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Simple Summary: Cutworms and armyworms are part of a group of moth pests that cause occasional
damage to field crops on the Canadian Prairies. There are no reliable tools for monitoring the moth
population before larval damage occurs. Food bait volatiles attract male and female moths and
could be used to monitor several pests with a single lure in a single trap. We focused on enhancing
a food bait lure of acetic acid and isoamyl alcohol to monitor the redbacked cutworm and other
moths in canola and wheat fields. Trapping experiments tested food bait at different release rates,
from different dispensers and in combination with various chemicals. High-release lures captured
more females in canola, while low-release lures captured more males in wheat. Therefore, the crop
where traps are positioned affects the moth trap catch. Food bait combined in an inert matrix caught
more moths than bottles or plastic bag dispensers did. More females were attracted to food bait
lures with isobutanol than to those with floral volatile. Fermented volatiles appear to be a more
reliable attractant than floral volatiles for these moths. Depending on the sex, the feeding status
affected the strength of the antenna response to the different volatiles. Females had a higher response
to isobutanol if the moth was previously fed a sugar solution. Food bait lures should be further
developed to monitor redbacked cutworm moths and other pests in field crops.

Abstract: Cutworms and armyworms (Lepidoptera: Noctuidae) are a pest complex in North America
that cause sporadic damage in field crops on the Canadian Prairies; however, no methods have been
developed to reliably monitor population densities. Food-based semiochemicals attract both sexes of
adult moths and could be used to monitor multiple species with a single lure in a single trap. Here,
we focus on enhancing the attractiveness of acetic acid and 3-methyl-1-butanol (AAMB) lures to
redbacked cutworm (Euxoa ochrogaster) (RBC) and other noctuid pests. Experiments conducted in
canola and wheat fields tested AAMB lures at different release rates, from different devices and in
combination with other semiochemicals. High-release lures captured more females in canola, while
low-release lures captured more males in wheat. Thus, crop volatiles may influence response to
lures. Semiochemicals embedded in an inert matrix caught more RBC moths than semiochemicals
released from Nalgene or polyethylene dispensers did. More RBC females were attracted to AAMB
lures with 2-methyl-1-propanol than phenylacetaldehyde. Fermented volatiles appear to be a more
reliable attractant than floral volatiles for these species. RBC moth antennae produced significant
responses to all doses of phenylacetaldehyde tested in electroantennogram assays, but only to higher
doses of acetic acid and 3-methyl-1-butanol. Physiological state of the RBC moths also influenced
responsiveness to the tested semiochemical. Feeding status did not influence the antennal response to
acetic acid and phenylacetaldehyde in either sex, but it increased the response to 3-methyl-1-butanol
in females when fed. AAMB lures should be further developed to monitor RBC moths and other
noctuid pests in field crops.

Keywords: cutworm; armyworm; Euxoa ochrogaster; semiochemical; acetic acid; alcohol; 3-methyl-1-
butanol; 2-methyl-1-propanol; floral volatile; phenylacetaldehyde; electroantennogram
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1. Introduction

Cutworms and armyworms (Lepidoptera: Noctuidae) are part of a pest complex in
North America that cause sporadic economic damage to annual field crops [1]. Both larvae
and adults are generalist herbivores on a wide range of host plants in several different
families [2]. Cutworm injury generally occurs in early summer. Late instar larvae display
the characteristic cutworm feeding behaviour and cut seedling stems to feed on the stem
and foliage that ultimately kills the plant [2]. In contrast, armyworm injury generally
occurs in mid to late summer. Late instar larvae feed on foliage and can disperse en masse
across the landscape in search of host plants when food is depleted [3,4]. Larval feeding at
low population densities results in crop thinning; however, outbreaks can cause complete
destruction of fields and yield loss [2].

Adult cutworms and armyworms are large, robust-bodied moths that are able to
disperse over long distances [5–7]. Sporadic outbreaks occur in several species, including
the army cutworm (Euxoa auxiliaris Grote) [8], bertha armyworm (Mamestra configurata
Walker) [4], the true armyworm (Mythimna unipuncta [Haworth]) and the glassy cutworm
(Apamea devastator [Brace]) [9,10]. Within Canadian Prairie agroecosystems, the bertha
armyworm, the redbacked cutworm, Euxoa ochrogaster (Guenée), and the pale western cut-
worm, Agrotis orthogonia Morrison, are the most common species with localized outbreaks
in canola and cereal crops [11,12]. Infestation by two or more species can co-occur in the
same field [13]. Systematic monitoring of cutworm and armyworm populations across
population phases is needed to detect and predict population surges. The foundation of
Integrated Pest Management programs is efficient sampling to detect changes in population
densities of multiple pests to prevent them from reaching economic injury levels [14].

Female-produced sex pheromones have been identified for most cutworm and army-
worm pest species found in the Canadian Prairies [15]. Monitoring programs using syn-
thetic sex pheromone-baited traps were implemented across the region in the 1980s; how-
ever, these programs were not widely adopted because moth trap catch did not reflect
crop damage, likely because moths were drawn in to sex pheromone traps from long
distances [13,16]. Furthermore, pheromone-based monitoring programs require individual
traps for each species, which makes monitoring several pests costly and time consuming.
Lastly, there is evidence for pollinator by-catch in lepidopteran sex pheromone-baited
traps [17–20]. There are no reliable tools to monitor variation in density of most cutworm
adult pest species in the Canadian Prairies.

Although multiple cues mediate plant–insect interactions, olfaction is perhaps the pri-
mary mechanism employed by moths for host selection [21,22]. Cutworm and armyworm
moths, like many Lepidoptera, use host plant volatiles for orientation toward food sources,
and females may also use these volatiles to select oviposition sites [23]. Furthermore,
insects are sensitive to cues produced by microbes associated with their food sources and
oviposition sites, referred to as microbial volatile organic compounds (MVOC) [24]. The
MVOC hypothesis states that microbial emissions serve as semiochemicals that provide
cues regarding suitability and nutritional quality of hosts [24]. Microbes present in floral
nectars and fruits produce MVOCs [25], which in combination with floral volatiles can act
synergistically to attract lepidopteran herbivores to their hosts. For example, the chemical
mixture of acetic acid, a by-product from fermented sugar, and phenylacetaldehyde, a floral
volatile, attracts two Noctuidae: the alfalfa looper, Autographa californica (Speyer), and the
armyworm Spodoptera albula (Walker) to baited traps [26].

Food-based semiochemicals could be used to monitor multiple cutworm and army-
worm species using a single lure, as these cues attract both sexes of multiple species of
moths [27]. Overall, food-based semiochemicals are classified into three groups: host
plant volatiles, floral volatiles and MVOCs from fermented sugar. Few host plant volatile
lures are commercially available to monitor moth pest flight activity or for pest control in
attract-and-kill formulations [28,29]. Host plant volatiles may not be important cues for
generalist pests, such as the redbacked cutworm or the pale western cutworm, as females
of both species oviposit in loose dry soil under crop stubble or in fallow fields rather than
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on live plant material [2]. Lures baited with floral volatiles from several plants visited
by noctuid moths as adult food sources have been used to monitor populations in field
experiments [30,31]. For instance, traps baited with phenylacetaldehyde captured soybean
looper moths, Chrysodeixis includens (Walker) (Lepidoptera: Noctuidae), in cotton fields [32].
Likewise, traps baited with the floral blend of the butterfly bush (Buddleja davidii Franch)
(Loganiaceae) captured high numbers of the cabbage looper, Trichoplusia ni (Hübner) (Lepi-
doptera: Noctuidae), and alfalfa looper moths [33]. Floral volatile-baited traps, however,
result in high pollinator by-catch and have not been adopted commercially to monitor
noctuid moths [34,35].

Fermented sugar baits were some of the first food-based semiochemicals used to
monitor diversity of Lepidoptera [36]. Noctuidae, Geometridae, Tortricidae and Pyralidae
are the major lepidopteran families attracted to these types of baits [37]. Common MVOCs
produced from fermented sugar baits are acetic acid, isoamyl alcohol (3-methyl-1-butanol)
and isobutanol (2-methyl-1-propanol) [24,37]. Food-based semiochemical lures based on
these volatile compounds attract both sexes of many species of noctuid moths [38].

The chemical mixture of acetic acid and 3-methyl-1-butanol (hereinafter AAMB) is
attractive to several noctuid pests in multiple cropping systems, including the bertha
armyworm [39], the true armyworm [40] and the redbacked cutworm [34]. The objective
of this study is to develop a food-based semiochemical lure to monitor the cutworm and
armyworm pest complex with a single trap and lure and produce minimal impact on
native pollinators. Food-based cues attract both male and female moths from the local
area and trap catch may be more reflective of local larval densities than pheromone-
baited trap capture [38]. Capture of females in baited traps may provide information on
the reproductive status of the females and egg load in monitoring programs [41]. Our
approach was to enhance the attractiveness of AAMB lures to the most common cutworm
species across the Canadian Prairies, the redbacked cutworm, in canola (Brassica napus L.)
(Brassicaceae) and spring wheat (Triticum aestivum L.) (Poaceae) fields. First, we determined
the attractiveness of AAMB-baited traps compared to unbaited traps and the respective sex
pheromone-baited traps. Second, we tested the attractiveness of AAMB lures at different
release rates and the time of its release from different devices. Third, we measured the
attraction of the AAMB lure in combination with additional food-based semiochemicals.
Finally, we conducted electrophysiological studies on the redbacked cutworm moth to
understand the influence of physiological state on response to food-based semiochemicals.

2. Materials and Methods
2.1. Study Area

A series of experiments were conducted between 2014 and 2015 in fields located in
the Aspen Parkland Ecoregion of Alberta province, Canada. The landscape in the region
is characterised by extensive agricultural plains with discontinuous clusters of trembling
aspen (Populus tremuloides Michx) (Salicaceae) and balsam poplar (P. balsamifera L.) trees [42].
Seven sites were selected for moth monitoring across central Alberta, dispersed over an
area of approximately 7350 km2 throughout five counties. Sites were separated by at least
20 km from other experimental sites. Each site consisted of a canola field paired with a
wheat field, separated by at least 500 m. All experiments were conducted at the same seven
sites each year. Due to crop rotation practices, a canola field in the first year was rotated to
a wheat field in the second year.

2.2. Lures

Two types of lures were used in all experiments: synthetic female sex pheromones and
custom-made food bait lures. Sex pheromone lures targeting different species of cutworm
and armyworm moths were used in different field experiments (Table 1). Sex pheromone
blends for each of the target species were prepared and loaded onto pre-extracted red
rubber septa, prepared by Contech Enterprise Inc. (Delta, BC, Canada). Food bait lures
were prepared in the laboratory following the methods of Landolt et al. [34]. The AAMB
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lure consisted of acetic acid and 3-methyl-1-butanol in a 50:50 by weight mixture (glacial
acetic acid (99.7% purity) Fisher Scientific, Fair Lawn, NJ; 3-methyl-1-butanol (98.5% purity)
Sigma Aldrich, St. Louis, MO, USA).

Table 1. Lure composition and deployment schedule for moth monitoring field experiment.

Year Lure Components Ratio Amount Time Deployed

2014

Redbacked cutworm
(RBC)

Z5-12Ac,
Z7-12Ac,
Z9-12Ac,
Z5-10Ac

200
2
1
1

1000 µg 23 Jun–10 Oct

Bertha armyworm
(BAW)

Z11-16Ac,
Z9-14Ac

95
5 500 µg 10 Jun–02 Sep

True armyworm
(TAW) Z11-16Ac 1 1000 µg 10 Jun–10 Oct

Army cutworm
(ACW)

Z5-14Ac,
Z7-14Ac,
Z9-14Ac

100
1

10
100 µg 02 Sep–10 Oct

AAMB Acetic acid,
3-methyl-1-butanol

1
1 10 mL 10 Jun–10 Oct

Unbaited control - - - 10 Jun–10 Oct

2015

RBC

Z5-12Ac,
Z7-12Ac,
Z9-12Ac,
Z5-10Ac

200
2
1
1

1000 µg 22 Jun–15 Sept

BAW Z11-16Ac,
Z9-14Ac

95
5 500 µg 22 Jun–04 Aug

TAW Z11-16Ac 1 1000 µg 22 Jun–15 Sept

Pale western cutworm
(PWC)

Z7-12Ac,
Z5-12Ac

2
1 500 µg 22 Jun–15 Sept

AAMB Acetic acid,
3-methyl-1-butanol

1
1 10 mL 22 Jun–15 Sept

AAMB+MP
Acetic acid,

3-methyl-1-butanol,
2-methyl-1-propanol

1
1
1

10 mL 22 Jun–15 Sept

AAMB+PAA
Acetic acid,

3-methyl-1-butanol,
phenylacetaldehyde

1
1
1

10 mL 22 Jun–15 Sept

AAMB+MP+PAA

Acetic acid,
3-methyl-1-butanol,

2-methyl-1-propanol,
phenylacetaldehyde

1
1
1
1

10 mL 22 Jun–15 Sept

Unbaited control - - - 22 Jun–15 Sept

The AAMB chemical mixture was dispensed into a 15 mL narrow-mouth Nalgene
HDPE bottle (Thermo Scientific, Rochester, NY, USA) with two cotton balls inserted at the
bottom. Each bottle received 10 mL of AAMB chemical mixture. A 3.0 mm diameter hole
drilled in the centre of the bottle cap allowed for release of volatiles.

2.3. Monitoring and Moth Identification

Non-saturating green universal moth traps (Unitrap, Contech Enterprise Inc., Delta,
BC, Canada) were employed in all experiments. Traps were positioned 1.5 m above
ground, spaced 25 m apart in a linear transect positioned approximately 5 m from the
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field edge. Unitraps were baited with either a sex pheromone or a food bait lure. Sex
pheromone lures were placed inside baskets positioned under the roof of the unitrap and
replaced every four weeks. Food bait lures were secured to the inside wall of the unitrap
buckets with a twist-tie and were replaced every two weeks based on the methods of
Landolt et al. [34]. An insecticidal strip of Hercon Vaportape II (10% dichlorvos) (Hercon
Environmental, Emigsville, PA) was placed inside the bucket of each trap to kill captured
insects. Insecticidal strips were replaced every four weeks.

Insect trap catch was collected every week in plastic bags, labelled and frozen at –20 ◦C
until it was sorted and identified. In the laboratory, moth trap catch and Hymenoptera
by-catch were separated from other arthropods. Moths were separated by sex and pinned.
If noctuid moths were in poor condition (i.e., no scales on wings or missing body parts),
genitalic dissections were performed following the methods developed by Hardwick [43].
To dissect the genitalia, abdomens were removed from moths and immersed in 1 mL
potassium hydroxide solution (10% KOH w/v) (Biosev, Frenchtown, NJ, USA) in 1.8 mL
glass vials (Fisher Scientific, Fair Lawn, NJ, USA) for 48 h to dissolve organs and fatty
tissue. Moth genitalia were spread and mounted on cardstock (2.0 × 0.5 cm) with Euparal
mounting medium (Bioquip Products Inc. Rancho Dominguez, CA, USA). Moths were
identified to species through wing maculation and/or morphological characters of genitalia
following taxonomic keys from The Moths of America North of Mexico book series [44–48].
Identifications were verified using comparisons with reference collections at the E. H.
Strickland Entomological Museum (University of Alberta, Edmonton, AB, Canada). Pinned
moths in the best conditions and mounted genitalia dissections from each identified species
were selected as voucher specimens and deposited at the E. H. Strickland Entomological
Museum, Department of Biological Sciences, University of Alberta, Edmonton.

Hymenoptera by-catch was categorized into two guilds: (1) pollinators, which grouped
honeybees (Apis mellifera L.) (Apidae), bumblebees (Bombus spp.) (Apidae) and leaf-cutter
bees (Megachilidae); and (2) vespids (Vespidae), which grouped the bald-faced hornet
(Dolichovespula maculata L.), the blackjacket (Vespula consobrina Saussure) and the common
aerial yellowjacket (D. arenaria Fabricius). Results from pollinator by-catch in traps baited
with lures for monitoring noctuid pest species were reported by Grocock et al. [17], and
thus, they are omitted from the results and discussion of this manuscript.

2.4. Experiment 1—Efficacy of AAMB Lures to Monitor Cutworm and Armyworm Moths

We tested the efficacy of AAMB lures to monitor the flight activity and abundance of
target pest species compared to their respective sex pheromone. The target pest species
were the redbacked cutworm, bertha armyworm, true armyworm and army cutworm.
Unitraps were baited with either a synthetic pheromone lure, AAMB lure or left unbaited
as control traps. The six traps were positioned in a linear transect, as described above, in
random order in both canola and wheat fields at each of the seven sites. The experiment was
conducted from 10 June to 10 October 2014. Sex pheromone-baited traps were deployed in
the field according to the flight period of the target moth species (Table 1), while the AAMB-
and unbaited traps remained in the field throughout the 17-week sampling period. The
target moths were identified to species. Other pest species were grouped as ‘other noctuid
pest species’. The remaining captured moths were grouped as non-target Lepidoptera.

Individual analyses for each target species were conducted on the total number of
moths captured in the AAMB-baited traps compared to the respective sex pheromone-
baited traps and unbaited traps. Similarly, a separate analysis was conducted on the total
number of other noctuid pest species captured in all sex pheromone-, AAMB- and unbaited
traps. Lastly, the response of vespids to lures targeting cutworm moths was analyzed
comparing the total number captured in the differently baited traps. For all analyses in
Experiment 1, crop and lure type were specified as explanatory fixed variables and site as a
random block factor.
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2.5. Experiment 2—Attractiveness of AAMB Lures at Different Release Rates

A second experiment evaluated AAMB lures at different release rates to monitor the
most abundant cutworm from Experiment 1, the redbacked cutworm. Ten milliliters of the
AAMB chemical mixture were loaded in Nalgene HDPE bottles, as previously described,
and replaced every two weeks. Release rate was manipulated by the diameter of holes
drilled in the center of the bottle cap. Three release rates were tested: low (1.0 mm),
standard (3.0 mm), and high (5.0 mm). Captured moths in traps baited with AAMB lures
at different release rates were compared to those in the unbaited control traps. The four
traps were positioned in a linear transect in random order in both canola and wheat fields
at each of the seven sites. The experiment was conducted from 10 June to 2 October 2014.

AAMB lures were weighed to the nearest 0.001 g (Balance model: XS105 DualRange,
Mettler Toledo) before and after deployment in the field to estimate differences in release
rates among treatments. The difference in weight (mg) was divided by the period that
lures spent out in the field (14 days) to calculate an average release rate per day (mg/day).
Individual analyses were performed on the average release rate per day (mg/day) after
each lure retrieval. Crop and release rate treatments were specified as explanatory fixed
variables, and site as random block factor in the model.

Captured moths over the 16-week trapping period were examined in two separate
analyses, on the total number of noctuid moths captured and on the total number of
redbacked cutworm moths captured. Crop, moth sex and release rate treatments were
specified as explanatory fixed variables, and site as random factor.

2.6. Experiment 3—Attractiveness of AAMB Lure Released from Different Devices

A third field experiment tested the attractiveness of the AAMB emitted from different
release devices to monitor redbacked cutworm moths. Release device treatments included
10 mL of AAMB loaded into (1) a Nalgene HDPE bottle, as previously described, with a
3.0 mm diameter hole in the bottle cap secured within the unitrap bucket; (2) a polyethylene
bag (12.5 × 3.0 cm) (Contech Enterprise Inc., Delta, BC, Canada) with cellulose sponge
(10.0 × 2.5 cm) (Contech Enterprise Inc., Delta, BC, Canada). Bags were hot sealed with an
impulse sealer (Midwest Pacific, Taiwan) and hung from the center of the unitrap lid. A
third treatment consisted of a 10 g droplet of an inert matrix, Splat™, prepared by ISCA
Technologies Inc. (Riverside, CA, USA) loaded with AAMB (1:1 w:w), secured to the inside
of the unitrap baskets. An unbaited trap served as a control. The four traps were positioned
in a linear transect in random order only on canola fields at each of the seven sites. The
experiment was conducted during the peak flight period of redbacked cutworm moth,
from 18 August to 15 September 2015. All release devices were replaced every two weeks.

Following identification, moth trap catches from release device treatments were
summed over the 4-week trapping period. Two individual analyses compared moth
trap catch in the variously baited traps, the total number of noctuid moths and total num-
ber of redbacked cutworm moths. Moth sex and release device treatment were specified as
explanatory fixed variables and site as random factor.

2.7. Experiment 4—Augmentation of AAMB Lures with Additional Food-Based Semiochemicals

Experiment 4 evaluated the addition of other food-based semiochemicals to enhance
the attraction of the AAMB lure to redbacked cutworm moths. The tested chemicals were al-
cohol from fermented sugar bait by-products, 2-methyl-1-propanol (hereinafter MP) (>99%
purity) (Acros Organics, Fair Lawn, NJ, USA), and a floral volatile, phenylacetaldehyde
(hereinafter PAA) (>98% purity) (Acros Organics, Fair Lawn, NJ, USA). Traps were baited
with AAMB alone, AAMB+MP, AAMB+PAA, AAMB+MP+PAA, and an unbaited trap
served as control. All lures were prepared in the laboratory in equal proportions by weight
mixture. Ten milliliters of the chemical mixtures were loaded in Nalgene HDPE bottles,
as previously described, with a 3.0 mm diameter hole in the bottle cap for release of the
volatile chemical mixture. Bottles were secured to the inside wall of the unitrap bucket
with a twist tie and were replaced every two weeks. In addition to the different food bait
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lures, sex pheromone-baited traps targeting redbacked cutworm moth, bertha armyworm
moth, pale western cutworm moth and true armyworm moth were deployed to ensure
target moths were present in the field at the time of the experiment (Table 1). The nine
baited traps were positioned in a linear transect in random order in both canola and wheat
fields at the seven sites. The experiment was conducted from 22 June to 15 September 2015.

Following moth identification, trap catch of the target species in the sex pheromone-
baited traps was summed over the 12-week trapping period and analyzed independently
for each species. A separate analysis was conducted on the total number of redbacked
cutworm moths caught compared with trap catches in the traps baited with the different
food bait lures. Lastly, vespid by-catch was analyzed comparing the total number captured
in baited traps.

2.8. Experiment 5—Electrophysiological Response of Redbacked Cutworm Moths to Food
Bait Volatiles

The antennal response plasticity of redbacked cutworm moths to feeding attractants
volatiles was evaluated for moths in different physiological conditions through electroan-
tennogram recordings. The sex and feeding status (starved or fed) of moths served as
physiological treatments. Redbacked cutworm moths were obtained from a laboratory
colony maintained on a pinto-based meridic diet [49] under controlled conditions in growth
chambers (Intellus Environmental Controller, Percival Scientific, Perry, IA, USA) at 21 ◦C
and a photoperiod of 16:8 (light: dark). Recently enclosed moths were housed individually
in 1000 mL plastic containers with either water or 10% sugar solution. Moths were sepa-
rated by sex and housed in different growth chambers to avoid exposure of the males to
female sex pheromone. Electroantennogram recordings were performed on 10 male and
10 female moths in each feeding group (n = 10 per treatment combination). Electroantenno-
gram recordings were performed on RBC moths past the pre-oviposition period. Moths
were 9–10 days old when EAG recordings were performed.

The feeding attractant volatiles presented to redbacked cutworm moth antennae were
acetic acid (AA) (99.7% purity) (Fisher, Fair Lawn, NJ, USA), 3-methyl-1-butanol (MB)
(98.5% purity) (Sigma Aldrich, St. Louis, MO, USA) and phenylacetaldehyde (PAA) (98%
purity) (Acros Organics, Fair Lawn, NJ, USA). The chemicals were serially diluted in
HPLC grade hexane (Fisher, Fair Lawn, NJ, USA) to obtain six concentrations (µg/µL):
0.001, 0.01, 0.1, 1.0, 10.0 and 100.0. For each dilution, 50 µL was dispensed on a filter
paper strip (0.2 × 7 cm) (Whatman® qualitative filter paper, Grade 1), placed within a
disposable Pasteur pipette (14.6 cm, borosilicate glass, Fisher, Fair Lawn, NJ, USA), and
allowed to evaporate in the fume hood for 30 min. In addition, 50 µL of hexane and a
common plant volatile, (E)-2-hexenal (1 µg/µL) (>95% purity) (Aldrich Chemical Co.,
Milwaukee, WI, USA), were also dispensed on filter paper strips to serve as control and
standard, respectively.

The electroantennogram system consists of an IDAC-02 data acquisition controller
system, a Syntech EAG probe (Type PRG-2, internal gain 10X), and EAG 2000 software
(Syntech, Hilversum, The Netherlands). Moths were chilled at 4 ◦C for five min before the
right antenna was excised and attached to a stainless steel antenna holder using Spectra
360 conductive gel (Parker Laboratories, Orange, NJ, USA). Carbon-filtered and humidified
air, from a Syntech CS-55 stimulus controller, flowed at 50 mL/min over each mounted
antenna. Stimulus puffs were triggered by hand via the stimulus controller with pulse
duration of 0.2 s and a flow of 10 mL/s. The three compounds were tested on each
antenna in the same sequential order: First AA, followed by MB and, lastly, PAA. The
stimuli were applied to each antenna once per min in ascending order of concentration,
separated by the standard (i.e., hexane, plant volatile, 0.001 µg/µL tested compound, plant
volatile, 0.01 µg/µL tested compound, plant volatile, 0.1 µg/µL tested compound, plant
volatile, 1.0 µg/µL tested compound, plant volatile, 10.0 µg/µL tested compound, plant
volatile, 100.0 µg/µL tested compound, plant volatile). Stimuli were replaced every three h.
Independent analyses were conducted for each of the feeding attractant compounds tested.
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2.9. Statistical Analyses

For all moth monitoring field experiments (Experiments 1–4), moth trap catch data
were analyzed using generalized linear mixed models with Poisson family distribution due
to properties of count data, which are bounded to zero, and non-normality of errors [50]. A
negative binomial family distribution was specified in models instead of Poisson when trap
catch data was over-dispersed [51]. Models were fitted as ‘full models’ at first, in which
the fixed component of the models included the main effect of all relevant explanatory
variables and all possible interactions. Generalized linear mixed models were analyzed
with the ‘glmer’ command for Poisson distribution or ‘glmer.nb’ command for negative
binomial distribution in the R package ‘lme4’ v.1.1-17 [52].

For the average release rate per day (mg/day) (Experiment 2) and electroantenno-
gram responses (Experiment 5), data were tested for normality and heteroscedasticity
using visual techniques and Shapiro–Wilk test. The difference in release rates among the
lures in Experiment 2 was compared with a linear mixed model (Gaussian distribution)
with the ‘lme’ command in the R package ‘nlme’ v.3.1-117 [53]. The average release rate
per day (mg/day) was square root transformed for normality.

Electroantennogram responses in Experiment 5 were natural logarithm-transformed
[ln(x+1)] to meet assumptions of normality. Electroantennogram responses were analyzed
in a linear mixed model with random intercept and slope to account for the repeated
measures on the same moth antenna. Moth sex, feeding status and dose of the stimulus
were specified as explanatory fixed variables. Dose of the stimulus was also specified as the
random intercept, and the antenna identification number was considered as the random
slope (~Dose|Antenna ID).

For all statistical analyses, model simplification was performed in step-wise a pos-
teriori procedure by removing non-significant interaction terms and comparing nested
models through likelihood ratio chi-square test with the ‘anova’ command in R package
‘car’ v.3.0-0 [54]. The optimal model was selected using Akaike’s information criterion
(AIC). Test statistic values, degree of freedom numbers and p-values were obtained from
the ‘Anova’ function in R package ‘car’ v.3.0-0 [54]. The ‘Anova’ function produces analysis
of variance tables from models created by ‘lme’, ‘glmer’ or ‘glmer.nb’ commands. Wald
chi-square (Wald χ2) tests are calculated for linear mixed models and likelihood ratio
chi-square (LR χ2) are calculated for generalized linear mixed models. Means comparison
for all experiments was performed using Tukey method (α = 0.05) with ‘lsmeans’ pack-
age v.2.17 [55]. All statistical analyses were conducted using the freely available statistical
package ‘R v.3.5.0’ in ‘RStudio v0.98.’ (http://www.rstudio.com accessed on 29 May 2018).

3. Results
3.1. Experiment 1—Efficacy of AAMB Lures to Monitor Cutworm and Armyworm Moths

The redbacked cutworm moth was the most abundant pest noctuid species captured
across all sites. Peak flight activity occurred from 12 August to 10 September (Figure S1).
Baited traps captured similar numbers of redbacked cutworm moths in canola and wheat
fields (Wald χ2 = 2.02; df = 1; p = 0.154). The number of redbacked cutworm moths captured
in traps differed by the lure type (Wald χ2 = 822.92; df = 2; p < 0.001). More moths were
captured in traps baited with the sex pheromone lure than in AAMB lure or in unbaited
traps. More redbacked cutworm moths were captured in AAMB-baited than unbaited traps
(Figure 1a). Although redbacked cutworm pheromone-baited traps had high moth trap
catch in 2014, infestations were not reported by farmers in 2015.

http://www.rstudio.com
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Figure 1. Experiment 1—box-and-whisker plot of the season-long capture of targeted moths in baited
traps at seven sites in central Alberta, Canada: (a) redbacked cutworm (RBC); (b) bertha armyworm
(BAW). Open circles represent points more than 1.5 times the interquartile range. Traps were baited
with either a sex pheromone, acetic acid and 3-methyl-1-butanol (AAMB) lure or left unbaited as
control trap. There was no difference in moth trap catch between canola or wheat fields. Means
comparisons were performed for differences in season-long trap capture. Boxplots marked with
different letters are statistically different (Tukey method, α = 0.05). (Open circle beside number 37 is
data point out of y-axis range in Figure 1a).

Similar numbers of bertha armyworm moths were captured in traps positioned in
canola and wheat fields (Wald χ2 = 0.10; df = 1; p = 0.748). Peak flight activity ranged from
30 June to 22 July (Figure S2). Bertha armyworm moths were only caught in their respective
sex pheromone-baited trap, and no moths were detected in AAMB or unbaited traps (Wald
χ2 =131.13; df = 2; p < 0.001) (Figure 1b).

Low numbers of true armyworm moths were captured across all sites, but more moths
were recovered from traps in wheat than in canola fields (Wald χ2 = 11.57; df = 1; p < 0.001).
Lure type affected the catch of true armyworm moths (Wald χ2 =11.28; df = 2; p = 0.003), as
traps baited with either pheromone or AAMB similarly caught more moths than unbaited
traps did (Figure 2). There were two peaks of true armyworm moths captured in baited
traps throughout the season (Figure S3), which suggests two flight periods in the Canadian
Prairies. Interestingly, true armyworm moths responded differently to the tested lures
depending on the generation of moth. Immigrating moths were attracted to pheromone-
baited traps in early summer, while summer generation moths were attracted to AAMB
lure-baited traps in early fall.

No army cutworm moths were found in AAMB or unbaited traps, and their respective
sex pheromone-baited traps caught extremely low numbers. There was no difference in
army cutworm moth trap catch in the variously baited traps.

Eleven percent of moths captured in AAMB-baited traps consisted of the target moth
species, while approximately 30% consisted of other noctuid pest species. Other noctuid
pest species occurred in higher numbers in the AAMB-baited traps than in the unbaited
control traps or traps baited with sex pheromone of the target species, with the exception
of the true armyworm sex pheromone trap (Figure S4) (Wald χ2 = 175.10; df = 5; p < 0.001).
Trap catch in the army cutworm sex pheromone-baited traps was dominated by one non-
target pest species, the clover cutworm (Anarta trifolii [Hugnagel]). Other abundant pest
species in the AAMB-baited traps were strawberry cutworm (Amphipoea interoceanica Smith),
dingy cutworm (Feltia jaculifera [Guenée]) and the glassy cutworm (Apamea devastator
[Brace]) (Table S1).
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Figure 2. Experiment 1—box-and-whisker plot of the season-long capture of true armyworm (TAW)
moths in baited traps at seven sites in central Alberta, Canada. Open circles represent points more
than 1.5 times the interquartile range. Traps were baited with either a TAW sex pheromone, AAMB
lure or left unbaited as control trap. Means comparisons were performed for differences in trap
capture. Boxplots marked with different letters are statistically different (Tukey method, α = 0.05).
(Open circle beside number 18 is data point out of y-axis range).

Traps captured the highest number of vespids in mid-summer, from 15 July to
10 September (Figure S5). Vespids were found in equal numbers in baited traps in canola
and wheat fields (Wald χ2 = 1.63; df = 1; p = 0.200). Vespid by-catch was influenced by lure
type (Wald χ2 = 40.76; df = 4; p < 0.001). Vespid wasps were more significantly attracted to
AAMB-baited traps than to the unbaited and sex pheromone-baited traps (Figure S6).

3.2. Experiment 2—Attractiveness of AAMB Lures at Different Release Rates

The average release rate (mg/day) fluctuated with treatment across dates. This fluctu-
ation across dates can be attributed to the influence of weather throughout the sampling
period. The average release rate differed by treatment on each date (24 Jun: F2,30 = 69.84;
08 Jul: F2,30 = 50.84; 22 Jul: F2,30 = 63.69; 05 Aug: F2,30 = 109.32; 18 Aug: F2,30 = 113.25; 02 Sep:
F2,30 = 45.39; 16 Sep: F2,30 = 20.11; 02 Oct: F2,30 = 18.90) (for all dates: p-value < 0.001). The
high release rate lures had a higher average release rate than the standard or low release
rate lures (Figure S7). The standard lure had a higher average release rate than the low
release rate AMMB lure from 24 June to 18 August; however, both treatments had equal
average release rates at the end of the season from 2 September to 2 October (Figure S7).
The release rates did not differ by trap placement in either canola or wheat fields.

Overall, traps baited with AAMB lures at different release rates captured more noctuid
moths than unbaited traps did. AAMB lures captured overall more noctuid moths in wheat
fields than in canola (Wald χ2 = 51.150; df = 1; p < 0.001), and a larger number of male
noctuid moths were attracted to AAMB lures than females (Wald χ2 = 111.709; df = 1;
p < 0.001). The effect of the release rate treatment on noctuid moth trap catch depended on
interactions with moth sex (release rate · moth sex; Wald χ2 = 10.09; df = 3; p-value = 0.01)
and crop (release rate · crop; Wald χ2 = 23.46; df = 3; p < 0.001). Male noctuid moths were
captured in similar numbers in traps baited with different release rate treatments in canola
fields, whereas low release rate lures attracted more male noctuid moths than high-release
rate lures in wheat fields (Figure S8). In contrast, female noctuid moth capture did not
differ with release rate treatment in wheat fields, but more females were captured in traps
baited with the high release rate lures in canola fields (Figure S8).

Traps baited with AAMB lures captured more redbacked cutworm moths in wheat
than in canola fields (Wald χ2 = 19.96; df = 1; p < 0.001), and more female moths were
attracted to AAMB lures than males (Wald χ2 = 18.67; df = 1; p < 0.001). Traps baited
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with AAMB lures captured more redbacked cutworm moths than unbaited traps (Wald
χ2 = 30.827; df = 1; p < 0.001); however, the number of moths captured was similar among
traps baited with different release rates of AAMB (Figure 3a).
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Figure 3. Box-and-whisker plots of the season-long capture of redbacked cutworm (RBC) moths in
AAMB-baited traps at seven sites in central Alberta, Canada: (a) experiment 2—Different release rates
manipulated by the diameter of holes drilled in the centre of the bottle cap: low (1.0 mm), standard
(3.0 mm), high (5.0 mm) and an unbaited trap. (b) Experiment 3—AAMB lures from different release
devices: Polyethylene bag, nalgene bottle, and inert matrix and an unbaited trap. Open circles
represent points more than 1.5 times the interquartile range. Means comparisons were performed
for differences in moth trap catch among treatments. Boxplots marked with different letters are
statistically different (Tukey method, α = 0.05).

3.3. Experiment 3—Attractiveness of AAMB Lure Released from Different Devices

Overall, traps baited with AAMB lures in different release devices captured more
noctuid moths than unbaited traps. The effect of the release device on total noctuid moth
trap catch was dependent on moth sex (release device · moth sex; Wald χ2 = 9.95; df = 3;
p = 0.01). Traps baited with the prepared inert matrix captured the highest number of male
noctuid moths, while the polyethylene bag and Nalgene bottle lures attracted a similar
number of male noctuid moths (Figure S9). Inert matrix-baited traps captured the highest
number of female noctuid moths, followed by the polyethylene bag-baited traps and lastly
traps baited with Nalgene bottle lures (Figure S9).

Male and female redbacked cutworm moths were captured in similar numbers in
traps baited with different release devices (Wald χ2 = 2.94; df = 1; p = 0.08). Release device
had a significant effect on redbacked cutworm moth trap catch (Wald χ2 = 30.827; df = 1;
p < 0.001). The traps baited with the prepared inert matrix captured significantly more
moths compared to traps baited with the Nalgene bottles lures, while the polyethylene
bag lure captured redbacked cutworm moth in similar numbers to both the other release
devices (Figure 3b).

3.4. Experiment 4—Augmentation of AAMB Lures with Additional Food-Based Semiochemicals

True armyworm moths were not captured in the traps baited with sex pheromone,
food bait lures or in unbaited traps in Experiment 4, and thus, they were considered absent
from monitoring sites in 2015. Redbacked cutworm, bertha armyworm and pale western
cutworm moths were captured in high numbers in traps baited with their respective sex
pheromones in 2015 (Figure S10). More redbacked cutworm and bertha armyworm moths
were captured in canola than wheat fields (RBC: Wald χ2 = 1038.5; df = 1; p < 0.001; BAW:
Wald χ2 = 170.8; df = 1; p < 0.001), while similar numbers of pale western cutworm moths
were captured in both crops (Wald χ2 = 0.38; df = 1; p = 0.536).



Insects 2023, 14, 106 12 of 21

The additional chemical compounds added to augment the AAMB lure had a signif-
icant effect on redbacked cutworm moth trap catch (Wald χ2 = 56.94; df = 4; p < 0.001),
and this response differed between crops (food bait lure · crop, Wald χ2 = 10.74; df = 4;
p = 0.029). Overall, baited traps captured more moths than unbaited traps. All traps baited
with the various food bait lures captured a similar number of redbacked cutworm moths in
canola fields (Figure 4a). Conversely, traps baited with food bait lures containing additional
alcohol captured more redbacked cutworm moths than food bait lures with floral volatiles
in wheat fields. Traps baited with AAMB plus 2-methyl-1-propanol (AAMB+MP) and
AAMB alone captured the highest numbers of redbacked cutworm moths, followed by
AAMB plus phenylacetaldehyde (AAMB+PAA), and lastly the four-component food bait
lure (AAMB+MP+PAA) (Figure 4a).
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Figure 4. Experiment 4—box-and-whisker plots of the season-long capture of redbacked cutworm
(RBC) moths in traps baited with AAMB lures with and without additional chemical compounds.
(a) By crops: in canola fields (left panel) and wheat field (right panel); (b) by sex: female (left panel)
and male (right panel). Open circles represent points more than 1.5 times the interquartile range. The
tested chemicals were alcohols from fermented by-products, 2-methyl-1-propanol (MP), and a floral
volatile, phenylacetaldehyde (PAA). Treatments included AAMB alone, AAMB+MP, AAMB+PAA,
AAMB+MP+PAA and an unbaited trap that served as the control. Means comparisons were per-
formed for difference in moth trap catch in traps baited with the different food bait lures. Boxplots
marked with different letters within each crop type are statistically different (Tukey method, α = 0.05).

Response of redbacked cutworm moths to the different food bait lures also varied
with sex (food bait lure · moth sex, Wald χ2 = 27.61; df = 4; p < 0.001). Traps baited with
the AAMB+MP lures captured significantly more female moths than traps baited with the
four-component lure (AAMB+MP+PAA) did. Female moth trap catch was intermediate in
traps baited with the AAMB lure alone and AAMB+PAA (Figure 4b). In contrast, male moth
capture was similar in traps baited with AAMB alone, AAMB+MP and AAMB+MP+PAA
lures. Traps baited with food bait lures and floral volatiles, AAMB+PAA and the four-
component lure, AAMB+MP+PAA, had lower male moth trap catch that did not differ
from trap catch in the unbaited control traps (Figure 4b).

The additional chemical compounds also influenced Vespid by-catch. Vespid wasps
were found in equal numbers in baited traps in canola and wheat fields (Wald χ2 = 0.06;
df = 1; p = 0.794). Vespid by-catch was influenced by lure type (Wald χ2 = 542.0; df = 8;
p < 0.001). A higher number of vespids were captured in traps baited with food bait lures
alone and containing the additional alcohol from fermented by-products, AAMB and
AAMB+MP, than in traps with food bait lures and floral volatiles, AAMB+PAA and the
four-component lure AAMB+MP+PAA (Figure S11). Sex pheromone traps and unbaited
traps had the lowest vespid wasp by-catch.
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3.5. Experiment 5—Electrophysiological Response of Redbacked Cutworm to Food Bait Volatiles

Feeding status did not influence antennal response to acetic acid (F1,35 = 0.284, p = 0.597).
Males had a higher antennal response to acetic acid than females (F1,35 = 4.71, p = 0.036). Dose
had a strong effect on antennal response (F6,210 = 562.62, p < 0.001). Responses to the lower
doses of acetic acid (0.001, 0.01 and 0.1 µg/µL) did not differ from hexane, while significant
responses were elicited to the higher doses of acetic acid. The 100.0 µg/µL dose had the
highest antennal response, followed by 10.0 and 1.0 µg/µL (Figure 5a,b).
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Figure 5. Experiment 6—Average antennal response (mV ± SE) of female (a,c,e) and male (b,d,f) red-
backed cutworm moth antennae to feeding attractant volatiles: acetic acid (a,b), 3-methyl-1-butanol
(c,d) and phenylacetaldehyde (e,f). Means comparisons were conducted among dose within sex and
chemical compound. Bars marked with different letters within each panel are statistically different
(Tukey method, α = 0.05). Significant difference between antennal response of fed or unfed moths
within dose and chemical compound is represented by (*) (Tukey α = 0.05).
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The influence of feeding status on antennal response to 3-methyl-1-butanol was de-
pendent on moth sex (feeding · sex, F2,35 = 6.52, p-value = 0.015). There were no differences
in antennal response between fed or unfed male moths, regardless of the dose (Figure 5d).
Fed females had higher antennal responses than unfed females, regardless of the dose
(Figure 5c). Dose had a strong effect on antennal response (F6,210 = 346.94, p < 0.001), and
this effect was dependent on moth sex (dose · sex, F6,210 = 7.697, p < 0.001). Response to
the lower doses (0.001, 0.01 and 0.1 µg/µL) was not different from hexane, while higher
doses elicited a significant response. Female antennae had the highest response to the
100.0 µg/µL dose, followed by 10.0 and 1.0 µg/µL (Figure 5c). For male antennae, the
100.0 µg/µL dose elicited the highest response, followed by 10.0 µg/µL, but response to
the 1.0 µg/µL dose did not differ from hexane (Figure 5d).

Dose had a strong effect on antennal response to phenylacetaldehyde (F6,210 = 549.16;
p < 0.001), and this effect was dependent on moth sex and feeding status (concentration
· sex · feeding, F6,210 = 2.25, p = 0.039). There were no differences in antennal response
to the floral volatile between fed or unfed male moths, regardless of the dose (Figure 5f).
In contrast, fed females had a higher antennal response than unfed females only at the
10.0 µg/µL dose (Figure 5e). Moth antennae detected phenylacetaldehyde at lower doses
compared to acetic acid and 3-methyl-1-butanol. In females, antennal response to the
0.001 µg/µL dose was not different from hexane (Figure 5e). In males, antennal response
to doses of 0.001 and 0.01 µg/µL were not different from hexane (Figure 5f). There was a
significant dose response with the highest antennal response to 100.0 µg/µL, followed by
10.0 µg/µL, 1.0 µg/µL and 0.1 µg/µL (Figure 5e,f).

4. Discussion

This research explored the development of a general food bait lure to attract cutworm
and armyworm species with a single trap baited with a single lure in canola and wheat
fields in the Canadian Prairies. Field experiments were conducted in canola and wheat
fields to evaluate the AAMB lure, a food bait based on microbial volatile compounds from
by-products of fermented sugar baits developed by Landolt [39].

As expected, traps baited with sex pheromone lures captured a larger number of target
moths than any of the food bait lures tested, but the vast majority of moths attracted to
sex pheromone-baited traps were males. Male trap catch from pheromone-baited traps
may not be representative of the female density. Food bait lures that attract both male and
female moths are more suitable tools for monitoring pest species since capture of females
might be a better indicator of population density [27]. Capture of females can provide
information on the reproductive status of females and egg loading [41]. Furthermore, male
moths may be attracted to pheromones from great distances and trap catch may not reflect
local population density. Food bait lures may have a smaller attraction radius and capture
moths that contribute to the local population density.

The most abundant pest species were the redbacked cutworm followed by the bertha
armyworm in 2014 (Experiment 1) and 2015 (Experiment 4), and the pale western cutworm
in 2015 (Experiment 4). True armyworm moths were captured in low numbers in 2014 but
were absent in 2015. Although sex pheromones had a high moth trap catch rate of the
targeted moths throughout the field seasons, farmers did not report cutworm damage in the
following growing season. Noctuid moths are strong flyers and males may be attracted to
sex pheromone-baited traps over long distances, and thus, moth trap catch may not reflect
the local population density. Pale western cutworm male moths have shown a maximum
flight distance of 24 km in flight mill experiments, whereas female moths flew 5 km [56].
Male noctuid moths can disperse over longer distances than females to find a mate. For
instance, mark–recapture experiments with sex pheromone-baited traps of the tobacco
budworm, Heliothis virescens (Fabricious) (Lepidoptera: Noctuidae), showed that moths
can disperse up to 30 km from the release point [57]. Furthermore, sex pheromones attract
male moths only, and thus, monitoring results may not be representative of female density.
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Redbacked cutworm male moth trap capture in sex pheromone-baited traps showed no
relationship with larval densities in alfalfa fields in Manitoba, Canada [13].

Although food baits had a lower moth trap catch than sex pheromone-baited traps,
AAMB lures attracted several cutworm and armyworm species, including the target species,
the redbacked cutworm and true armyworm. Pale western cutworm and bertha armyworm
moths were not captured in AAMB lure-baited traps. Army cutworm attraction to AAMB
lures could not be determined since this species was not present at monitoring sites in 2014.
It remains to be tested if numbers of target moth species captured in AAMB-baited traps
represent local population densities.

Traps baited with the AAMB lures captured redbacked cutworm moths throughout
their flight period. The peak flight activity of the redbacked cutworm recorded from traps
baited with AAMB lures followed the same pattern as the trap catch in the sex pheromone-
baited traps, and thus, the AAMB lure is a potential tool for monitoring the flight activity
of this species. For true armyworm, however, only the summer generation moths can be
monitored with traps baited with the AAMB lure. Moths from the immigrating generation
were captured with sex pheromone but not AAMB lure-baited traps, while summer genera-
tion moths were attracted to the AAMB lure but not sex pheromone lures. Differences in
response to sex pheromone lures between true armyworm generations has been observed in
field experiments [6], in which immigrating moths were captured in sex pheromone-baited
and light traps in early summer, while summer generation moths were captured only in
light traps in early fall but not in pheromone traps. Sexual maturation in the summer gen-
eration moths is delayed under short-day and low-temperature conditions of early fall [58].
These cues induce physiological and behavioural changes in summer generation moths to
undertake a southern migration from deteriorating habitats in northern latitudes [6], and
therefore, male moths do not respond to sex pheromone lures.

The true armyworm does not overwinter in Canada and infestations result from moths
immigrating in the early summer [59]. The immigrating moths mate and produce a summer
generation in early fall. True armyworm may have a plasticity in response to food-based
semiochemicals between generations. Our results indicate that moths making the southern
migration in the fall are tuned to respond to food cues. Variation in attraction to semiochem-
icals by insects in different physiological states has been reported in several moth species.
For instance, the response of female Caloptilia fraxinella (Ely) (Lepidoptera: Gracillaridae)
moths to host plant volatiles is higher when they are reproductively active than when
females are in reproductive diapause [60]. Similarly, females of the cotton leafworm moth,
Spodoptera littoralis (Boisduval) (Lepidpotera: Noctuidae), are more attracted to host plant
volatiles than to floral volatiles after mating [61]. The true armyworm immigrating gener-
ation that flies north may respond to cues for mate finding or oviposition host selection
in early summer, while the summer generation moths may have a higher response to
food-based semiochemicals to locate food resources prior to southern migration.

In an attempt to enhance the attractiveness of the AAMB lure to target noctuid species,
especially the redbacked cutworm moth, different AAMB release rates and release devices
were tested. Differences in response between male and female noctuid moths to varying
release rates depended on the crops where traps were deployed. It is possible that variation
in response is influenced by host plant volatiles from crops in the background where
baited traps were positioned. The response of diamondback moths, Plutella xylostella L.
(Lepidoptera: Plutellidae), to sex pheromone-baited traps is enhanced when combined
with green leaf volatiles if traps are deployed in cabbage fields [62] but not in canola
fields [63]. Similarly, pea leaf weevil (Sitona lineatus L.) (Coleoptera: Curculionidae) has a
higher response to semiochemical lures with host plant volatiles in the fall when pea plants
are beginning to senescence and crops are harvested than in the spring when crops are at
the vegetative growth stage and produce more host plant volatiles that may mask the host
volatiles released from baited traps [64]. Overall, baited traps deployed in wheat fields
captured more noctuid moths than baited traps in canola fields did. Acetic acid is one of
the most prominent volatile organic compounds emitted by canola plants at the flowering
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stage [65], whereas acetic acid is not part of the volatile profile in wheat plants [66,67].
AAMB lures at varying release rates may be more apparent to target moths in wheat than
canola fields.

Among the different release devices tested, the AAMB chemical mixture incorporated
into the inert matrix attracted the most noctuid moths to baited traps, including redbacked
cutworm moths. Although release rates of AAMB from the different devices were not
measured in this experiment, it is likely that the inert matrix mixture released AAMB at
a higher release rate than Nalgene bottles and polyethylene bags. Phenylacetaldehyde
incorporated into the wax developed for dispensing semiochemicals has a higher release
compared to that of rubber stopper lures, and thus attracts more moths to baited traps [68].

The AAMB lure combined with 2-methyl-1-propanol or phenylacetaldehyde attracts
several noctuid pest species in Europe [38], and therefore we hypothesized that the combi-
nation could enhance attraction of RBC moths to AAMB lures in Canadian Prairie agroe-
cosystems. An equal number of redbacked cutworm moths were attracted to the different
food bait lure types in canola fields, but more moths were captured in traps baited with the
AAMB lure with 2-methyl-1-propanol than phenylacetaldehyde in wheat fields. Further-
more, more redbacked cutworm female moths were captured in traps baited with AAMB
lures with the additional alcohol from fermented by-products than with AAMB lures with
the floral volatile. Several insects rely specifically on microbial volatile organic compounds
as cues to locate food sources [21]. For instance, over 90% of moth species captured in
traps baited with different sources of fermented sugar baits are noctuids (Noctuidae) [37].
Interestingly, some microbial volatile organic compounds are also constituents of male-
produced pheromone signals in noctuid moths. For example, phenylethanol is a component
of the male sex pheromone of the flounced chestnut moth, Agrochola helvola L. (Lepidoptera:
Noctuidae) [69]. Similarly, hairpencils of true armyworm male moths release acetic acid as
part of its courtship pheromone blend [70]. Like many noctuid moths, redbacked cutworm
is active at night, and therefore moths may rely on microbial volatile organic compounds
over floral volatiles to locate food sources.

Traps baited with AAMB lures captured vespid by-catch, and this attraction is elicited
by the short chain alcohol in the food bait chemical mixture [71]. Further studies should
evaluate food bait lures with longer chain alcohols to reduce unwanted vespid by-catch.
Traps baited with food bait lures based on fermented by-products had a low pollinator
by-catch; however, the addition of a floral volatile increased Bombus spp. by-catch [17].
Food bait lures based on microbial volatile organic compounds may be especially suitable
for monitoring cutworm and armyworm moths because pollinators do not appear to be
attracted to these compounds.

Redbacked cutworm antennae responded to the different food-based semiochemicals
in a dose-dependent manner. Higher doses of acetic acid and 3-methyl-1-butanol elicited
significant antennal responses, whereas phenylacetaldehyde elicited significant antennal
responses at all doses tested. Other moths exhibit dose-dependent antennal responses to
host plant volatiles. For example, the host plant volatile, hexan-1-ol, elicits high antennal
response at a dose of 0.1 µg in the cotton bollworm moth, H. armigera (Hübner) (Lepidoptera:
Noctuidae), while response to lower doses (0.0001 to 0.01 µg) does not differ from that
to the solvent control [72]. Similarly, phenylacetaldehyde elicits the strongest antennal
responses in the lichnis moth, Hadena bicurris Hufnagel (Lepidoptera: Noctuidae), at
low and high concentrations, while the green leaf volatile, cis-3-hexen-1-yl acetate, elicits
antennal recordings only at high concentrations [73]. For the cabbage butterfly, Pieris rapae L.
(Lepidoptera: Pieridae), antennal response to microbial volatile emissions at high doses
may be important for close-range location of food sources [74] rather than the attraction
from a distance that was assessed for RBC in the current study. Phenylacetaldehyde elicits
higher antennal responses than acetic acid and 3-methyl-1-butanol in redbacked cutworm
moth antennae; however, these patterns may be confounded to differences in volatility of
the compounds tested. Aromatic aldehydes elicit higher EAG response than alcohols in the
cotton bollworm moth [72].
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The physiological state of insects influences the antennal response to food-based
semiochemicals [75]. In the redbacked cutworm moth, males have a higher antennal
response to phenylacetaldehyde at high doses than female moths, while both sexes respond
similarly to acetic acid and 3-methyl-butanol. Antennal response to acetic acid by true
armyworm does not differ between males and females; however, male antennal response
to benzaldehyde, a common floral volatile and component of the male-produced true
armyworm pheromone blend, is significantly greater than that of females [70]. Several
lepidopteran male courtship pheromones are derived from ingested plant compounds,
and some of these components are also components of floral scents, such as benzaldehyde
or phenylacetaldehyde [76].

In redbacked cutworm moths, feeding status did not influence the antennal response
to acetic acid and phenylacetaldehyde in either sex, whereas feeding status did affect the
response to 3-methyl-1-butanol in female moths but not in males. Fed unmated female
moths displayed a higher antennal response than unfed females. The influence of feeding
status on antennal response may be specific to the insect species and the semiochemical
cue. For example, fed female C. fraxinella have a marginally higher antennal response to
the host plant volatiles (E,E)-α-farnesene and methyl salicylate compared to unfed females;
however, unfed females have a higher antennal response to linalool than fed females [60].
Feeding status, however, highly influences female C. fraxinella behavioural response to host
plant volatiles, as fed females orient to host plant volatiles more readily than unfed females
in wind tunnel experiments [60]. In general, the insect central nervous system seems to
be more sensitive to changes in insect physiological state compared to the peripheral
system that is less plastic [77]. For example, isothiocyanates stimulate upwind flight in
female cabbage moths, M. brassicae L. (Lepidoptera: Noctuidae), despite the low antennal
response to these compounds [78]. Further studies should evaluate the influence of the
tested compounds and the food bait lure blend on redbacked cutworm moth behaviour in
wind tunnel studies under controlled conditions.

5. Conclusions

In conclusion, food bait lures based on microbial volatile organic compounds can be
further developed to attract redbacked cutworm moths and potentially other cutworm and
armyworm pests in field crops, and have a minimum negative effect on native pollinator
by-catch [17]. Although food bait lures capture lower numbers of targeted moths compared
to sex pheromone-baited traps, both males and females of multiple cutworm species are
attracted to AAMB lure. The low number of moths captured in food bait traps may indicate
that only moths in the immediate area detect and are attracted to the food bait lures. Future
studies should evaluate the attractive radius of these lures and determine whether trap
capture represents local population density [79]. Traps baited with the AAMB lure caught
more moths in wheat fields than in canola fields, and thus, the background volatile profile
of the crop may influence the response to lure. It is possible that microbial volatile organic
compounds are more reliable cues for locating food sources than floral volatiles for the
redbacked cutworm moths and potentially other noctuid pest species. These types of lures
may be more reliable than specific host plant volatiles as several cutworm and armyworm
pests are generalists and do not oviposit on host plant tissue, including redbacked and pale
western cutworm. The AAMB lures have little impact on pollinator by-catch, but other
alcohols should be tested to reduce attraction of vespid wasps to food bait traps. Food bait
traps catch a variety of non-pest noctuid moths and entomological expertise is required to
separate the species captured.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/insects14020106/s1, Figure S1: Experiment 1—Average number of red-
backed cutworm (RBC) moths (±SE) captured per trap per week; Figure S2: Experiment 1—Average
number of bertha armyworm (BAW) moths (±SE) captured per trap per week; Figure S3: Experiment
1—Average number of true armyworm (TAW) moths (±SE) captured per trap per week; Figure S4:
Experiment 1—Box-and-whisker plot of the season-long capture of other noctuid pest species in
baited traps; Table S1: Average (±SE) number of the season long capture of other noctuid pest species
in AAMB baited traps in Experiment 1; Figure S5: Experiment 1—Average number of vespids (±SE)
captured per trap per week; Figure S6: Experiment 1—Box-and-whisker plot of the season-long
capture of vespids in baited traps; Figure S7: Experiment 2—Average release rate per day (mg/day
± SE) of AAMB lure from Nalgene 10 mL bottle lures with different sized holes in the centre of the
bottle cap; Figure S8: Experiment 2—Box-and-whisker plots of the season-long capture of male (top
panels) and female (bottom panels) noctuid moths in AAMB-baited traps at different release rates
manipulated by the diameter of holes drilled in the centre of the bottle cap; Figure S9: Experiment
3—Box-and-whisker plots of the season-long capture of female (left panel) and male (right panel)
noctuid moths in traps baited with AAMB lures from different release devices; Figure S10: Experi-
ment 4—Box-and-whisker plots of the season-long capture of target pest species in their respective
sex pheromone-baited traps positioned in canola or wheat fields; Figure S11: Experiment 4—Box-
and-whisker plots of the season-long capture of vespid by-catch in traps baited with lures targeting
cutworm moths.
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