determined 

risk is tolerable, and therefore the risk assessment is terminated. If this is not the case, the 

task “Management of Risk Mitigation Measures (RMM)” is initiated, which identifies pos-

sible approaches for risk mitigation. Therefore, the identified RMM are implemented in a 

simulation setup in order to determine corresponding performance and risk indicators 

[80]. This task can be interrupted when required modifications of the data and information 

base are required, which will be detailed in subSection 4.5. The consecutive task “Evalua-

tion of Risk Mitigation Measures (RMM)” serves the evaluation of the proposed RMM 

and supports the decision-making considering efficiency, uncertainties, and risk–benefit 

ratios. The obtained results are then handed as decision support to the operator or other 

stakeholders. Proposed and chosen risk mitigation approaches should be stored to enable 

a posterior analysis of the effectiveness in practice and implementation quality. 

The final task, “Extend/modify the CISO with the chosen Risk Mitigation Measures 

(RMM)”, relates to the actual implementation of the measures (purple circle in Figure 2). 

It is important to note that any consequences of these measures must be integrated into 
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the data and information base of the CISO via the task “Adjust DIB for resilience assess-

ment”. 

Nominal operation of the CISO may be assumed if “Data collection and manage-

ment” and “Situation analysis” are performed as specified, and the analysis results prove 

the overall compliance with the specifications. This can be understood as the first stage of 

resilience management, which decides on the base of the current situation whether the 

continued operation of the CISO in its previous form is reasonable and justifiable. 

4. Processes of Resilience Management 

This section details and discusses the tasks of the proposed resilience management 

process presented in Section 3.3. 

4.1. Context Specification 

The purpose of the resilience management in CISO is to appropriately control and 

manage the CISO’s resilience capabilities in order to identify emerging known as well as 

unknown threats and to initiate appropriate countermeasures. A special challenge is the 

handling of emerging unknown threats as well as changes in the CISO or its purpose, 

which often requires an adaptation or extension of the resilience capabilities of the CISO. 

In such cases, it is necessary to verify whether the DIB still fulfills the requirements result-

ing from the new situation. For this purpose, the context of resilience management has to 

be (re)specified by first identifying and formulating the specific objectives and problems 

of the intended resilience management process (see Figure 3). Next, it must be evaluated 

whether the DIB corresponds to the specified requirements. This evaluation should be 

undertaken considering the scenario space, the modelling (DT and EM), as well as the 

capabilities of the sensor system (see Figure 4). If any of these components does not fulfil 

the requirements, a corresponding revision is requested, which might lead to the adjust-

ment of the DIB. The realization of these adjustments is not further discussed in this paper, 

as they are considered an external service activity (see purple activity in Figure 2). 

 

Figure 3. Flow chart of context specification as initial task of the resilience management process. 
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Figure 4. Flow chart of scenario space evaluation as a function of context specification. 

4.1.1. Scenario Space Evaluation 

Figure 4 details the subprocess for evaluating the usability of the available scenario 

space based on the concept of general morphological analysis [78,81]. Thus, a scenario 

space aggregates impact factors of threat scenarios in a multidimensional space, thus us-

ing a set of superior key factors for a qualitative and quantitative scenario description [82]. 

Key factors can comprise factors of the environment as well as factors within the system 

itself and can thus be of a general as well as a system-specific nature. Therefore, existing 

scenario spaces reflect the already accumulated and usable competencies about the con-

sidered CISO as fields to be formed, about practicable resilience capabilities and their co-

ordination, as well as about already known danger situations as impact factors and pos-

sibilities to deal with them. A specific scenario space shall be able to describe all conceiv-

able threats and resulting scenarios, including those characterized as having high impact 

and low probability of occurrence (HILP) in relation to a considered CISO. 

Initially, it must be examined whether one of the existing scenario spaces is, in prin-

ciple, suitable to be used for investigations of the identified problems in relation to the 

considered CISO. If not, it is necessary to request the development and implementation 

of a new scenario space. If a scenario space is principally usable, the next examination 

checks the covering of the relevant impact factors, e.g., the points where threats or other 

aspects potentially affect the CISO under consideration. When consistency is not given 

here, an extension of the impact factors is requested. 

Next, the key impact factors (KIF) are selected, e.g., by cross-impact analysis, if the 

available scenario space supports large numbers of interdependent impact factors of in-

terest. In the following step, the relevant KIFs are checked for sufficient description of all 

scenarios within the scenario space, e.g., relevant changes in climate or weather condi-

tions, terrorist attacks, or functional failures. Additionally, the KIFs should sufficiently be 

parametrized according to related variables and parameters of the used models of the 

system and environment. The description should also include the time-dependent trend 

of the KIFs for the purpose of scenario development prognosis. An insufficient setup of 

KIFs leads to process termination and the request for a scenario space extension. Finally, 

it is checked if a valid database of nominal KIF values (N) representing the nominal state 

of the system is already provided. If validity is given, the subprocess finishes, and the task 
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continues with the model evaluation of the used digital twin (DT) and environmental 

models (EM) (see Figure 5). Otherwise, new descriptor data are requested. 

 

Figure 5. Flow chart of DT and EM model evaluation as a function of context specification. 

4.1.2. Sensor System Evaluation 

The final subprocess of the task context specification investigates the capability of the 

sensor system (SeS) to provide the data and information needed for resilience manage-

ment (Figure 6). It should be emphasized again that “sensor system” is used as a synonym 

for all sources providing the required data and information. 
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Figure 6. Flow chart of sensor system evaluation as a function of context specification. 

Initially, a context-related specification of requirements for data and information is 

executed. The requirements are specifically adapted to the previously evaluated DT and 

EM models, as the sensor system shall enable the elicitation of all relevant data and infor-

mation needed by the models to monitor the condition of the considered CISO and its 

environment as well as actual events and state changes. Thus, the sensor system acts as 

the bridge between the real system and DT as well as the real environment and EM. In 

general, the sensor system should provide physical measurement data as well as merged 

data (sensor fusion) with higher information levels or nonphysical information from other 

sources. 

The fulfillment of requirements is evaluated by a two-step checking of the sensor 

system. In the first step, the sensor system is analyzed, considering its ability to provide 

the data and information as needed. In case of a negative outcome, the modification of the 

sensor system is requested. Next, the operability and capability of the sensors system, e.g., 

in terms of quality of data provision, is verified, and, if necessary, maintenance is re-

quested. 

4.2. Data Acquisition and Management 

The task “Data acquisition and management” serves the monitoring of the consid-

ered CISO and its relevant environment in compliance with the specified requirements 

(Figure 7). Its purpose is the retrieval of data and information needed for the parallel task 

“Situation analysis”. The task starts with the acquisition of the sensor system. Next, the 

formal requirements on the data provided, such as compliance with the data format, plau-

sible data content, and availability of validity information, are verified. Failed data acqui-

sitions, as well as violations of formal requirements, are reported to the control system, 

which ultimately decides whether data acquisition should continue or restoring measures 

are required for the sensor system. 
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Figure 7. Flow chart of data acquisition and management. 

Successfully retrieved actual data may be fused to enable the generation of higher-

level information, e.g., geo-referenced as well as time-synchronized data or plausibility, 

consistency, and integrity information about the actual data. The details of this step 

strongly depend on the considered CISO, its context, and used models and parameters. 

Insufficient data quality and unstable data processing can lead to the failure of data fusion 

and the inability to provide the intended higher quality information. This must also be 

reported to the control, which decides on the further procedure. 

If the data acquisition and processing are performed successfully, the data are pro-

vided to the scenario spaces and the DT or EM of the DIB. As a result, the controlling 

informs the task “Situation analysis” that new data are available for further investigation. 

It also ensures that data acquisition and processing are continued as cyclical tasks under 

normal conditions. 

4.3. Situation Analysis 

“Situation analysis” is considered a core task of resilience management (Figure 8). 

Situation analysis is responsible for the identification of developing scenarios and is car-

ried out by consecutively passing through various subprocesses. The current situation is 

represented by the state of DT and EM modelled with incoming (near) real-time data (RT), 

while the nominal situation is described via the nominal model data (N). Additionally, 

sequences of previously logged RT of DT and EM that are still present in the DIB may be 

used to describe prospective scenario developments. 
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Figure 8. Flow chart of situation analysis. 

Next, anomalies are detected by comparing the current and nominal situations. The 

current and the nominal situation may also include the analysis of time series to determine 

parameters that describe trends as well as to detect abnormal changes. In principle, vari-

ous methods are applicable for comparing and evaluating the situation in order to detect 

anomalies. For example, outlier detection may be a suitable mean for the time-efficient 

detection of relevant deviations [83,84]. In comparison, the recognition of known and un-

known patterns in incoming data indicating abnormal behavior may be conducted by AI-

driven processes [85,86]. The choice of comparison methods depends on the type and 

complexity of the data used as well as the resilience management objectives. Additionally, 

the comparison results should provide the details needed for the following state assign-

ment in the scenario space. If no anomaly is detected, e.g., the current situation of DM and 

EM is within the boundaries of the nominal behavior, the process situation analysis 

switches back into an idle state, waiting to be triggered for a restart by new incoming data. 

If anomalies are detected, they are then characterized by a snapshot describing the 

deviations or found patterns based on key impact factors of a scenario space. The next 

processing step tries to match the snapshot of a detected anomaly to any feasible states in 

the scenario space to identify such scenarios which are representative of the current situ-

ation and are, therefore, possible developments. This may also include very unlikely 
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scenarios and also scenarios with partial consistency, thus resulting in uncertainties with 

regards to further scenario development. 

Additionally, it is reviewed whether matching scenarios were already recognized in 

an earlier analysis cycle. If this is the case, it is not necessary to start the processes of risk 

anticipation, RMM identification, and RMM evaluation again. This helps to prevent un-

necessary analysis, as compliant risk mitigation measures are already in place or currently 

under investigation. New scenarios have to be checked for sufficient depiction within the 

existing scenario space. 

A failed depiction should be analyzed to receive a well-formulated problem descrip-

tion needed to request external solution processes, e.g., the extension of the scenario space 

with additional key impact factors or a changed parametrization. If a depiction is possible, 

the resulting fully specified new state-related scenarios and their further characteristics 

are then added to the anomaly database of the scenario space for further analysis. 

4.4. Anticipation of Risk Developments 

The task, “Anticipation of risk developments”, depicted in Figure 9, is triggered ei-

ther by new or changed scenarios identified by the “Situation analysis” (see Section 4.3). 

 

Figure 9. Flow chart of anticipation of risk developments. 
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The process analyzes the scenarios regarding risk indicators (RIs) related to the criti-

cality of scenario development for the performance indicators (PIs) of the system. There-

fore, possible developments of the scenarios are simulated with the help of the DT and 

EM. The required information for simulating the scenario development is taken from the 

descriptor database of the scenario space. This comprises the current anomaly data (ASnap-

shot, AScenarios) and the nominal values (N) and includes parameters, variables, and their fea-

sible short-term development, as well as the corresponding likelihoods. The model-based 

simulations of all parametrized scenarios are conducted in consecutive runs. Each run 

starts with the composition of a DT- and EM-based tool kit that is sufficient for the simu-

lation of the chosen scenario. This tool kit is an offline copy of parts or the whole DT using 

its nominal specification. On this base, the scenarios are simulated repeatedly, e.g., by 

Monte-Carlo simulation, in order to consider different feasible scenario developments and 

the respective possible outcomes and their likelihoods. 

In the next step, all achieved simulation results are analyzed in regard to the resulting 

course of the PIs and corresponding risks that have an effect. Thus, RIs having an impact 

on the course of the PI in different simulated developments are assessed and quantified. 

In the last step of each run, the PIs, RIs, and their quantified impact, as well as the impact 

severity likelihood, are aggregated for the various simulated scenario outcomes. 

After the finalization of the simulations, the results and associated PIs and RIs are 

stored in the anomaly database. Finally, a first assessment of the criticality based on the 

extracted PIs and RIs is done. The risk treatment is stopped if critical risk development 

within the analyzed scenarios can be ruled out with adequate confidence. The needed 

level of confidence should depend on individual criteria of the considered system, e.g., its 

criticality within a higher-level network. Otherwise, the following process of finding ap-

propriate risk mitigation measures (RMM) is triggered. 

4.5. Management of RMM 

The goal of this task is the identification of RMM which are potentially suitable to 

reduce the risks in the anticipated risk developments as well as to mitigate resulting con-

sequences. The effectiveness of the RMM has to be proved with respect to PIs and RIs 

determined by the former scenario-based simulations. In this way, this task decisively 

contributes to the enhancement of the abilities of the supported system in terms of its 

ability to react and adapt to emerging critical situations. As not only the mere suitability 

but also the added value of the measures to overall risk mitigation are relevant, the eval-

uation of the impact of these measures is additionally conducted within this activity. 

In the first step (see Figure 10), potential risk mitigation measures (RMM) are identi-

fied. Various methods may contribute to the fulfillment of this rather complex task. These 

methods are understood as a subprocess, which is not discussed in detail in this paper. 

Feasible methods range from best practice approaches over state-of-the-art analysis to 

(variance-based) sensitivity analysis, e.g., described in [87]. The hereby predefined 

measures could be stored in a list, e.g., suitability for impact on various RIs. Thus, this list 

of K approaches is generally suitable for the RIs identified in the previous simulations, 

with a single approach representing a single measure or a combination of them. If no 

matching RMM is found (K = 0), the task is aborted in order to further continue the risk 

treatment with the evaluation process. 
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Figure 10. Flow chart of identification of risk mitigation measures. 

The identified RMM are further evaluated for their usability and practicability in the 

current DT model (see Table 2). Here, usability can be assumed if RMM can directly be 

simulated and analyzed with DT models. Non-usable RMM can still be considered prac-

ticable when integration in a timely manner into the DT models is feasible without inter-

rupting the running evaluation process. This evaluation includes the analysis and com-

parison of links and interfaces between RMM and DT models suitable for the implemen-

tation of the measures. 

Table 2. Decision matrix about the feasibility of RMM evaluation (usability and practicability). 

Identified RMM 
Next Step 

Usable Practicable 

No No Reiteration of basic RMM identification 

No Yes 
Pausing of the task and request for an extension of the DT. Then, 

continuation of the task with identified RMM. 

Yes Yes Continuation of the task with the identified RMM 

If at least one usable RMM has been identified, a simulation of the feasible scenario 

developments is prepared and conducted analogous to the anticipation of development 
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activity (see Section 4.5). The simulation setup now comprises the implemented measures 

and, if needed, the extended DT models. Furthermore, the simulation setup uses the 

anomaly database and the nominal values for the key factors for scenario description. The 

model-based simulation of the RMM-influenced situation developments is iteratively con-

ducted for every feasible scenario. When completed, the activity finishes by storing the 

scenario developments and associated PIs and RIs (AScenario*, API*, ARI*) in the anomaly da-

tabase of the scenario space. 

4.6. Evaluation of RMM 

The final task deals with the evaluation of the identified RMM and their simulated 

impact on situation developments (see Figure 11). The goal is the provision of recommen-

dations for response to developing situations, e.g., emerging threat scenarios, by an opti-

mal choice of RMM. 

 

Figure 11. Flow chart for the evaluation of proposed risk mitigation measure (RMM). 

The evaluation process itself is multidimensional, having in mind that different in-

fluences regarding decision-making have to be considered. Firstly, the effectivity of the 

proposed RMM is analyzed using the information from the anomaly database, e.g., by 
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comparing the simulated course of PIs and RIs in original developing scenarios (AScenario) 

and the respective developments with the implemented RMM (AScenario*). Secondly, arising 

uncertainties from different sources within the framework are evaluated for their impact 

on decision validity. In this important part of decision analysis, a distinction between ep-

istemic and deep uncertainty is reasonable. While the former is a result of imprecisions in 

modeling and information, the latter results from unknown scenario development due to 

incomplete information in the prognosis. 

Finally, a Risk-Benefit-Analysis is conducted. Here, the variety of feasible scenario 

developments (AScenario, AScenario*) and RMM are considered in order to analyze tradeoffs 

between resulting risks and benefits of RMM implementation on PIs by using the results 

of the carried out simulations (API, API*, ARI, ARI*). Thus, the Risk-Benefit-Analysis consid-

ers the uncertain anticipation of threats and the resulting course of scenario development 

due to incomplete information as well as to measure effectiveness uncertainty. Note that 

diverging effects of RMM on different PIs or in different scenarios can lead to goal con-

flicts that can be solved, e.g., by Multi-Criteria Decision Analysis. 

All evaluation steps have similar criteria for process abortion and ending risk treat-

ment. Hence, noneffective RMM, too many uncertainties, or not accepted Risk-Benefit-

Ratios lead to the recommendation of no RMM implementation. Thus, the decision sup-

port of the framework stays neutral and waits for more information on the task “Situation 

Analysis” (see Section 4.3). If all steps are conducted successfully, the RMM are ranked 

according to the evaluation results. These results may be stored to track the real achieved 

RMM effectiveness. This tracking can be used to check the validity of the implementation 

recommendations by comparing achieved results using real-time data (RT) and expected 

results of the simulations. A further application of this tracking can support the learning 

of new best practice RMM solutions. 

5. Conceptual Study 

This section discusses the feasibility of using the framework for Operational Resili-

ence Management (ORM) in collaboration with dynamic risk management by means of a 

qualitative analysis of a real event that occurred in a major city in Bavaria (Germany) in 

February 2021. It is important to note that we assume an implementation of the framework 

that complies with the requirements presented in the previous section. 

5.1. Motivating Scenario Description 

The scenario used here as an example was a major fire in a power plant induced by 

a technical defect that was not detected early enough by the employed condition monitor-

ing system. Regardless of whether the fire could have been avoided or not, the risk man-

agement system failed with regard to fire prevention. However, the risk management sys-

tem worked very well with regard to firefighting as well as the evacuation of employees. 

Consequently, no personal injuries or major destructions have been reported, with the 

exception of the power plant unit responsible for the heat supply, which was damaged in 

such a way that it stopped its operation. Possibly, a post-hazard risk analysis might be 

able to show to what extent such a fire can be avoided in the future. This analysis might 

reveal the need for improved monitoring and recognition capabilities of the power plant, 

i.e., higher resilience against the causes of the fire. 

The fire damage to the power plant unit meant that one of several district heating 

generators in the regional network was no longer available. The power plant unit, which 

dates back to the 1930s, was primarily in operation to balance peak daytime consumption 

and contributed to the system margin. Thus, it was expected that at average Central Eu-

ropean temperature conditions (~5 °C) and under typical consumption behavior, the fail-

ure of this power plant unit would not lead to a noticeable reduction in the district heating 

supply. However, at the time of the event, the region suffered from freezing cold weather 

conditions with temperatures constantly below −10 °C. Based on the available infor-

mation, it is not possible to judge whether risk analyses already carried out by the district 
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heating network operator classified the total failure of the power plant at extremely low 

temperatures as a rather unlikely event or as a short-term event without significant effects. 

The consideration of the damage situation on the part of the power plant led to the 

estimate that several weeks would be needed to restore and rebuild the unit for heat gen-

eration. From the point of view of the district heating network operator and considering 

the current weather conditions, the district heating supply was no longer guaranteed for 

two city districts and its critical infrastructures, including a hospital, two old people’s and 

nursing homes, 15,000 households, schools, and businesses. Based on this information, the 

city declared a disaster situation, established a crisis team, and asked residents to reduce 

hot water and heating consumption to a minimum. This was undertaken via the catastro-

phe warning system KATWARN using mobile communication for messaging. Unfortu-

nately, a radio mast of a mobile phone provider on the roof of the power plant was also 

destroyed resulting in an interruption of the mobile phone service. In summary, it was 

difficult to estimate how many of the affected residents would comply with this request. 

Complicating the situation, the pandemic regulations meant that a large proportion of the 

population worked from their home offices, resulting in an even higher demand for heat 

and energy. At the same time, the measure of procuring and installing mobile heating 

stations began but was delayed due to the unavailability of mobile heat generators on site. 

Although the risk management of the crisis team had worked quite well up to that point, 

the uncertainties in the situation impeded the assessment of whether the measures initi-

ated would be sufficient to guarantee a minimum supply of heat. In addition, current pan-

demic regulations have been suspended in order to provide alternative housing options 

to the affected population in the event of a total loss of heat supply. This reduced the risk 

of freezing but increased the risk of being infected with COVID-19. 

5.2. Elaboration of Application of the Proposed ORM Framework 

In the following, we discuss the possible impact of the ORM framework as specified 

in Sections 3 and 4 on the presented scenario in a qualitative manner. Therefore, different 

levels of the scenario are discussed, starting with the power plant as the lowest level, fol-

lowed by the district heating supply and the urban crisis management. 

5.2.1. Power Plant Level 

Fire is either caused by the presence of heat, flammable substances, and oxygen in a 

certain mixture or by physically, chemically, or biologically induced spontaneous ignition 

processes. The observed outcome indicates that the employed monitoring system and the 

situation assessment by the operating personnel were not able to perceive and interrupt 

the ignition process at an early stage. This may be due to several causes: (a) The area where 

the fire originated was not monitored. (b) The area was monitored, but the data collected 

were inadequate to detect the emerging fire. (c) The anomaly detected by the monitoring 

system was an indicator of the emerging fire but was not noticed by the operators. (d) The 

detected anomaly was perceived as an indicator of an emerging fire by the operating per-

sonnel, but the scenario was classified as rather unlikely. (e) The emerging fire was de-

tected too late to be stopped. 

In the case of cause (a), the proposed ORM framework could perform the monitoring 

as needed for risk detection of emerging fires. In contrast, cause (b) could be circumvented 

via enhanced monitoring capabilities due to improved data acquisition and assessment, 

which is mainly provided by the tasks “Data acquisition and management” (Section 4.2), 

“Situation analysis” (Section 4.3), and “Anticipation of risk developments” (Section 4.4). 

The proposed ORM framework would be particularly helpful in reducing the risks related 

to causes (c) to (e). Therefore, the framework would initiate a scenario analysis for each 

detected anomaly with respect to potentially evolving hazards (“Situation analysis” and 

“Anticipation of risk developments”) unless the data and information base contains al-

ready explanatory scenarios for the specific type of heat generator. Based on this analysis, 
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adequate risk mitigation measures (RMM) could be proposed and evaluated, mainly via 

the tasks “Management of RMM” (Section 4.5) and “Evaluation of RMM” (Section 4.6). 

5.2.2. District Heating Supply 

Modern district heating power plants already optimize the use of local resources with 

the help of operational support software based on DT or simplified models of the power 

plant and setpoints for heat generation. Therefore, a district heating supply network is 

often described by a locally resolved hydrothermal model to ensure that the consumer 

obtains district heating at the required temperature and pressure. However, the actual 

heat consumption on the final customer level is unknown within these models. In the ex-

emplary scenario discussed above, the network operator used its operating software to 

recognize in the early stages that the district heating supply was at risk under the circum-

stances described above. However, the pandemic, as well as extreme weather-related de-

viations to the customer profiles as well as the lack of knowledge of the current consump-

tion of individual customers made it impossible to estimate the emerging restriction of 

district heating provision reliably. This also applies to the assessment of the extent to 

which voluntary restriction of heat consumption by customers could contribute to relax-

ing the critical situation. 

The proposed ORM framework could notably improve this situation assessment. 

Therefore, the applied data and information base (DIB) must provide models not only for 

heat generators and networks but also for customers in terms of heat consumption. Recent 

developments indicate the feasibility of such dynamic models [88]. Using the DIB and 

real-time data also at the customer level, acquired via the task “Data acquisition and man-

agement” (Section 4.2), an enhanced description of the current situation and its dynamics 

is possible and could be provided by the task “Situation analysis” (Section 4.3). Conse-

quently, potential scenarios can be identified and described based on perceived changes 

in the system and the heat consumption, using the tasks “Situation analysis” and “Antic-

ipation of risk developments” (Section 4.4). This would also offer the possibility of regu-

latory intervention in times of crisis to avoid consumer behavior that causes additional 

harm to the stressed system, mainly derived and evaluated within the tasks “Management 

of RMM” (Section 4.5) and “Evaluation of RMM” (Section 4.6). Other possible risk mitiga-

tion measures include the formulation and updating of requirements and the scheduling 

of mobile heat generation. 

5.2.3. Urban Crisis Management 

In general, it is very much possible that the current pandemic regulations have been 

suspended too early, considering the given uncertainties of the developing situation. En-

hanced situational awareness, as provided by the proposed ORM framework, could have 

helped in avoiding or at least delaying the suspension. 

6. Conclusions 

Recently published works indicate that current risk and resilience research puts high 

emphasis on uncertainties arising from the lack of knowledge about the behavior of com-

plex networked Critical Infrastructure Systems and Organizations (CISO) and their mul-

tifaceted interdependences. As a result, a variety of risk-related as well as resilience-re-

lated frameworks offering either method-driven or application-oriented approaches were 

developed. Alas, these frameworks either lack the focus on operational management, have 

a rather theoretical approach, or are designed for specific applications. This observation 

motivated the development of the presented framework for operational resilience man-

agement (ORM), which aims at implementing the four cornerstones of resilience, namely 

responding, monitoring, anticipating, and learning, as operational processes in a CISO. 

Therefore, the proposed ORM framework provides a process that defines tasks for the 
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proper coordination of the CISO’s inherent capabilities to identify and handle adverse as 

well as surprising events and developments. 

Regardless of the context, resilience management requires a minimum of available 

knowledge. Ultimately, the available knowledge determines the possible performance of 

the implemented resilience-related capabilities. The framework reflects the importance of 

knowledge by building a living data and information base (DIB), which includes the dig-

ital twin (DT) concept. This DIB enables the description of the current situation and his-

torical events in relation to CISO, environment, and evolving scenarios. Furthermore, the 

proposed ORM framework also defines operational measures for gathering, maintaining, 

and extending the available knowledge. This results in the following advantages: 

 When starting or resuming ORM, a context specification assesses whether the avail-

able knowledge is sufficient to perform the intended resilience management. An 

identified deficiency leads to the need to expand the DIB, e.g., by collecting addi-

tional data, improving DT and environmental models, or expanding methodological 

capabilities. This strengthens situational awareness with regard to known and un-

known risks. 

 The ORM framework provides support for decision-making regarding the need for 

reassessing possible risk developments due to the current situation. For this purpose, 

the ACTUAL situation (DIB with real-time data) is compared with the TARGET sit-

uation (DIB with nominal data) in order to identify anomalies in the risk indicators 

used and to anticipate potential risk developments. 

 Exhaustive analysis and simulation with the help of DT and environmental models 

are performed to provide decision support by identification, evaluation, and selec-

tion of suitable and practicable risk mitigation measures (RMMs). In this context, 

novel as well as known RMMs were investigated with regard to their effectiveness. 

An additional feature is the capability to reduce the influence of uncertainties and to 

correct implemented measures successively. 

All framework-dependent feedbacks between DT and CISO, data and models, as well 

as analyses and measures of risk mitigation, reflect the crucial resilience feature of a learn-

ing CISO. The results of scenario analyses and implementation of identified risk mitiga-

tion measures lead to an update of DT models in particular and of the DIB in general. 

Using the example of a real hazard in a Bavarian district heating power plant, it was 

shown how the framework could have a positive impact on decision-making processes 

involving risk mitigation measures as well as measures to increase the resilience of the 

CISO. One should be aware that the added value of using a framework necessarily de-

pends on the actual implementation of the individual tasks in the context of a specific 

entity. It should be noted that the enumerated benefits can only be fully achieved if the 

database is as comprehensive as possible. In practice, limitations and complex implemen-

tation may have to be expected here, as deficiencies in data collection can often be identi-

fied. Another possible limitation is the lack of knowledge about functional relationships 

of the complex CISO, which can lead to necessary cutbacks in the accuracy of the system 

models used. For this reason, it is important to examine the proposed framework and its 

components in a subsequent step by means of a more detailed implementation on a prac-

tical example. 

Consequently, to evaluate the effects of these potential limitations in more detail, it 

is important to subject the proposed framework and its components to a more detailed 

implementation on a practical example in future works. 

Hence, the main contribution of this work is the provision of a methodical approach 

that paves the way for future research and development on the merging of methods for 

risk and resilience management as well as the digital twin concept. 
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