
inventions

Article

Low-Level Control of 3D Printers from the Cloud:
A Step toward 3D Printer Control as a Service

Chinedum E. Okwudire * ID , Sharankumar Huggi, Sagar Supe, Chengyang Huang and
Bowen Zeng

Smart and Sustainable Automation Research Lab., University of Michigan, 2350 Hayward St., Ann Arbor,
MI 48109-2125, USA; vipersnh@umich.edu (S.H.); ssupe@umich.edu (S.S.); chengyah@umich.edu (C.H.);
zbowen@umich.edu (B.Z.)
* Correspondence: okwudire@umich.edu; Tel.: +1-734-647-1531

Received: 13 July 2018; Accepted: 17 August 2018; Published: 19 August 2018
����������
�������

Abstract: Control as a Service (CaaS) is an emerging paradigm where low-level control of a device
is moved from a local controller to the Cloud, and provided to the device as an on-demand service.
Among its many benefits, CaaS gives the device access to advanced control algorithms which may
not be executable on a local controller due to computational limitations. As a step toward 3D printer
CaaS, this paper demonstrates the control of a 3D printer by streaming low-level stepper motor
commands (as opposed to high-level G-codes) directly from the Cloud to the printer. The printer is
located at the University of Michigan, Ann Arbor, while its stepper motor commands are calculated
using an advanced motion control algorithm running on Google Cloud computers in South Carolina
and Australia. The stepper motor commands are sent over the internet using the user datagram
protocol (UDP) and buffered to mitigate transmission delays; checks are included to ensure accuracy
and completeness of the transmitted data. All but one part printed using the cloud-based controller
in both locations were hitch free (i.e., no pauses due to excessive transmission delays). Moreover,
using the cloud-based controller, the parts printed up to 54% faster than using a standard local
controller, without loss of accuracy.

Keywords: Control as a Service; cloud computing; cloud manufacturing; additive manufacturing;
smart manufacturing; Industry 4.0; internet of things

1. Introduction

Control as a Service (CaaS) is an idea that has been growing in popularity over the past few
years [1–16]. In CaaS, low-level control functionalities of a device are moved out of a local controller
to the Cloud, where they are remotely accessed on-demand (i.e., as a service). Control as a Service
is one of several paradigms, like cloud manufacturing [17,18], cloud robotics [19,20], and a host of
“as-a-service” concepts, that have been inspired by and built upon cloud computing [21] and similar
service orientated architectures (SOAs) [22].

A wide range of 3D printing services (e.g., cloud-based part modeling, slicing and printing
services) rely on cloud computing and SOAs [23,24]. Most relevant to CaaS is the growing trend
to control 3D printers remotely via web-based wireless host platforms like 3DPrinterOS [25],
Astroprint [26], OctoPrint [27], and Repetier Server [28]. However, as shown in Figure 1a,
these platforms control 3D printers by sending out G-codes (or equivalent high-level control
commands) from the Cloud to the printers, while assigning the low-level computations to a local
controller (e.g., a microcontroller). Therefore, such wireless host platforms do not offer CaaS, at least
not in the context discussed in this paper.

Inventions 2018, 3, 56; doi:10.3390/inventions3030056 www.mdpi.com/journal/inventions

http://www.mdpi.com/journal/inventions
http://www.mdpi.com
https://orcid.org/0000-0001-6910-8827
http://dx.doi.org/10.3390/inventions3030056
http://www.mdpi.com/journal/inventions
http://www.mdpi.com/2411-5134/3/3/56?type=check_update&version=2

Inventions 2018, 3, 56 2 of 16
Inventions 2018, 3, x FOR PEER REVIEW 2 of 16

Figure 1. (a) Current control of 3D printers from the Cloud using G-codes (e.g., as employed in printer
management and web-based wireless host platforms); (b) Proposed low-level control of 3D printers
from the Cloud intended for 3D printer Control as a Service (3DPCaaS).

Cloud-based control in the context of CaaS seeks to perform low-level computations for real-
time control of a device in the Cloud, instead of on a local controller [1–16]. In the specific case of 3D
printers, this implies that stepper motor commands (or similar low-level signals) are computed in
and sent out from the cloud-based controller, as opposed to G-codes (see Figure 1b). Accordingly,
low-level control of the device can be realized using advanced algorithms which may not be
executable on a local controller with limited computational resources. Control as a Service thus holds
the potential to significantly improve the performance of devices without need for powerful (and
often costly) computational hardware. Also, with CaaS, upgrading the control system of a device
becomes much easier, as significant hardware changes need not be made locally. This reduces the
problem of frequent obsolescence of devices due to outdated control boards that cannot support new,
more capable, control algorithms. The connected infrastructure provided by CaaS also allows cloud-
based control algorithms to benefit from data sharing. For instance, artificial intelligence and big data
analytics could be used to improve the performance of control algorithms (e.g., optimize control
parameters) based on feedback from several devices running the algorithms. Moreover, in CaaS, a
variety of control algorithms could be offered in an “app marketplace”, where they are accessed if
and when needed by a given device. For more details on the various benefits of CaaS, see [1–16].

However, for CaaS to achieve low-level control of devices directly from the Cloud, delays,
dropped packets, and other quality-of-service (QoS) issues that inhibit real-time communication over
the Internet must be adequately mitigated. Several preliminary studies have been conducted to test
the feasibility of cloud-based real-time control of devices, and approaches to mitigate QoS issues. One
of the earliest works in this regard was that by Givehchi et al. [3] who made a case for cloud-based
programmable logic controllers (PLCs) in industrial automation. Their results showed lower
performance using the cloud-based PLC compared to a local PLC, due to network-induced delays,
particularly as real-time computation demands became more stringent. Similar conclusions have
been reached by Hegazy and Hefeeda [4], Esen et al. [5], Kaneko and Ito [9], Vick et al. [10], Abdelaal
et al. [14], and Mubeen et al. [15] in their tests of cloud-based controllers on various real-time control
applications. Solutions proposed to counter the effects of delays and other QoS issues in CaaS include
implementation of real-time controllers using private clouds [11] or in the Fog [15], both involving
the use of local area networks (LANs) as opposed to wide area networks (WANs) to reduce delays.
Other solutions involve the use of redundant control architectures [4,9,16] and various forms of delay
compensation techniques [4,5,10,14–16]. The solutions to QoS issues presented in the discussed
preliminary studies have yielded encouraging results: they have generally demonstrated that, with
proper mitigation of QoS issues, cloud-based controllers can approach the performance of equivalent
local controllers. However, the aspiration of CaaS is for cloud-based controllers to surpass the

Figure 1. (a) Current control of 3D printers from the Cloud using G-codes (e.g., as employed in printer
management and web-based wireless host platforms); (b) Proposed low-level control of 3D printers
from the Cloud intended for 3D printer Control as a Service (3DPCaaS).

Cloud-based control in the context of CaaS seeks to perform low-level computations for real-time
control of a device in the Cloud, instead of on a local controller [1–16]. In the specific case of 3D
printers, this implies that stepper motor commands (or similar low-level signals) are computed in
and sent out from the cloud-based controller, as opposed to G-codes (see Figure 1b). Accordingly,
low-level control of the device can be realized using advanced algorithms which may not be executable
on a local controller with limited computational resources. Control as a Service thus holds the potential
to significantly improve the performance of devices without need for powerful (and often costly)
computational hardware. Also, with CaaS, upgrading the control system of a device becomes much
easier, as significant hardware changes need not be made locally. This reduces the problem of frequent
obsolescence of devices due to outdated control boards that cannot support new, more capable,
control algorithms. The connected infrastructure provided by CaaS also allows cloud-based control
algorithms to benefit from data sharing. For instance, artificial intelligence and big data analytics could
be used to improve the performance of control algorithms (e.g., optimize control parameters) based
on feedback from several devices running the algorithms. Moreover, in CaaS, a variety of control
algorithms could be offered in an “app marketplace”, where they are accessed if and when needed by
a given device. For more details on the various benefits of CaaS, see [1–16].

However, for CaaS to achieve low-level control of devices directly from the Cloud, delays,
dropped packets, and other quality-of-service (QoS) issues that inhibit real-time communication
over the Internet must be adequately mitigated. Several preliminary studies have been conducted
to test the feasibility of cloud-based real-time control of devices, and approaches to mitigate QoS
issues. One of the earliest works in this regard was that by Givehchi et al. [3] who made a case for
cloud-based programmable logic controllers (PLCs) in industrial automation. Their results showed
lower performance using the cloud-based PLC compared to a local PLC, due to network-induced
delays, particularly as real-time computation demands became more stringent. Similar conclusions
have been reached by Hegazy and Hefeeda [4], Esen et al. [5], Kaneko and Ito [9], Vick et al. [10],
Abdelaal et al. [14], and Mubeen et al. [15] in their tests of cloud-based controllers on various real-time
control applications. Solutions proposed to counter the effects of delays and other QoS issues in
CaaS include implementation of real-time controllers using private clouds [11] or in the Fog [15],
both involving the use of local area networks (LANs) as opposed to wide area networks (WANs) to
reduce delays. Other solutions involve the use of redundant control architectures [4,9,16] and various
forms of delay compensation techniques [4,5,10,14–16]. The solutions to QoS issues presented in the
discussed preliminary studies have yielded encouraging results: they have generally demonstrated
that, with proper mitigation of QoS issues, cloud-based controllers can approach the performance of

Inventions 2018, 3, 56 3 of 16

equivalent local controllers. However, the aspiration of CaaS is for cloud-based controllers to surpass
the performance of local controllers by running superior control algorithms and exploiting other
advanced functionalities available in the Cloud.

3D printers are an excellent case study for advancing CaaS, especially since many of them
(particularly those of the desktop kind) have very limited computational resources on their local
controllers. The control performance of desktop 3D printers could be significantly improved
at low cost via cloud-based control algorithms provisioned through CaaS. Industrial-grade 3D
printers could also benefit significantly from advanced control algorithms that run physics-based
models provisioned through CaaS; because even the high-end computational hardware available
locally on industrial-grade 3D printers often cannot execute computationally-intensive physics-based
models. Moreover, critical aspects of 3D printer control (e.g., motion control) are typically open-loop,
making them an excellent beachhead for CaaS, from an application standpoint, since most deleterious
effects of network delays are associated with closed-loop control. Lastly, the open innovation and
maker disposition of significant segments of the 3D printing ecosystem [23] is a boon for CaaS (e.g.,
by facilitating data sharing and the co-creation of a variety of cloud-based “control apps”). However,
to the authors’ knowledge, the feasibility, unique benefits and challenges of CaaS have not been
explicitly explored in the context of 3D printing.

Therefore, this paper presents preliminary work on low-level motion control of a desktop 3D
printer from the Cloud, as a first step towards in-depth research into 3D printer CaaS (3DPCaaS). It not
only shows that low-level control of 3D printers from the Cloud is feasible, but also demonstrates huge
improvements in 3D printing speed and accuracy that can be achieved using an advanced cloud-based
motion controller over a standard local controller. Section 2 presents the experimental setup used
for the study, and describes the software and hardware implementation of the cloud-based and local
controllers. Section 3 then presents the results of various prints using the cloud-based controller
running an advanced motion control algorithm, benchmarked against prints made using a standard
local controller. This is followed by discussions, conclusions, and future work.

2. Materials and Methods

The experimental setup is shown in Figure 2. It consists of a Wi-Fi-enabled laptop PC, the Google
Cloud Platform, an ESP32 Wi-Fi board connected to four DRV8825 stepper drivers which are used to
separately drive the X-, Y-, and Z-axes and E (extruder) motors of a Lulzbot Taz 6 desktop 3D printer.
Details of each component are described in the following subsections.

Inventions 2018, 3, x FOR PEER REVIEW 3 of 16

performance of local controllers by running superior control algorithms and exploiting other
advanced functionalities available in the Cloud.

3D printers are an excellent case study for advancing CaaS, especially since many of them
(particularly those of the desktop kind) have very limited computational resources on their local
controllers. The control performance of desktop 3D printers could be significantly improved at low cost
via cloud-based control algorithms provisioned through CaaS. Industrial-grade 3D printers could
also benefit significantly from advanced control algorithms that run physics-based models
provisioned through CaaS; because even the high-end computational hardware available locally on
industrial-grade 3D printers often cannot execute computationally-intensive physics-based models.
Moreover, critical aspects of 3D printer control (e.g., motion control) are typically open-loop, making
them an excellent beachhead for CaaS, from an application standpoint, since most deleterious effects
of network delays are associated with closed-loop control. Lastly, the open innovation and maker
disposition of significant segments of the 3D printing ecosystem [23] is a boon for CaaS (e.g., by
facilitating data sharing and the co-creation of a variety of cloud-based “control apps”). However, to
the authors’ knowledge, the feasibility, unique benefits and challenges of CaaS have not been
explicitly explored in the context of 3D printing.

Therefore, this paper presents preliminary work on low-level motion control of a desktop 3D
printer from the Cloud, as a first step towards in-depth research into 3D printer CaaS (3DPCaaS). It
not only shows that low-level control of 3D printers from the Cloud is feasible, but also demonstrates
huge improvements in 3D printing speed and accuracy that can be achieved using an advanced
cloud-based motion controller over a standard local controller. Section 2 presents the experimental
setup used for the study, and describes the software and hardware implementation of the cloud-
based and local controllers. Section 3 then presents the results of various prints using the cloud-based
controller running an advanced motion control algorithm, benchmarked against prints made using a
standard local controller. This is followed by discussions, conclusions, and future work.

2. Materials and Methods

The experimental setup is shown in Figure 2. It consists of a Wi-Fi-enabled laptop PC, the Google
Cloud Platform, an ESP32 Wi-Fi board connected to four DRV8825 stepper drivers which are used to
separately drive the X-, Y-, and Z-axes and E (extruder) motors of a Lulzbot Taz 6 desktop 3D printer.
Details of each component are described in the following subsections.

Figure 2. Overview of setup for experiments. Figure 2. Overview of setup for experiments.

Inventions 2018, 3, 56 4 of 16

2.1. Laptop PC

The laptop PC provides the user interface for interacting with the printer. It runs a secure shell
(SSH) terminal on a Linux operating system. The SSH terminal allows a user on the laptop to login
remotely to an SSH server on the Google Cloud Platform using the Internet’s transmission control
protocol (TCP). Once logged in, the user can upload the G-code file for the part to be printed, as well as
parameters needed to run the cloud-based advanced controller. Through the SSH terminal, the user can
also input five high-level motion control commands into a code responsible for sending the commands
to the ESP32 board via TCP. The five commands are:

1. ‘init’: Initialize communications by confirming that a connection has been established between
the Google Cloud Platform and the ESP32 board;

2. ‘jog <x/y/z/e> <+/−><counts>’: Jog the specified axis in the specified direction by the specified
number of stepper motor counts;

3. ‘start’: Start the transmission of stepper motor signals from the Google Cloud Platform to the
ESP32 board;

4. ‘stop’: Stop the transmission of stepper motor signals from the Google Cloud Platform to the
ESP32 board;

5. ‘exit’: End the connection between the Google Cloud Platform and the ESP32 board.

2.2. Google Cloud Platform

The Google Cloud Platform [29] is a suite of cloud computing services offered by Google.
The services include computation, data storage, data analytics, and machine learning. We specifically
make use of the Google Compute Engine which allows users to, on demand, run computations on
cloud computers (i.e., virtual machines (VMs)), which are emulations of computer systems running
on dedicated servers. The user can select the geographical location (i.e., region and zone) of the VM
they would like to utilize; and, at variable prices, they can also configure the hardware and operating
system of the VM of choice. For our experiments, we used the free one-year subscription available on
the Google Cloud Platform.

Figure 3 gives an overview of the advanced motion controller running on the Google Cloud
Platform. It consists of the following algorithms, all programmed in Python.

1. A jerk-limited motion command generator [30] (i.e., S-curve speed profile) which reads in the
X and Y positions and feedrates from a G-code file and plans motion trajectories along the X
and Y directions in such a way that user-specified acceleration and jerk limits are adhered to.
It also reads in the Z and E commands from the G-code file and generates Z and E motion
trajectories without considering any limits on acceleration and jerk (i.e., infinite acceleration
and jerk are assumed because of the low feedrates of Z and E motions). The outputs of the
motion generator are X, Y, Z, and E motion commands (double-precision floating point format),
outputted non-real-time at 1 ms time intervals (1 kHz sampling frequency).

2. The limited-preview filtered B-spline (LPFBS) algorithm [31]: It converts the X and Y commands
outputted from the motion command generator to modified commands (denoted as X′ and
Y′, respectively) that minimize the vibration of the printer, based on measured and modeled
frequency response functions (FRFs) of the printer’s dynamics; please refer to Reference [31] for
more details. The LPFBS algorithm is too computationally intensive to run on the ATMega2560
microcontroller available on the Taz 6 3D printer. It is the main reason for considering a cloud-
based controller for the printer. Note that the LPFBS algorithm does not modify the Z and E
commands because their motions do not cause significant vibration.

3. Stepper motor command generator: It takes the double-precision floating point X′, Y′, Z and
E commands at 1 kHz sampling frequency and converts them to step and direction signals
for the corresponding stepper motors at 20 kHz stepping frequency. The conversion process

Inventions 2018, 3, 56 5 of 16

is fairly standard. The signals are first up-sampled from 1 to 20 kHz via linear interpolation,
and then quantized into discrete steps at integer multiples of the stepper motor resolution, which
is 101.5 steps/mm for the X and Y motors, 1600 steps/mm for the Z motor and 760 steps/mm for
the E motor.

4. UDP packetization and sequencing: There are two standard protocols for transmitting data over
the Internet—the TCP and the user datagram protocol (UDP). Transmission control protocol is
a very reliable connection which guarantees that the transmitted data is not scrambled (re-ordered)
or lost; UDP provides no such guarantees. However, TCP typically introduces significantly longer
delays in transmission than UDP [13]. As a delay mitigation technique, we choose to transmit the
stepper motor signals over a UDP connection. To ensure the correct ordering and completeness
of the transmitted signals, the packetization and sequencing algorithm places a series of X′, Y′,
Z and E step and direction commands into a packet in chronological order. Each packet is at
most 1420 bytes in size to ensure that it is below the 1500-byte maximum transfer unit for packets
transported over the Internet using an Ethernet frame, thereby preventing internet protocol packet
fragmentization. In addition to the step and direction signals, each packet contains a packet
number and other ancillary data. The packet number is used to ensure the reception of each UDP
packet (via an acknowledgement signal sent out from the ESP32 board) as well as to re-order
the packets in chronological sequence after they are received. Each 1420-byte packet contains
about 1200 bytes of stepper motion commands at 1 byte/step (for the four motors combined) at
20,000 steps/s. Therefore, an average transmission rate of at least 189 kbps is required for the
UDP connection to maintain uninterrupted transmission of the stepper motor commands.

Inventions 2018, 3, x FOR PEER REVIEW 4 of 16

2.1. Laptop PC

The laptop PC provides the user interface for interacting with the printer. It runs a secure shell
(SSH) terminal on a Linux operating system. The SSH terminal allows a user on the laptop to login
remotely to an SSH server on the Google Cloud Platform using the Internet’s transmission control
protocol (TCP). Once logged in, the user can upload the G-code file for the part to be printed, as well
as parameters needed to run the cloud-based advanced controller. Through the SSH terminal, the
user can also input five high-level motion control commands into a code responsible for sending the
commands to the ESP32 board via TCP. The five commands are:

1. ‘init’: Initialize communications by confirming that a connection has been established between
the Google Cloud Platform and the ESP32 board;

2. ‘jog <x/y/z/e> <+/−><counts>’: Jog the specified axis in the specified direction by the specified
number of stepper motor counts;

3. ‘start’: Start the transmission of stepper motor signals from the Google Cloud Platform to the
ESP32 board;

4. ‘stop’: Stop the transmission of stepper motor signals from the Google Cloud Platform to the
ESP32 board;

5. ‘exit’: End the connection between the Google Cloud Platform and the ESP32 board.

2.2. Google Cloud Platform

The Google Cloud Platform [29] is a suite of cloud computing services offered by Google. The
services include computation, data storage, data analytics, and machine learning. We specifically
make use of the Google Compute Engine which allows users to, on demand, run computations on
cloud computers (i.e., virtual machines (VMs)), which are emulations of computer systems running
on dedicated servers. The user can select the geographical location (i.e., region and zone) of the VM
they would like to utilize; and, at variable prices, they can also configure the hardware and operating
system of the VM of choice. For our experiments, we used the free one-year subscription available on
the Google Cloud Platform.

Figure 3 gives an overview of the advanced motion controller running on the Google Cloud
Platform. It consists of the following algorithms, all programmed in Python.

Figure 3. Block diagram of algorithms contained in cloud-based controller running on the Google
Cloud Platform. Note that the 1 and 20 kHz frequencies are not real-time execution rates, they
represent the sampling frequencies of the output signals. The algorithm highlighted in red is a
computationally intensive advanced algorithm for vibration compensation.

1. A jerk-limited motion command generator [30] (i.e., S-curve speed profile) which reads in the X
and Y positions and feedrates from a G-code file and plans motion trajectories along the X and
Y directions in such a way that user-specified acceleration and jerk limits are adhered to. It also
reads in the Z and E commands from the G-code file and generates Z and E motion trajectories
without considering any limits on acceleration and jerk (i.e., infinite acceleration and jerk are
assumed because of the low feedrates of Z and E motions). The outputs of the motion generator

Figure 3. Block diagram of algorithms contained in cloud-based controller running on the Google
Cloud Platform. Note that the 1 and 20 kHz frequencies are not real-time execution rates, they represent
the sampling frequencies of the output signals. The algorithm highlighted in red is a computationally
intensive advanced algorithm for vibration compensation.

Notice from Figure 3 that while the UDP packets are sent to the ESP32 board via UDP connection,
the high-level commands are sent via TCP connection, since their execution is not as time-critical as
the stepper motion signals.

2.3. ESP32 Wi-Fi Board and DRV8825 Stepper Drivers

The ESP32-DEVKITC V4 CE FCC Rev 1 Silicon development board was used. It is equipped with
Wi-Fi (up to 150 Mbps), Bluetooth, a dual-core 32-bit LX 6 microprocessor running at 240 MHz with
520 KB of static random-access memory (SRAM) among other features. In our experiments, the ESP32
board was used primarily to: receive the signals transmitted from the Cloud via Wi-Fi; perform very
basic processing to ensure the correct sequencing of the UDP packets; request for any lost packets;
and parse and execute the received high-level commands and stepper motion commands by sending
them out to four DRV8825 stepper drivers connected (wired) to the X, Y, Z and E motors of the Taz 6
printer. Figure 4 gives an overview of the functionalities (firmware) coded into the ESP32 board in
C++. They are:

Inventions 2018, 3, 56 6 of 16

1. Re-sequencing and completeness check: This algorithm gathers the received UDP packets in
batches of ten and orders the packets according to their packet numbers. An acknowledgement
signal is sent to the cloud-based controller indicating all packets that were received. Any packets
that were not received are re-transmitted, and transmission of the next batch of ten packets from
the Cloud is halted until the missing packets from the previous batch are received.

2. FIFO buffering and signal extraction: The received and ordered packets are placed in a first-in
first-out (FIFO) buffer which can hold up to 100 packets at any given time; it is size-limited by
the SRAM of the ESP32. The buffer is filled up before printing starts, providing a six-second time
buffer in case of delays. The printing is paused if the buffer is emptied. The step and direction
signals from the packets stored in the buffer are extracted and sent to the stepper drivers in
real-time at 20 kHz stepping frequency.

3. Execution of high-level commands: The high-level commands are executed in the ESP32,
as described in Section 2.1. For the jog command, the step and direction commands are extracted
and sent to the corresponding stepper drivers to move the machine as commanded.

Inventions 2018, 3, x FOR PEER REVIEW 6 of 16

1. Re-sequencing and completeness check: This algorithm gathers the received UDP packets in
batches of ten and orders the packets according to their packet numbers. An acknowledgement
signal is sent to the cloud-based controller indicating all packets that were received. Any packets
that were not received are re-transmitted, and transmission of the next batch of ten packets from
the Cloud is halted until the missing packets from the previous batch are received.

2. FIFO buffering and signal extraction: The received and ordered packets are placed in a first-in
first-out (FIFO) buffer which can hold up to 100 packets at any given time; it is size-limited by
the SRAM of the ESP32. The buffer is filled up before printing starts, providing a six-second time
buffer in case of delays. The printing is paused if the buffer is emptied. The step and direction
signals from the packets stored in the buffer are extracted and sent to the stepper drivers in real-
time at 20 kHz stepping frequency.

3. Execution of high-level commands: The high-level commands are executed in the ESP32, as
described in Section 2.1. For the jog command, the step and direction commands are extracted
and sent to the corresponding stepper drivers to move the machine as commanded.

Figure 4. Block diagram of functionalities coded as firmware into the ESP32 board.

2.4. Lulzbot Taz 6 Desktop 3D Printer

A Lulzbot Taz 6 printer with dual extruders was used for the experiments. It comes with a local
controller in the form of the Marlin firmware (for TAZ6 Dual Extruder 3 v1.1.5.71) running on a
RepRap Arduino-compatible Mother Board (RAMBo). The RAMBo uses the ATMega2560 chip,
having an 8-bit 16 MHz processor with 8 KB SRAM, which are too meager to execute the LPFBS
algorithm. The RAMBo comes with its own Allegro 4892 stepper drivers which are used to control
the stepper motors of the Taz 6 during printing with the local controller. When prints were performed
with the cloud-based controller, the stepper drivers of the RAMBo board were disconnected, and the
DRV8825 stepper drivers were wired to the printer’s stepper motors. Note, however, that when using
the cloud-based controller, the RAMBo board was still connected to the printer and provided all other
low-level control functionalities (besides stepper motor control) like nozzle and heat bed temperature
control. These low-level control functionalities could certainly be moved to the cloud-based
controller, but for the purposes of this preliminary study focused on motion control, they were
retained in the local controller.

3. Results

Two sets of experiments were conducted. The goal of the first set of experiments was to calibrate
key parameters of algorithms running on the local controller (Marlin) and cloud-based controller.
The second set of experiments was conducted to evaluate the performance of the cloud-based
controller (in comparison with that of the local controller) using the parameters determined from the
first set of experiments.

3.1. Calibration Experiments

The local controller (Marlin) runs a trapezoidal-speed motion command generator, which allows
for limited-acceleration but infinite-jerk motion commands. In addition, it has a parameter known as

Figure 4. Block diagram of functionalities coded as firmware into the ESP32 board.

2.4. Lulzbot Taz 6 Desktop 3D Printer

A Lulzbot Taz 6 printer with dual extruders was used for the experiments. It comes with a local
controller in the form of the Marlin firmware (for TAZ6 Dual Extruder 3 v1.1.5.71) running on a RepRap
Arduino-compatible Mother Board (RAMBo). The RAMBo uses the ATMega2560 chip, having an 8-bit
16 MHz processor with 8 KB SRAM, which are too meager to execute the LPFBS algorithm. The RAMBo
comes with its own Allegro 4892 stepper drivers which are used to control the stepper motors of the
Taz 6 during printing with the local controller. When prints were performed with the cloud-based
controller, the stepper drivers of the RAMBo board were disconnected, and the DRV8825 stepper
drivers were wired to the printer’s stepper motors. Note, however, that when using the cloud-based
controller, the RAMBo board was still connected to the printer and provided all other low-level control
functionalities (besides stepper motor control) like nozzle and heat bed temperature control. These low-
level control functionalities could certainly be moved to the cloud-based controller, but for the purposes
of this preliminary study focused on motion control, they were retained in the local controller.

3. Results

Two sets of experiments were conducted. The goal of the first set of experiments was to calibrate
key parameters of algorithms running on the local controller (Marlin) and cloud-based controller.
The second set of experiments was conducted to evaluate the performance of the cloud-based controller
(in comparison with that of the local controller) using the parameters determined from the first set
of experiments.

Inventions 2018, 3, 56 7 of 16

3.1. Calibration Experiments

The local controller (Marlin) runs a trapezoidal-speed motion command generator, which allows
for limited-acceleration but infinite-jerk motion commands. In addition, it has a parameter known
as jerk speed, which is a speed threshold below which motion commands are generated with infinite
acceleration. A common practice is to tune the acceleration limit and jerk speed values iteratively to
obtain the highest values that do not lead to excessive vibration of a given 3D printer. This allows the
printer to travel as fast as possible while maintaining acceptable print surface quality (i.e., surfaces with
minimal vibration marks, also known as ringing).

A very common artifact used for determining acceptable acceleration and jerk speed limits on
desktop 3D printers like the Lulzbot Taz 6 is the XYZ Calibration Cube (with 20 mm sides), shown in
Figure 5. The sudden changes of motion direction at the edges of the cube and at the X and Y imprints
on the faces of the cube excite vibration along the X and Y axes of the printer, leading to ringing on
the faces of the cube. Table 1 provides the key parameters used in all tests presented in this paper for
slicing the calibration cube in Cura (Lulzbot Edition 21.04).

Inventions 2018, 3, x FOR PEER REVIEW 7 of 16

jerk speed, which is a speed threshold below which motion commands are generated with infinite
acceleration. A common practice is to tune the acceleration limit and jerk speed values iteratively to
obtain the highest values that do not lead to excessive vibration of a given 3D printer. This allows the
printer to travel as fast as possible while maintaining acceptable print surface quality (i.e., surfaces
with minimal vibration marks, also known as ringing).

A very common artifact used for determining acceptable acceleration and jerk speed limits on
desktop 3D printers like the Lulzbot Taz 6 is the XYZ Calibration Cube (with 20 mm sides), shown in
Figure 5. The sudden changes of motion direction at the edges of the cube and at the X and Y imprints
on the faces of the cube excite vibration along the X and Y axes of the printer, leading to ringing on
the faces of the cube. Table 1 provides the key parameters used in all tests presented in this paper for
slicing the calibration cube in Cura (Lulzbot Edition 21.04).

Figure 5. Computer aided design (CAD) model of XYZ Calibration Cube (with 20 mm sides)
commonly used for determining acceptable acceleration and jerk speed limits of desktop 3D printers.
The Calibration Cube is available at https://www.thingiverse.com/thing:1278865.

Table 1. Key parameters used in Cura for slicing the Calibration Cube.

Scale Factor Infill Density Layer Height Shell Thickness Filament Feedrate
100% 20% 0.1 mm 1 mm PLA 75 mm/s

The first rows of Tables 2 and 3 respectively show the X and Y faces of the Calibration Cube
printed using the local controller (i.e., Marlin running on the RAMBo board). Note that the cube is
arbitrarily printed with its X-face aligned with the Y-axis, and is Y-face aligned with the X-axis of the
Taz 6. All prints using the local controller are made with the default jerk speed of the Taz 6 printer
(i.e., 10 mm/s). Notice that with the default acceleration limit of the printer (i.e., 0.5 m/s2), the quality
of the faces is generally okay, though each face has some ringing, with the X-face exhibiting a bit
more ringing than the Y-face. As the acceleration limits are raised to 1, 5, and 10 m/s2, the ringing
steadily intensifies leading to increasingly worse surface quality, even though printing time
progressively decreases.

The cloud-based controller has two algorithms which together help to reduce vibration. First it
uses a jerk-limited motion command generation (JLMCG) algorithm (also known as S-curve speed
profile) [30] which allows limitations on both acceleration and jerk. Moreover, it adds on the limited-
preview filtered B-spline (LPFBS) algorithm [31] which modifies motion commands to minimize
vibration based on measured vibration dynamics of the printer. For the sake of the calibration tests,
both algorithms (together with the stepper motor command generator in Figure 3) are implemented
on the dSPACE DS1007 real-time control board running at 40 kHz clock frequency. The step and
direction signals are sent via a wired connection at 13.33 kHz frequency to four DRV8825 stepper
drivers connected to the X, Y, Z and E motors of the Taz 6 printer. In other words, the algorithms are
implemented locally on a high-end motion control board with sufficient computational resources to
run the LPFBS algorithm.

Figure 5. Computer aided design (CAD) model of XYZ Calibration Cube (with 20 mm sides)
commonly used for determining acceptable acceleration and jerk speed limits of desktop 3D printers.
The Calibration Cube is available at https://www.thingiverse.com/thing:1278865.

Table 1. Key parameters used in Cura for slicing the Calibration Cube.

Scale Factor Infill Density Layer Height Shell Thickness Filament Feedrate

100% 20% 0.1 mm 1 mm PLA 75 mm/s

The first rows of Tables 2 and 3 respectively show the X and Y faces of the Calibration Cube
printed using the local controller (i.e., Marlin running on the RAMBo board). Note that the cube is
arbitrarily printed with its X-face aligned with the Y-axis, and is Y-face aligned with the X-axis of the
Taz 6. All prints using the local controller are made with the default jerk speed of the Taz 6 printer (i.e.,
10 mm/s). Notice that with the default acceleration limit of the printer (i.e., 0.5 m/s2), the quality of the
faces is generally okay, though each face has some ringing, with the X-face exhibiting a bit more ringing
than the Y-face. As the acceleration limits are raised to 1, 5, and 10 m/s2, the ringing steadily intensifies
leading to increasingly worse surface quality, even though printing time progressively decreases.

The cloud-based controller has two algorithms which together help to reduce vibration. First it
uses a jerk-limited motion command generation (JLMCG) algorithm (also known as S-curve speed
profile) [30] which allows limitations on both acceleration and jerk. Moreover, it adds on the
limited-preview filtered B-spline (LPFBS) algorithm [31] which modifies motion commands to
minimize vibration based on measured vibration dynamics of the printer. For the sake of the
calibration tests, both algorithms (together with the stepper motor command generator in Figure 3)
are implemented on the dSPACE DS1007 real-time control board running at 40 kHz clock frequency.
The step and direction signals are sent via a wired connection at 13.33 kHz frequency to four DRV8825
stepper drivers connected to the X, Y, Z and E motors of the Taz 6 printer. In other words, the algorithms

https://www.thingiverse.com/thing:1278865

Inventions 2018, 3, 56 8 of 16

are implemented locally on a high-end motion control board with sufficient computational resources
to run the LPFBS algorithm.

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-faces
of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and 10 m/s2

are tested. Notice the improvements in surface quality compared to the local controller, though at the
expense of longer printing time in each case due to the fact that both acceleration and jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively.

5.746× 104s4 + 3.108× 106s3 + 3.742× 109s2 + 9.138× 1010s + 5.712× 1013

s6 + 254.6s5 + 1.314× 105s4 + 1.685× 107s3 + 4.993× 109s2 + 2.657× 1011s + 5.712× 1013 (1)

1.612× 1016s2 + 1.404× 1018s + 2.247× 1021

s4 + 1.127× 1010s3 + 8.872× 1016s2 + 3.742× 1018s + 2.247× 1021 (2)

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e.,
S-curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk

Speed = 10 mm/s)

Picture

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Time (min) 37:34 30:23 21:40 20:48

JLMCG (S-curve
speed profile)

running on
dSPACE: Jerk Limit

= 5000 m/s3

Picture

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Time (min) 50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on

dSPACE: Jerk Limit
= 5000 m/s3

Picture

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Inventions 2018, 3, x FOR PEER REVIEW 8 of 16

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller

(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-

curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation

algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the

default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller

(Marlin): Jerk Speed =

10 mm/s)

Picture

Time

(min)
37:34 30:23 21:40 20:48

JLMCG (S-curve speed

profile) running on

dSPACE: Jerk Limit =

5000 m/s3

Picture

Time

(min)
50:24 37:50 24:35 22:40

LPFBS + JLMCG

running on dSPACE:

Jerk Limit = 5000 m/s3

Picture

Time

(min)
50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-

faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and

10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,

though at the expense of longer printing time in each case due to the fact that both acceleration and

jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form

of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).

Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each

FRF was acceleration commands to the corresponding stepper motor, and the output was relative

acceleration between the build plate and nozzle in that direction, measured using accelerometers.

The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively.

5.746 × 10��� + 3.108 × 10��� + 3.742 × 10��� + 9.138 × 10��� + 5.712 × 10��

�� + 254.6�� + 1.314 × 10��� + 1.685 × 10��� + 4.993 × 10��� + 2.657 × 10��� + 5.712 × 10��
 (1)

1.612 × 10���� + 1.404 × 10��� + 2.247 × 10��

�� + 1.127 × 10���� + 8.872 × 10���� + 3.742 × 10��� + 2.247 × 10��
(2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at

low and high frequencies are due to the fact that the fitting is weighted to more accurately match

dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.

This is because the dynamics around the resonance frequencies are most influential on the vibration

of the printer.

Inventions 2018, 3, x FOR PEER REVIEW 8 of 16

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller

(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-

curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation

algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the

default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller

(Marlin): Jerk Speed =

10 mm/s)

Picture

Time

(min)
37:34 30:23 21:40 20:48

JLMCG (S-curve speed

profile) running on

dSPACE: Jerk Limit =

5000 m/s3

Picture

Time

(min)
50:24 37:50 24:35 22:40

LPFBS + JLMCG

running on dSPACE:

Jerk Limit = 5000 m/s3

Picture

Time

(min)
50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-

faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and

10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,

though at the expense of longer printing time in each case due to the fact that both acceleration and

jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form

of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).

Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each

FRF was acceleration commands to the corresponding stepper motor, and the output was relative

acceleration between the build plate and nozzle in that direction, measured using accelerometers.

The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively.

5.746 × 10��� + 3.108 × 10��� + 3.742 × 10��� + 9.138 × 10��� + 5.712 × 10��

�� + 254.6�� + 1.314 × 10��� + 1.685 × 10��� + 4.993 × 10��� + 2.657 × 10��� + 5.712 × 10��
 (1)

1.612 × 10���� + 1.404 × 10��� + 2.247 × 10��

�� + 1.127 × 10���� + 8.872 × 10���� + 3.742 × 10��� + 2.247 × 10��
(2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at

low and high frequencies are due to the fact that the fitting is weighted to more accurately match

dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.

This is because the dynamics around the resonance frequencies are most influential on the vibration

of the printer.

Inventions 2018, 3, x FOR PEER REVIEW 8 of 17

Table 2. Quality and printing time of X-face of Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

The second rows of Tables 2 and 3, respectively, show the effects of JLMCG on the X- and Y-
faces of the calibration cube. The jerk limit is set at 5000 m/s3, and acceleration limits of 0.5, 1, 5, and
10 m/s2 are tested. Notice the improvements in surface quality compared to the local controller,
though at the expense of longer printing time in each case due to the fact that both acceleration and
jerk were limited.

To execute the LPFBS algorithm, the vibration dynamics of Taz 6 must be measured in the form
of frequency response functions (FRFs) and modeled mathematically (see Reference [31] for details).
Figure 6 shows the measured and modeled FRFs of the X- and Y-axes of the Taz 6; the input of each
FRF was acceleration commands to the corresponding stepper motor, and the output was relative
acceleration between the build plate and nozzle in that direction, measured using accelerometers.
The resulting transfer functions of the X and Y axes are given by Equations (1) and (2), respectively. 5.746 × 10ସݏସ + 3.108 × 10ݏଷ + 3.742 × 10ଽݏଶ + 9.138 × 10ଵݏ + 5.712 × 10ଵଷݏ + ହݏ254.6 + 1.314 × 10ହݏସ + 1.685 × 10ݏଷ + 4.993 × 10ଽݏଶ + 2.657 × 10ଵଵݏ + 5.712 × 10ଵଷ (1)

Time (min) 50:24 37:50 24:35 22:40

Inventions 2018, 3, 56 9 of 16

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller (Marlin)
as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-curve speed
profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation algorithm [31] both
running on a high-end real-time control board (dSPACE DS1007). Note that the default acceleration
limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk

Speed = 10 mm/s)

Picture

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Time (min) 37:34 30:23 21:40 20:48

JLMCG (S-curve
speed profile)

running on
dSPACE: Jerk Limit

= 5000 m/s3

Picture

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Time (min) 50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on

dSPACE: Jerk Limit
= 5000 m/s3

Picture

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 17

1.612 × 10ଵݏଶ + 1.404 × 10ଵ଼ݏ + 2.247 × 10ଶଵݏସ + 1.127 × 10ଵݏଷ + 8.872 × 10ଵݏଶ + 3.742 × 10ଵ଼ݏ + 2.247 × 10ଶଵ (2)

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs at
low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.
This is because the dynamics around the resonance frequencies are most influential on the vibration
of the printer.

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40
Time (min) 50:24 37:50 24:35 22:40

Inventions 2018, 3, x FOR PEER REVIEW 9 of 16

Table 3. Quality and printing time of Y-face Calibration Cube printed using the local controller
(Marlin) as well as using a jerk-limited motion command generation (JLMCG) algorithm [30] (i.e., S-
curve speed profile) and the limited-preview filtered B-spline (LPFBS) vibration compensation
algorithm [31] both running on a high-end real-time control board (dSPACE DS1007). Note that the
default acceleration limit and jerk speed of Taz 6 in Marlin are 0.5 m/s2 and 10 mm/s, respectively.

Controller/Algorithm Attribute
Acceleration Limits (m/s2)

0.5 1 5 10

Local controller
(Marlin): Jerk Speed =

10 mm/s)

Picture

Time
(min)

37:34 30:23 21:40 20:48

JLMCG (S-curve speed
profile) running on

dSPACE: Jerk Limit =
5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

LPFBS + JLMCG
running on dSPACE:
Jerk Limit = 5000 m/s3

Picture

Time
(min)

50:24 37:50 24:35 22:40

Figure 6. Frequency response functions (FRFs) of nozzle relative to build plate for X- and Y-axes of
the Lulzbot Taz 6 desktop 3D printer. The discrepancies between measured and modeled FRFs at low
and high frequencies are due to emphasis on fitting dynamics around the resonance peaks in each
FRF, since they most directly affect the vibration of the printer.

Table 4 summarizes other key parameters needed for implementing the LPFBS algorithm,
following the detailed description and the exact same notations as used in Reference [31]. The third
rows of Tables 2 and 3 respectively show the effects of JLMCG and LPFBS on the X and Y-faces of the

M
ag

ni
tu

de
 [d

B
]

Ph
as

e
[d

eg
]

10 15 20 25 30 35
Frequency [Hz]

X-Axis Y-Axis

10 15 20 25 30 35
Frequency [Hz]

-150

-100

-50

0
-10

0

10

Measured
Model (Curve fit)

5

-5

M
ag

ni
tu

de
 [d

B
]

Ph
as

e
[d

eg
]

-150

-100

-50

0
-10

0

10
5

-5

Figure 6. Frequency response functions (FRFs) of nozzle relative to build plate for X- and Y-axes of
the Lulzbot Taz 6 desktop 3D printer. The discrepancies between measured and modeled FRFs at low
and high frequencies are due to emphasis on fitting dynamics around the resonance peaks in each FRF,
since they most directly affect the vibration of the printer.

The slight discrepancies seen in Figure 6 between the measured and modeled (curve fit) FRFs
at low and high frequencies are due to the fact that the fitting is weighted to more accurately match
dynamics around the resonance peaks, at the expense of dynamics at lower and higher frequencies.

Inventions 2018, 3, 56 10 of 16

This is because the dynamics around the resonance frequencies are most influential on the vibration of
the printer.

Table 4 summarizes other key parameters needed for implementing the LPFBS algorithm,
following the detailed description and the exact same notations as used in Reference [31]. The third
rows of Tables 2 and 3 respectively show the effects of JLMCG and LPFBS on the X and Y-faces of the
Calibration Cube. Notice the significant improvements in surface quality at each acceleration level
(without increasing the printing time relative to those of JLMCG alone).

Table 4. Key parameters used for implementing LPFBS algorithm. Please see Reference [31] for detailed
explanation and definition of symbols.

nup nC LC LH m L

7 14 350 158 5 25

Looking at the X-face of the cube, which is generally worse than the Y-face in terms of vibration
marks, the quality of the 10 m/s2 case of JLMCG and LPFBS is at least as good as, if not better
than, that of the local controller at its default 0.5 m/s2 acceleration limit. Therefore, in the following
experiments, an acceleration limit of 0.5 m/s2 and jerk speed of 10 mm/s were used for the local
controller while an acceleration limit of 10 m/s2 and jerk limit of 5000 m/s3 were used for the
cloud-based controller (which runs both JLMCG and LPFBS).

3.2. Comparison of Local Controller with Cloud-Based Controller

Using the results of the calibration performed in the preceding section, two parts are printed
using the cloud-based controller and compared with the same parts printed using the local controller
(Marlin). The cloud-based controller was run on Google Compute Engines in two geographical
locations—Moncks Corner, South Carolina and Sydney, Australia. Table 5 provides specifications of
the VMs at each location. The first location was selected to be sufficiently close to Michigan, where the
printer was located, while the second location was selected to be as far as possible away from Michigan.

Table 5. Specifications of Google Compute Engine’s Virtual Machines (VMs) used for Experiments.

Location Region/Zone Machine Type CPU Platform Operating System

Moncks Corner,
South Carolina US-East1-b n1-standard-1 (1 vCPU,

3.75 GB memory) Intel Haswell Linux

Sydney, Australia Australia-Southeast1-b n1-standard-1 (1 vCPU,
3.75 GB memory) Intel Broadwell Linux

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were printed
from each location. Tables 6 and 7 compare key attributes of the prints from the South Carolina and
Australia-based controllers, respectively. For all four trials, the South Carolina-based controller ran
hitch free, without any pauses due to latency. As a result, it returned prints with consistent printing
times and similar surface quality as the corresponding part printed using dSPACE. Interestingly,
the printing times of the South Carolina-based controller are about one minute shorter than that from
dSPACE (see Tables 2 and 3). This is due to slight differences in the implementation of the algorithms
on dSPACE and the VMs. The dSPACE is a real-time computer which was run at a fixed 40 kHz clock
frequency. The clock frequency was down-sampled by a factor of three to create each step for the
stepper motors in real time at 13.33 kHz, and by a factor of 40 to generate the outputs of the JLMCG
and LPFBS algorithms in real time at 1 kHz. On the other hand, the VMs are non-real-time computers.
They ran the JLMCG and LPFBS algorithms at a sampling frequency of 1 kHz (non-real-time) and
then up-sampled the output to 20 kHz stepping frequency. The non-real-time nature of the VMs

Inventions 2018, 3, 56 11 of 16

provides more flexibility in the implementation of the algorithms (allowing up-sampling rather than
down-sampling), leading to fewer approximations hence reductions in printing time.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Inventions 2018, 3, x FOR PEER REVIEW 11 of 17

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were
printed from each location. Tables 6 and 7 compare key attributes of the prints from the South
Carolina and Australia-based controllers, respectively. For all four trials, the South Carolina-based
controller ran hitch free, without any pauses due to latency. As a result, it returned prints with
consistent printing times and similar surface quality as the corresponding part printed using
dSPACE. Interestingly, the printing times of the South Carolina-based controller are about one
minute shorter than that from dSPACE (see Tables 2 and 3). This is due to slight differences in the
implementation of the algorithms on dSPACE and the VMs. The dSPACE is a real-time computer
which was run at a fixed 40 kHz clock frequency. The clock frequency was down-sampled by a factor
of three to create each step for the stepper motors in real time at 13.33 kHz, and by a factor of 40 to
generate the outputs of the JLMCG and LPFBS algorithms in real time at 1 kHz. On the other hand,
the VMs are non-real-time computers. They ran the JLMCG and LPFBS algorithms at a sampling
frequency of 1 kHz (non-real-time) and then up-sampled the output to 20 kHz stepping frequency.
The non-real-time nature of the VMs provides more flexibility in the implementation of the
algorithms (allowing up-sampling rather than down-sampling), leading to fewer approximations
hence reductions in printing time.

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three
trials ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of
the other three trials. However, the pauses did not have any noticeable effect on the surface quality
of the first trial part. During each print, the round-trip time (RTT) was logged at regular intervals.
The RTT measures the duration between sending a signal via internet protocol and getting an
acknowledgement of its reception, and is commonly used as a measure of internet transmission-
induced delays. Notice that the average and maximum RTT were significantly higher for the
Australia-based controller compared to the South Carolina-based controller, in large part due to the
longer distances traveled by the signals. Moreover, the first trial on the Australia based controller
exhibited slightly higher average RTT than the other three trials; its peak RTT was also slightly higher
than the others, though trial 3 had the largest peak RTT.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 21:42 21:42 21:42 21:42

Avg. RTT (ms) 137 133 140 132

Inventions 2018, 3, x FOR PEER REVIEW 11 of 17

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were
printed from each location. Tables 6 and 7 compare key attributes of the prints from the South
Carolina and Australia-based controllers, respectively. For all four trials, the South Carolina-based
controller ran hitch free, without any pauses due to latency. As a result, it returned prints with
consistent printing times and similar surface quality as the corresponding part printed using
dSPACE. Interestingly, the printing times of the South Carolina-based controller are about one
minute shorter than that from dSPACE (see Tables 2 and 3). This is due to slight differences in the
implementation of the algorithms on dSPACE and the VMs. The dSPACE is a real-time computer
which was run at a fixed 40 kHz clock frequency. The clock frequency was down-sampled by a factor
of three to create each step for the stepper motors in real time at 13.33 kHz, and by a factor of 40 to
generate the outputs of the JLMCG and LPFBS algorithms in real time at 1 kHz. On the other hand,
the VMs are non-real-time computers. They ran the JLMCG and LPFBS algorithms at a sampling
frequency of 1 kHz (non-real-time) and then up-sampled the output to 20 kHz stepping frequency.
The non-real-time nature of the VMs provides more flexibility in the implementation of the
algorithms (allowing up-sampling rather than down-sampling), leading to fewer approximations
hence reductions in printing time.

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three
trials ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of
the other three trials. However, the pauses did not have any noticeable effect on the surface quality
of the first trial part. During each print, the round-trip time (RTT) was logged at regular intervals.
The RTT measures the duration between sending a signal via internet protocol and getting an
acknowledgement of its reception, and is commonly used as a measure of internet transmission-
induced delays. Notice that the average and maximum RTT were significantly higher for the
Australia-based controller compared to the South Carolina-based controller, in large part due to the
longer distances traveled by the signals. Moreover, the first trial on the Australia based controller
exhibited slightly higher average RTT than the other three trials; its peak RTT was also slightly higher
than the others, though trial 3 had the largest peak RTT.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 21:42 21:42 21:42 21:42

Avg. RTT (ms) 137 133 140 132

Inventions 2018, 3, x FOR PEER REVIEW 11 of 17

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were
printed from each location. Tables 6 and 7 compare key attributes of the prints from the South
Carolina and Australia-based controllers, respectively. For all four trials, the South Carolina-based
controller ran hitch free, without any pauses due to latency. As a result, it returned prints with
consistent printing times and similar surface quality as the corresponding part printed using
dSPACE. Interestingly, the printing times of the South Carolina-based controller are about one
minute shorter than that from dSPACE (see Tables 2 and 3). This is due to slight differences in the
implementation of the algorithms on dSPACE and the VMs. The dSPACE is a real-time computer
which was run at a fixed 40 kHz clock frequency. The clock frequency was down-sampled by a factor
of three to create each step for the stepper motors in real time at 13.33 kHz, and by a factor of 40 to
generate the outputs of the JLMCG and LPFBS algorithms in real time at 1 kHz. On the other hand,
the VMs are non-real-time computers. They ran the JLMCG and LPFBS algorithms at a sampling
frequency of 1 kHz (non-real-time) and then up-sampled the output to 20 kHz stepping frequency.
The non-real-time nature of the VMs provides more flexibility in the implementation of the
algorithms (allowing up-sampling rather than down-sampling), leading to fewer approximations
hence reductions in printing time.

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three
trials ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of
the other three trials. However, the pauses did not have any noticeable effect on the surface quality
of the first trial part. During each print, the round-trip time (RTT) was logged at regular intervals.
The RTT measures the duration between sending a signal via internet protocol and getting an
acknowledgement of its reception, and is commonly used as a measure of internet transmission-
induced delays. Notice that the average and maximum RTT were significantly higher for the
Australia-based controller compared to the South Carolina-based controller, in large part due to the
longer distances traveled by the signals. Moreover, the first trial on the Australia based controller
exhibited slightly higher average RTT than the other three trials; its peak RTT was also slightly higher
than the others, though trial 3 had the largest peak RTT.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 21:42 21:42 21:42 21:42

Avg. RTT (ms) 137 133 140 132

Inventions 2018, 3, x FOR PEER REVIEW 11 of 17

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were
printed from each location. Tables 6 and 7 compare key attributes of the prints from the South
Carolina and Australia-based controllers, respectively. For all four trials, the South Carolina-based
controller ran hitch free, without any pauses due to latency. As a result, it returned prints with
consistent printing times and similar surface quality as the corresponding part printed using
dSPACE. Interestingly, the printing times of the South Carolina-based controller are about one
minute shorter than that from dSPACE (see Tables 2 and 3). This is due to slight differences in the
implementation of the algorithms on dSPACE and the VMs. The dSPACE is a real-time computer
which was run at a fixed 40 kHz clock frequency. The clock frequency was down-sampled by a factor
of three to create each step for the stepper motors in real time at 13.33 kHz, and by a factor of 40 to
generate the outputs of the JLMCG and LPFBS algorithms in real time at 1 kHz. On the other hand,
the VMs are non-real-time computers. They ran the JLMCG and LPFBS algorithms at a sampling
frequency of 1 kHz (non-real-time) and then up-sampled the output to 20 kHz stepping frequency.
The non-real-time nature of the VMs provides more flexibility in the implementation of the
algorithms (allowing up-sampling rather than down-sampling), leading to fewer approximations
hence reductions in printing time.

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three
trials ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of
the other three trials. However, the pauses did not have any noticeable effect on the surface quality
of the first trial part. During each print, the round-trip time (RTT) was logged at regular intervals.
The RTT measures the duration between sending a signal via internet protocol and getting an
acknowledgement of its reception, and is commonly used as a measure of internet transmission-
induced delays. Notice that the average and maximum RTT were significantly higher for the
Australia-based controller compared to the South Carolina-based controller, in large part due to the
longer distances traveled by the signals. Moreover, the first trial on the Australia based controller
exhibited slightly higher average RTT than the other three trials; its peak RTT was also slightly higher
than the others, though trial 3 had the largest peak RTT.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 21:42 21:42 21:42 21:42

Avg. RTT (ms) 137 133 140 132

Picture of Y-Face

Inventions 2018, 3, x FOR PEER REVIEW 11 of 17

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were
printed from each location. Tables 6 and 7 compare key attributes of the prints from the South
Carolina and Australia-based controllers, respectively. For all four trials, the South Carolina-based
controller ran hitch free, without any pauses due to latency. As a result, it returned prints with
consistent printing times and similar surface quality as the corresponding part printed using
dSPACE. Interestingly, the printing times of the South Carolina-based controller are about one
minute shorter than that from dSPACE (see Tables 2 and 3). This is due to slight differences in the
implementation of the algorithms on dSPACE and the VMs. The dSPACE is a real-time computer
which was run at a fixed 40 kHz clock frequency. The clock frequency was down-sampled by a factor
of three to create each step for the stepper motors in real time at 13.33 kHz, and by a factor of 40 to
generate the outputs of the JLMCG and LPFBS algorithms in real time at 1 kHz. On the other hand,
the VMs are non-real-time computers. They ran the JLMCG and LPFBS algorithms at a sampling
frequency of 1 kHz (non-real-time) and then up-sampled the output to 20 kHz stepping frequency.
The non-real-time nature of the VMs provides more flexibility in the implementation of the
algorithms (allowing up-sampling rather than down-sampling), leading to fewer approximations
hence reductions in printing time.

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three
trials ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of
the other three trials. However, the pauses did not have any noticeable effect on the surface quality
of the first trial part. During each print, the round-trip time (RTT) was logged at regular intervals.
The RTT measures the duration between sending a signal via internet protocol and getting an
acknowledgement of its reception, and is commonly used as a measure of internet transmission-
induced delays. Notice that the average and maximum RTT were significantly higher for the
Australia-based controller compared to the South Carolina-based controller, in large part due to the
longer distances traveled by the signals. Moreover, the first trial on the Australia based controller
exhibited slightly higher average RTT than the other three trials; its peak RTT was also slightly higher
than the others, though trial 3 had the largest peak RTT.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 21:42 21:42 21:42 21:42

Avg. RTT (ms) 137 133 140 132

Inventions 2018, 3, x FOR PEER REVIEW 11 of 17

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were
printed from each location. Tables 6 and 7 compare key attributes of the prints from the South
Carolina and Australia-based controllers, respectively. For all four trials, the South Carolina-based
controller ran hitch free, without any pauses due to latency. As a result, it returned prints with
consistent printing times and similar surface quality as the corresponding part printed using
dSPACE. Interestingly, the printing times of the South Carolina-based controller are about one
minute shorter than that from dSPACE (see Tables 2 and 3). This is due to slight differences in the
implementation of the algorithms on dSPACE and the VMs. The dSPACE is a real-time computer
which was run at a fixed 40 kHz clock frequency. The clock frequency was down-sampled by a factor
of three to create each step for the stepper motors in real time at 13.33 kHz, and by a factor of 40 to
generate the outputs of the JLMCG and LPFBS algorithms in real time at 1 kHz. On the other hand,
the VMs are non-real-time computers. They ran the JLMCG and LPFBS algorithms at a sampling
frequency of 1 kHz (non-real-time) and then up-sampled the output to 20 kHz stepping frequency.
The non-real-time nature of the VMs provides more flexibility in the implementation of the
algorithms (allowing up-sampling rather than down-sampling), leading to fewer approximations
hence reductions in printing time.

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three
trials ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of
the other three trials. However, the pauses did not have any noticeable effect on the surface quality
of the first trial part. During each print, the round-trip time (RTT) was logged at regular intervals.
The RTT measures the duration between sending a signal via internet protocol and getting an
acknowledgement of its reception, and is commonly used as a measure of internet transmission-
induced delays. Notice that the average and maximum RTT were significantly higher for the
Australia-based controller compared to the South Carolina-based controller, in large part due to the
longer distances traveled by the signals. Moreover, the first trial on the Australia based controller
exhibited slightly higher average RTT than the other three trials; its peak RTT was also slightly higher
than the others, though trial 3 had the largest peak RTT.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 21:42 21:42 21:42 21:42

Avg. RTT (ms) 137 133 140 132

Inventions 2018, 3, x FOR PEER REVIEW 11 of 17

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were
printed from each location. Tables 6 and 7 compare key attributes of the prints from the South
Carolina and Australia-based controllers, respectively. For all four trials, the South Carolina-based
controller ran hitch free, without any pauses due to latency. As a result, it returned prints with
consistent printing times and similar surface quality as the corresponding part printed using
dSPACE. Interestingly, the printing times of the South Carolina-based controller are about one
minute shorter than that from dSPACE (see Tables 2 and 3). This is due to slight differences in the
implementation of the algorithms on dSPACE and the VMs. The dSPACE is a real-time computer
which was run at a fixed 40 kHz clock frequency. The clock frequency was down-sampled by a factor
of three to create each step for the stepper motors in real time at 13.33 kHz, and by a factor of 40 to
generate the outputs of the JLMCG and LPFBS algorithms in real time at 1 kHz. On the other hand,
the VMs are non-real-time computers. They ran the JLMCG and LPFBS algorithms at a sampling
frequency of 1 kHz (non-real-time) and then up-sampled the output to 20 kHz stepping frequency.
The non-real-time nature of the VMs provides more flexibility in the implementation of the
algorithms (allowing up-sampling rather than down-sampling), leading to fewer approximations
hence reductions in printing time.

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three
trials ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of
the other three trials. However, the pauses did not have any noticeable effect on the surface quality
of the first trial part. During each print, the round-trip time (RTT) was logged at regular intervals.
The RTT measures the duration between sending a signal via internet protocol and getting an
acknowledgement of its reception, and is commonly used as a measure of internet transmission-
induced delays. Notice that the average and maximum RTT were significantly higher for the
Australia-based controller compared to the South Carolina-based controller, in large part due to the
longer distances traveled by the signals. Moreover, the first trial on the Australia based controller
exhibited slightly higher average RTT than the other three trials; its peak RTT was also slightly higher
than the others, though trial 3 had the largest peak RTT.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 21:42 21:42 21:42 21:42

Avg. RTT (ms) 137 133 140 132

Inventions 2018, 3, x FOR PEER REVIEW 11 of 17

The first part printed was the Calibration Cube of Figure 5. Four samples of the cube were
printed from each location. Tables 6 and 7 compare key attributes of the prints from the South
Carolina and Australia-based controllers, respectively. For all four trials, the South Carolina-based
controller ran hitch free, without any pauses due to latency. As a result, it returned prints with
consistent printing times and similar surface quality as the corresponding part printed using
dSPACE. Interestingly, the printing times of the South Carolina-based controller are about one
minute shorter than that from dSPACE (see Tables 2 and 3). This is due to slight differences in the
implementation of the algorithms on dSPACE and the VMs. The dSPACE is a real-time computer
which was run at a fixed 40 kHz clock frequency. The clock frequency was down-sampled by a factor
of three to create each step for the stepper motors in real time at 13.33 kHz, and by a factor of 40 to
generate the outputs of the JLMCG and LPFBS algorithms in real time at 1 kHz. On the other hand,
the VMs are non-real-time computers. They ran the JLMCG and LPFBS algorithms at a sampling
frequency of 1 kHz (non-real-time) and then up-sampled the output to 20 kHz stepping frequency.
The non-real-time nature of the VMs provides more flexibility in the implementation of the
algorithms (allowing up-sampling rather than down-sampling), leading to fewer approximations
hence reductions in printing time.

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three
trials ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of
the other three trials. However, the pauses did not have any noticeable effect on the surface quality
of the first trial part. During each print, the round-trip time (RTT) was logged at regular intervals.
The RTT measures the duration between sending a signal via internet protocol and getting an
acknowledgement of its reception, and is commonly used as a measure of internet transmission-
induced delays. Notice that the average and maximum RTT were significantly higher for the
Australia-based controller compared to the South Carolina-based controller, in large part due to the
longer distances traveled by the signals. Moreover, the first trial on the Australia based controller
exhibited slightly higher average RTT than the other three trials; its peak RTT was also slightly higher
than the others, though trial 3 had the largest peak RTT.

Table 6. Attributes of the Calibration Cube printed using a cloud-based controller stationed in Moncks
Corner, South Carolina.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 21:42 21:42 21:42 21:42

Avg. RTT (ms) 137 133 140 132

Printing time (min) 21:42 21:42 21:42 21:42
Avg. RTT (ms) 137 133 140 132
Max. RTT (ms) 216 237 724 221
No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Inventions 2018, 3, x FOR PEER REVIEW 12 of 17

Max. RTT (ms) 216 237 724 221

No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 22:01 21:42 21:42 21:42

Avg. RTT (ms) 251 248 250 245

Max. RTT (ms) 469 403 586 252

No. of Pauses 2 0 0 0

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Inventions 2018, 3, x FOR PEER REVIEW 12 of 17

Max. RTT (ms) 216 237 724 221

No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 22:01 21:42 21:42 21:42

Avg. RTT (ms) 251 248 250 245

Max. RTT (ms) 469 403 586 252

No. of Pauses 2 0 0 0

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Inventions 2018, 3, x FOR PEER REVIEW 12 of 17

Max. RTT (ms) 216 237 724 221

No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 22:01 21:42 21:42 21:42

Avg. RTT (ms) 251 248 250 245

Max. RTT (ms) 469 403 586 252

No. of Pauses 2 0 0 0

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Inventions 2018, 3, x FOR PEER REVIEW 12 of 17

Max. RTT (ms) 216 237 724 221

No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 22:01 21:42 21:42 21:42

Avg. RTT (ms) 251 248 250 245

Max. RTT (ms) 469 403 586 252

No. of Pauses 2 0 0 0

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Picture of Y-Face

Inventions 2018, 3, x FOR PEER REVIEW 12 of 17

Max. RTT (ms) 216 237 724 221

No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 22:01 21:42 21:42 21:42

Avg. RTT (ms) 251 248 250 245

Max. RTT (ms) 469 403 586 252

No. of Pauses 2 0 0 0

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Inventions 2018, 3, x FOR PEER REVIEW 12 of 17

Max. RTT (ms) 216 237 724 221

No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 22:01 21:42 21:42 21:42

Avg. RTT (ms) 251 248 250 245

Max. RTT (ms) 469 403 586 252

No. of Pauses 2 0 0 0

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Inventions 2018, 3, x FOR PEER REVIEW 12 of 17

Max. RTT (ms) 216 237 724 221

No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 22:01 21:42 21:42 21:42

Avg. RTT (ms) 251 248 250 245

Max. RTT (ms) 469 403 586 252

No. of Pauses 2 0 0 0

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Inventions 2018, 3, x FOR PEER REVIEW 12 of 17

Max. RTT (ms) 216 237 724 221

No. of Pauses 0 0 0 0

Table 7. Attributes of the Calibration Cube printed using a cloud-based controller stationed in
Sydney, Australia.

Attribute
Trial

1 2 3 4

Picture of X-Face

Picture of Y-Face

Printing time (min) 22:01 21:42 21:42 21:42

Avg. RTT (ms) 251 248 250 245

Max. RTT (ms) 469 403 586 252

No. of Pauses 2 0 0 0

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Printing time (min) 22:01 21:42 21:42 21:42
Avg. RTT (ms) 251 248 250 245
Max. RTT (ms) 469 403 586 252
No. of Pauses 2 0 0 0

A bit different from the South Carolina-based controller, the Australia-based controller
experienced two short pauses due to internet delays during the first trial print, but the other three trials
ran hitch free. As a result, the printing time for time for first trial was 19 s longer than those of the other

Inventions 2018, 3, 56 12 of 16

three trials. However, the pauses did not have any noticeable effect on the surface quality of the first trial
part. During each print, the round-trip time (RTT) was logged at regular intervals. The RTT measures
the duration between sending a signal via internet protocol and getting an acknowledgement of its
reception, and is commonly used as a measure of internet transmission- induced delays. Notice that
the average and maximum RTT were significantly higher for the Australia-based controller compared
to the South Carolina-based controller, in large part due to the longer distances traveled by the signals.
Moreover, the first trial on the Australia based controller exhibited slightly higher average RTT than
the other three trials; its peak RTT was also slightly higher than the others, though trial 3 had the
largest peak RTT.

To compare the cloud-based controller to the local controller on a more involved print,
the Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported
in Table 8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration
and 10 mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and
Australia with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8.
The local controller completed the print in 19 h 26 min while the cloud-based controller in South
Carolina and Australia both completed it in 8 h 47 min, without any pauses throughout the prints.
Note that the Castle could not be printed via dSPACE because of memory limitations; the G-code file
for the Castle is 20 MB in size and could not be loaded into the memory of the dSPACE system for
real-time execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing
time of the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing
time of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can be
provisioned as need be).

Inventions 2018, 3, x FOR PEER REVIEW 12 of 16

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Figure 7. Computer Assisted Design (CAD) model of Medieval Castle available at
https://www.thingiverse.com/thing:884536. The full-scale height of the Castle is 457 mm. However, it
is printed at 25% scale factor.

Table 8. Key parameters used in Cura for slicing the Medieval Castle.

Scale Factor Infill Density Layer Height Shell Thickness Filament Feedrate
25% 20% 0.15 mm 1 mm PLA 75 mm/s

Figure 7. Computer Assisted Design (CAD) model of Medieval Castle available at https://www.
thingiverse.com/thing:884536. The full-scale height of the Castle is 457 mm. However, it is printed at
25% scale factor.

Table 8. Key parameters used in Cura for slicing the Medieval Castle.

Scale Factor Infill Density Layer Height Shell Thickness Filament Feedrate

25% 20% 0.15 mm 1 mm PLA 75 mm/s

https://www.thingiverse.com/thing:884536
https://www.thingiverse.com/thing:884536

Inventions 2018, 3, 56 13 of 16

Inventions 2018, 3, x FOR PEER REVIEW 12 of 16

To compare the cloud-based controller to the local controller on a more involved print, the
Medieval Castle model shown in Figure 7 was sliced in Cura using the parameters reported in Table
8. It was printed using the default parameters of the local controller (i.e., 0.5 m/s2 acceleration and 10
mm/s jerk speed), as well as using the cloud-based controller hosted in South Carolina and Australia
with 10 m/s2 acceleration and 5000 m/s3 jerk limits. The results are shown in Figure 8. The local
controller completed the print in 19 h 26 min while the cloud-based controller in South Carolina and
Australia both completed it in 8 h 47 min, without any pauses throughout the prints. Note that the
Castle could not be printed via dSPACE because of memory limitations; the G-code file for the Castle
is 20 MB in size and could not be loaded into the memory of the dSPACE system for real-time
execution. However, a PC-based MATLAB Simulink emulator, which predicts the printing time of
the algorithms running on dSPACE accurately to the order of milliseconds, calculated a printing time
of 9 h 27 min for the Castle. Therefore, the printing time of the cloud-based controller would have
beaten that of the dSPACE system by 40 min (7%). Moreover, the memory limitations of the dSPACE
system highlight the potential benefit of cloud-based controllers (whose memory requirements can
be provisioned as need be).

Figure 7. Computer Assisted Design (CAD) model of Medieval Castle available at
https://www.thingiverse.com/thing:884536. The full-scale height of the Castle is 457 mm. However, it
is printed at 25% scale factor.

Table 8. Key parameters used in Cura for slicing the Medieval Castle.

Scale Factor Infill Density Layer Height Shell Thickness Filament Feedrate
25% 20% 0.15 mm 1 mm PLA 75 mm/s

Figure 8. Prints of Medieval Castle using: (a) local controller (Marlin); (b) cloud-based controller in
South Carolina; and (c) cloud-based controller in Australia. The portions of the prints highlighted in
dashed rectangles failed (broke off) during printing due to their very delicate support structures.

In terms of printing accuracy, the prints by the local and cloud-based controllers are very similar.
Notice that the local and cloud-based controllers alike failed in printing a few features at the top of
some towers of the castle, highlighted by dashed yellow rectangles in Figure 8. Those features broke
off during printing due to very delicate support structures, and may need to be printed at feedrates
much lower than 75 mm/s on both the local and cloud-based controllers. However, printing just those
delicate portions at lower feedrates is not likely to affect overall printing time very significantly.

4. Discussion, Conclusions, and Future Work

The results of this preliminary study demonstrate the technical feasibility of cloud-based
control of 3D printers via low-level stepper motion commands, as opposed to high-level G-codes,
streamed directly from the Cloud. In all but one of the prints performed via the cloud-based controller,
no hang-ups were experienced due to excessive transmission delays. Moreover, the accuracy of the
prints was not compromised, even for the one print that experienced a few hang-ups.

It is however important to note that the success of most of the prints in our preliminary tests does
not mean that internet QoS is a non-issue for 3DPCaaS. Sometimes, QoS can degrade unexpectedly.
In a test between a server in Germany and a client in New Zealand, Schlechtendahl et al. [13]
observed average and peak RTT of about 300 ms and 20 s, respectively, using a UDP connection
(and much longer delays using a TCP connection). Their 300 ms average RTT is very much in line
with those observed in our experiments, but their 20 s peak RTT could definitely cause blobs like
those shown on the Calibration Cube in Figure 9. The cube in Figure 9 was printed from a cloud-
based controller on the f1-micro Google Compute Engine in Sydney, Australia, which has lower
computational power than the n1-standard-1 Compute Engine used in our experiments (whose CPU
always stayed below 50% utilization). As a result, the print would often pause not because of excessive
internet transmission delays but because the Compute Engine could not execute the cloud-based
algorithms fast enough, leading to extra molten filament oozing out while the print was paused
to re-fill the buffer. Ongoing research at the Smart and Sustainable Automation (S2A) Lab at the
University of Michigan is looking into delay mitigation techniques that minimize adverse effects on
print quality and speed in the event of severe QoS issues in 3DPCaaS. One approach being studied is
a hybrid architecture where a cloud-based controller works in concert with a local controller to ensure
that printing is always hitch free, irrespective of the prevailing QoS. This idea is similar to “anytime”
load balancing algorithms used in speech recognition on smart phones, where algorithms are run both

Inventions 2018, 3, 56 14 of 16

on the Cloud and locally [20]. Methods for ensuring network security and privacy for 3DPCaaS are
also being researched at the S2A Lab, in collaboration with computer scientists.

Inventions 2018, 3, x FOR PEER REVIEW 13 of 16

Figure 8. Prints of Medieval Castle using: (a) local controller (Marlin); (b) cloud-based controller in
South Carolina; and (c) cloud-based controller in Australia. The portions of the prints highlighted in
dashed rectangles failed (broke off) during printing due to their very delicate support structures.

In terms of printing accuracy, the prints by the local and cloud-based controllers are very similar.
Notice that the local and cloud-based controllers alike failed in printing a few features at the top of
some towers of the castle, highlighted by dashed yellow rectangles in Figure 8. Those features broke
off during printing due to very delicate support structures, and may need to be printed at feedrates
much lower than 75 mm/s on both the local and cloud-based controllers. However, printing just those
delicate portions at lower feedrates is not likely to affect overall printing time very significantly.

4. Discussion, Conclusions, and Future Work

The results of this preliminary study demonstrate the technical feasibility of cloud-based control
of 3D printers via low-level stepper motion commands, as opposed to high-level G-codes, streamed
directly from the Cloud. In all but one of the prints performed via the cloud-based controller, no
hang-ups were experienced due to excessive transmission delays. Moreover, the accuracy of the
prints was not compromised, even for the one print that experienced a few hang-ups.

It is however important to note that the success of most of the prints in our preliminary tests
does not mean that internet QoS is a non-issue for 3DPCaaS. Sometimes, QoS can degrade
unexpectedly. In a test between a server in Germany and a client in New Zealand, Schlechtendahl et
al. [13] observed average and peak RTT of about 300 ms and 20 s, respectively, using a UDP
connection (and much longer delays using a TCP connection). Their 300 ms average RTT is very much
in line with those observed in our experiments, but their 20 s peak RTT could definitely cause blobs
like those shown on the Calibration Cube in Figure 9. The cube in Figure 9 was printed from a cloud-
based controller on the f1-micro Google Compute Engine in Sydney, Australia, which has lower
computational power than the n1-standard-1 Compute Engine used in our experiments (whose CPU
always stayed below 50% utilization). As a result, the print would often pause not because of
excessive internet transmission delays but because the Compute Engine could not execute the cloud-
based algorithms fast enough, leading to extra molten filament oozing out while the print was paused
to re-fill the buffer. Ongoing research at the Smart and Sustainable Automation (S2A) Lab at the
University of Michigan is looking into delay mitigation techniques that minimize adverse effects on
print quality and speed in the event of severe QoS issues in 3DPCaaS. One approach being studied is
a hybrid architecture where a cloud-based controller works in concert with a local controller to ensure
that printing is always hitch free, irrespective of the prevailing QoS. This idea is similar to “anytime”
load balancing algorithms used in speech recognition on smart phones, where algorithms are run
both on the Cloud and locally [20]. Methods for ensuring network security and privacy for 3DPCaaS
are also being researched at the S2A Lab, in collaboration with computer scientists.

Figure 9. Blobs on surface of XYZ Calibration Cube printed on a cloud-based controller with large
delays primarily caused by low computational resources on a Google Compute Engine stationed in
Sydney, Australia. Similar blobs can result from long transmission delays over the Internet.

The results from this preliminary study also demonstrate the potential benefits of CaaS to 3D
printing through access to advanced control algorithms which may not be executable on standard
local controllers. Note that the benefits of the LPFBS algorithm in terms of improving 3D printing
speeds and accuracy via vibration compensation have already been demonstrated in Reference [31].
However, in Reference [31], the LPFBS algorithm was implemented on a relatively expensive high-

Figure 9. Blobs on surface of XYZ Calibration Cube printed on a cloud-based controller with large
delays primarily caused by low computational resources on a Google Compute Engine stationed in
Sydney, Australia. Similar blobs can result from long transmission delays over the Internet.

The results from this preliminary study also demonstrate the potential benefits of CaaS to 3D
printing through access to advanced control algorithms which may not be executable on standard
local controllers. Note that the benefits of the LPFBS algorithm in terms of improving 3D printing
speeds and accuracy via vibration compensation have already been demonstrated in Reference [31].
However, in Reference [31], the LPFBS algorithm was implemented on a relatively expensive high-end
control system (dSPACE DS1007). Efforts to execute it on the low-cost ATMega2560 chip, widely used
on desktop 3D printer control boards, were not successful due to the algorithm’s high computational
requirements. Therefore, for such 3D printers to run advanced algorithms like LPFBS, they would need
significant hardware upgrades to more powerful microcontrollers (e.g., ARM Cortex-M4). Even then,
there may be limitations on how many such advanced algorithms can be run on a given microcontroller.

Control as a Service opens up a lot of exciting opportunities for 3D printing, as depicted
in Figure 10. Wi-Fi enabled 3D printers can connect to cloud-based ecosystems comprising
a variety of existing services [23,24] like part modeling, part slicing, part repositories, part printing,
printer management, etc., all integrated with 3DPCaaS. A lot of synergies can be gained by having
these services closely tied together with 3DPCaaS. For instance, G-codes, which have very poor
representation of design intent, can be eliminated altogether. A cloud-based slicer can directly
coordinate with the cloud-based controller to, for example, iteratively select an in-fill pattern that
achieves the design intent while allowing the printer to run at maximum speed considering the
printer’s dynamics. Smooth spline curves used to create part models in the Cloud can also be used
for advanced spline interpolation in the cloud-based controller, instead of using G01 (short-line)
approximations in G-code, thus yielding smoother and faster prints. 3D printers can have access
to a menu of advanced controllers for B-spline interpolation, feed and extrusion rate optimization,
inverse kinematics, vibration compensation, bed distortion compensation, etc., which they can deploy
based on the requirements of the part to be printed. Through CaaS, a recommender system can
be provisioned that uses crowd sourcing of user feedback to recommend control algorithms for
a particular printer and print job. Machine learning can be used to perform analytics to help optimize
the performance of the control algorithms (e.g., fine-tune their parameters) based on a global view of
the interaction of each algorithm with all the printers connected to the Cloud. And the list goes on.
Future work at the S2A Lab will focus on researching and developing various kinds of algorithms and
advanced functionalities that can be provisioned through 3DPCaaS, and bringing them to the attention
of the 3D printing community. Interested readers can join in or follow updates on this research at
www.3DPCaaS.org.

www.3DPCaaS.org

Inventions 2018, 3, 56 15 of 16

Inventions 2018, 3, x FOR PEER REVIEW 14 of 16

end control system (dSPACE DS1007). Efforts to execute it on the low-cost ATMega2560 chip, widely
used on desktop 3D printer control boards, were not successful due to the algorithm’s high
computational requirements. Therefore, for such 3D printers to run advanced algorithms like LPFBS,
they would need significant hardware upgrades to more powerful microcontrollers (e.g., ARM
Cortex-M4). Even then, there may be limitations on how many such advanced algorithms can be run
on a given microcontroller.

Control as a Service opens up a lot of exciting opportunities for 3D printing, as depicted in Figure
10. Wi-Fi enabled 3D printers can connect to cloud-based ecosystems comprising a variety of existing
services [23,24] like part modeling, part slicing, part repositories, part printing, printer management,
etc., all integrated with 3DPCaaS. A lot of synergies can be gained by having these services closely
tied together with 3DPCaaS. For instance, G-codes, which have very poor representation of design
intent, can be eliminated altogether. A cloud-based slicer can directly coordinate with the cloud-
based controller to, for example, iteratively select an in-fill pattern that achieves the design intent
while allowing the printer to run at maximum speed considering the printer’s dynamics. Smooth
spline curves used to create part models in the Cloud can also be used for advanced spline
interpolation in the cloud-based controller, instead of using G01 (short-line) approximations in G-
code, thus yielding smoother and faster prints. 3D printers can have access to a menu of advanced
controllers for B-spline interpolation, feed and extrusion rate optimization, inverse kinematics,
vibration compensation, bed distortion compensation, etc., which they can deploy based on the
requirements of the part to be printed. Through CaaS, a recommender system can be provisioned
that uses crowd sourcing of user feedback to recommend control algorithms for a particular printer
and print job. Machine learning can be used to perform analytics to help optimize the performance
of the control algorithms (e.g., fine-tune their parameters) based on a global view of the interaction
of each algorithm with all the printers connected to the Cloud. And the list goes on. Future work at
the S2A Lab will focus on researching and developing various kinds of algorithms and advanced
functionalities that can be provisioned through 3DPCaaS, and bringing them to the attention of the
3D printing community. Interested readers can join in or follow updates on this research at
www.3DPCaaS.org.

Figure 10. Example of components of existing cloud-based 3D printing ecosystem integrated with
3DPCaaS.

Author Contributions: C.E.O. was responsible for conceptualization, funding acquisition, project administration,
supervision, methodology, visualization, and all writing. S.H. and S.S. were responsible for software,
methodology, and validation. C.H. and B.Z. were responsible for investigation and validation.

Funding: This work was funded by discretionary research funds from the University of Michigan.

Acknowledgments: The authors would like to thank: Deokkyun Yoon for providing feedback and support on
the implementation of the LPFBS algorithm; Harsha Madhyastha for feedback on internet protocols; Andrew
Edoimioya and Oluwami Dosunmu-Ogunbi for help with literature review on CaaS; and Aleph Objects, Inc. for
donating the Lulzbot Taz 6 printer used in this study.

Figure 10. Example of components of existing cloud-based 3D printing ecosystem integrated
with 3DPCaaS.

Author Contributions: C.E.O. was responsible for conceptualization, funding acquisition, project administration,
supervision, methodology, visualization, and all writing. S.H. and S.S. were responsible for software, methodology,
and validation. C.H. and B.Z. were responsible for investigation and validation.

Funding: This work was funded by discretionary research funds from the University of Michigan.

Acknowledgments: The authors would like to thank: Deokkyun Yoon for providing feedback and support
on the implementation of the LPFBS algorithm; Harsha Madhyastha for feedback on internet protocols;
Andrew Edoimioya and Oluwami Dosunmu-Ogunbi for help with literature review on CaaS; and Aleph Objects,
Inc. for donating the Lulzbot Taz 6 printer used in this study.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to
publish the result.

References

1. Givehchi, O.; Trsek, H.; Jasperneite, J. Cloud computing for industrial automation systems—A comprehensive
overview. In Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation
(ETFA), Cagliari, Italy, 10–13 September 2013; pp. 1–4.

2. Verl, A.; Lechler, A.; Wesner, S.; Kirstädter, A.; Schlechtendahl, J.; Schubert, L.; Meier, S. An approach for
a cloud-based machine tool control. Procedia CIRP 2013, 7, 682–687. [CrossRef]

3. Givehchi, O.; Imtiaz, J.; Trsek, H.; Jasperneite, J. Control-as-a-service from the cloud: A case study for using
virtualized PLCs. In Proceedings of the 2014 IEEE 10th Workshop on Factory Communication Systems
(WFCS), Toulouse, France, 5–7 May 2014; pp. 1–4.

4. Hegazy, T.; Hefeeda, M. Industrial automation as a cloud service. IEEE Trans. Parallel Distrib. Syst. 2015, 26,
2750–2763. [CrossRef]

5. Esen, H.; Adachi, M.; Bernardini, D.; Bemporad, A.; Rost, D.; Knodel, J. Control as a service (CaaS):
Cloud-based software architecture for automotive control applications. In Proceedings of the Second
International Workshop on the Swarm at the Edge of the Cloud, Seattle, WA, USA, 13–16 April 2015;
pp. 13–18.

6. Vick, A.; Horn, C.; Rudorfer, M.; Krüger, J. Control of robots and machine tools with an extended factory
cloud. In Proceedings of the 2015 IEEE World Conference on Factory Communication Systems (WFCS),
Palma de Mallorca, Spain, 27–29 May 2015; pp. 1–4.

7. Vick, A.; Vonásek, V.; Pěnička, R.; Krüger, J. Robot control as a service—Towards cloud-based motion
planning and control for industrial robots. In Proceedings of the 2015 10th International Workshop on Robot
Motion and Control (RoMoCo), Poznań, Poland, 6–8 July 2015; pp. 33–39.

8. Hallmans, D.; Sandström, K.; Nolte, T.; Larsson, S. Challenges and opportunities when introducing cloud
computing into embedded systems. In Proceedings of the 2015 IEEE 13th International Conference on
Industrial Informatics (INDIN), Cambridge, UK, 22–24 July 2015; pp. 454–459.

http://dx.doi.org/10.1016/j.procir.2013.06.053
http://dx.doi.org/10.1109/TPDS.2014.2359894

Inventions 2018, 3, 56 16 of 16

9. Kaneko, Y.; Ito, T. A Reliable Cloud-Based Feedback Control System. In Proceedings of the 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 27 June–2 July 2016;
pp. 880–883.

10. Vick, A.; Guhl, J.; Krüger, J. Model predictive control as a service—Concept and architecture for use in
cloud-based robot control. In Proceedings of the 2016 21st International Conference on Methods and Models
in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 29 August–1 September 2016; pp. 607–612.

11. Horn, C.; Krüger, J. Feasibility of connecting machinery and robots to industrial control services in the
cloud. In Proceedings of the 2016 IEEE 21st International Conference on Emerging Technologies and Factory
Automation (ETFA), Berlin, Germany, 6–9 September 2016; pp. 1–4.

12. Krüger, J.; Wang, L.; Verl, A.; Bauernhansl, T.; Carpanzano, E.; Makris, S.; Fleischer, J.; Reinhart, G.; Franke, J.;
Pellegrinelli, S. Innovative control of assembly systems and lines. CIRP Ann. 2017, 66, 707–730. [CrossRef]

13. Schlechtendahl, J.; Kretschmer, F.; Sang, Z.; Lechler, A.; Xu, X. Extended study of network capability for
cloud based control systems. Robot. Comput. Integr. Manuf. 2017, 43, 89–95. [CrossRef]

14. Abdelaal, A.E.; Hegazy, T.; Hefeeda, M. Event-based control as a cloud service. In Proceedings of the 2017
American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 1017–1023.

15. Mubeen, S.; Nikolaidis, P.; Didic, A.; Pei-Breivold, H.; Sandström, K.; Behnam, M. Delay mitigation in
offloaded cloud controllers in industrial IoT. IEEE Access 2017, 5, 4418–4430. [CrossRef]

16. Sang, Z.; Xu, X. The framework of a cloud-based CNC system. Procedia CIRP 2017, 63, 82–88. [CrossRef]
17. Li, B.H.; Zhang, L.; Wang, S.L.; Tao, F.; Cao, J.W.; Jiang, X.D.; Song, X.; Chai, X.D. Cloud manufacturing:

A new service-oriented networked manufacturing model. Comput. Integr. Manuf. Syst. 2010, 16, 1–7.
18. Xu, X. From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 2012, 28, 75–86.

[CrossRef]
19. Kuffner, J. Cloud-enabled robots. In Proceedings of the 2010 10th IEEE-RAS International Conference on

Humanoid Robots (Humanoids 2010), Nashville, TN, USA, 6–8 December 2010.
20. Kehoe, B.; Patil, S.; Abbeel, P.; Goldberg, K. A survey of research on cloud robotics and automation.

IEEE Trans. Autom. Sci. Eng. 2015, 12, 398–409. [CrossRef]
21. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.;

Stoica, I.; et al. A view of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]
22. Erl, T. Service-Oriented Architecture; Prentice Hall: Upper Saddle River, NJ, USA, 2005; Volume 8.
23. Rayna, T.; Striukova, L.; Darlington, J. Co-creation and user innovation: The role of online 3D printing

platforms. J. Eng. Technol. Manag. 2015, 37, 90–102. [CrossRef]
24. Baumann, F.W.; Roller, D. Additive Manufacturing, Cloud-Based 3D Printing and Associated

Services—Overview. J. Manuf. Mater. Process. 2017, 1, 15. [CrossRef]
25. 3DPrinterOS. Available online: https://www.3dprinteros.com/ (accessed on 8 August 2018).
26. Astroprint. Available online: https://www.astroprint.com/ (accessed on 8 August 2018).
27. OctoPrint.org. Available online: https://octoprint.org/ (accessed on 8 August 2018).
28. Repetier Server. Available online: https://www.repetier-server.com/ (accessed on 8 August 2018).
29. Google Cloud. Available online: https://cloud.google.com/ (accessed on 8 August 2018).
30. Erkorkmaz, K.; Altintas, Y. High speed CNC system design. Part I: Jerk limited trajectory generation and

quintic spline interpolation. Int. J. Mach. Tools Manuf. 2001, 41, 1323–1345. [CrossRef]
31. Duan, M.; Yoon, D.; Okwudire, C.E. A limited-preview filtered B-spline approach to tracking control—With

application to vibration-induced error compensation of a 3D printer. Mechatronics 2017. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cirp.2017.05.010
http://dx.doi.org/10.1016/j.rcim.2015.10.012
http://dx.doi.org/10.1109/ACCESS.2017.2682499
http://dx.doi.org/10.1016/j.procir.2017.03.152
http://dx.doi.org/10.1016/j.rcim.2011.07.002
http://dx.doi.org/10.1109/TASE.2014.2376492
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1016/j.jengtecman.2015.07.002
http://dx.doi.org/10.3390/jmmp1020015
https://www.3dprinteros.com/
https://www.astroprint.com/
https://octoprint.org/
https://www.repetier-server.com/
https://cloud.google.com/
http://dx.doi.org/10.1016/S0890-6955(01)00002-5
http://dx.doi.org/10.1016/j.mechatronics.2017.09.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Laptop PC
	Google Cloud Platform
	ESP32 Wi-Fi Board and DRV8825 Stepper Drivers
	Lulzbot Taz 6 Desktop 3D Printer

	Results
	Calibration Experiments
	Comparison of Local Controller with Cloud-Based Controller

	Discussion, Conclusions, and Future Work
	References

