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Simple Summary: The insect group Neuroptera (lacewings) is often claimed to have been more
diverse in the past than today. The same appears to have also been the case not only for the entire
group Neuroptera, but also for several of its ingroups. Silky lacewings (Psychopsidae) are represented
by relatively few species today. Their larvae, also called long-nosed antlions, can easily be identified
by the following characteristics: they resemble antlion larvae, lack teeth in their stylets (mouthparts
for catching prey), have trumpet-shaped attachment structures on their legs, and have prominent
forward-directed upper lips (labra, singular labrum). Therefore, these larvae can also be recognised
in the fossil record. An earlier study demonstrated a decline in the morphological diversity of
long-nosed antlion larvae over the past 100 million years. Here, we report several dozen new fossil
long-nosed antlion larvae. With these, we expand the earlier quantitative analysis. Moreover, in
this study, we can show that the morphological diversity of long-nosed antlion larvae has decreased
over the past 100 million years. However, we apparently do not have the full original morphological
diversity of long-nosed antlions available, as there is no sign of visible saturation yet.

Abstract: Lacewings have been suggested to be a relict group. This means that the group of lacewings,
Neuroptera, should have been more diverse in the past, which also applies to many ingroups of
Neuroptera. Psychopsidae, the group of silky lacewings, is one of the ingroups of Neuroptera which is
relatively species-poor in the modern fauna. Larvae of the group Psychopsidae, long-nosed antlions,
can be easily identified as such in being larvae of antlion-like lacewings without teeth in their stylets
(=compound structure of mandible and maxilla), with empodia (=attachment structures on legs) and
with a prominent forward-protruding labrum. Therefore, such larvae can also be recognised in the
fossil record. An earlier study demonstrated a decline in the morphological diversity of long-nosed
antlion larvae over the past 100 million years. Here, we report several dozen new long-nosed antlion
larvae and expand the earlier quantitative study. Our results further corroborate the decline of silky
lacewings. Yet, a lack of an indication of saturation indicates that we have still not approached the
original diversity of long-nosed antlions in the Cretaceous.

Keywords: Psychopsidae; Neuroptera; Myanmar amber; Burmese amber; Cretaceous; quantita-
tive morphology

1. Introduction

The term “biodiversity” describes the overall variety of organisms around the world or
in a certain habitat and plays an important role for our ecosystems. For years, people have
seen a decline of biodiversity in different ecosystems [1–10], resulting in various efforts to
protect species and their habitats. Most decline can be seen among representatives of the
group Insecta, such as bees, beetles, or butterflies [2,5]. All of these play an important role
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in many ecological processes, for example, pollination or decomposition, and are in general
essential for maintaining functional ecosystems [2,4,11–16].

The decline can be recognised on different aspects. Hallmann et al. [4] reported a 75%
decline in biomass of flying representatives of Insecta over 27 years. Especially for longer
time spans, reaching into the fossil record, biomass can only rarely be used for comparison.
Another challenge when dealing with fossils is the inclusion of larvae, as these can also
not easily be used in a taxonomic frame. Quantitative morphology offers a framework
for overcoming both problems, facilitating a comparison of larval forms throughout the
fossil history of a group. Such a comparative frame has been used for various lineages of
lacewings [17–27].

Neuroptera, the group of lacewings, comprises approximately 6000 extant species [28–31].
The exact relationships within the group still seem not entirely settled [29,32–43].

The group Neuroptera is characterised by a specialisation of the larvae, the stylets,
which are compound feeding structures formed by mandibles and maxillae [31,44–50].
Stylets come in various forms, including simple inward curved as, for example, in the
groups Chrysopidae (green lacewings [51–55]), Hemerobiidae (brown lacewings [56–60]),
some species of Mantispidae (mantis lacewings [47,61,62]), and many representatives of
Mymeleontiformia (antlion-like lacewings [63–67]), though within the latter group, many
of the stylets additionally bear teeth [47,50,68–70]. Stylets may be straight [71], as in
Sisyridae [36,72–75], Berothidae [76–80], and many species of Mantispidae [35,77,81–83], or
even outward-curved, as in Osmylidae [84–88]. The stylets allow the larvae to pierce prey,
inject venom and saliva, and suck out the dissolved body tissues.

Most neuropterans undergo three larval stages before pupating [28,31] (see discussion
in [22]). Larval stages can live for several years, while adults only live for up to a couple of
weeks [28], indicating that most of their ecological impact is in fact generated by the larval
forms.

Within Myrmeleontiformia, a now species-poor (28 species) but in the past more
diverse group, are silky lacewings, Psychopsidae [89,90]. Modern representatives can
be found in Australia, East and Southeast Asia, and Southern Africa [91,92]. Fossils are
known from different regions around the world, suggesting that the modern distribution is
only a relict one and that silky lacewings were much more diverse and widespread in the
past [18,42,91,93]. The neuropteran lineage has been reconstructed to have emerged in the
late Palaeozoic [42,94,95] and the group Psychopsidae in the late Triassic [91,96].

Larvae resembling the modern larvae of silky lacewings, also called long-nosed
antlions, first appeared in the fossil record in Cretaceous ambers [18,90,97,98]. Modern
long-nosed antlions live under leaf debris [99] or tree bark [28,99,100], making them pre-
destined for becoming entrapped in amber. Long-nosed antlions can be easily recognised
by their long protruding labrum (hence the name long-nosed antlions), in combination
with their toothless stylets and trumpet-shaped empodia [18,101–103].

A previous quantitative morphology comparison of the head capsule of long-nosed
antlions demonstrated a loss of shape diversity from the Cretaceous to the Eocene and
further into the modern fauna [18], supporting earlier losses in diversity within Psychop-
sidae, as found in earlier reconstructions [91]. This loss also indicates a loss of ecological
function. Here, we report new fossils of long-nosed antlions and expand the analysis of
Haug et al. [18].

2. Material and Methods
2.1. Material

The study includes the specimens of Haug et al. [18]. One additional specimen in
Eocene Baltic amber that had been overlooked by Haug et al. [18] was identified in the
literature [104]. Images of another additional specimen from Eocene Baltic amber were kindly
provided by Marius Veta (www.ambertreasure4u.com, accessed on 23 December 2022).

New material directly studied are specimens preserved in approximately 100 million
years old Kachin amber, Myanmar [105–108]. Specimens were legally purchased via the
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trading platform ebay.com from various traders (burmitefossil, burmite-miner, burmite-
researcher, cretaceous-burmite, macro-cretaceous). Specimens are deposited in the Palaeo-
Evo-Devo Research Group Collection of Arthropods, Ludwig-Maximilians-University
Munich, Germany, under repository numbers PED 0150, 0267, 0322, 0379, 0382, 0389, 0412,
0430, 0440, 0456, 0535, 0584, 0612, 0621, 0625, 0662, 0751, 0774, 0845, 0932, 0998, 1049, 1459,
1627, 1666, 1703, 1726, 1732, 1813, 1831, 1846, 1884, 1887, 1928, 1940, 1967, 2056, 2171, 2309,
2311, 2329, 2432, 2446, and 2448. This study adds 44 new Upper Cretaceous and 2 new
Eocene long-nosed antlions to the growing list of fossil neuropteran larvae. In total, this
makes 12 extant, 14 Eocene, and 72 Upper Cretaceous long-nosed antlions known so far.
Information on the specimens is provided in Supplementary Materials File S1.

2.2. Imaging and Documentation

Directly studied specimens were imaged on a Keyence VHX 6000 digital microscope.
Amber pieces were mounted on modelling clay in a Petri dish and covered by a drop
of glycerol and a cover slip. The specimens were photographed using different lenses,
providing magnification from 20-fold up to 2000-fold, under unpolarised ring light and
cross-polarised coaxial light, on a white and black background, and in some cases with ad-
ditional transmitted light. Besides “normal” imaging, the specimens were also documented
under varying exposure times (HDR). All images are composite images from multiple
smaller images with different focus layers stacked together as a panorama image to obtain
an in-depth, high-resolution image. Specimens were photographed from the ventral and
dorsal sides if accessible (see also details in [18]).

2.3. Image Processing and Presentation

The images were first processed using the built-in software of the Keyence VHX 6000
digital microscope. Additionally, colour saturation and sharpness were optimised using
Adobe Photoshop CS2. Colour-marks of the different structures of the specimens were
prepared to provide the reader with an interpretation of the accessible structures.

2.4. Measurements

Specimens were measured using the open-source software Fiji 2.0.0 (or ImageJ 1.53 [109]).
If present, the total body length of the larvae (excluding the stylets), the length of the head
capsule, and its width at the maximum expansion were measured.

2.5. Shape Analysis

Accessible head capsules and other traits were redrawn as vector graphics in Inkscape
or Adobe Illustrator CS2. Shape analysis was conducted using the program SHAPE,
following the method of Iwata and Ukai [110] and Braig et al. [111].

3. Results
3.1. Descriptions of New Fossil Larvae

(1) Specimen 53 (PED 0150) is preserved in Cretaceous Myanmar amber (Figure 1B).
The dorsal and ventral sides are accessible. The head seems to be turned sideways or is
deformed. The labrum is partly concealed; it therefore remains partly unclear whether this
is definitely a long-nosed antlion. The antennae bear prominent setae at the distal ends.
Trumpet-shaped empodia at the end of the locomotory appendages (legs) are visible. The
abdomen is mostly covered by dirt or debris. The specimen has an approximate length of
3.6 mm. This specimen was not included in the final analysis.
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Figure 1. Specimens in Myanmar amber. (A) Specimen 71 (PED 0845), dorsal view. (B) Specimen 53 
(PED 0150), dorsal view. (C) Specimen 67 (PED 0625). (D) Specimen 64 (PED 0584). (E) Specimen 54 
(PED 0267). 

(3) Specimen 55 (PED 0322) is preserved in Cretaceous Myanmar amber. Both lateral 
sides are accessible. The head is only accessible in the lateral view (Figure 2F,G). The la-
brum seems to have a triangular shape in the dorsal view. The antennae bear prominent 
setae at the distal ends. Trumpet-shaped empodia at the end of the locomotory 

Figure 1. Specimens in Myanmar amber. (A) Specimen 71 (PED 0845), dorsal view. (B) Specimen 53
(PED 0150), dorsal view. (C) Specimen 67 (PED 0625). (D) Specimen 64 (PED 0584). (E) Specimen 54
(PED 0267).

(2) Specimen 54 (PED 0267) is preserved in Cretaceous Myanmar amber (Figure 1E).
Only the head capsule is present, but it is largely covered by dirt or debris concealing the
outer rim and labrum. The specimen has an estimated length of 14 mm. This specimen was
not included in the final analysis.

(3) Specimen 55 (PED 0322) is preserved in Cretaceous Myanmar amber. Both lateral
sides are accessible. The head is only accessible in the lateral view (Figure 2F,G). The labrum
seems to have a triangular shape in the dorsal view. The antennae bear prominent setae at
the distal ends. Trumpet-shaped empodia at the end of the locomotory appendages are
visible (Figure 2H). The specimen has an approximate length of 3.9 mm. This specimen
was not included in the final analysis.
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Figure 2. Specimens in Myanmar amber. (A–E) Specimen 62 (PED 0456). (A) Dorsal view. (B) Dorsal 
view, colour-marked. (C) Ventral view. (D) Close-up of labrum; arrow points to V-shaped split. (E) 
Close-up of first locomotory appendage; arrow marks empodium. (F–H) Specimen 55 (PED 0322). 
(F) Lateral view, colour-marked. (G) Lateral view. (H) Close-up of third locomotory appendage; 
arrow marks empodium. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial 
palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet. 

(4) Specimen 56 (PED 0379) is preserved in Cretaceous Myanmar amber (Figure 3). 
The dorsal (Figure 3A) and ventral (Figure 3B,C) sides are accessible. The labrum is tri-
dent-like with a larger spine-like protrusion in the middle, but with two smaller spine-
like protrusions next to the large spine on each side (Figure 3D,E); hence, it is not a trident 
in the strict sense, as it has five and not three prongs. No empodium is apparent, although 

Figure 2. Specimens in Myanmar amber. (A–E) Specimen 62 (PED 0456). (A) Dorsal view. (B) Dorsal
view, colour-marked. (C) Ventral view. (D) Close-up of labrum; arrow points to V-shaped split.
(E) Close-up of first locomotory appendage; arrow marks empodium. (F–H) Specimen 55
(PED 0322). (F) Lateral view, colour-marked. (G) Lateral view. (H) Close-up of third locomotory
appendage; arrow marks empodium. Abbreviations: ad = abdomen; at = antenna; hc = head capsule;
lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(4) Specimen 56 (PED 0379) is preserved in Cretaceous Myanmar amber (Figure 3).
The dorsal (Figure 3A) and ventral (Figure 3B,C) sides are accessible. The labrum is trident-
like with a larger spine-like protrusion in the middle, but with two smaller spine-like
protrusions next to the large spine on each side (Figure 3D,E); hence, it is not a trident in
the strict sense, as it has five and not three prongs. No empodium is apparent, although the
claws are well preserved (Figure 3F). The specimen has an approximate length of 5.5 mm.
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Figure 3. Specimen 56 (PED 0379); Myanmar amber. (A) Dorsal view. (B) Ventral view, colour-
marked. (C) Ventral view. (D) Close-up of anterior head region. (E) Close-up of labrum in dorsal 
view; arrows mark spine-like protrusions. (F) Close-up of third locomotory appendage; arrow 
marks claw. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; ms = mesothorax; mt = 
metathorax; pt = prothorax; sy = stylet. 

(5) Specimen 57 (PED 0382) is preserved in Cretaceous Myanmar amber (Figure 4). 
The dorsal (Figure 4A,B) and ventral (Figure 4C) sides are accessible. The labrum is tri-
dent-like with a larger spine-like protrusion in the middle and two smaller spine-like pro-
trusions next to the large spine (Figure 4D). An empodium is apparent (Figure 4E). The 
specimen has an approximate length of 8.6 mm. 

Figure 3. Specimen 56 (PED 0379); Myanmar amber. (A) Dorsal view. (B) Ventral view, colour-
marked. (C) Ventral view. (D) Close-up of anterior head region. (E) Close-up of labrum in dorsal
view; arrows mark spine-like protrusions. (F) Close-up of third locomotory appendage; arrow
marks claw. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; ms = mesothorax;
mt = metathorax; pt = prothorax; sy = stylet.

(5) Specimen 57 (PED 0382) is preserved in Cretaceous Myanmar amber (Figure 4). The
dorsal (Figure 4A,B) and ventral (Figure 4C) sides are accessible. The labrum is trident-like
with a larger spine-like protrusion in the middle and two smaller spine-like protrusions
next to the large spine (Figure 4D). An empodium is apparent (Figure 4E). The specimen
has an approximate length of 8.6 mm.
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Figure 4. Specimen 57 (PED 0382); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of labrum in dorsal view; arrows mark spine-like protru-
sions. (E) Close-up of first locomotory appendage; arrow marks empodium. Abbreviations: ad = 
abdomen; at = antenna; hc = head capsule; ms = mesothorax; mt = metathorax; pt = prothorax; sy = 
stylet. 

(6) Specimen 58 (PED 0389) is preserved in Cretaceous Myanmar amber (Figure 5). 
The dorsal (Figure 5A,B) and ventral (Figure 5C) sides are accessible. The labrum is tri-
dent-like with a larger spine-like protrusion in the middle and two smaller spine-like pro-
trusions next to the large spine (Figure 5E). The locomotory appendages are partly cov-
ered by a whitish coating (hereafter called Verlumung; adjective: verlumt) (Figure 5D). 
The specimen has an approximate length of 9.9 mm. 

Figure 4. Specimen 57 (PED 0382); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of labrum in dorsal view; arrows mark spine-like protrusions.
(E) Close-up of first locomotory appendage; arrow marks empodium. Abbreviations: ad = abdomen;
at = antenna; hc = head capsule; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(6) Specimen 58 (PED 0389) is preserved in Cretaceous Myanmar amber (Figure 5). The
dorsal (Figure 5A,B) and ventral (Figure 5C) sides are accessible. The labrum is trident-like
with a larger spine-like protrusion in the middle and two smaller spine-like protrusions
next to the large spine (Figure 5E). The locomotory appendages are partly covered by a
whitish coating (hereafter called Verlumung; adjective: verlumt) (Figure 5D). The specimen
has an approximate length of 9.9 mm.
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Figure 5. Specimen 58 (PED 0389); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of third locomotory appendage; arrow marks claw. (E) 
Close-up of labrum in dorsal view; arrow marks middle spine-like protrusion. Abbreviations: ad = 
abdomen; hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy 
= stylet. 

(7) Specimen 59 (PED 0412) is preserved in Cretaceous Myanmar amber (Figure 
6D,E). The ventral side is accessible with parts of the abdomen being verlumt (Figure 
6D,E). The dorsal side is largely concealed by dirt and partly by verlumt. One stylet is 
separated from the head capsule. The labrum is broad, pentagonal in the dorsal view, and 
bears small spine-like elevations at the corners. The specimen is located in a corner of the 
amber piece and the distal part of its abdomen appears to be missing. The specimen has 
an approximate length of 2.8 mm. 

Figure 5. Specimen 58 (PED 0389); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-marked.
(C) Ventral view. (D) Close-up of third locomotory appendage; arrow marks claw. (E) Close-up of
labrum in dorsal view; arrow marks middle spine-like protrusion. Abbreviations: ad = abdomen;
hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(7) Specimen 59 (PED 0412) is preserved in Cretaceous Myanmar amber (Figure 6D,E).
The ventral side is accessible with parts of the abdomen being verlumt (Figure 6D,E). The
dorsal side is largely concealed by dirt and partly by verlumt. One stylet is separated from
the head capsule. The labrum is broad, pentagonal in the dorsal view, and bears small
spine-like elevations at the corners. The specimen is located in a corner of the amber piece
and the distal part of its abdomen appears to be missing. The specimen has an approximate
length of 2.8 mm.
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Figure 6. Specimens in Myanmar amber. (A–C) Specimen 65 (PED 0612). (A) Ventral view. (B) Ven-
tral view, colour-marked. (C) Close-up of labrum in dorsal view; arrows mark spine-like protru-
sions. (D,E) Specimen 59 (PED 0412). (D) Ventral view. (E) Ventral view, colour-marked. Abbrevia-
tions: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt = meta-
thorax; pt = prothorax; sy = stylet. 

(8) Specimen 60 (PED 0430) is preserved in Cretaceous Myanmar amber. It is acces-
sible from the dorsal side (Figure 7D,E). The labrum is trident-like with a large bifurcated 
middle spine-like protrusion and two smaller spine-like protrusions next to the large 
spine. The antennae bear prominent setae at the distal ends. Trumpet-shaped empodia at 
the end of the locomotory appendages are visible. Parts of the abdomen appear to be miss-
ing. The specimen has an approximate length of 3.6 mm. 

Figure 6. Specimens in Myanmar amber. (A–C) Specimen 65 (PED 0612). (A) Ventral view. (B) Ventral
view, colour-marked. (C) Close-up of labrum in dorsal view; arrows mark spine-like protrusions.
(D,E) Specimen 59 (PED 0412). (D) Ventral view. (E) Ventral view, colour-marked. Abbreviations:
ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax;
pt = prothorax; sy = stylet.

(8) Specimen 60 (PED 0430) is preserved in Cretaceous Myanmar amber. It is accessible
from the dorsal side (Figure 7D,E). The labrum is trident-like with a large bifurcated middle
spine-like protrusion and two smaller spine-like protrusions next to the large spine. The
antennae bear prominent setae at the distal ends. Trumpet-shaped empodia at the end of
the locomotory appendages are visible. Parts of the abdomen appear to be missing. The
specimen has an approximate length of 3.6 mm.
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Figure 7. Specimens in Myanmar amber. (A–C) Specimen 63 (PED 0535). (A) Ventral view. (B) Ven-
tral view, colour-marked. (C) Dorsal view. (D,E) Specimen 60 (PED 0430). (D) Dorsal view. (E) Dor-
sal view, colour-marked. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial 
palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet. 

(9) Specimen 61 (PED 0440) is preserved in Cretaceous Myanmar amber. It is acces-
sible from the dorsal side (Figure 8A,B), but strongly verlumt from the ventral side. The 
labrum is triangular to pentagonal in the dorsal view. The antennae bear prominent setae 
at the distal ends. Trumpet-shaped empodia at the end of the locomotory appendages are 
visible. The specimen has an approximate length of 1.2 mm. 

Figure 7. Specimens in Myanmar amber. (A–C) Specimen 63 (PED 0535). (A) Ventral view.
(B) Ventral view, colour-marked. (C) Dorsal view. (D,E) Specimen 60 (PED 0430). (D) Dorsal view.
(E) Dorsal view, colour-marked. Abbreviations: ad = abdomen; at = antenna; hc = head capsule;
lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(9) Specimen 61 (PED 0440) is preserved in Cretaceous Myanmar amber. It is accessible
from the dorsal side (Figure 8A,B), but strongly verlumt from the ventral side. The labrum
is triangular to pentagonal in the dorsal view. The antennae bear prominent setae at the
distal ends. Trumpet-shaped empodia at the end of the locomotory appendages are visible.
The specimen has an approximate length of 1.2 mm.
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Figure 8. Specimens in Myanmar amber. (A,B) Specimen 61 (PED 0440). (A) Dorsal view. (B) Dorsal 
view, colour-marked. (C,D) Specimen 84 (PED 1884). (C) Dorsal view, colour-marked. (D) Dorsal 
view. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesotho-
rax; mt = metathorax; pt = prothorax; sy = stylet. 

(10) Specimen 62 (PED 0456) is preserved in Cretaceous Myanmar amber (Figure 2A–
E). The dorsal (Figure 2A,B) and ventral (Figure 2C) sides are accessible. The labrum is 
trapezoidal in the dorsal view with a large V-shaped split distally (Figure 2D). The anten-
nae bear prominent setae at the distal ends. Trumpet-shaped empodia at the end of the 
locomotory appendages are visible (Figure 2E). The specimen has an approximate length 
of 1.5 mm. 

(11) Specimen 63 (PED 0535) is preserved in Cretaceous Myanmar amber (Figure 7A–
C). The dorsal (Figure 7C) and ventral (Figure 7A,B) sides are accessible. The labrum is 
triangular in the dorsal view. The antennae bear prominent setae at the distal ends. Trum-
pet-shaped empodia at the end of the locomotory appendages are visible. The abdomen 
is partly verlumt from the dorsal side. The specimen has an approximate length of 1.8 
mm. 

Figure 8. Specimens in Myanmar amber. (A,B) Specimen 61 (PED 0440). (A) Dorsal view.
(B) Dorsal view, colour-marked. (C,D) Specimen 84 (PED 1884). (C) Dorsal view, colour-marked.
(D) Dorsal view. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp;
ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(10) Specimen 62 (PED 0456) is preserved in Cretaceous Myanmar amber (Figure 2A–E).
The dorsal (Figure 2A,B) and ventral (Figure 2C) sides are accessible. The labrum is trape-
zoidal in the dorsal view with a large V-shaped split distally (Figure 2D). The antennae bear
prominent setae at the distal ends. Trumpet-shaped empodia at the end of the locomotory
appendages are visible (Figure 2E). The specimen has an approximate length of 1.5 mm.

(11) Specimen 63 (PED 0535) is preserved in Cretaceous Myanmar amber (Figure 7A–C).
The dorsal (Figure 7C) and ventral (Figure 7A,B) sides are accessible. The labrum is
triangular in the dorsal view. The antennae bear prominent setae at the distal ends. Trumpet-
shaped empodia at the end of the locomotory appendages are visible. The abdomen is
partly verlumt from the dorsal side. The specimen has an approximate length of 1.8 mm.

(12) Specimen 64 (PED 0584) is preserved in Cretaceous Myanmar amber (Figure 1D).
The dorsal and ventral sides are strongly verlumt. Only the head and parts of the thorax
are present. The labrum is triangular to pentagonal in the dorsal view. Trumpet-shaped
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empodia at the end of the locomotory appendages are visible. The specimen has an
estimated length of 3.1–3.5 mm. This specimen was not included in the final analysis.

(13) Specimen 65 (PED 0612) is preserved in Cretaceous Myanmar amber (Figure 6A–C).
It is accessible from the ventral side (Figure 6A,B), but strongly verlumt. The labrum is
trident-like with a larger spine-like protrusion in the middle and two smaller spine-like
protrusions next to the large spine (Figure 6C). The specimen has an approximate length
of 6.9 mm.

(14) Specimen 66 (PED 0621) is preserved in Cretaceous Myanmar amber (Figure 9).
The dorsal (Figure 9A,B) and ventral (Figure 9C) sides are accessible, but are partly con-
cealed by dirt or Verlumung. The labrum is trident-like with a larger spine-like protrusion
in the middle and two smaller spine-like protrusions next to the large spine (Figure 9D,E).
The antennae bear prominent setae at the distal ends. The abdomen appears slim and
elongated. The specimen has an approximate length of 5.7 mm.
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Figure 9. Specimen 66 (PED 0621); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
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Figure 9. Specimen 66 (PED 0621); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-marked.
(C) Ventral view. (D) Close-up of head capsule in ventral view. (E) Close-up of head capsule in ventral
view, colour-marked; arrow marks middle spine-like protrusion. Abbreviations: ad = abdomen;
at = antenna; hc = head capsule; lp = labial palp; mt = metathorax; pt = prothorax; sy = stylet.

(15) Specimen 67 (PED 0625) is preserved in Cretaceous Myanmar amber (Figure 1C).
The dorsal and ventral sides are accessible, but strongly verlumt. Only the head is present,
but a large area of the ventral side appears to be ground off near the neck region. The
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labrum appears to be trident-like with a larger spine-like protrusion in the middle and
two smaller spine-like protrusions next to the large spine. The specimen has an estimated
length of 12.4–15.8 mm. This specimen was not included in the final analysis.

(16) Specimen 68 (PED 0662) is preserved in Cretaceous Myanmar amber (Figure 10).
The dorsal (Figure 10A) and ventral (Figure 10B,C) sides are accessible, but are partly
concealed by dirt and Verlumung. The labrum is mostly concealed by Verlumung, but
appears relatively broad and short (Figure 10D). The specimen has an approximate length
of 8.3 mm.
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Figure 10. Specimen 68 (PED 0662); Myanmar amber. (A) Dorsal view. (B) Ventral view, colour-
marked. (C) Ventral view. (D) Close-up of labrum in ventral view; arrow marks labrum. Ab-
breviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax;
mt = metathorax; pt = prothorax; sy = stylet.

(17) Specimen 69 (PED 0751) is preserved in Cretaceous Myanmar amber (Figure 11D–G).
The ventral side is accessible, but partly verlumt (Figure 11D,E). The labrum is trident-like
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with a larger spine-like protrusion in the middle and two smaller spine-like protrusions
next to the large spine (Figure 11F). Trumpet-shaped empodia at the end of the locomotory
appendages are visible (Figure 11G). Large parts of the abdomen and thorax are concealed
by a crack in the amber. The specimen has a measured length of approximately 5.0 mm,
but an estimated length between 9.2–10.5 mm.
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Figure 11. Specimens in Myanmar amber. (A–C) Specimen 70 (PED 0774). (A) Ventral view. (B) 
Ventral view, colour-marked. (C) Close-up of head capsule, ventral view. (D–G) Specimen 69 (PED Figure 11. Specimens in Myanmar amber. (A–C) Specimen 70 (PED 0774). (A) Ventral view.

(B) Ventral view, colour-marked. (C) Close-up of head capsule, ventral view. (D–G) Specimen
69 (PED 0751). (D) Ventral view. (E) Ventral view, colour-marked. (F) Close-up of labrum, ventral
view; arrows mark spine-like protrusions. (G) Close-up of first locomotory appendage; arrow marks
empodium. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; ms = mesothorax;
mt = metathorax; pt = prothorax; sy = stylet.

(18) Specimen 70 (PED 0774) is preserved in Cretaceous Myanmar amber (Figure 11A–C).
The ventral side is accessible, but is strongly concealed by dirt and Verlumung
(Figure 11A,B). The labrum is triangular in the dorsal view (Figure 11C). The antennae
bear prominent setae at the distal ends. A part of the abdomen appears to be missing. The
specimen has an estimated length of 2.5–2.7 mm.
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(19) Specimen 71 (PED 0845) is preserved in Cretaceous Myanmar amber (Figure 1A).
The dorsal and ventral sides are accessible, but are strongly concealed by dirt and Ver-
lumung. The head seems to be turned sideways or experienced a deformation. Due
to Verlumung, the shape of the labrum is not clearly discernible. The specimen has an
approximate length of 15.7 mm. This specimen was not included in the final analysis.

(20) Specimen 72 (PED 0932) is preserved in Cretaceous Myanmar amber. The dorsal
(Figure 12C) and ventral (Figure 12A,B) sides are accessible, but are partly concealed by
dirt and Verlumung. The labrum is trident-like with a large bifurcated middle spine-like
protrusion and two smaller spine-like protrusions next to the large spine (Figure 12D,E).
The eyes are visible from the lateral view. The antennae bear prominent setae at the distal
ends. The abdomen and thorax are mostly concealed. Trumpet-shaped empodia at the end of
the locomotory appendages are visible. The specimen has an estimated length of 5.4–5.9 mm.

Insects 2023, 14, x FOR PEER REVIEW 16 of 52 
 

 

 
Figure 12. Specimens in Myanmar amber. (A–E) Specimen 72 (PED 0932). (A) Ventral view. (B) 
Ventral view, colour-marked. (C) Dorsal view. (D) Close-up of head capsule in dorsal view; arrows 
mark spine-like protrusions. (E) Close-up of head capsule in dorsal view, colour-marked. (F–I) Spec-
imen 75 (PED 1459). (F) Ventral view. (G) Ventral view, colour-marked. (H) Dorsal view. (I) Close-
up of labrum; arrow marks labrum. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; 
lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; st = stemmata; sy = stylet. 

(21) Specimen 73 (PED 0998) is preserved in Cretaceous Myanmar amber (Figure 13). 
The dorsal (Figure 13A,B) and ventral (Figure 13C) sides are accessible, but are strongly 
concealed by dirt and Verlumung. The labrum is triangular with a shallow cleft distally. 
The abdomen appears slim and elongated. The specimen has an approximate length of 
10.5 mm. 

Figure 12. Specimens in Myanmar amber. (A–E) Specimen 72 (PED 0932). (A) Ventral view.
(B) Ventral view, colour-marked. (C) Dorsal view. (D) Close-up of head capsule in dorsal view;
arrows mark spine-like protrusions. (E) Close-up of head capsule in dorsal view, colour-marked.
(F–I) Specimen 75 (PED 1459). (F) Ventral view. (G) Ventral view, colour-marked. (H) Dorsal view.
(I) Close-up of labrum; arrow marks labrum. Abbreviations: ad = abdomen; at = antenna;
hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; st = stemmata;
sy = stylet.
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(21) Specimen 73 (PED 0998) is preserved in Cretaceous Myanmar amber (Figure 13).
The dorsal (Figure 13A,B) and ventral (Figure 13C) sides are accessible, but are strongly
concealed by dirt and Verlumung. The labrum is triangular with a shallow cleft distally.
The abdomen appears slim and elongated. The specimen has an approximate length
of 10.5 mm.
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Figure 13. Specimen 73 (PED 0998); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial 
palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet. 

(22) Specimen 74 (PED 1049) is preserved in Cretaceous Myanmar amber. The dorsal 
and ventral sides are accessible, but are partly concealed by dirt and Verlumung. Only the 
head, neck, and parts of the prothorax are present (Figure 14A,B). The labrum is trident-
like with a larger spine-like protrusion in the middle and two smaller spine-like protru-
sions next to the large spine. The specimen has an estimated length of 7.2–8.0 mm. 

Figure 13. Specimen 73 (PED 0998); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial
palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(22) Specimen 74 (PED 1049) is preserved in Cretaceous Myanmar amber. The dorsal
and ventral sides are accessible, but are partly concealed by dirt and Verlumung. Only the
head, neck, and parts of the prothorax are present (Figure 14A,B). The labrum is trident-like
with a larger spine-like protrusion in the middle and two smaller spine-like protrusions
next to the large spine. The specimen has an estimated length of 7.2–8.0 mm.

(23) Specimen 75 (PED 1459) is preserved in Cretaceous Myanmar amber (Figure 12F–I).
The dorsal (Figure 12H) and ventral (Figure 12F,G) sides are accessible. The labrum is
triangular in the dorsal view (Figure 12I). The antennae bear prominent setae at the distal
ends. The specimen has an approximate length of 2.0 mm.
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sule, ventral view. (D) Head capsule, ventral view, colour-marked. (E,F) Specimen 82 (PED 1831). 
(E) Head capsule, ventral view. (F) Head capsule, ventral view, colour-marked. Abbreviations: at = 
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(23) Specimen 75 (PED 1459) is preserved in Cretaceous Myanmar amber (Figure 
12F–I). The dorsal (Figure 12H) and ventral (Figure 12F,G) sides are accessible. The labrum 
is triangular in the dorsal view (Figure 12I). The antennae bear prominent setae at the 
distal ends. The specimen has an approximate length of 2.0 mm. 

(24) Specimen 76 (PED 1627) is preserved in Cretaceous Myanmar amber (Figure 15). 
The dorsal (Figure 15A,B) and ventral (Figure 15C) sides are accessible, but are strongly 
concealed by dirt and Verlumung. The labrum appears relatively broad, short, and pen-
tagonal in the dorsal view (Figure 15D,E). Trumpet-shaped empodia at the end of the lo-
comotory appendages are visible (Figure 15F). The specimen has an approximate length 
of 10.1 mm. 

Figure 14. Specimens in Myanmar amber. (A,B) Specimen 74 (PED 1049). (A) Head capsule, dorsal
view. (B) Head capsule, dorsal view, colour-marked. (C,D) Specimen 83 (PED 1846). (C) Head
capsule, ventral view. (D) Head capsule, ventral view, colour-marked. (E,F) Specimen 82 (PED
1831). (E) Head capsule, ventral view. (F) Head capsule, ventral view, colour-marked. Abbreviations:
at = antenna; hc = head capsule; lp = labial palp; pt = prothorax; sy = stylet.

(24) Specimen 76 (PED 1627) is preserved in Cretaceous Myanmar amber (Figure 15).
The dorsal (Figure 15A,B) and ventral (Figure 15C) sides are accessible, but are strongly con-
cealed by dirt and Verlumung. The labrum appears relatively broad, short, and pentagonal
in the dorsal view (Figure 15D,E). Trumpet-shaped empodia at the end of the locomotory
appendages are visible (Figure 15F). The specimen has an approximate length of 10.1 mm.

(25) Specimen 77 (PED 1666) is preserved in Cretaceous Myanmar amber (Figure 16).
The dorsal (Figure 16A,B) and ventral (Figure 16C) sides are accessible. The labrum is
triangular to pentagonal in the dorsal view. The antennae bear prominent setae at the distal
ends (Figure 16D). Trumpet-shaped empodia at the end of the locomotory appendages are
visible (Figure 16F). Some setae have a peculiar fan-like shape (Figure 16E). The specimen
has an approximate length of 1.9 mm.
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Figure 15. Specimen 76 (PED 1627); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of head capsule, dorsal view. (E) Close-up of labrum, dorsal 
view; arrow marks labrum. (F) Close-up of second locomotory appendage; arrow marks empodium. 
Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt 
= metathorax; pt = prothorax; sy = stylet. 

(25) Specimen 77 (PED 1666) is preserved in Cretaceous Myanmar amber (Figure 16). 
The dorsal (Figure 16A,B) and ventral (Figure 16C) sides are accessible. The labrum is 
triangular to pentagonal in the dorsal view. The antennae bear prominent setae at the 
distal ends (Figure 16D). Trumpet-shaped empodia at the end of the locomotory append-
ages are visible (Figure 16F). Some setae have a peculiar fan-like shape (Figure 16E). The 
specimen has an approximate length of 1.9 mm. 

Figure 15. Specimen 76 (PED 1627); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of head capsule, dorsal view. (E) Close-up of labrum, dorsal
view; arrow marks labrum. (F) Close-up of second locomotory appendage; arrow marks empodium.
Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax;
mt = metathorax; pt = prothorax; sy = stylet.
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Figure 16. Specimen 77 (PED 1666); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of antenna with distal seta; arrow marks seta. (E) Close-up 
of dolichasterine setae; arrows mark setae. (F) Close-up of second and third locomotory appendages; 
arrows mark empodia. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial 
palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet. 

(26) Specimen 78 (PED 1703) is preserved in Cretaceous Myanmar amber (Figure 17). 
The dorsal (Figure 17C) and ventral (Figure 17A,B) sides are accessible, but are strongly 
concealed by dirt and Verlumung. Half of one stylet is missing distally. The labrum ap-
pears pentagonal, but well rounded in the dorsal view (Figure 17D). Trumpet-shaped em-
podia at the end of the locomotory appendages are visible (Figure 17E). The specimen has 
an approximate length of 2.9 mm. 

Figure 16. Specimen 77 (PED 1666); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of antenna with distal seta; arrow marks seta. (E) Close-
up of dolichasterine setae; arrows mark setae. (F) Close-up of second and third locomotory ap-
pendages; arrows mark empodia. Abbreviations: ad = abdomen; at = antenna; hc = head capsule;
lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(26) Specimen 78 (PED 1703) is preserved in Cretaceous Myanmar amber (Figure 17).
The dorsal (Figure 17C) and ventral (Figure 17A,B) sides are accessible, but are strongly
concealed by dirt and Verlumung. Half of one stylet is missing distally. The labrum appears
pentagonal, but well rounded in the dorsal view (Figure 17D). Trumpet-shaped empodia
at the end of the locomotory appendages are visible (Figure 17E). The specimen has an
approximate length of 2.9 mm.
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Figure 17. Specimen 78 (PED 1703); Myanmar amber. (A) Ventral view. (B) Ventral view, colour-
marked. (C) Dorsal view. (D) Close-up of labrum in dorsal view; arrow marks labrum. (E) Close-up 
of locomotory appendages; arrows mark empodia. Abbreviations: ad = abdomen; at = antenna; hc = 
head capsule; lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet. 

(27) Specimen 79 (PED 1726) is preserved in Cretaceous Myanmar amber (Figure 18). 
The dorsal (Figure 18C) and ventral (Figure 18A,B) sides are accessible, but are partly con-
cealed by dirt and Verlumung. The labrum appears pentagonal in the dorsal view, and 
quite broad and short with a broad cleft distally (Figure 18D). The abdomen appears to be 
missing its distal end, which was presumably ground off. Trumpet-shaped empodia at 
the end of the locomotory appendages are visible (Figure 18E). The specimen has a meas-
ured length of approximately 7.6 mm, but an estimated length between 10.4–10.8 mm. 

Figure 17. Specimen 78 (PED 1703); Myanmar amber. (A) Ventral view. (B) Ventral view, colour-
marked. (C) Dorsal view. (D) Close-up of labrum in dorsal view; arrow marks labrum. (E) Close-up
of locomotory appendages; arrows mark empodia. Abbreviations: ad = abdomen; at = antenna;
hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(27) Specimen 79 (PED 1726) is preserved in Cretaceous Myanmar amber (Figure 18).
The dorsal (Figure 18C) and ventral (Figure 18A,B) sides are accessible, but are partly
concealed by dirt and Verlumung. The labrum appears pentagonal in the dorsal view, and
quite broad and short with a broad cleft distally (Figure 18D). The abdomen appears to be
missing its distal end, which was presumably ground off. Trumpet-shaped empodia at the
end of the locomotory appendages are visible (Figure 18E). The specimen has a measured
length of approximately 7.6 mm, but an estimated length between 10.4–10.8 mm.
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Figure 18. Specimen 79 (PED 1726); Myanmar amber. (A) Ventral view. (B) Ventral view, colour-
marked. (C) Dorsal view. (D) Close-up of labrum in ventral view; arrow marks a broad cleft in the 
labrum. (E) Close-up of second locomotory appendage; arrow marks empodium. Abbreviations: ad 
= abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax; pt 
= prothorax; sy = stylet. 

(28) Specimen 80 (PED 1732) is preserved in Cretaceous Myanmar amber (Figure 19). 
The dorsal (Figure 19A,B) and ventral (Figure 19C) sides are accessible. The stylets are 
partly concealed. The labrum is broad, pentagonal in the dorsal view, and bears small 
spine-like elevations at the corners (Figure 19D). No clear indications of an empodium are 
apparent (Figure 19E). The specimen has an approximate length of 7.7 mm. 

Figure 18. Specimen 79 (PED 1726); Myanmar amber. (A) Ventral view. (B) Ventral view, colour-
marked. (C) Dorsal view. (D) Close-up of labrum in ventral view; arrow marks a broad cleft in the
labrum. (E) Close-up of second locomotory appendage; arrow marks empodium. Abbreviations:
ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax;
pt = prothorax; sy = stylet.

(28) Specimen 80 (PED 1732) is preserved in Cretaceous Myanmar amber (Figure 19).
The dorsal (Figure 19A,B) and ventral (Figure 19C) sides are accessible. The stylets are
partly concealed. The labrum is broad, pentagonal in the dorsal view, and bears small
spine-like elevations at the corners (Figure 19D). No clear indications of an empodium are
apparent (Figure 19E). The specimen has an approximate length of 7.7 mm.
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Figure 19. Specimen 80 (PED 1732); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of labrum in dorsal view; arrow marks the labrum. (E) 
Close-up of third locomotory appendage; arrow marks distal end. Abbreviations: ad = abdomen; at 
= antenna; hc = head capsule; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet. 

(29) Specimen 81 (PED 1813) is preserved in Cretaceous Myanmar amber (Figure 20). 
The dorsal (Figure 20A,B) and ventral (Figure 20C) sides are accessible. The specimen ap-
pears to be the best preserved one among the new specimens. The labrum appears almost 
square-shaped in the dorsal view, with one bigger cleft in the middle distally and two 
flanking smaller clefts at the edges (Figure 20D). The antennae bear prominent setae at the 
distal ends. The thorax and abdomen are well-preserved and the subdivisions are easily 
recognisable. Trumpet-shaped empodia at the end of the locomotory appendages are vis-
ible (Figure 20E). The specimen has an approximate length of 3.5 mm. 

Figure 19. Specimen 80 (PED 1732); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of labrum in dorsal view; arrow marks the labrum.
(E) Close-up of third locomotory appendage; arrow marks distal end. Abbreviations: ad = abdomen;
at = antenna; hc = head capsule; ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(29) Specimen 81 (PED 1813) is preserved in Cretaceous Myanmar amber (Figure 20).
The dorsal (Figure 20A,B) and ventral (Figure 20C) sides are accessible. The specimen
appears to be the best preserved one among the new specimens. The labrum appears
almost square-shaped in the dorsal view, with one bigger cleft in the middle distally and
two flanking smaller clefts at the edges (Figure 20D). The antennae bear prominent setae
at the distal ends. The thorax and abdomen are well-preserved and the subdivisions are
easily recognisable. Trumpet-shaped empodia at the end of the locomotory appendages are
visible (Figure 20E). The specimen has an approximate length of 3.5 mm.



Insects 2023, 14, 170 23 of 49Insects 2023, 14, x FOR PEER REVIEW 24 of 52 
 

 

 
Figure 20. Specimen 81 (PED 1813); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of labrum in dorsal view; arrow marks middle cleft of the 
labrum. (E) Close-up of third locomotory appendage; arrow marks empodium. Abbreviations: ad = 
abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax; pt = 
prothorax; sy = stylet; te = trunk end. 

(30) Specimen 82 (PED 1831) is preserved in Cretaceous Myanmar amber (Figure 
14E,F). The ventral side is accessible. Only the head, neck, and parts of the prothorax are 
present. A small lateral part of the head capsule is missing. The labrum is triangular in the 
dorsal view. The specimen has an estimated length of 3.0–3.5 mm. 

(31) Specimen 83 (PED 1846) is preserved in Cretaceous Myanmar amber (Figure 
14C,D). The ventral side is accessible. Only the head, neck, and parts of the prothorax are 
present. The labrum appears almost square-shaped in the dorsal view, with one bigger 
cleft in the middle distally and two flanking smaller clefts at the edges. The antennae bear 
prominent setae at the distal ends. The specimen has an estimated length of 3.9–4.3 mm. 

(32) Specimen 84 (PED 1884) is preserved in Cretaceous Myanmar amber (Figure 
8C,D). The dorsal side is accessible, but is partly concealed by dirt and Verlumung. The 
labrum is trident-like with a large bifurcated middle spine-like protrusion and two 
smaller spine-like protrusions next to the large spine. The specimen has an approximate 
length of 3.4 mm. 

Figure 20. Specimen 81 (PED 1813); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of labrum in dorsal view; arrow marks middle cleft of
the labrum. (E) Close-up of third locomotory appendage; arrow marks empodium. Abbreviations:
ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax;
pt = prothorax; sy = stylet; te = trunk end.

(30) Specimen 82 (PED 1831) is preserved in Cretaceous Myanmar amber (Figure 14E,F).
The ventral side is accessible. Only the head, neck, and parts of the prothorax are present.
A small lateral part of the head capsule is missing. The labrum is triangular in the dorsal
view. The specimen has an estimated length of 3.0–3.5 mm.

(31) Specimen 83 (PED 1846) is preserved in Cretaceous Myanmar amber (Figure 14C,D).
The ventral side is accessible. Only the head, neck, and parts of the prothorax are present.
The labrum appears almost square-shaped in the dorsal view, with one bigger cleft in the
middle distally and two flanking smaller clefts at the edges. The antennae bear prominent
setae at the distal ends. The specimen has an estimated length of 3.9–4.3 mm.

(32) Specimen 84 (PED 1884) is preserved in Cretaceous Myanmar amber (Figure 8C,D).
The dorsal side is accessible, but is partly concealed by dirt and Verlumung. The labrum is
trident-like with a large bifurcated middle spine-like protrusion and two smaller spine-like
protrusions next to the large spine. The specimen has an approximate length of 3.4 mm.
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(33) Specimen 85 (PED 1887) is preserved in Cretaceous Myanmar amber (Figure 21A–C).
The ventral side is accessible, but is partly concealed by dirt and Verlumung (Figure 21A,B).
One stylet is missing about one half distally. The labrum is broad, pentagonal in the dorsal
view, and bears small spine-like elevations at the corners (Figure 21C). The antennae bear
prominent setae at the distal ends (Figure 21C). The head capsule is separated from the
body, with the whole neck region and parts of the adjacent head capsule missing. The body
is missing the majority of the thorax and abdomen. Trumpet-shaped empodia at the end of
the locomotory appendages are visible. The specimen has an estimated length of 4.5 mm.
This specimen was not included in the final analysis.
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(34) Specimen 86 (PED 1928) is preserved in Cretaceous Myanmar amber (Figure 22). 
The dorsal (Figure 22B,C) and ventral (Figure 22A) sides are accessible, but are partly con-
cealed by dirt and Verlumung. The antennae bear prominent setae at the distal ends. The 
labrum is trident-like with a large bifurcated middle spine-like protrusion and two 
smaller spine-like protrusions next to the large spine (Figure 22D). The abdomen appears 

Figure 21. Specimens in Myanmar amber. (A–C) Specimen 85 (PED 1887). (A) Ventral view.
(B) Ventral view, colour-marked. (C) Close-up of labrum in ventral view. (D–G) Specimen 87
(PED 1940). (D) Dorsal view. (E) Dorsal view, colour-marked. (F) Close-up of head; arrow
marks labrum. (G) Close-up of head, colour-marked. Abbreviations: ad = abdomen; at = antenna;
hc = head capsule; lp = labial palp; mt = metathorax; pt = prothorax; sy = stylet.

(34) Specimen 86 (PED 1928) is preserved in Cretaceous Myanmar amber (Figure 22).
The dorsal (Figure 22B,C) and ventral (Figure 22A) sides are accessible, but are partly
concealed by dirt and Verlumung. The antennae bear prominent setae at the distal ends. The
labrum is trident-like with a large bifurcated middle spine-like protrusion and two smaller
spine-like protrusions next to the large spine (Figure 22D). The abdomen appears to be
missing its distal end. Trumpet-shaped empodia at the end of the locomotory appendages
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are visible. The specimen has a measured length of approximately 4.0 mm, but an estimated
length between 5.6–6.8 mm.
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(35) Specimen 87 (PED 1940) is preserved in Cretaceous Myanmar amber (Figure 
21D–G). The dorsal side is accessible, but is partly concealed by dirt and Verlumung (Fig-
ure 21D,E). The labrum is triangular in the dorsal view (Figure 21F,G). The antennae bear 
prominent setae at the distal ends. Parts of the abdomen seem to be concealed or missing. 
The specimen has a measured length of approximately 1.3 mm, but an estimated length 
between 2.3–2.8 mm. 

(36) Specimen 88 (PED 1967) is preserved in Cretaceous Myanmar amber (Figure 23). 
The dorsal (Figure 23A,B) and ventral (Figure 23C) sides are accessible, but are largely 

Figure 22. Specimen 86 (PED 1928); Myanmar amber. (A) Ventral view. (B) Dorsal view, colour-
marked. (C) Dorsal view. (D) Close-up of labrum in dorsal view; arrows mark spine-like protru-
sions. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; sy = stylet;
th = thorax.

(35) Specimen 87 (PED 1940) is preserved in Cretaceous Myanmar amber (Figure 21D–G).
The dorsal side is accessible, but is partly concealed by dirt and Verlumung (Figure 21D,E).
The labrum is triangular in the dorsal view (Figure 21F,G). The antennae bear prominent
setae at the distal ends. Parts of the abdomen seem to be concealed or missing. The
specimen has a measured length of approximately 1.3 mm, but an estimated length between
2.3–2.8 mm.

(36) Specimen 88 (PED 1967) is preserved in Cretaceous Myanmar amber (Figure 23).
The dorsal (Figure 23A,B) and ventral (Figure 23C) sides are accessible, but are largely
concealed by dirt and Verlumung. The labrum is trident-like with a larger spine-like
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protrusion in the middle and two smaller spine-like protrusions next to the large spine
(Figure 23D). The specimen has an approximate length of 11.9 mm.

Insects 2023, 14, x FOR PEER REVIEW 27 of 52 
 

 

concealed by dirt and Verlumung. The labrum is trident-like with a larger spine-like pro-
trusion in the middle and two smaller spine-like protrusions next to the large spine (Fig-
ure 23D). The specimen has an approximate length of 11.9 mm. 

 
Figure 23. Specimen 88 (PED 1967); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of head capsule in ventral view; arrows mark spine-like 
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(37) Specimen 89 (PED 2056) is preserved in Cretaceous amber from Myanmar (Fig-
ure 24). The specimen is well accessible in the dorsal view (Figure 24A,B), but is partly 
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posterior trunk is missing. The specimen has an approximate length of 4.1 mm. 

Figure 23. Specimen 88 (PED 1967); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of head capsule in ventral view; arrows mark spine-
like protrusions of the labrum. Abbreviations: ad = abdomen; at = antenna; hc = head capsule;
ms = mesothorax; mt = metathorax; pt = prothorax; sy = stylet.

(37) Specimen 89 (PED 2056) is preserved in Cretaceous amber from Myanmar
(Figure 24). The specimen is well accessible in the dorsal view (Figure 24A,B), but is
partly concealed by dirt in the ventral view (Figure 24C). The labrum is prominent, be-
ing triangular symmetric to trapezium-like in the dorsal view and relatively elongated.
Trumpet-shaped empodia at the end of the locomotory appendages are visible (Figure 24D).
The posterior trunk is missing. The specimen has an approximate length of 4.1 mm.
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marked. (C) Ventral view. (D) Close-up of locomotory appendages; arrows mark empodia. Abbre-
viations: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; sy = stylet; th = thorax. 

(38) Specimen 90 (PED 2171) is preserved in Cretaceous amber from Myanmar (Fig-
ure 25). The specimen is largely concealed by dirt and Verlumung in the ventral (Figure 
25A,B) and dorsal views (Figure 25C). The labrum is prominent, being triangular sym-
metric to trapezium-like and relatively elongated. Each distal end of the walking append-
ages bears a trumpet-shaped empodium (Figure 25D). The specimen has an approximate 
length of 2.6 mm. 

Figure 24. Specimen 89 (PED 2056); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. (D) Close-up of locomotory appendages; arrows mark empodia.
Abbreviations: ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; sy = stylet;
th = thorax.

(38) Specimen 90 (PED 2171) is preserved in Cretaceous amber from Myanmar
(Figure 25). The specimen is largely concealed by dirt and Verlumung in the ventral
(Figure 25A,B) and dorsal views (Figure 25C). The labrum is prominent, being triangular
symmetric to trapezium-like and relatively elongated. Each distal end of the walking
appendages bears a trumpet-shaped empodium (Figure 25D). The specimen has an approx-
imate length of 2.6 mm.
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(39) Specimen 91 (PED 2309) is preserved in Cretaceous amber from Myanmar (Fig-
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Figure 25. Specimen 90 (PED 2171); Myanmar amber. (A,B) Ventral view under different illumina-
tions. (C) Dorsal view. (D) Close-up of locomotory appendages; arrow marks empodium.

(39) Specimen 91 (PED 2309) is preserved in Cretaceous amber from Myanmar
(Figure 26). The specimen is well accessible in the ventral (Figure 26A,B) and dorsal
views (Figure 26C), but is partly concealed by Verlumung and dirt particles in the dorsal
and ventral views. The labrum is prominent, being triangular symmetric to trapezium-
like and relatively elongated (Figure 26D). The antennae bear prominent setae distally
(Figure 26E). Each distal end of the walking appendages bears a trumpet-shaped em-
podium (Figure 26F). The specimen has an approximate length of 2.2 mm.
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Figure 26. Specimen 91 (PED 2309); Myanmar amber. (A) Ventral view. (B) Ventral view, colour-
marked. (C) Dorsal view. (D) Close-up of labrum; arrow marks labrum. (E) Close-up of antenna. (F) 
Close-up of third locomotory appendage; arrow marks empodium. Abbreviations: ad = abdomen; 
at = antenna; hc = head capsule; lp = labial palp; sy = stylet; th = thorax. 

(40) Specimen 92 (PED 2311) is preserved in Cretaceous amber from Myanmar (Fig-
ure 27). The specimen is well accessible in the dorsal (Figure 27A,B) and ventral views 
(Figure 27C), but is partly concealed by Verlumung and dirt particles in the dorsal and 
ventral views. The labrum is prominent, being triangular symmetric to trapezium-like and 
very elongated. The specimen has an approximate length of 1.3 mm. 

Figure 26. Specimen 91 (PED 2309); Myanmar amber. (A) Ventral view. (B) Ventral view, colour-
marked. (C) Dorsal view. (D) Close-up of labrum; arrow marks labrum. (E) Close-up of antenna.
(F) Close-up of third locomotory appendage; arrow marks empodium. Abbreviations: ad = abdomen;
at = antenna; hc = head capsule; lp = labial palp; sy = stylet; th = thorax.

(40) Specimen 92 (PED 2311) is preserved in Cretaceous amber from Myanmar
(Figure 27). The specimen is well accessible in the dorsal (Figure 27A,B) and ventral
views (Figure 27C), but is partly concealed by Verlumung and dirt particles in the dorsal
and ventral views. The labrum is prominent, being triangular symmetric to trapezium-like
and very elongated. The specimen has an approximate length of 1.3 mm.
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Figure 27. Specimen 92 (PED 2311); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; sy = stylet; 
th = thorax. 

(41) Specimen 93 (PED 2329) is preserved in Cretaceous amber from Myanmar (Fig-
ure 28B). The trunk is missing completely, with only the head preserved. The head is well 
accessible in the dorsal view. The labrum is prominent, pentagonal, and relatively broad. 
The specimen has an approximate length of 1.8 mm. 

Figure 27. Specimen 92 (PED 2311); Myanmar amber. (A) Dorsal view. (B) Dorsal view, colour-
marked. (C) Ventral view. Abbreviations: ad = abdomen; at = antenna; hc = head capsule; sy = stylet;
th = thorax.

(41) Specimen 93 (PED 2329) is preserved in Cretaceous amber from Myanmar
(Figure 28B). The trunk is missing completely, with only the head preserved. The head is
well accessible in the dorsal view. The labrum is prominent, pentagonal, and relatively
broad. The specimen has an approximate length of 1.8 mm.

(42) Specimen 94 (PED 2446) is preserved in Cretaceous amber from Myanmar
(Figure 28A). The trunk is missing completely, with only the head preserved. The head
is well accessible in the dorsal view. The labrum is prominent, triangular, and relatively
elongated. The antennae bear prominent setae distally. The specimen has an approximate
length of 2 mm.

(43) Specimen 95 (PED 2448) is preserved in Cretaceous amber from Myanmar
(Figure 28C). The specimen is largely concealed by dirt particles in the dorsal and ventral
views, with only the rough outline apparent. The specimen has an approximate size of
5 mm. This specimen was not included in the final analysis.

(44) Specimen 96 (PED 2432) is preserved in Cretaceous amber from Myanmar
(Figure 29). The specimen is well accessible in the ventral (Figure 29A,B) and dorsal
views (Figure 29C), but is partly concealed by Verlumung and dirt particles in the dorsal
and ventral views. The labrum is prominent and simple triangular to pentagonal. The
specimen has an approximate length of 8.5 mm.
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Figure 29. Specimen 96 (PED 2432); Myanmar amber. (A) Ventral view. (B) Ventral view, colour-
marked. (C) Dorsal view. (D) Close-up of labrum; arrow marks labrum. Abbreviations: ad = abdo-
men; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax; pt = pro-
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(45) Specimen 97 is preserved in Baltic amber. It was configured by Ross [104] (his 
Figure 150, p. 87). Although the original photograph is relatively small and a large bubble 
conceals parts of the body, some general aspects can be well recognised (Figure 30A). The 
specimen was overlooked by Haug et al. [18]. The length was approximately 3 mm. The 
repository was not stated, but a similar-appearing specimen in an image repository was 
stated to show a specimen from the Natural History Museum, London. 

(46) Specimen 98 is preserved in Baltic amber. The specimen was not directly inves-
tigated, but high-quality images (Figure 30B) were provided by Marius Veta (www.am-
bertreasure4u.com, accessed on 23 December 2022). 

Figure 29. Specimen 96 (PED 2432); Myanmar amber. (A) Ventral view. (B) Ventral view,
colour-marked. (C) Dorsal view. (D) Close-up of labrum; arrow marks labrum. Abbreviations:
ad = abdomen; at = antenna; hc = head capsule; lp = labial palp; ms = mesothorax; mt = metathorax;
pt = prothorax; sy = stylet.
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(45) Specimen 97 is preserved in Baltic amber. It was configured by Ross [104] (his
Figure 150, p. 87). Although the original photograph is relatively small and a large bubble
conceals parts of the body, some general aspects can be well recognised (Figure 30A). The
specimen was overlooked by Haug et al. [18]. The length was approximately 3 mm. The
repository was not stated, but a similar-appearing specimen in an image repository was
stated to show a specimen from the Natural History Museum, London.
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Figure 30. Specimens in Baltic amber; not to scale. (A) Specimen 97, modified after Ross [104].
(B) Specimen 98, provided by Marius Veta (www.ambertreasure4u.com, accessed on 23 December 2022).

(46) Specimen 98 is preserved in Baltic amber. The specimen was not directly in-
vestigated, but high-quality images (Figure 30B) were provided by Marius Veta (www.
ambertreasure4u.com, accessed on 23 December 2022).

3.2. Shape Analysis

The results of the shape analyses are provided in Supplementary Materials File S2.
Head and stylets: The shape analysis of the head capsule with stylets resulted in six

effective principal components (PCs), summarizing 94.2% of the overall References in the
form of [XX] are not permitted in the images. Please move it to the figure caption. If
necessary, please use the format of “Author+Year” instead in the images, and all mentioned
references should be cited in the caption.of the dataset.

PC1 explains 52.5% of the overall variation. PC1 is dominated by the shape of the
head and the mandibles. It describes very slender to very broad head shapes, with broad
and long-to-narrow and short mandibles. Low values indicate a slender head with distally
tapering mandibles, while high values indicate a broad head with mandibles that are in the
distal region as broad as in the proximal region.

PC2 explains 24.8% of the overall variation. PC2 is dominated by the shape of the
mandibles and the length of the head capsule, also focusing on the length of the labrum.
Low values indicate a long head and labrum with relatively straight mandibles, while high
values indicate a small head and small labrum with strongly curved mandible tips.

PC3 explains 7.5% of the overall variation. It is dominated by the length of the labrum.
It describes a tapering-to-flattened labrum, yet the shape of the mandibles also influences
this PC. Low values indicate an elongated tapering labrum with strongly curved mandible
tips, while high values indicate a flattened, round labrum with straight mandible tips.

PC4 explains 3.9% of the overall variation. It is dominated by the length of the labrum.
It describes long-to-short labra, yet the shape of the mandibles also seems to influence this
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PC. Low values indicate a long tapering labrum with mandibles that are in the distal region
as broad as in the proximal region, while high values indicate a short tapering labrum with
mandibles that are broad in the proximal region and tapering in the distal region.

PC5 explains 3.0% of the overall variation. It is dominated by the shape of the labrum
and the shape of the mandibles. Low values indicate a short tapering labrum and mandibles
that are broad in the proximal region and tapering in the distal region, while high values
indicate a broad curved labrum with mandibles that are in the distal region as broad as in
the proximal region.

PC6 explains 2.5% of the overall variation. It is dominated by the shape of the labrum,
the mandibles, and the posterior head capsule. It describes a concave posterior rim and a
tapering labrum with tapering mandibles to a convex posterior rim and a broad labrum
with mandibles that are in the distal region as broad as in the proximal region.

Head capsule: The shape analysis of the head capsule resulted in eight effective principal
components, summarizing 93.8% of the overall variation in the dataset.

PC1 explains 45.1% of the overall variation. PC1 is dominated by the shape of the
head, especially focusing on the posterior rim. It describes a convex-to-concave posterior
rim, yet the shape of the labrum also influences this PC. Low values indicate a convex
posterior edge of the head with a tapering labrum, while high values indicate a concave
posterior rim with a rounded labrum.

PC2 explains 18.6% of the overall variation. It is dominated by the shape of the
head and describes rectangular-to-trapezium-like head capsules. Low values indicate a
rectangular head with a round posterior and anterior rim, while high values indicate a
round head with a tapered posterior and anterior rim.

PC3 explains 9.6% of the overall variation. It is dominated by the shape of the posterior
rim and the length of the labrum. Low values indicate a posterior rim with an elongated
labrum, while high values indicate a rectangular head with a short tapering labrum.

PC4 explains 7.5% of the overall variation. It is dominated by the shape of the posterior
rim and the length of the labrum. Low values indicate a concave posterior rim with an
elongated labrum, while high values indicate a round posterior rim with a short labrum.

PC5 explains 4.0% of the overall variation. It is dominated by the shape of the head
capsule, yet the length of the labrum also seems to influence this PC. Low values indicate a
trapezium-like head with a short labrum, while high values indicate a rectangular head
with an elongated labrum.

PC6 explains 3.2% of the overall variation. It is dominated by the width of the head.
It describes the lateral anterior rim of the head, yet the shape of the labrum also seems to
influence this PC. Low values indicate a wide lateral anterior rim with a tapering labrum,
while high values indicate a somewhat rectangular head with a broad labrum.

PC7 explains 2.7% of the overall variation. It is dominated by the shape of the labrum.
Low values indicate an elongated tapering labrum, while high values indicate a wide-
rounded labrum.

PC8 explains 2.2% of the overall variation. It is dominated by the shape of the anterior
rim of the head. Low values indicate a tapering median anterior rim, while high values
indicate a rectangular anterior rim.

Stylets: The shape analysis of the stylets resulted in four effective principal components,
summarizing 96.5% of the overall variation in the dataset.

PC1 explains 79.6% of the overall variation. It is dominated by the curving of
the mandibles. Low values indicate straight mandibles, while high values indicate
rounded mandibles.

PC2 explains 10.9% of the overall variation. It is dominated by the curving of the
mandibles and describes the curving of the anterior rim. Low values indicate curved
mandibles with a rounded anterior rim, while high values indicate curved mandibles with
a straight anterior rim.
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PC3 explains 4.1% of the overall variation. It is dominated by the shape of the
mandible tips. Low values indicate straight mandible tips, while high values indicate
curved mandible tips.

PC4 explains 2.0% of the overall variation. It appears to be dominated by similar
phenomena as PC3. Low values indicate curved mandible tips, while high values indicate
straight mandible tips.

Body outline with stylets: The shape analysis of the entire body outline with stylets
resulted in six effective principal components, summarizing 92.3% of the overall variation
in the dataset.

PC1 explains 73.7% of the overall variation. It is dominated by the length of the
mandibles in correlation with the length of the posterior rim of the body. Low values
indicate long mandibles with a short sloping posterior rim, while high values indicate short
mandibles with a long elongated posterior rim.

PC2 explains 14.4% of the overall variation. It is dominated by the length of the
mandibles, yet the shape of the anterior rim also seems to influence this PC. Low values
indicate long stout mandibles and a slightly curved anterior rim of the body, while high
values indicate straight narrow mandibles and a straight anterior rim of the body.

PC3 explains 9.4% of the overall variation. It is dominated by the shape of the
mandibles and describes narrow-to-broad mandibles. Low values indicate shortened
narrow mandibles that are in the distal region as broad as in the proximal region, while
high values indicate mandibles that are broad in the proximal region and tapering in the
distal region.

PC4 explains 4.8% of the overall variation. It appears to be dominated by similar
phenomena as PC3. Low values indicate curved mandibles, while high values indicate
shorter straight mandibles.

PC5 explains 2.8% of the overall variation. It is dominated by the length of the labrum
in correlation with the length of the mandibles. Low values indicate an elongated tapering
labrum with elongated curved mandibles, while high values indicate a shorter round
labrum with shorter mandibles.

PC6 explains 1.8% of the overall variation. It is dominated by the shape of the labrum.
Low values indicate a rectangular labrum, while high values indicate a round labrum.

Body outline without stylets: The shape analysis of the entire body without stylets
resulted in eight effective principal components, summarizing 92.9% of the overall variation
in the dataset.

PC1 explains 39.5% of the overall variation. It is dominated by the shape of the thorax.
Low values indicate a relatively concave thorax with a fluent transition between thorax
and posterior trunk, while high values indicate a relatively convex thorax with a clear
distinction from the posterior trunk.

PC2 explains 18.7% of the overall variation. It is dominated by the position of the
narrowest part of the body, yet the length of the labrum also seems to influence this PC. Low
values indicate a further anteriorly located narrowest part of the body and an elongated
tapering labrum, while high values indicate a further posteriorly located narrowest part of
the body and a shortened round labrum.

PC3 explains 12.3% of the overall variation. It is dominated by the shape of the head.
Low values indicate a rectangular shape of the head, while high values indicate a tapering
rim of the head.

PC4 explains 7.8% of the overall variation. It appears to be dominated by similar
phenomena as PC3. Low values indicate a rectangular head, while high values indicate a
round tapering head.

PC5 explains 5.3% of the overall variation. It is dominated by the shape of the
labrum and describes round-to-tapering labra. Low values indicate a convex anterior
rim with a round wide labrum, while high values indicate a concave anterior rim with a
tapering labrum.
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PC6 explains 4.3% of the overall variation. It is dominated by the position of the
narrowest part of the body. Low values indicate a further anteriorly located narrowest
part of the body, while high values indicate a further posteriorly located narrowest part of
the body.

PC7 explains 3.1% of the overall variation. It is dominated by the position of the
narrowest part of the body and the shape of the labrum. Low values indicate a further
anteriorly located narrowest part of the body with a tapering labrum, while high val-
ues indicate a further posteriorly located narrowest part of the body with a shortened
round labrum.

PC8 explains 2.0% of the overall variation. It seems to be dominated by the width
of the head. Low values indicate a head as wide in the anterior region as in the posterior
region, while high values indicate a head that is wide in the anterior region and narrow in
the posterior region.

4. Discussion
4.1. General Observation: Loss of Diversity

This study of long-nosed antlions has expanded the analysis performed by
Haug et al. [18], which had already found a decrease, or loss, of morphological diver-
sity from the Cretaceous to the modern fauna. As we have only added new fossil forms, it
is not surprising that this picture did not change. Still, we can recognise some differences
to the earlier study. Moreover, more specimens may offer access to small details, such as
the small fan-like setae observed in one of the specimens.

4.2. Head and Stylet Shape

Although the original study concentrated on head capsule shape [18], most follow-up
studies on larvae of other lineages of Neuroptera have used the head capsule together with
the stylets [17,19–21,24–26,112]. This analysis (Figure 31) is also most comparable in its
results to the earlier study. The morphospace occupation is the largest in the Cretaceous, is
smaller in the Eocene, and even smaller in the modern fauna.

Yet, the relative sizes are different from the earlier study, being even larger in the
Cretaceous. This should not be surprising, as many types of larvae that can be recognised
on a qualitative level among the Cretaceous larvae are absent in the Eocene and modern
fauna. Among these are many of the larvae with a trident-like labrum. Basically, the left
half of the morphospace is occupied by trident-bearing larvae (Figure 31). Among these
are also larvae with new morphologies: one with the middle spine of the trident being
bifurcated but longer than in the already known larvae (specimen 84; Figure 8C) and one
with more spines, i.e., five (specimen 56; Figure 3).

Moreover, other areas of the morphospace represent morphologies not seen in the
modern fauna but now recognised by new specimens (Figure 31). In the upper right area
of the morphospace, there are larvae with very broad labra (e.g., specimen 79; Figure 18).
In the lower right of the morphospace, larvae plot which have relatively long labra in
comparison to the rest of the head capsule, but are otherwise not special in their shape (e.g.,
specimen 94; Figure 28A).

The influence of the new Cretaceous larvae is also seen when comparing the occupation
of the morphospace of the larvae used in Haug et al. [18] and that of all of the Cretaceous
larvae (Figure 32). It shows that the new specimens significantly increase the morphospace
occupation. This implies that there is still no saturation effect, i.e., adding new specimens
still increases the morphospace by adding new types of morphologies.
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4.3. Stylet Shape

The stylet of long-nosed antlions is character-poor in comparison to other larvae of
the group Myrmeleontiformia. In many other larvae, there are teeth that can vary in size,
number, and position, but such teeth seem to have been secondarily lost in long-nosed
antlions [113,114].

The main aspect that seems to vary within the stylet shape in long-nosed antlions is
the curvature. In many fossils, the stylets seem stronger curved than in the modern larvae
(Figure 33). A factor that seems to have not been strongly picked up by the shape analysis
is the slenderness (or thickness) of the stylets. It appears that the trident-bearing larvae
have slenderer stylets (Figure 31), but also vary strongly in curvature.
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Similar to the plot of head and stylets, the Cretaceous larvae occupy the largest area of
the morphospace, and this largely includes those of other groups. An important difference
to plotting head together with stylets is that the occupation of the morphospace of the
modern larvae is larger than that of the Eocene larvae. Yet, some Eocene larvae plot outside
the range of the modern larvae, emphasising again that the Eocene fauna also differs from
the modern fauna concerning insect larvae [115].
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4.4. Head Capsule Shape

Also in the head capsule shape, the Cretaceous larvae occupy the largest area, largely
including the area of other groups (Figure 34). Similar to the stylets, the modern larvae
occupy a larger area than the Eocene larvae. This is different to the earlier study by
Haug et al. [18]. It is even more surprising as two new larvae from the Eocene were added
to the dataset. It seems most likely that this difference to the earlier study is caused by the
new Cretaceous larvae, as they have polarised the morphospace in a different way.
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Another aspect to mention in this aspect is that, unlike in the stylets, the area occupied
by Eocene larvae is entirely inside the area of the modern larvae. The fact that the combined
analysis (of head and stylets) provides a different view than the two separate analyses for
Eocene and modern larvae indicates that a major difference in the Eocene larvae is the
relative size of the stylets in relation to the head capsule.

4.5. Body Shape including Stylets

This dataset is smaller than those of the anterior body structures. Still, some important
observations are provided. The general pattern with the Cretaceous larvae occupying
the largest area is also found here (Figure 35). Yet, the size difference to the area of the
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modern larvae is much smaller. Moreover, the modern larvae (and some Eocene larvae)
occupy areas where no Cretaceous larvae plot. This indicates that not only were certain
body shapes lost, but also new ones evolved that were not yet present in the Cretaceous. It
has been previously noted that modern myrmeleontiformian larvae often appear broader,
while many Cretaceous larvae appear overall slenderer [114]. In other groups of lacewings,
more extreme trunk shapes were already present in the Cretaceous [116].
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The morphologies lost seem not only to be slenderer; in addition, the shapes have
relatively larger heads and also longer stylets. This phenomenon of more elongated
structures in the Cretaceous has been noted in other lacewing lineages [117–121].

4.6. Body Shape without Stylets

As we have noted regards the difference in stylets in the Cretaceous larvae, it should
not be surprising that when considering the body outline without the stylets, the over-
all picture changes. Now, the largest occupied area is represented by the modern fauna
(Figure 36). Still, the very slender bodies of some Cretaceous larvae are not represented
in the modern fauna. One might argue that only three larvae plotting outside the mod-
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ern morphospace may be insignificant. Yet, qualitative observations have also already
hinted to the fact that myrmeleontiformian larvae had slenderer appearances in the
Cretaceous [90,113,114,118]. In the light of this background, it seems likely that the differ-
ence in fossils is indeed true signal. The function of the slenderer trunk remains unclear.
Yet, we need to assume that the broader trunk evolved independently several times within
the modern myrmeleontiformian lineages (see discussion in [114]).
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The fact that the stylets seem to play a major role in the variability in the Cretaceous
larvae emphasises that the loss of morphology is likely coupled to a loss of ecological
roles (see discussion in [114,119]). The differences in body shape, and the shift thereof,
furthermore indicate not only a loss, but a change in ecological roles. A comparable
observation was made for long-necked antlions (larvae of Crocinae [19]).

4.7. The Cretaceous Fauna and Its Peculiarities

As has been indicated, at a certain point, we should expect a kind of saturation effect
when adding new specimens. At this point, new specimens should strongly resemble
already-known ones. However, this is not yet the case.
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The Cretaceous fauna seems to have a high morphological diversity due to the co-
occurrence of old retained morphologies, existing very modern appearing morphologies,
and aberrant experimental morphologies not known before or afterwards. Along lacewing
larvae in the Cretaceous, indeed, many larvae already show very modern appearing
morphologies, including indications of very modern types of behaviour [113,116,122–124].
Moreover, numerous highly aberrant forms are known [23,112,113,117–121,125–128].

Among the aberrant, now extinct forms, there are especially animals with unusual
labra. Presumably, the different labrum shape also means differences in details of the
feeding ecology. Moreover, the new observed morphotypes can be mostly recognised based
on different labrum shapes. Unfortunately, it is still unknown how the labrum is involved
in feeding for modern long-nosed antlions. In other raptorial larvae, for example, in beetles,
it has been demonstrated that the shape of the labrum (and mandibles) can be directly
coupled to a specialised feeding strategy (e.g., [129]). We can therefore only assume that
most differences of the here-described fossil larvae and their modern counterparts are
indeed related to differences in feeding strategies, but details remain unclear.

It is noteworthy that among lacewings, aberrant-appearing larvae seem to be relatively
common. Among the larvae of megalopterans, the few known Cretaceous forms do not
differ strongly from their modern counterparts [130]. Many beetle larvae either already
appear very similar to modern larvae [131–144] or retain plesiomorphic features [134,145].
The same seems to be true for flies [146,147]; strongly aberrant experimental forms seem
largely absent. Caterpillars are still very rare and do not seem to be as diversified as their
modern counterparts, and without outstanding morphologies [141,148–153].

Besides lacewing larvae, among holometabolan larvae, only snakefly larvae (hence,
larvae of Raphidioptera, closely related to Neuroptera) show certain peculiarities in the
Cretaceous [154–156]. While we do not yet have quantitative data for all of these groups,
it appears that the group Neuropterida, including Neuroptera, Raphidioptera, and also
Megaloptera [157–159], had many morphologies resulting from their earlier radiations still
present in the Cretaceous, but which are now extinct. This assumption is consistent with
the idea that neuropteridans were part of the early radiation of Holometabola and fulfilled
ecological functions nowadays performed by representatives of other groups.

4.8. Growth and Morphotypes

Among other lacewing larvae, parts of the ontogenetic sequences could be recognised,
providing at least first hints for recognising morphotypes or even species. So far, this has
not been possible for long-nosed antlions. Haug et al. [18] speculated that larvae with
bifurcated labra could always represent earlier stages. As many of these are trident-bearing
larvae (Figure 37A), they should hence be smaller stages of trident-bearing larvae without
a bifurcation in the middle spine (Figure 37B). Indeed, specimens with bifurcated labra
are on average smaller, yet both groups show considerable variation in size, indicating
that each morphotype seems to be represented by several different stages. Furthermore,
there is a single specimen of the trident-bearing type possessing additional spines (in fact,
a pentadent-bearing type), probably representing yet another morphotype closer related to
the trident-bearing types (Figure 37D). So far, only a single species of a larva with a trident-
type labrum could be formally recognised (Acanthopsychops triaina [113]). Yet, the large
variability of the morphology clearly indicates that several species are likely represented
among these larvae. Furthermore, the larvae with very broad labra (Figure 37C) likely
represent not just several different stages but also several morphotypes, which again likely
represent different species.
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Despite the additional material, no clear ontogenetic sequences can be recognised. The
main challenge in this case is that on the extant side, very little is known about the larval
sequences, usually only via single-specimen reports [28,47,94,160–164], with the work of
Tillyard [165] being the sole exception. Hence, besides more fossil material, for improving
the situation, more extant specimens are required. So far, visits to collections (in Europe
and Australia) have not yet provided additional specimens; hence, only aimed fieldwork
may solve this issue.

5. Conclusions

Despite the taxonomic limitations, the analysis of fossil larvae with quantitative
methods has again shown a significant loss of diversity in silky lacewings, more precisely
the morphology and, coupled to this, ecology of their larvae. Although we could increase
the size of the dataset significantly, we still do not see any effect of saturation, indicating
that we are still seeing just a part of the original diversity back in the Cretaceous.
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