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Abstract: The catalytic oxidation of volatile organic compounds (VOCs) is the subject of
considerable interest due to its applications in environmental protection. Noble metal-based
catalysts are widely employed to remove toxic compounds from gas mixtures. The objective
of the present study was the synthesis of a palladium-containing catalyst deposited on a
support modified with La2O3 zinc oxide. The composite support was initially obtained
by a simple method, and then palladium was deposited on it by impregnation. Various
methods, including N2-physisorption, XRD, HRTEM, XPS, TPD, TPR, and FTIR, were used
to characterize the material. The obtained catalyst was studied in the reaction of the com-
plete oxidation of butane, propane, and methane. It was found that the addition of La2O3

to ZnO led to an improved pore texture. The catalytic tests showed that the reaction of the
complete oxidation of butane on Pd/La2O3/ZnO proceeded at the lowest temperatures.

Keywords: Pd/La2O3/ZnO catalyst; methane; propane; butane

1. Introduction
The degradation of organic pollutants from air and wastewater has been attempted

in recent years using semiconductor photocatalysts (TiO2, ZnO, CdS, WO3, and others)
because of their advantages, which include a low cost, high activity, and ease of scaling
up [1–3]. As a common and stable semiconductor photocatalyst, zinc oxide is prone to
photo-corrosion [4], has a large surface area, and is non-toxic [5,6]. Since oxygen vacancy
and/or metal excess act as donor states that provide conduction electrons, this material
is an n-type semiconductor. Since platinum and palladium are well-known active cata-
lysts that increase the sensitivity against reducing gases, they are typically added in small
amounts to ZnO, which is rarely used as a single phase for a gas sensor, to modify its
gas-sensing properties [7]. It is thought that chemisorption is aided by the catalyst layer.
Furthermore, the quick recombination of the electron–hole pair in ZnO, which restricts the
catalytic degradation process, is one of its drawbacks. There have been numerous attempts
to enhance ZnO’s catalytic capabilities [8,9]. ZnO’s optical, electrical, and magnetic charac-
teristics are altered when it is doped with rare earth ions. The creation of nanomaterials
based on trivalent rare earth ion-doped wide-bandgap semiconductors is, therefore, a
focus of much research due to their special uses, which include, but are not limited to,
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optoelectronic, electronic, spintronic, photocatalytic, and antibacterial applications. Based
on the electronic transitions that take place within 4f energy shells, rare earth metals are
currently being used as dopants for a variety of applications due to their properties of
being highly conductive, magnetic, electrochemical, and luminescent [10–13]. Because
of their high thermal stability and ability to capture photoinduced electrons, rare earth
metals can lessen electron–hole pair recombination [14]. Rare earth elements’ high surface
basicity, rapid oxygen ion mobility, and strongly catalytic nature make them attractive
options to improve gas oxidation applications [15]. Khatamian et al. [16] synthesized ZnO
nanoparticles doped with Ln (La, Nd, or Sm) and found that the doped nanoparticles
degraded PNP more quickly than pure ZnO. In comparison to pure ZnO, Ahmad et al. [17]
found that the zinc oxide photocatalyst doped with three weight percent cerium had four
times the catalytic efficiency. The use of semiconductor nanomaterials modified with rare
earth metal oxides, like ZnO, in a catalytic process is, therefore, a promising strategy.

This work aimed to study a new lanthanum oxide-modified ZnO support and investi-
gate the effects on the morphology, structure, and catalytic properties of a Pd catalyst based
on it. Methane, propane, and butane oxidation were selected as the catalytic reactions
for the tests because they are representative of the gases released by internal combustion
engines that run on liquefied petroleum gas (LPG).

2. Results and Discussion
2.1. Catalytic Tests

The reaction of the complete oxidation of methane, propane, and butane was examined
to assess the applicability of the synthesized Pd/La2O3/ZnO material as a catalyst for
combustion. The results from the catalytic experiments are presented in Figure 1.
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Figure 1. Temperature dependence of the conversion degree in the reactions of complete methane,
propane, and butane oxidation and effect of water vapor.

As expected, the oxidation of methane showed the highest conversion temperature,
and a decrease in reaction temperature from methane to butane was observed in corre-
lation with the strength of the weakest H-C bond [18,19]. It was found that the catalyst
Pd/La2O3/ZnO possessed high activity in the complete oxidation of methane, propane,
and butane. The highest activity was registered towards butane with T50 = 294 ◦C. For a
more detailed study, propane was chosen due to its medium reactivity when compared
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with butane and methane. Data on the catalytic activity in the reaction of the complete
oxidation of propane for the ZnO support and Pd/ZnO catalyst in dry gas are also included
for the sake of comparison. It was evident that the activity of the pure ZnO support was low,
and the catalyst prepared with 2 mol.% La2O3 had higher activity (T50 = 320 ◦C) compared
to the catalyst without La2O3 (T50 = 330 ◦C) in propane combustion. The water vapor
(concentration of 1.2 vol.%) had a reversible, inhibitory effect, which was expressed as a
shift in the S-curves to higher temperatures by about 25–45 ◦C (from butane to methane).
The duration of the tests in the presence of water was fixed to 60 h, and the observed
reaction order was approximately −0.1. For isothermal operation, the construction of the
catalytic reactor permits compensation for the adiabatic rise up to 80 ◦C; thus, the catalyst
bed temperature was kept constant (the deviations did not exceed ±1 ◦C).

A number of techniques were used to characterize the catalysts prepared in order to
evaluate the observed differences in their activity.

2.2. Nitrogen Physisorption

The results regarding the adsorption–desorption isotherms, pore size distributions,
and texture parameters of the pure ZnO, La2O3/ZnO, and Pd/La2O3/ZnO fresh catalysts
are shown in Figure 2 and in Table 1. According to the IUPAC classification, the adsorption–
desorption isotherms for all studied samples were of type II with H3 hysteresis loops [20].
Type H3 is often associated with the slit pores formed between plate-like particles [21].
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Figure 2. Adsorption–desorption isotherms (A) and pore size distributions (B) of pure ZnO,
La2O3/ZnO, and Pd/La2O3/ZnO fresh catalysts.

Table 1. Specific surface areas (SBET), total pore volumes (Vt), and average pore diameters (Dav) of
pure ZnO, La2O3/ZnO, and Pd/La2O3/ZnO samples.

Sample SBET
m2/g

Vt
cm3/g

Dav
nm

Pure ZnO 5.1 0.02 15
La2O3/ZnO 6.1 0.03 22

Pd/La2O3/ZnO 5.7 0.04 27

The data show a slight increase in the specific surface area and the total pore volume
for La2O3/ZnO due to the addition of La2O3 and the sonication procedure, resulting in
secondary porosity and new interparticle spaces. This could also be seen in the pore size
distribution curves, where larger pores appear for La2O3/ZnO and Pd/La2O3/ZnO. The
introduction of Pd does not affect the texture of the L2O3/ZnO sample as the SBET and Vt

are maintained.
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2.3. X-ray Diffraction

The X-ray diffraction patterns of the La-modified ZnO samples are shown in Figure 3.
The main diffraction peaks of the pure ZnO sample correspond to the hexagonal wurtzite
crystalline phase (PDF 01-079-2205). The La-containing phase is presented as La2CO5 (PDF
00-023-0320), usually formed at the first stages of La2O3’s reaction with air constituents
(CO2, H2O) [22]. After the deposition of palladium, a new phase of PdO (PDF-00-043-1024)
is detected. The catalyst’s phase composition remains unchanged during the catalytic test.
The results of the phase composition and the mean crystallite sizes of the phases in the
catalyst are presented in Table 2.
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Figure 3. XRD patterns of ZnO, La2O3/ZnO, Pd/ZnO catalyst, and Pd/La2O3/ZnO catalyst.

Table 2. Unit cell parameters and mean crystallite sizes of the phases that are present in the catalyst.

Sample
ZnO

(Parameters)
Å

ZnO
(Size)

nm

PdO
(Parameters)

Å

PdO
(Size)

nm

La2CO5
(Parameters)

Å

La2CO5
(Size)

nm

ZnO a = 3.24943(3)
c = 5.20604(5) 170 - - - -

PdO/ZnO—fresh a = 3.24978(8)
c = 5.2060(1) 72 a = 3.046(1)

c = 5.439(2) 16 - -

PdO/ZnO—work a = 3.24967(7)
c = 5.2058(1) 76 a = 3.046(1)

c = 5.439(2) 17 - -

La2O3/ZnO a = 3.24966(6)
c = 5.2059(1) 114 - - a = 4.063(5)

c = 13.42(2) 5.7

Pd/La2O3/ZnO—
fresh

a = 3.24996(10)
c = 5.2060(1) 86 a = 3.040(2)

c = 5.45(1) 12 a = 4.069(5)
c = 13.43(3) 5.5

Pd/La2O3/ZnO—
work

a = 3.24977(9)
c = 5.2055(2) 95 a = 3.040(3)

c = 5.45(1) 11 a = 4.065(5)
c = 13.42(2) 5.8

It can be seen that the addition of lanthanum oxide and the sonication process [23]
results in the formation of highly dispersed La2CO5 particles together with smaller ZnO
crystallites compared to pure ZnO samples.
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The influence of lanthanum oxide can also be seen after the PdO deposition stage,
where a slightly higher mean crystallite size for the ZnO is observed compared to PdO
deposited on pure ZnO. It is worth mentioning that the mean crystallite size of the PdO
phase is lower for palladium deposited on the La2O3/ZnO sample. The addition of
lanthanum oxide, producing small particles of La2CO5, also contributes the increase in the
specific surface area of the catalyst.

2.4. Transmission Electron Microscopy Investigation

The TEM image of the worked Pd/La2O3/ZnO sample after the catalytic tests shows
that the palladium-containing particles are homogeneously distributed on the surface of
the catalyst (Figure 4).
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Figure 4. Bright field micrographs of Pd/La2O3/ZnO worked catalyst.

For the determination of the phase composition, HRTEM investigations were per-
formed. Our observations showed that, in the fresh and worked Pd/La2O3/ZnO samples,
palladium was presented in the form of Pd (PDF 89-4897) and tetragonal PdO (PDF 88-2434)
(Figure 5).

The elemental maps (Figure 6) from the EDX analyses show the relatively homoge-
neous distribution of O, Zn, Pd, and La in the fresh (A) and worked (B) Pd/La2O3/ZnO
catalysts. The results from the TEM-EDS analysis are presented in Table 3.

Table 3. TEM-EDS analyses of Pd/La2O3/ZnO catalyst.

Element/
Sample

O
at. %

Zn
at. %

Pd
at. %

La
at. %

Pd/La2O3/ZnO—fresh 42.01 57.07 0.62 0.29
Pd/La2O3/ZnO—work 44.38 54.58 0.94 0.10
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2.5. X-ray Photoelectron Spectroscopy

Furthermore, XPS studies of the fresh and worked catalysts were carried out to obtain
information on their surface compositions and chemical states. The XPS spectra of O1s,
La3d, and Pd3d on the studied samples are presented in Figure 7. The XPS analysis
shows that palladium is present in three different oxidation states: Pd0, Pd2+, and Pd4+



Inorganics 2025, 13, 17 7 of 13

(Table 4). The formation of Pd4+ was also established in our previous studies [24,25]. As
was discussed in [24], Pd4+ (PdO2) is highly unstable, but, when the palladium particles
are exposed to air for a long time, palladium oxide is formed on their surfaces, covered
with a layer of PdO2 or Pd(OH)4.
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Figure 7. X-ray photoelectron spectra of Pd3d for Pd/La2O3/ZnO catalyst.

Table 4. Oxidation states of Pd according to XPS.

Sample Pd0 % Pd2+ % Pd4+ %

Pd/La2O3/ZnO—fresh 4.2 86.3 9.5
Pd/La2O3/ZnO—work 8.4 82.8 8.8

After the catalytic tests, the concentration of Pd2+ decreases, and the concentration of
Pd0 increases, implying the partial reduction of Pd2+.

2.6. Oxygen Temperature-Programmed Desorption and Temperature-Programmed Reduction
by Propane

The data obtained during the C3H8-TPR studies are shown in Figure 8. The heating
temperature was restricted to 450 ◦C to collect data on the reducibility and adsorptive
characteristics at such temperatures, which were comparable to those used in catalytic
activity experiments. Propane was selected as a model compound for the TPR tests due to
its moderate reactivity when compared with butane and methane.

The oxygen temperature-programmed desorption (O2-TPD) results revealed that the
sample could adsorb oxygen on its surface, including at room temperature (Figure 9).
Increasing the temperature up to 250 ◦C does not result in significant O2 desorption.
Above 230 ◦C, the rate of O2 desorption increases, thus revealing the higher mobility
(and reactivity) of the surface oxygen in the region of the catalytic reaction. During the
C3H8-TPR studies, the oxygen released as CO2 should have solely originated from the
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catalyst that had been exposed to propane, as the catalytic surface was considered to be
“free” of adsorbed oxygen after the O2-TPD. In the absence of gaseous oxygen, the reaction
of propane oxidation on the Pd/La2O3/ZnO catalyst produces significantly more CO2

than in the case of O2 desorption. Without oxygen in the feed gas, the propane oxidation
process starts at about 230 ◦C. With temperatures lower than 320 ◦C, almost all carbon from
C3H8 is converted to CO2. At the same temperature, the noticeable formation of CO in
the C3H8-TPR sample is observed. When the lattice oxygen from the Pd-containing active
phase is depleted, the oxidation of propane changes from complete to partial, producing
CO instead of CO2. Therefore, one may suggest the existence of two types of surface oxygen
species—(i) highly mobile and reactive oxygen, connected with the Pd-containing active
phase, and (ii) less reactive oxygen originating from the catalytic support.
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2.7. Fourier Transform Infrared Spectroscopy

The formation of oxycarbonate (Figure 10) is confirmed by the three bands of νCO
at 1370 cm−1, 1460 cm−1, and 1504 cm−1 (reference value: 1355 cm−1, 1442 cm−1,
1506 cm−1) [25,26]. The shift in these bands indicates the stronger coordination of La3+

ions in oxycarbonate (La2O3·CO2) [25]. The formation of La2CO5 is confirmed by XRD.
The band at 880 cm−1 is attributed to the δCO3

2− [27]. The broad high-frequency peaks at
3420 cm−1 and 1631 cm−1 are assigned to the OH stretching of molecular-adsorbed water
with hydrogen bonds or to isolated OH and to the H-O-H bending vibration of molecular
water, respectively [28]. The bands at 2850 cm−1, 2920 cm−1, and 2964 cm−1 come from
hydrocarbons [29–32]. The band at 493 cm−1 corresponds to the characteristic stretching
vibrations of ZnO metal oxide bonds [33]. In the case of the pure zinc oxide sample and
palladium-modified zinc oxide, two very weakly intense bands are observed at 1388 cm−1

and 1631 cm−1. The first can be attributed to the symmetric vibration of adsorbed CO2 [27]
and the second to the H-O-H bending vibration of molecular water [28].
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Figure 10. Infrared spectra of Pd/La2O3/ZnO catalyst.

It can be seen that oxycarbonates and hydrocarbons are present in the catalyst modified
with lanthanum. No carbonates are formed when the support is only ZnO.

The formation of adsorbed surface compounds on the catalytically active PdO phase
was not detected. As can be seen, fewer surface adsorption species are formed on the zinc
oxide support; nevertheless, the catalyst with this support shows lower activity. Therefore,
it can be concluded that the formation of a larger quantity of oxycarbonates and water on
the surface of the Pd/La2O3/ZnO catalyst does not influence the catalytic activity. This
is clearly seen in the catalytic activity data, showing significantly higher activity for the
Pd/La2O3/ZnO catalyst.

3. Materials and Methods
3.1. Catalyst Sample Synthesis

Commercial ZnO powder (>99.0%), La2O3 (>99.0%), and absolute C2H5OH (Fluka,
Burlington, Massachusetts) were used. Zinc oxide modified with lanthanum composite
powders was produced using a simple technique, as described in [13]. A stoichiometric
mixture of ZnO and La2O3 (2 mol.%) was prepared and mixed with ethanol. The obtained
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suspension was stirred for ten minutes and sonicated for thirty minutes. The final product
was obtained after one hour of drying at 100 ◦C. The sample was denoted as La2O3/ZnO.

The sample was heated for two hours at 500 ◦C and thus impregnated with an aqueous
solution of Pd (NO3)22H2O (99.8%, Thermo Scientific Chemicals, Waltham, MA, USA) to
obtain Pd loading of 2.0 mass. %. It was further calcined for four hours at 500 ◦C. For
comparison, a catalyst sample with 2 mass. % Pd/ZnO was prepared. The catalyst studied
in this investigation was denoted as Pd/La2O3/ZnO.

3.2. Characterization Techniques

The texture parameters were evaluated by applying the N2 adsorption isotherms
at 77K, obtained using a Quantachrome Instruments NOVA 1200e (Quantachrome In-
struments, Boynton Beach, FL, USA) instrument. The samples were outgassed at 200 ◦C
overnight. The specific surface area was calculated by the Brunauer–Emmett–Teller (BET)
equation [34]. The total pore volume was measured at a relative pressure of 0.99. The pore
size distributions were obtained by the BJH [35] method, using the desorption branches of
the isotherms.

Powder X-ray diffraction patterns were obtained at room temperature. The powder
diffraction patterns of the fresh and spent catalysts were collected in the range of 5 to
80 degrees 2Theta on a Bruker D8 Advance diffractometer (Bruker, Karlsruhe, Germany)
using Cu Kα radiation, λ = 1.5418 Å, and a LynxEye detector. Phase identification was
performed with the Diffracplus EVA (V4) and ICDD-PDF2 (2021) Database. Unit cell
parameters and mean crystallite sizes were determined with Topas 5.

A JEOL 2100 (JEOL Ltd., Tokyo, Japan) transmission electron microscope (TEM)
operating at a 200 kV accelerating voltage was used to investigate the morphology, phase,
and elemental composition. The detector was an X MAXN 80T (Oxford Instruments,
Abingdon, UK). Standard holey carbon/Ni grids were dripped with suspensions that were
produced by grinding and dispersing the samples in ethanol.

The electronic structure and surface composition of the catalyst were examined using
X-ray photoelectron spectroscopy (XPS), employing a charge neutralization system and
achromatic AlKα radiation with photon energy of 1486.6 eV, using an AXIS Supra electron-
spectrometer (Kratos Analytical Ltd., Manchester, UK). Using the C1s line at 284.6 eV
(adsorbed hydrocarbons), the binding energies (BE) were calculated with accuracy of
±0.1 eV. Kratos Analytical Ltd.’s commercial data-processing software ESCApeTM version
1.2.0.1325 from Kratos Analytical Ltd. was used to monitor the areas and binding energies
of the C1s, O1s, La3d, and Pd3d photoelectron peaks to estimate the chemical compositions
of the catalyst samples.

Oxygen temperature-programmed desorption (O2-TPD) data were collected using a
Teledyne Mod. 802 oxygen gas analyzer (paramagnetic principle). The sample was heated
to 450 ◦C for six hours in 5% O2 in a N2 flow. The same gas mixture was used to cool it
to room temperature. The heating rate was 10 K·min−1 and the nitrogen gas flow was
500 mL·min−1.

After the O2-TPD, temperature-programmed reduction by propane (C3H8/TPR)
tests were conducted utilizing a nitrogen gas flow (500 mL·min−1) and the addition
of 0.125 vol.% propane. Gas analysis for the TPR tests was carried out using an online gas
analyzer with THC-FID (analyzer for total organic content in gas phase, Thermo FID-TG,
SK Elektronik GmbH, Leverkusen, Germany). A multi-channel mass-flow controller system
(Bronkhorst) was used to determine the compositions of the different reaction gas mixtures.

A Nicolet 6700 FTIR spectrometer (Thermo Electron Corporation, Madison, WI, USA)
was used to perform Fourier transform infrared spectroscopy (FTIR). The spectral resolution
was 4 cm−1.



Inorganics 2025, 13, 17 11 of 13

3.3. Catalytic Activity Investigation

The tests for the catalytic activity were performed in a laboratory glass reactor with
continuous flow, with a 0.7 cm3 catalyst bed volume (0.5 cm3 of catalyst and 0.2 cm3 of iden-
tically sized quartz glass particles), irregularly shaped particles with an average diameter of
0.45 ± 0.15 mm, a reactor diameter of 6.0 mm, and quartz glass (Dreactor/Dparticles ≥ 10) as
the experimental conditions. The fixed value of the gaseous hourly space velocity (GHSV)
was 60,000 h–1. The construction of the catalytic reactor permitted compensation for the adi-
abatic rise up to 80 ◦C; thus, the catalyst bed temperature was kept constant (the deviations
did not exceed ±1 ◦C).

The pressure drop within the system was neglected. The hydrocarbon concentrations
in the inlet were maintained at 0.10 vol.%, oxygen at 20.0 vol.%, and additional water vapor
at 1.2 vol.%. Nitrogen (4.0) was added to all feed gas mixtures to achieve a 100% balance.
The gas flow was maintained by using Bronkhorst mass-flow controllers. The water was
added by an Ismatec peristaltic pump. The analysis of the reaction products was performed
using a gas analyzer (MultiGas FTIR Gas Analyzer 2030G, MKS Instruments Inc., Andover,
MA, USA) for CO/CO2/O2 determination.

4. Conclusions
A lanthanum-modified ZnO catalyst was produced using an inexpensive and easy

technique. It was found that the addition of lanthanum oxide to ZnO improved the textural
characteristics (specific surface area and total pore volume) of the composite support, which
may have been due to the presence of small particles of La2CO5. These particles were
formed during the sonication process, which also reduced the mean crystallite size of
ZnO. The most important influence of the La additive was the decreased crystallite size of
the PdO phase in the Pd/La2O3/ZnO sample. Three oxidation states of palladium were
registered (Pd0, Pd2+, and Pd4+), and the palladium-containing phases were uniformly
distributed throughout the support surface.

The catalyst Pd/La2O3/ZnO exhibits high catalytic activity in the complete oxidation
of butane, propane, and methane, the highest being towards butane. The Pd/La2O3/ZnO
catalyst has the potential to serve as an appropriate material in the design of eco-friendly
catalysts for the elimination of waste gas pollution.
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