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Abstract: The classical linear regression model allows for a continuous quantitative variable to be
modeled simply from other variables. However, this model assumes independence between observa-
tions, which, if ignored, can lead to methodological issues. Additionally, not all data follow a normal
distribution, prompting the need for alternative modeling methods. In this context, geographically
weighted beta regression (GWBR) incorporates spatial dependence into the modeling process and
analyzes rates or proportions using the beta distribution. In this study, GWBR was applied to the
traffic injury (fatal and non-fatal) crash proportions in Fortaleza, Ceará, Brazil, from 2009 to 2011.
The results demonstrated that the local approach using the beta distribution is a viable model for
explaining the traffic injury crash proportions, due to its flexibility in handling both symmetric and
skewed distributions. Therefore, when analyzing rates or proportions, the use of the GWBR model
is recommended.
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1. Introduction

In 1997, the Swedish parliament initiated a debate on the Vision Zero program, which
aims for zero serious and fatal traffic accidents [1]. To achieve this goal, the program
acknowledges that several factors contribute to safe mobility, including road geometry,
set maximum speeds, and the technology used in traffic studies and control policies [2].
Accidents can still occur, however, serious and fatal crashes would be less observed. Ref. [3]
adopted Resolution A/RES/74/299 on improving global road safety, proclaiming the
Decade of Action for Road Safety 2021–2030. This initiative sets the ambitious target of
preventing at least 50% of road traffic deaths and injuries by 2030.

Following [4], in 2019, deaths from road accidents ranked 12th among the causes
of total deaths worldwide, ahead of causes such as tuberculosis (13th), HIV (14th), and
homicides (17th). When focusing on the younger population, aged between 5 and 49 years,
for the same year, there is a significant shift in this ranking, causing deaths from traffic
accidents to now be in third place, behind only cardiovascular diseases and neoplasms,
such as cancer.

Examining the occurrences in some countries over recent years using data from [5],
and adjusting occurrences according to population size to reflect the number of deaths
per 100,000 inhabitants, one can observe the case of Thailand, which shows considerable
growth in the rate, reaching almost 30 deaths per 100,000 inhabitants in 2019. Another
country that had very high rates but has managed to reduce them is Brazil; in 2019, it still
had a high rate of approximately 15 deaths per 100,000 inhabitants, a decrease from the
beginning of the series in 2010, when there were 21 deaths per 100,000 inhabitants on the
roads. To the detriment of these countries, Sweden serves as an exemplary model in this
fight, managing to maintain a rate of close to 3 deaths per 100,000 inhabitants until 2018. It
is worth mentioning that Sweden is the pioneer of Vision Zero, which began in 1994 [1].
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Therefore, techniques to establish the relationship between two or more variables in the
pursuit of modeling traffic crashes are widely studied. Among these techniques, classical
linear regression is one of the most widespread statistical methodologies, allowing a
continuous quantitative variable to be modeled from other variables. This method is widely
used for its simplicity and applicability in several areas such as research and marketing.
However, classical linear regression has some assumptions that are often overlooked,
leading to methodological issues and potentially erroneous conclusions about the study.
Assumptions such as the independence between observations and the Gaussian distribution
of errors (or the response variable), if not properly assessed, can yield inaccurate results [6].
Thus, several other methods have been studied and developed to adapt to situations that do
not meet the assumptions of classical linear regression, such as generalized linear models
and spatial models.

In the case of discrete data, such as the number of traffic crashes, classical linear
regression has some limitations, as indicated by [7–9]. According to [7], the use of a
classical linear regression for discrete data may include the presence of unwanted statistical
properties, such as the possibility of a negative crash count and the lack of adjustment to
the distribution itself, due to the asymmetry common to the aforementioned data. In these
cases, the use of Poisson or negative binomial regression models is more recommended.

When the interest lies in modeling the traffic injury crash proportions, a barrier to
using a regression model for discrete data is that the value is continuous and restricted to
the interval [0, 1]. It is also not appropriate to use classical linear regression, even if the
data are continuous, because the data may exhibit right-skewness since the proportion of
traffic injury crashes is generally low relative to the number of crashes. For situations like
this [10], the beta regression model is considered, which assumes that the response variable
follows a beta distribution. This distribution is supported by the continuous unit interval
(0, 1) and offers the flexibility to model both symmetric and skewed data.

In order to incorporate the spatial factor into the study of traffic crashes, ref. [11] suggests
the use of models that consider spatial dependence, given the influence between events
that occur closer to each other. This dependency structure was also verified by [12,13],
among others. Combining the concepts of beta regression and geographically weighted
regression, defined by [14,15], the authors developed the geographically weighted beta
regression (GWNBR). This approach seeks to model rates and proportions in a spatial context.

Thus, this work aims to apply the GWBR model developed by [15] to traffic crashes
that occurred in the city of Fortaleza, Ceará, between 2009 and 2011, considering the
proportion of traffic injury (fatal and non-fatal) crashes.

2. Background

In reviewing the literature on traditional approaches to road and highway planning,
there is a clear lack of explicit consideration for traffic safety issues and concerns [16]. To
show this, a scheme was proposed by [17] to make the concept of security in the traffic
system more apparent. In this new scheme, safety is an integral part of constructing the
transportation network, being considered at each stage, from the addition of new accident
information to the incorporation of new traffic volumes into the network. In addition,
within the planning stage, actions for future security are also evaluated, thus adopting a
proactive approach to this aspect.

As the vision of traffic planning has evolved, tools are needed to support this advance-
ment, stimulating the search for more advanced techniques to model traffic crashes in a
more objective/precise way, thus generalizing problems to avoid such incidents. For this,
several studies aim to model such occurrences, with several different approaches, as shown
in [11,18–21].

Some characteristics to consider when modeling traffic crashes and aiming to proac-
tively address such events include exposure to risk (traffic volume, mileage), the probability
of involvement in an accident based on predefined characteristics, and the severity of the
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crash [16]. The latter is extremely important for the work developed here, as the main focus
is on the Vision Zero strategy, which aims to eliminate serious and fatal crashes [1].

To perform the modeling, one should consider a spatial aggregation of occurrences by
area units, such as census tracts, neighborhoods, or, most commonly in the modeling of
traffic crashes, the traffic analysis zone (TAZ), as used by [11,12,19,22–24].

TAZs are geographic units constructed based on clusters according to the sociodemo-
graphic characteristics of the locality [25]. The first systematic algorithm aimed at defining
TAZ was proposed by [26], optimizing an objective function for partitions of a locality
based on some observed variables. Since then, this method of separation has been one of
the most utilized for transportation planning.

The frequency of crashes can then be estimated for each TAZ according to the associ-
ated attributes, such as the following:

• Road characteristics: Volume of intersections [27], roads with different speed lim-
its [22,28], roads with different classifications [19,27,29], intersections, and round-
abouts [19];

• Traffic pattern in terms of the volume and speed of the road [19,29];
• Origin and distribution of the route [28];
• Weather conditions [30];
• Land use [22,29];
• Socioeconomic factors: population density [27,31], age [19,29,30], family income [22,27,32]

and employment [19,27,29].

Some proposals have been made for the modeling of traffic crashes, where the spatial
factor is omitted, such as the generalized linear model with the negative binomial distri-
bution [19,28,30,31] and the Bayesian lognormal Poisson model [22,32]. For models that
consider spatial dependence, the literature contemplates a Bayesian approach [19,27,30],
as well as frequentist models, such as econometric spatial models [19], geographically
weighted Poisson regression (GWPR) [29,33], and geographically weighted negative bino-
mial regression (GWNBR) [11].

It is seen that the factors for the aforementioned models include characteristics of the
vehicle’s driver and the road, thus confirming the need for a joint approach of these factors
for the construction of the safest traffic model, as indicated by [17,34]. Given this, several
approaches are taken, and one of them is Zero Vision.

For this modeling, some studies do not delve into the inferential part but explore
the relationship of fatal crashes with the place of occurrence, as in [35,36] that use kernel
density estimates. Among the inferential statistical models, the use of logistic regressions
is more common, either without incorporating the spatial factor [37–39] or by including
locality in the model, as presented in [40], through conditional logistic regression stratified
by locality.

Some studies use the count of fatal crashes as a dependent variable, such as [30],
which considers modeling using the negative binomial distribution and a Bayesian approach,
and [24], which considers econometric spatial models. In this context, some methodological
flaws in the aforementioned works are noted. One issue is the probable spatial dependence
of the occurrences, which violates the fundamental assumption of the independence of
observations. Another flaw arises from using the count of traffic injury crashes since this
count is naturally influenced by the number of cars in the locality and not solely by the
severity of the crash in a given place, which is the factor this study seeks to understand.

Because of this, the analysis developed here seeks a better adaptation of the data to
the real distribution, incorporating the spatial dependence of the occurrences, without
disregarding the numerous advances, such as the predetermination of fundamental factors
for the modeling of traffic injury crashes.
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Geographically Weighted Beta Regression (GWBR)

The beta distribution has density given by the following:

f (y|α, β) =
Γ(α + β)

Γ(α)Γ(β)
yα−1(1 − y)β−1 (1)

where 0 < y < 1, a > 0, b > 0, and Γ(.) is the gamma function. The α and β parameters
define the various shapes of the beta distribution.

Since the intention is to define a regression model, it is more interesting to reparame-
terize the beta distribution as a function of its mean (µ) and consider a parameter for the
precision (ϕ) [10].

Ref. [10] developed a model suitable for situations in which the behavior of the
response variable can be modeled as a function of a set of explanatory variables, as in
a traditional regression, taking into account the response variable following the beta
distribution, which restricts the analysis to the continuous interval (0, 1) and which has
great flexibility for modeling.

Ref. [10] proposed a reparameterization, considering µ = α/(α + β) and ϕ = α + β,
so that

E(y) = µ and Var(y) =
V(µ)

1 + ϕ
=

µ(1 − µ)

1 + ϕ
(2)

The reparameterization of the beta distribution as a function of the mean µ and the
precision parameter ϕ is [10] is as follows:

f (y|µ, ϕ) =
Γ(ϕ)

Γ(µϕ)Γ((1 − µ)ϕ)
yµϕ−1(1 − y)(1−µ)ϕ−1 (3)

where 0 < µ < 1 and ϕ > 0.
Note that the µ and ϕ parameters (such as the original α and β) define the various

shapes of the beta distribution (Figure 1). It is possible to obtain an inverted J, U, or J-shaped
distribution (a), with different symmetries (b) or heavy tails of the distribution (c), or even
fit a linear behavior (d).

Figure 1. Beta densities for different combinations of (µ, ϕ).
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For the geographically weighted beta regression model, developed by [15], it can be
assumed that the average of the response variable at location i can be modeled as follows:

g(µi) = ηi =
p

∑
k

βk(ui, vi)xik i = 1, . . . , n (4)

where g(.) is a link function that associates the interval (0, 1) to R, (ui, vi) represents the
geographical coordinates of the i-th observation, i = 1, ..., n, βk(ui, vi) is the parameter for
the k-th explanatory variable as a function of the location of the i-th observation, and xik is
the value of the k-th explanatory variable for location i.

Some choices for the link function g(.), according to [10], are the logit g(µ) = log{µ/(1− µ)};
the probit g(µ) = Φ−1(µ), where Φ(.) is the cumulative distribution function of a standard
normal random variable; the log–log g(µ) = − log{− log(µ)}; and the complementary
log–log g(µ) = log{− log(1 − µ)}.

As in the beta regression model, there is no closed way to estimate the parameters
βk and ϕ, requiring the use of numerical maximization methods of the logarithm of the
local likelihood function. For these optimizations, the authors of [15] recommend using
adaptations of the initial values of the beta regression as a starting point for the algorithm,
considering a spatial matrix of weights W i, based on the distances between the estimated
location and all observed points.

The initial values of the parameter vector, β0i, are estimated using the classical geo-
graphically weighted regression (GWR) [14], considering y̌i = g(yi), as follows:

β0i = (X⊤WiX)−1X⊤Wiy̌ (5)

where Wi is a diagonal matrix with the weights wij; it can be defined according to [14]
using the biquadratic adaptive kernel for an adaptive bandwidth of the following form:

wij =


[
1 −

(
dij/b

)2
]2

, if j is one of the n-th nearest neighbors of i.

0, otherwise
(6)

where dij is the distance between i and j and b is the bandwidth, or according to a fixed
bandwidth using the Gaussian kernel function [14], as follows:

wij = exp

{
−1

2

(dij

b

)2
}

(7)

In both cases, the optimal value for the bandwidth can be found by minimizing the
cross-validation (CV) or AICc, as shown in [41].

For the initial value of the precision parameter for the location (ui, vi), the following
can be used:

ϕ0i =
1
n

n

∑
j=1

µ̌0j(1 − µ̌0j)

σ̌2
0j

− 1 (8)

where µ̌ij = g−1(x⊤j (X⊤WiX)−1X⊤Wiy̌), being xj a j-th row of the matrix X and σ̌2
0j =

ě⊤ ě
(n−pe)g′(µ̌0j)2 , where ě is the residual of the classical GWR considering y̌ and pe = 2ν1 − ν2,

the effective number of parameters of the classical GWR model, with ν1 being the trace of
the matrix S and ν2 being the trace of S⊤S [14].

More details about the GWBR model can be viewed in [15].

3. Application

This section aims to demonstrate the fit of beta regression and GWBR to data from
the city of Fortaleza, Brazil (Figure 2), which contains 126 TAZs, with socioeconomic
information and land use data obtained from the 2010 Census. Along with this, the
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road accident data system of Fortaleza (SIAT/FOR) provided variables of the network
infrastructure, including the locations of traffic lights, speed cameras, and details on
crashes that occurred from 2009 to 2011, including the geolocation of these accidents and
information about the presence of victims in these incidents. The database is the same one
used by [11], but the analysis now focuses on the proportions of traffic injury (fatal and
non-fatal) crashes, rather than the frequency of traffic injury crashes.

Figure 2. Location of the city of Fortaleza, Ceará, Brazil.

3.1. Data Preparation

The variables in the database, divided into six different categories, along with some of
their descriptive statistics, are presented in Table 1.

Table 1. Descriptive statistics of the variables.

Category Variable Description Avg Sum Min Max SD

General

ID TAZ Code - - - - -
X Longitude coordinate (UTM, Datum WGS 84) - - - - -
Y Latitude coordinate (UTM, Datum WGS 84) - - - - -
AREA_KM TAZ area in km2 2.41 303.14 0.14 13.48 2.58

Crashes
ACT #Crashes 431.66 54, 389 6 2981 450.92
ACVF Injury (fatal) crashes 5.54 698 0 24 5
ACV Injury (fatal and non-fatal) crashes 153.40 19, 328 4 829 119.94

Exposure
Variable

EXT_TOT Total TAZ road length (km) 33.26 4190.18 2.63 192.07 26.89
POP_TOT Total TAZ population 19, 213.86 2, 420, 946 1183 115, 279 16, 846.7

Network
Characteristics

DEN_I_SEM #Signalized intersections per km 0.3 37.6 0 1.94 0.35
DEN_I_NSEM #Non-signalized intersections per km 6.11 769.4 3.58 9.71 1.18
D_EQUI_FE #Speed cameras per km 0.07 8.41 0 0.39 0.07

Socioeconomic
Features

P_0_17 Proportion of Inhabitants between 0 and 17 years old 0.26 - 0.16 0.37 0.05
P_18_64 Proportion of Inhabitants between 18 and 64 years old 0.66 - 0.59 0.72 0.03
P_M64 Proportion of Inhabitants aged 65 years old or over 0.07 - 0.03 0.14 0.03
P_D_A3SM Proportion of households with incomes up to 3 minimum wages * 0.58 - 0.08 0.92 0.22
P_D_M3SM Proportion of households with an income of over 3 minimum wages * 0.42 - 0.08 0.92 0.22

Land use URES_A Residential land use (m2) per TAZ area (km2) (×1000) 0.24 30.18 0.00 1.55 0.24
UCOPS_A Commercial land use (m2) per TAZ area (km2) (×1000) 0.09 11.68 0.00 0.74 0.1

* Minimum wage of approximately USD 300.00.

Two dependent variables will be studied: ACP = ACV
ACT and ACFP = ACVF

ACT . The
purpose of using these two dependent variables is to show the potential of the GWBR
technique in modeling proportions, symmetric or skewed, in contrast with the use of
classical GWR, which assumes that the data follow a symmetric Gaussian distribution.
Note that in Figure 3, the distribution of the variable ACP shows some symmetry while the
variable ACFP is highly skewed to the right. In addition, by analyzing the goodness-of-fit
of the normal and beta distributions to the data for the variable ACP, it is clear from the
Kolmogorov–Smirnov test [42] that the two proposed distributions fit the data with higher
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evidence for the beta distribution. For the variable ACFP, it is clear that only the beta
distribution fits the data.

Figure 3. Distribution of the variables ACP and ACFP.

The preliminary selection of the variables was based on the analysis of the correlation
matrix involving each variable and the two dependent variables. After checking the
correlations and avoiding possible multicollinearity problems, Table 2 shows the candidate
variables to explain the traffic injury (fatal and non-fatal) crash proportions (ACP).

Table 2. Correlation matrix with the variables to be used in the models.

ACP P_D_A3SM DEN_I_SEM D_EQUI_FE
ACP 1 0.7956 −0.5806 −0.3185
P_D_A3SM 0.7956 1 −0.6307 −0.3297
DEN_I_SEM −0.5806 −0.6307 1 0.4028
D_EQUI_FE −0.3185 −0.3297 0.4028 1

It can be seen that the factor most strongly associated with traffic injury crashes is the
proportion of households with incomes of up to three minimum wages (P_D_A3SM) with
ρ = 0.7956 (p-value < 0.0001), indicating that in locations with lower family incomes, more
traffic injury crashes occur.

The greatest negative correlation (ρ = −0.58 (p-value < 0.0001)) in relation to the
response variable occurs with the #Signalized intersections per km (DEN_I_SEM) variable.
Thus, the greater the number of intersections with traffic lights, the lower the traffic injury
crashes. The other variable chosen is the #Speed cameras per km, which has a correlation
of ρ = −0.32 (p-value = 0.0003) with the response variable.

Table 3 shows the candidate variables to explain the traffic injury (fatal) crash propor-
tions (ACFP).

Table 3. Correlation matrix with the variables to be used in the models.

ACFP P_0_17 DEN_I_SEM AREA_KM
ACFP 1 0.5483 −0.4503 0.3746
P_0_17 0.5483 1 −0.6866 0.3862
DEN_I_SEM −0.4503 −0.6866 1 −0.3246
AREA_KM 0.3746 0.3862 −0.3246 1

It can be seen now that the factor most associated with traffic injury (fatal) crashes
is the proportion of inhabitants between 0 and 17 years old (P_0_17), with a correlation
of ρ = −0.6866 (p-value < 0.0001) indicating that in locations with a higher proportion of
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young people, more fatal traffic injury crashes occur. The variable #Signalized intersec-
tions per km (DEN_I_SEM) continues to explain the fatal traffic injury crash proportions
(ρ = −0.4503 (p-value < 0.0001)) and the TAZ area (AREA_KM) variable was incorporated
into the analysis, showing a positive correlation of 37% (p-value < 0.0001).

All analyses were performed using SAS 9.4 and R software, and the GWBR model was
estimated using the ‘gwbr’ package developed by the authors.

3.2. Analysis of the Variable Traffic Injury (Fatal and Non-Fatal) Crash Proportions (ACP)

The estimates of the classical linear regression model are quite different from those
obtained by the beta regression with the logit link function (Table 4); however, the interpre-
tation of these parameters is also performed differently.

Table 4. Results of global models (dependent variable: ACP).

Variable Classical Linear Regression Beta Regression (Logit)
Estimate t p-Value Estimate t p-Value

Intercept 0.1809 5.45 <0.0001 −1.3532 −9.69 <0.0001
P_D_A3SM 0.4487 10.13 <0.0001 1.9165 10.29 <0.0001
DEN_I_SEM −0.0457 −1.65 0.1022 −0.2184 −1.85 0.0662
D_EQUI_FE −0.0682 −0.62 0.5334 −0.3224 −0.71 0.4788
ϕ - - - 37.4164 8.04 <0.0001
Adj R2 * 0.6357 0.6535
AICc −267.7472 −276.5724
log-likelihood 138.0389 143.5261

* Pseudo Adj R2 for beta regression.

For classical linear regression, an increase of 1% in the proportion of households with
incomes up to three minimum wages (P_D_A3SM) results in an average increase of 0.45% in
the traffic injury crash proportions. An increase of one unit in the #Signalized intersections
per km (DEN_I_SEM) results in an average decrease of 4.57% in the traffic injury crash
proportions. Finally, #Speed cameras per km (D_EQUI_FE) is not significant for the model.

In the beta regression, where interpretation is based on the odds ratio, an increase of
1% in the proportion of households with incomes up to three minimum wages (P_D_A3SM)
increases the likelihood of traffic injury crashes by a factor of 6.8 times (e1.9165). Increasing
the #Signalized intersections per km (DEN_I_SEM) by one unit decreases the chance
of traffic injury crashes by 19.6% in the chance of occurrence of traffic injury crashes.
The variable #Speed cameras per km (D_EQUI_FE) is also not significant.

Regarding the goodness-of-fit of the models, beta regression shows better metrics,
considering the values of the adjusted R2, AICc, and log-likelihood, even though they are
not so different (but this is because the data show some symmetry).

Now, the idea is to fit local models (GWR and GWBR) to the data. The first step is
to find the best bandwidth. Table 5 shows the bandwidth metric selection for GWR and
GWBR models.

Table 5. The best bandwidths found for GWR and GWBR models.

GWR GWBR
Fixed Adaptive Fixed AdaptiveMetric

AICc CV AICc CV AICc CV AICc CV
Bandwidth 610.29 2125.06 7 31 11873.64 5103.32 125 118
Adj R2 0.88 0.81 0.88 0.81 0.67 0.73 0.64 0.67
ENP 120.40 42.63 118.02 42.97 4.82 8.96 3.98 4.10
Log-likelihood 402.40 202.11 378.71 204.78 147.91 164.26 141.48 140.54
AICc 5781.78 −273.82 3506.48 −277.56 −284.27 −301.71 −278.97 −278.68

Red shows the best value for the metric.

Note that for the GWR model, the effective number of parameters (ENP) is not as large
when a CV is minimized (this is an important issue to avoid overfitting), and because the
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other metrics are quite close, and the AICc is smaller in an adaptive bandwidth, an adaptive
bandwidth of 31 neighbors was selected. For the GWBR model, better metrics are found
for a fixed bandwidth when a CV is minimized, and because of that, a fixed bandwidth of
5.1 km (or 5103.32 m) is selected.

Table 6 shows the descriptive statistics for the GWR model. Because all parameter
estimates vary from negative to positive values, it is necessary to evaluate the statistical
significance by means of the test developed by [43]. Figure 4 shows the significant parameter
estimates for the GWR model; it is possible to see that all counterintuitive signs of the
variables are not significant, considering the 10% significance level. Different from the
classical linear regression, there are some significant locations for the variables DEN_I_SEM
and D_EQUI_FE.

Table 6. Descriptive statistics of the GWR model (dependent variable: ACP).

Variables Coefficients
Min Q1 Median Mean Q3 Max

Intercept 0.0813 0.1787 0.2213 0.2455 0.2730 0.5628
P_D_A3SM −0.1066 0.1997 0.3128 0.3171 0.4661 0.6651
DEN_I_SEM −0.3807 −0.1347 −0.0738 −0.0945 −0.0257 0.0252
D_EQUI_FE −1.1821 −0.2116 −0.0899 −0.0755 0.0835 0.6184
Adj R2 0.8144
Log-likelihood 204.7732
AICc −277.5568
ENP 42.97

Figure 4. Spatial distribution of significant coefficients of the GWR model.

Table 7 shows the descriptive statistics for the GWBR model. In the same fashion as the
GWR model, Figure 5 shows the significant parameter estimates for the GWBR model; it is
possible to see that all counterintuitive signs of the variables are not significant, considering
the 10% significance level. Also, note that variables DEN_I_SEM and D_EQUI_FE are not
significant in any location, but the spatial distributions of the other variables are smoother
than in the GWR model. This is because GWR requires a smaller bandwidth to fit the data
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a little bit better compared to GWBR (compare the ENPs: 42.97 in GWR against only 8.96 in
GWBR), generating an overfitted model (the same pattern is observed by [11] when GWPR
is compared to GWNBR). With the spatial distribution of the GWBR coefficients, it is easier
to understand the crash dynamics in the city.

Table 7. Descriptive statistics of the GWBR model (dependent variable: ACP).

CoefficientsVariables Min Q1 Median Mean Q3 Max
Intercept −1.3149 −1.2626 −1.2429 −1.2434 −1.2264 −1.1576
P_D_A3SM 1.3813 1.5769 1.7239 1.7031 1.8207 1.9943
DEN_I_SEM −0.5178 −0.3495 −0.2752 −0.2807 −0.2099 −0.1188
D_EQUI_FE −1.4966 −0.3725 −0.2537 −0.3296 −0.1812 0.1280
ϕ 34.5421 37.6043 40.8687 41.9113 43.3702 64.7619
Pseudo adj R2 0.7345
Log-likelihood 164.2650
AICc −301.7104
ENP 8.96

Figure 5. Spatial distribution of significant coefficients of the GWBR model.

Finally, Table 8 shows Moran’s I (using contiguity (Queen matrix) for the residuals
of the models, indicating that there is spatial dependence in the global ones. In the local
models, the spatial dependence is strongly reduced and it can be considered not significant
for a 3% significance level, reinforcing the need for using a local model in the analysis.

Table 8. Moran’s I for residual spatial dependence.

Model Moran’s I p-Value

Classical Linear Regression 0.2594 <0.0001
Beta Regression (logit) 0.2354 <0.0001
GWR −0.0500 0.1506
GWBR (logit) 0.1113 0.0329
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3.3. Analysis of the Variable Traffic Injury (Fatal) Crash Proportions (ACFP)

As viewed before, the estimates of the classical linear regression model are quite
different from those obtained by the beta regression with the logit link function (Table 9),
but classical linear regression shows difficulty in fitting the data, primarily because they
are not symmetric, as seen with the variable ACP. First, the intercept being negative (when
all observations of the variable ACFP are positive) is a strong indication that something
is not right). For the beta distribution, this is not a problem because the predictions are
made by using the exponential function. Second, the fact that the intercept is not significant
(considering the 10% significance level) is another indication of a problem; it implies
that when the variables P_0_17, DEN_I_SEM, and AREA_KM are zero, then there are no
traffic injury (fatal) crashes, which is not true. Third, in Figure 6 classical linear regression
produces some negative predicted values for the variable ACFP. This behavior is not
viewed in beta regression or with the variable ACP (because of the symmetry).

Also, all goodness-of-fit metrics were better in beta regression, and some variables
showed opposite interpretations in relation to the significance: The variable DEN_I_SEM
was considered not significant (for 10% significance level) in classical linear regression
while it was highly significant in beta regression, and the variable AREA_KM was consid-
ered significant (for 10% significance level) in classical linear regression while it was not
significant in beta regression. Because the assumption of symmetry required by classical
linear regression was not met and the beta regression provided a better fit, we believe that
the results from the beta regression are more reliable.

Table 9. Results of the global models (dependent variable: ACFP).

Variable Classical Linear Regression Beta Regression (Logit)
Estimate t p-Value Estimate t p-Value

Intercept −0.015936 −1.64 <0.1028 −5.553688 −13.52 <0.0001
P_0_17 0.1266574 3.81 <0.0002 6.0377913 4.50 <0.0001
DEN_I_SEM −0.00590 −1.19 0.2346 −0.604053 −2.47 0.0149
AREA_KM 0.0011654 2.18 0.0311 0.023052 1.58 0.2040
ϕ - - - 143.77925 7.58 <0.0001
Adj R2 * 0.3212 0.5406
AICc −710.7980 −825.9811
log-likelihood 359.5640 418.2406

* Pseudo Adj R2 for beta regression.

Figure 6. Predicted values of model classical linear and beta (logit) regressions.

Similar to the variable ACP, the best bandwidth found for the GWR model was an
adaptive bandwidth when a CV was minimized, generating an adaptive bandwidth of
118 neighbors. And for the GWBR model, it was a fixed bandwidth when a CV was
minimized, generating a fixed bandwidth of 20.4 km (or 20,413.27 m). In fact, these large
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bandwidths make GWR and GWBR models approximate to global ones, respectively. For
comparison, the maximum distance between points was 21.6 km (or 21,617.91 m) and the
maximum number of neighbors was 126.

Table 10 shows the descriptive statistics for the GWR model; Figure 7 shows the
significant parameter estimates for the GWR model, using the test developed by [43].
It is possible to see that all counterintuitive signs of the variables were not significant,
considering the 10% significance level.

Table 10. Descriptive statistics of the GWR model (dependent variable: ACFP).

Variables Coefficients
Min Q1 Median Mean Q3 Max

Intercept −0.0209 −0.0176 −0.0161 −0.0158 −0.0141 −0.0075
P_0_17 0.1033 0.1199 0.1269 0.1253 0.1314 0.1418
DEN_I_SEM −0.0160 −0.0065 −0.0046 −0.0054 −0.0033 −0.0019
AREA_KM −0.0002 0.0004 0.0006 0.0006 0.0008 0.0020
Adj R2 0.3425
Log-likelihood 364.9303
AICc −707.1279
ENP 10.34

Table 11 shows the descriptive statistics for the GWBR model and Figure 8 shows
the significant parameter estimates for the GWBR model. It is possible to see that all
counterintuitive signs of the variables were not significant, considering the 10% significance
level; moreover, the variable AREA_KM was not significant in any location (not shown in
the figure). Again, the same smoother distribution of the parameter estimates is observed
in the GWBR model.

Figure 7. Spatial distribution of significant coefficients of the GWR model.
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Table 11. Descriptive statistics of the GWBR model (dependent variable: ACFP).

CoefficientsVariables Min Q1 Median Mean Q3 Max
Intercept −5.6546 −5.6210 −5.5933 −5.5868 −5.5556 −5.4792
P_0_17 5.8129 6.0386 6.1459 6.1320 6.2425 6.3690
DEN_I_SEM −0.6457 −0.6104 −0.5979 −0.6013 −0.5905 −0.5751
AREA_KM 0.0203 0.0212 0.0217 0.0218 0.0224 0.0234
ϕ 138.5076 147.0267 149.9394 149.1955 152.3007 156.9339
Pseudo adj R2 0.5461
Log-likelihood 419.7047
AICc −830.1279
ENP 4.36

Finally, Table 12 shows Moran’s I (using a contiguity Queen matrix) for the residuals
of the models, indicating that there is no spatial dependence in the global ones. However,
the local models were fitted to data and the residual also showed no spatial dependence,
as expected. This result shows the ability of the GWBR model to fit data with or without
spatial dependence, making the GWBR model the only necessary model for the analysis of
rates or proportions.

Figure 8. Spatial distribution of significant coefficients of the GWBR model.

Table 12. Moran’s I for residual spatial dependence.

Model Moran’s I p-Value

Classical Linear Regression −0.0403 0.1946
Beta Regression (logit) 0.0191 0.4218
GWR −0.0772 0.0645
GWBR (logit) −0.0187 0.3169
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4. Conclusions

This study investigated the use of geographically weighted beta regression (GWBR)
for estimating traffic injury crash proportions at the traffic zone level, based on a case study
in Fortaleza, Brazil. In traffic modeling literature, the use of classical linear regression
(or its spatial local version, GWR) for modeling rates or proportions is common, as the
data are continuous. However, as seen in this work, the results support the use of beta
regression (or, more effectively, its spatial local version GWBR) as a promising tool for
safety planning, since it can handle symmetric and skewed distributions, as well as spatial
and non-spatial data, without any transformation of the data (unlike some studies that use
a log transformation to achieve normality).

The R package, named ‘gwbr’, developed by the authors, facilitates the use of this new
technique in transportation planning to more effectively model rates or proportions, such
as fatal traffic injury crash proportions. The results showed that when the data distribution
is asymmetric, the beta distribution provides a superior fit compared to classical linear
regression. When the distribution of data is approximately symmetric, the beta distribution
still shows an apparent superior adjustment to classical linear regression. This facilitates
the modeling task since it is not necessary to find the normality (or symmetry) of the data.

To the best of our knowledge, this study is the first application of the GWBR model
to the field of road safety. The main contribution of this work, based on the results, is the
recommendation to use the GWBR model when analyzing rates or proportions. This model
effectively fits both symmetric and skewed distributions limited to the interval (0,1), with
or without spatial dependence.

A clear limitation in using GWBR concerns the use of the extremes of the interval (0, 1),
i.e., 0 and 1. When we have locations with 0% traffic injury crashes, which is highly desired,
the data should be replaced by a number close to zero. Furthermore, if the distribution
shows a lot of zeros, which is also highly desired, a zero-inflated version of the GWBR
model is recommended, but this model has not yet been developed. These points require
further investigation in the future.
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