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Abstract: KNbOs single crystals are grown by the self-flux method using K,COj3 as a flux, but often
suffer from discolouration. In this work, KNbOj single crystals were grown by the flux method using
KBO; as a flux. KNbO3; powder was prepared by the solid-state reaction of K;CO3 and Nb,Os. KBO,
was fabricated by the reaction of K;B407-4H,0 and K;COs. Single crystals of KNbO3; were grown in
a Pt crucible and the structure and dielectric properties of the single crystals were investigated. X-ray
diffraction showed the KNbOj single crystals to have an orthorhombic Cmm2 perovskite unit cell
at room temperature. The existence of ferroelastic domains was revealed by transmission electron
microscopy. Electron probe microanalysis showed the single crystals to be stoichiometric and contain
small amounts of B. Differential thermal analysis, Raman scattering and impedance spectroscopy
were used to study the phase transitions. KBO, may be a suitable flux for the growth of KNbO;
single crystals.

Keywords: KNbOj3; lead-free piezoelectric; single crystal; flux method; Raman scattering;
transmission electron microscopy; dielectric properties

1. Introduction

KNDbO; is a ferroelectric perovskite material with an orthorhombic perovskite unit cell
(Amm?2 or Bmm?2) at room temperature [1,2]. KNbO3 undergoes a rhombohedral (R3m) to
orthorhombic phase transition at ~—10 °C, an orthorhombic to tetragonal (P4mm) phase
transition at ~225 °C and a tetragonal to cubic (Pm3m) phase transition at ~435 °C [2-4].
KNbOj3 is an end member of the KNbO3-NaNbOj3 pseudo-binary system [5,6], which is
an important system for future lead-free piezoelectric applications [7,8]. Undoped KNbO3
ceramics and KNbOj ceramics co-doped with La and Fe have moderate piezoelectric
properties (dz3 = 98-114 pC/N, k33 = 0.49, k, = 0.17-0.25, k¢ = 0.18-0.48) [9-13] and the
properties of KNbOj3 can be adapted by forming solid solutions [14] or by using CuO as a
sintering aid [15].

Single crystals of KNbOj are of interest for their high value of k; (0.69), low density
(4.62 g/cm3), high acoustic velocity (7800 m/s) and low clamped relative permittivity
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(€5 = 28-42), which make them suitable for transducers [16-21]. Single crystals of KNbOj3
are also of interest for their nonlinear optical properties such as second harmonic genera-
tion [22-25]. KNbOj3 melts incongruently, so single crystals are impossible to grow from
a melt of KNbO3 composition [21,26]. Single crystals of KNbO3 have been grown by the
self-flux method, Bridgman method and by top-seeded solution growth usually with addi-
tion of excess K,O or K,CO3 [21,27-33]. Single crystals of KNbO3; grown by these methods
often show a blue colour which is detrimental to the optical properties [28,31-33]. This
colouration is believed to be caused by oxygen vacancies [32,34] or Rayleigh scattering [35]
and can be avoided by careful control of the K,O/K;COj3 excess, soaking temperature or
starting temperature for growth [28,32,33].

Borates are commonly used as a flux to grow single crystals by the flux growth
method [36,37]. NayB4O7; and NaBO, have been used as fluxes to grow single crystals
of NaNbOj3 [38,39]. Rudkovskaya et al. found that KNbO3 and KBO, form a simple
binary eutectic system with a eutectic point at 73 mol % KBO; and 860 °C [40-42]. In the
present study, KBO, is used as a flux for the growth of KNbOj3 single crystals for the first
time and the structure, phase transitions and dielectric properties of the single crystals
are investigated. The results from this work show that, as suggested by Rudkovskaya
et al. [40-42], KBO, may be a suitable flux for the growth of KNbOj single crystals.

2. Results

An X-ray diffraction (XRD) pattern of the calcined KNbO3; powder is shown in Figure 1.
The pattern can be indexed with Crystallography Open Database pattern #96-231-0012
for KNbOs3 (orthorhombic, space group Bmm2). There are some peaks of a secondary
phase which can be indexed with Crystallography Open Database pattern #96-100-1843 for
K4NbgOq7.
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Figure 1. XRD pattern of calcined KNbO3; powder.

Single crystals inside the Pt crucible immediately after growth are shown in Figure 2a.
Single crystals appear to have grown on the crucible walls. Single crystals after removal
from the crucible and cleaning are shown in Figure 2b. Each crystal is labelled with a
number 1-3 for reference. Single crystals up to ~15 x 15 mm in size have grown. Single
crystal 2 is actually several single crystals which have grown into each other. Some of the
edges of the single crystals are blue in colour. The white colour in the bulk of the crystals
may be caused by scattering of light by ferroelectric domains [43]. As a consequence of the
use of the flux method, single crystals were grown freely without thermal or mechanical
stresses, which allowed the development of natural growth facets [44].
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Figure 2. Pictures of KNbOj single crystals: (a) inside the Pt crucible immediately after growth;
(b) after removal from the crucible and cleaning. Each crystal in (b) is labelled with a number 1-3

for reference.

XRD patterns of bulk and powder samples of the KNbOjs single crystals are shown
in Figure 3. The XRD patterns of the bulk samples (labelled single crystals 2a and 2b) are
obtained from single crystals separated from single crystal 2 in Figure 2b. The patterns
in Figure 3a can be indexed with Crystallography Open Database pattern #96-231-0012
for KNbOj3 (orthorhombic, space group Bmm?2). Peak positions and d-spacings of the
crystallographic planes which show strong reflections are given in Table 1. The 101 and
202 reflections of the bulk single crystal 2a are very strong, with weaker 010, 020 and 303
reflections also present. The 101 and 202 reflections of the bulk single crystal 2b are also
very strong. The relative intensity of the 010 and 020 reflections in single crystal 2b are
stronger than those of single crystal 2a. The 202 and 020 reflections of each crystal are
shown in detail in the insets. The peaks in single crystal 2b are noticeably broader than
those in single crystal 2a. A weak 111 reflection is also present in the pattern of single
crystal 2b. The small differences in peak position and d-spacing between the two crystals
indicate that they have slightly different unit cell parameters. There are weak peaks in
the pattern for single crystal 2a which belong to a secondary phase, possibly K,B4O7 or
K3B,Nb3O1;. These peaks may come from a secondary phase inclusion in the crystal or
from flux remaining on the crystal surface.
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Figure 3. XRD patterns of KNbOj single crystals: (a) bulk samples; (b) powder sample.
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Table 1. Peak positions and d-spacings of the crystallographic planes of the single crystals in Figure 3a.

Crystal 2a Crystal 2b
Miller indices 101 010 202 020 101 010 202 020
Peak position (20) 21.98 22.35 44.83 45.60 22.03 22.37 4493 45.66
d-spacing (A) 4.0434 3.9777 2.0218 1.9893 4.0348 3.9740 2.0176 1.9868

For an X-ray diffractometer in Bragg—Brentano geometry, X-rays can only be diffracted
by crystallographic planes parallel to the sample surface [45]. Intense peaks appear only
from parallel k0 and 0kO crystallographic planes in the pattern of single crystal 2a, indicat-
ing that the sample really is a single crystal. The appearance of the 010 and 020 reflections
indicates the existence of non-180° ferroelectric/ferroelastic domains [46—48]. Single crystal
2b also contains intense 101 and 202 reflections, indicating that it also is a single crystal or
at least contains a single crystal. The weak 111 reflection in the pattern of single crystal 2b
may come from a single crystal aligned at a different angle. The difference in relative inten-
sities of the h0l/0k0 peak pairs indicates that different single crystals may have different
domain structures.

The pattern of the crushed KNbOj single crystal powder sample in Figure 3b can
also be indexed with Crystallography Open Database pattern #96-231-0012. A minor peak
belonging to a KsNbgO,; secondary phase (Crystallography Open Database pattern #96-
100-1028) is present. This peak may come from a secondary phase inclusion in the crystal
or from flux remaining on the crystal surface.

A diffraction pattern of a KNbOj single crystal obtained using single crystal XRD is
shown in Figure 4. This is the same single crystal as single crystal 2a in Figure 3a. The
diffraction pattern shows that the sample really is a single crystal. Unit cell parameters of
the KNbOj single crystal are given in Table 2. The single crystal is orthorhombic with Crmm?2
space group. The results can be summarised as follows: M = 180.01 g/mol, orthorhombic,
space group Cmm2 (no. 35), a = 5.660 (1) A, b = 5.664(1) A, c = 4.027(1) A, V = 129.09(5) A3,
Z=2,T=296(2) K, s(MoKa) = 6.008 mm~?, D, = 4.631 g/cm3, 652 reflections measured
(10.126° < 20 < 52.708°) and 156 unique (Rint = 0.0191, Rsjgma = 0.0166) which were used
in all calculations. The final Ry was 0.0356 (I > 20(I)) and wR, was 0.0920 (all data). This
information is available on the Crystallography Open Database (entry 3000498). The unit
cell parameters are different to those previously obtained by Shirane et al. [3], being more
elongated along the c axis and compressed along the a and b axes. This may be caused by
incorporation of B into the crystal lattice.

Figure 4. Diffraction pattern of a KNbOj3 single crystal taken by single crystal XRD.
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Table 2. Unit cell parameters of a KNbOj single crystal.

Space Group Crystal System Orthorhombic
Space group name Cmm?2 (no. 35)
Unit cell length a 5.660(1) A
Unit cell length b 5.664(1) A
Unit cell length ¢ 4.027(1) A
Unit cell angle « 90°
Unit cell angle 8 90°
Unit cell angle «y 90°
Unit cell volume 129.09(5) A3
Formula units (Z) 2
Calculated density 4.631 g/cm3

Electron probe microanalysis (EPMA) results of two KNbOj3 single crystal sam-
ples are shown in Table 3. The results are given as the mol % of each constituent ox-
ide in the single crystal. Each value is the mean and standard deviation of ten point
measurements. Normalised to two moles of cations, the composition of sample 1 is
K1.0004+0.004Nb0.995+0.004B0.005+0.00603 and the composition of sample 2 is
K0.971+0.006NP0.997+0.010B0.033+-:0.012A10.0002+:0.000303. Both samples have compositions close
to the nominal composition for KNbOj3. Both samples contain B. B was detected at all ten
point measurements in the second sample, so it appears to be evenly distributed throughout
the crystal rather than appearing in a flux inclusion. The second sample contains only a
trace amount of Al, so contamination with Al during processing (e.g., from the alumina
crucible during calcination) is not an issue. The difference in composition of the two crystals
may be the cause of the differences in XRD peak position and d-spacing (Table 1).

Table 3. EPMA results of two KNbOj single crystal samples.

i ° o Nominal
Oxide Sample 1 (mol %) Sample 2 (mol %) Composition (mol %)
KO 50.00 + 0.19 48.53 £ 0.28 50
Nb,Os5 49.75 +0.19 49.83 £ 0.48 50
B,0O5 0.25 +0.32 1.63 £+ 0.61 -
Al,O3 Not measured 0.01 £ 0.01 -

Transmission electron microscopy (TEM) micrographs of a KNbOj single crystal are
shown in Figure 5. Figure 5a shows that the single crystal contains lamellar domains of
up to 1 um thickness aligned on (110), crystallographic planes, where pc means pseudo-
cubic. The corresponding selected area electron diffraction (SAED) pattern is shown in
Figure 5b, indexed using a pseudo-cubic unit cell. Splitting of the 222 spot (marked with a
blue box) in the [110],. direction can be seen. For a crystal with orthorhombic symmetry,
90° domain walls lie on (100) planes while 180° domain walls, uncharged 120° domain
walls and charged 60° domain walls lie on (110) planes [49]. The presence of splitting in
the [110]p direction in Figure 5b indicates that the domain walls are ferroelastic 120° or
60° domain walls, as 180° domain walls do not exhibit splitting. Figure 5c is a scanning
transmission electron microscopy (STEM) dark-field image of the tips of the domains.
Smaller nanoscale domains have formed at the domain tips (marked with white arrows).
Figure 5d reveals stresses of a higher magnitude localised at the lamellar domain walls and
at the domain tips.

An atomic resolution high-angle annular dark-field (HAADF) STEM image in the
[110]pc zone axis [Figure 6a] shows brighter Nb and darker K atom columns. No cation-
related defects are visible within the analysed region. The Integrated Differential Phase
Contrast (iDPC) image in the [110],c zone axis is shown in Figure 6b, along with corre-
sponding energy dispersive X-ray spectroscopy (EDXS) analysis [Figure 6c] and crystallo-
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graphic model [Figure 6d], confirming a homogeneous distribution of all elements and an
orthorhombic structure within the analysed area.

Figure 5. (a) TEM micrograph of a KNbOj single crystal; (b) corresponding SAED pattern showing
the splitting of the 222 spot in the [110]p direction; (c) STEM dark-field image of the tips of the
domains, white arrows mark nanoscale domains; (d) divergence image obtained from 4D STEM
dataset show larger contrast changes at domain walls. The numbers +1 and —1 are arbitrary units,
showing the maximum and minimum changes in strain.

'(Zé)'ZiIIZ;IIIZIIEEIZIIZI. A ECCC K

AR R AR R R
EEEEE EEREE £ L R N e e

R I I I I

Figure 6. (a) HAADF-STEM and (b) iDPC images of KNbOj in the [110],c zone axis with correspond-
ing (c) atomic scale EDXS analysis (corresponding to the red frame in (b,d) orthorhombic KNbO3
crystallographic model (ICSD:01-077-1098) (corresponding to the blue frame in (b)) depicting the
positions of K (blue), Nb (red), and O (green).

A differential thermal analysis (DTA) trace of a KNbOj single crystal powder sample
is shown in Figure 7. The trace shows endothermic peaks with onsets at 217 °C and
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425 °C on heating. These peaks correspond to the orthorhombic-tetragonal and tetragonal—-
cubic phase transitions, respectively. Exothermic peaks at 416 °C and 198 °C on cooling
correspond to the cubic—tetragonal and tetragonal-orthorhombic phase transitions. The
phase transitions show temperature hysteresis, indicating that they are first-order [4,50].

5+

198 °C
04 /"/'/‘\/\‘f\
’\ Cooling
-5 ] /\,
~104 217°C 416°C
> . /
3 Heating
< 151
E Exo
425 °C-
-20
Endo
T
_30 -
\
-35 T T T T T 1
0 100 200 300 400 500 600

Temperature (°C)

Figure 7. DTA trace of a KNbOj single crystal powder sample.

A Raman spectrum of a KNbOj single crystal obtained at 25 °C is shown in Figure 8.
The spectrum is typical of orthorhombic KNbOj [1,51-53]. The sharp peak visible at
~200 cm ™! is a Fano resonance [54,55]. Raman spectra of the KNbOj single crystal obtained
at representative temperatures for each phase are shown in Figure 9. The spectra are typical
for the different phases of KNbOj3 [1,53]. Figure 10 shows a contour plot of normalised
Raman intensity of the KNbOj single crystal. Distinct changes in the contour plot appear at
~—20°C, ~220 °C and ~440 °C. The normalised spectra obtained at different temperatures
are shown in Figure 11. Not all of the spectra are shown to aid clarity. Significant changes
in the spectra appear at —20 °C, 222~223 °C and 441 °C. According to group theory, the
different phases of KNbO3 have the following optical modes [1,51]:

A(TO)
A,

Intensity (arb. units)

T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000
Wavenumber (cm™)

Figure 8. Raman spectrum of a KNbOj single crystal obtained at 25 °C.
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Figure 9. Raman spectra of different phases of the KNbOj single crystal.
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Figure 10. Normalised Raman intensity contour plot of the KNbOj3 single crystal.
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Orthorhombic: 4A1 @ Ay @ 4B ® 3By;

Tetragonal: 3A; © By @ 4E;

Cubic: 3F1y @ Fay.

The rhombohedral A; mode and the cubic F,, mode are optically silent. Changes in
the number and position of the modes are clearly seen in the Raman spectra at —20 °C,
222~223 °C and 441 °C, corresponding to the phase transitions. The disappearance of the
A1(LO) mode at 441 °C is characteristic of the tetragonal-cubic phase transition in alkali
niobates [1,56,57]. The cubic phase should not display any first-order Raman scattering as
the unit cell is centrosymmetric [57]. The Raman scattering in the cubic phase indicates
that the unit cell has a non-cubic distortion, which is due to displacements of the Nb ion
in a <111> direction from its central position [58]. Rietveld and pair distribution function
analysis of X-ray diffraction data found the local structure of all four phases of KNbOj3 to
be rhombohedral, with an off-centre shift of Nb in the NbOg octahedra [4]. Nanometre-
scale rhombohedral regions were observed in the cubic phase of KNbOj3; by convergent
beam electron diffraction [59]. The phase transition temperatures determined by Raman
scattering match reasonably well with the orthorhombic—tetragonal and tetragonal—cubic
phase transitions determined by DTA (Figure 7).
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Figure 11. Normalised Raman spectra of the KNbOj single crystal obtained at different temperatures.

Plots of relative permittivity and loss tangent over the temperature range —200~176 °C
are shown in Figure 12. A peak corresponding to the rhombohedral-orthorhombic phase
transition can clearly be seen in the plots of relative permittivity at ~—20 °C on heating and
~—50 °C on cooling (Figure 12a,b). A thermal hysteresis of ~30 °C exists between heating
and cooling plots, indicating the first-order nature of the phase transition. The phase
transition is also visible in the plots of loss tangent on heating, although less so on cooling
(Figure 12¢,d). Thermal hysteresis is again present. The rhombohedral-orthorhombic
phase transition temperature measured from the plots of relative permittivity and loss
tangent agrees well with the temperature determined by Raman scattering. The phase
transition temperature and large thermal hysteresis of the rhombohedral-orthorhombic
phase transition are similar to those previously measured for KNbOj single crystals [3].

Plots of relative permittivity and loss tangent over the temperature range 25~600 °C
are shown in Figure 13. Peaks corresponding to the orthorhombic-tetragonal and tetragonal-
cubic phase transitions can be seen at ~210 °C and ~430 °C, respectively, on heating
(Figure 13a). There is an ~5 °C temperature hysteresis on heating and cooling. Peaks
corresponding to the two phase transitions can also be seen in the plots of loss tangent
(Figure 13c,d). Temperature hysteresis is more pronounced than in the relative permittivity
plots, between 8~14 °C, being more pronounced for the orthorhombic—tetragonal phase
transition than the tetragonal-cubic one. The orthorhombic-tetragonal and tetragonal-
cubic phase transition temperatures are 5~10 °C lower than the corresponding temperatures
determined by DTA and ~10 °C lower than the corresponding temperatures determined
by Raman scattering. The orthorhombic-tetragonal and tetragonal—-cubic phase transition
temperatures measured by plots of relative permittivity and loss tangent are similar to
those previously measured for KNbOj single crystals, although the thermal hysteresis is
less pronounced [3].
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Figure 12. Plots of (a,b) relative permittivity and (c,d) loss tangent versus temperature of a KNbO3
single crystal in the temperature range —200~176 °C.

Figure 14 shows plots of the inverse of relative permittivity versus temperature in
the vicinity of the tetragonal-cubic phase transition i.e., the Curie Temperature T.. The
inverse relative permittivity shows a sharp decrease at T, which is characteristic of a
first-order phase transition [60,61]. The decrease in inverse relative permittivity at T is
more pronounced for the heating curve than for the cooling curve.
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Figure 13. Plots of (a,b) relative permittivity and (c,d) loss tangent versus temperature of a KNbO3
single crystal in the temperature range 25~600 °C.
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temperature range 350~500 °C. The dashed lines are a guide to the eye.
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3. Discussion

A suitable flux material should possess the following characteristics [36,44]: it should
have a high solubility for the solute; the solute’s solubility in the flux should change
noticeably with temperature; the flux should not form a solid solution or a compound with
the solute; the flux should have a low melting point; the flux should have low volatility and
viscosity at growth temperatures; the flux should not corrode the crucible; the flux should
be fairly easy to separate from the grown single crystals; the flux should be non-toxic. From
the phase diagram, it can be seen that KBO, satisfies the first four requirements [40—42]. A
solidified condensed phase often appears on the outside wall of the Pt crucible, implying
that volatility of the flux may be a problem. KBOj is soluble in water and so separation of
the grown single crystals from the solidified flux is fairly easy, although some flux remains
on the edges of the single crystals even after cleaning. KBO, does not appear to corrode
the Pt crucible and the crucible can be cleaned by soaking in warm 35% HCI for several
days. Borates are toxic on ingestion, and KBO, is suspected of damaging fertility or unborn
children, so precautions should be taken when handling this material. Due to its small
ionic radius, B is not expected to have considerable solid solubility in KNbOj [36]. The
first single crystal sample has a low B concentration, but the second crystal sample has a
higher B concentration than expected. Comparing ionic radii and charge (K* [coordination
number of 12] = 0.164 nm, Nb®* [coordination number of 6] = 0.064 nm, B>* [coordination
number of 6] = 0.027 nm [62]), B is expected to substitute for Nb in the KNbOj crystal
lattice. This is the case in the first sample, but in the second sample, B appears to substitute
for both Nb and K.

According to Wenshan et al., the blue colour that sometimes appears in grown KNbOj3
single crystals is caused by K} anti-site defects, which are charge compensated by oxygen
vacancies to form V3* — K}/, — V3® colour centers [32]. No K}}; anti-site defects were visible
in the HAADF-STEM image in Figure 6a, indicating that the bulk of the single crystal does
not contain this defect. Indeed, the bulk of the single crystals is white, although the edges
are blue (Figure 2), possibly containing this defect. Wenshan et al. [32] considered that
the KY}; anti-site defects form when too much excess K,COj is used as a flux. It may be
possible to reduce the blue colour by optimising the growth schedule or the amount of
KBO; flux. Varnhorst et al., based on their light scattering studies, considered the scattering
to be caused by irregularities in the crystal lattice 2 60 nm in size [35]. Changes in the
domain structure or size between the bulk and edges of the single crystals could affect the
degree of light scattering and hence the colour.

4. Materials and Methods

KNbO3 powder was prepared by solid-state reaction, using K,COj3 (Daejung, 99.5%)
and Nb,Os5 (Daejung, 99.9%) as starting materials. All starting materials were dried in an
oven at 250 °C for 5 h to remove absorbed water and then weighed based on the stoichio-
metric formula. K,CO3 and Nb,Os starting materials were ball milled in a conventional
ball mill (BML-2 ball mill, Daihan, Republic of Korea) with ZrO, balls using high purity
ethanol (Daejung, 99.9%) continuously for 24 h in a polypropylene jar with a rotation
speed of 200 rpm. After ball milling, most of the ethanol was evaporated from the slurry
using a hotplate/magnetic stirrer, then the slurry was completely dried in an oven at 70 °C
overnight. The dried slurry was crushed and ground in an agate mortar and pestle and
passed through a 180 um sieve to remove agglomerates, followed by calcination at 850 °C
for 5 h in air in an alumina crucible with a lid. The phase purity of the calcined powder was
analysed by X-ray diffraction (XRD, X'Pert PRO, PANalytical, Almelo, the Netherlands)
in Bragg—Brentano geometry using CuKa radiation with a scan range of 20-80°20, a step
size of 0.026° and a scan speed of 3° /min. The calcined KNbO3; was re-mixed with K,CO3
and K;B,07-4H,0 (Acros, 99.5%) to obtain the composition of 75 mol % KNbO3 25 mol %
KBO,. KBO; is the product of the reaction:

K2C03 + KyB407-4H,0 — 4KBO; + T4H20 (g) + T4C02 (g) (1)
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The KNbOj3; and K,CO3 powders were dried at 250 °C for 5 h before weighing and mix-
ing. The K;B407-4H,0 was not dried. The weight loss of H>O on heating was measured us-
ing differential thermogravimetry and compensated for when weighing out K,B4O7-4H,0.
The materials were ball milled as before and calcined at 700 °C for 5 h to obtain KNbOj3
with KBO; as flux.

A schematic diagram of the single crystal growth process is shown in Figure 15.
The KNbOs + KBO, batch was placed in a platinum crucible with a lid and put in an
alumina crucible with a lid. The lid of the alumina crucible was sealed with alumina
cement (Ceramabond 503, Aremco, Valley Cottage, NY) to reduce potassium evaporation.
The cement was fired according to the manufacturer’s instructions. Single crystals of
KNbOj3 were grown according to the following heat-treatment schedule: heat from room
temperature to 1060 °C at a rate of 5 °C/min and hold at 1060 °C for 5 h; cool from 1060 °C
to 860 °C at a rate of 1 °C/h, then hold at 860 °C for 10 min; finally, cool from 860 °C to 25
°C at 1 °C/min. The single crystals were removed from the solidified flux by placing the Pt
crucible in boiling water for 1 day to soften the flux. After removal, single crystals were
placed in hot 1 N HNOj; and hot 10% HCI to remove any remaining flux.

e Alumina crucible with lid @ «<—| Heating
Furnace J /’elements

Pt crucible with lid
Alumina cement >
Flux
&
L J0) |
I

Single crystals

Figure 15. Schematic diagram of the single crystal growth process.

For analysis, samples were separated from or cut out of the single crystals. The crystals
for bulk XRD and single crystal XRD were separated from single crystal 2 in Figure 2b.
The sample for TEM was obtained from single crystal 2 in Figure 2b. Samples for powder
XRD, EPMA, DTA, Raman scattering and electrical property measurements were obtained
from single crystals 1 or 3 in Figure 2b. The structure of the grown single crystals was
analysed by XRD (X'Pert PRO, PANalytical, Almelo, The Netherlands) in Bragg—Brentano
geometry using CuK« radiation with a scan range of 20-80°26, a step size of 0.026° and a
scan speed of 3°/min. Both bulk and powdered samples were studied. Pattern smoothing
and analysis was carried out using Match! version 3.10 (Crystal Impact, Bonn, Germany)
with the Crystallography Open Database. Single crystal XRD was carried out using a
Bruker APEX-II CCD-based diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with
graphite-monochromated MoK radiation (A = 0.71073 A). The hemisphere of the reflection
data was collected as w scan frames at 0.5° /frame and an exposure time of 5 s/frame. The
cell parameters were determined and refined using the APEX2 program [63]. The data were
corrected for Lorentz and polarisation effects and an empirical absorption correction was
applied using the SADABS program [64]. The compound structures were solved by direct
methods and refined by full matrix least squares using the SHELXTL program package [65]
and Olex2 [66] with anisotropic thermal parameters for all non-hydrogen atoms. COD
3000498 contains the supplementary crystallographic data for this paper. These data can be
obtained free of charge via http:/ /www.crystallography.net/cod/search.html (accessed on
25 May 2024).

Electron probe microanalysis (EPMA, JEOL JXA-8530F PLUS, Tokyo, Japan) was
carried out on two single crystal samples to determine their chemical composition. Samples
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were polished to a 1 um finish using diamond paste. Wavelength-dispersive spectroscopy
analysis was carried out on carbon-coated samples using an accelerating voltage of 15 kV.
KNbOs, B (pure metal) and Al,O3; were used as standards. The first sample was analysed
for K, Nb and B. The second sample was additionally analysed for Al to check if any Al
contamination had occurred during processing.

Scanning transmission electron microscopy (STEM) was performed using an ARM
200CF microscope (JEOL, Tokyo, Japan) and Spectra 300 microscope (Thermo Fisher Scien-
tific) equipped with Merlin and EMPAD pixelated detectors, respectively. The acceleration
voltage was 200 kV for both microscopes. Samples for STEM were prepared by milling
with a Ga*-source focused ion beam Helios Nanolab 650 HP (Thermo Fisher Scientific,
Waltham, MA, USA).

For differential thermal analysis (DTA, DTG-60H, Shimadzu, Kyoto, Japan), a pow-
der sample was analysed in air (flow rate of 50 mL/min) on heating and cooling in the
temperature range from room temperature to 600 °C with heating and cooling rates of
10 °C/min.

For Raman scattering analysis, a single crystal sample was polished to a #2000 SiC
finish, annealed for 1 h at 600 °C to remove polishing strains and cooled at a rate of
1 °C/min. Raman spectra were measured on heating from —196 °C to 550 °C using a
heating stage (THMS600, Linkam, Tadworth, United Kingdom) in the wavenumber range
from 10 to 1000 cm ™. The spectral resolution of the system was 1~2 cm~!. The diameter
of the laser beam on the single crystal surface was 1~2 pm and the laser wavelength was
532 nm. Spectra were obtained at ~10 °C intervals except for regions around the expected
phase transition temperatures, where the interval was reduced to <5 °C. All spectra were
corrected by the Bose—Einstein factor [67].

For the impedance spectroscopy measurements, a single crystal sample was parallel
polished on both major faces with SiC paper up to grade #4000 and Ag paste electrodes
(16032 PELCO, Ted Pella, Redding, CA, USA) were applied. The thickness of the sample was
0.1032 cm and the electrode area was 0.063 cm?. Measurements were carried out over two
temperature ranges. For the low-temperature range measurements, the sample was loaded
in a cryostat (CCS-400/200, Janis, Woburn, MA, USA). Dielectric constant, loss tangent and
conductivity were measured on heating and cooling in vacuum in the temperature range
between —200 °C and 176 °C with heating and cooling rates of 1 °C/min by an impedance
analyser (HP4284A, Hewlett-Packard, Kobe, Japan). For high-temperature measurements,
the sample was loaded in a heating stage (TS1500, Linkam, Tadworth, UK). Dielectric
constant, loss tangent and conductivity were measured on heating and cooling in N
atmosphere in the temperature range between room temperature and 600 °C with heating
and cooling rates of 1 °C/min by an impedance analyser (HP4284A, Hewlett-Packard,
Kobe, Japan).

5. Conclusions

Single crystals of KNbO3 were grown by the flux method using KBO; as a flux. Single
crystals up to 15 mm in size could be grown. X-ray diffraction analysis revealed the room
temperature phase to be orthorhombic with Cmm?2 space group. Transmission electron
microscopy analysis showed the existence of ferroelastic domains aligned on (110)p. crys-
tallographic planes. K{{, anti-site defects could not be detected in the bulk of the crystals by
STEM-HAADF, although they may be present at the edges of the crystals as shown by their
blue colour. Raman scattering, differential thermal analysis and dielectric property mea-
surements showed the existence of rhombohedral-orthorhombic, orthorhombic-tetragonal

and tetragonal—cubic phase transitions at temperatures close to those in the literature.
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