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Abstract: Background: Zebrafish are efficient animal models for conducting whole organism drug
testing and toxicological evaluation of chemicals. They are frequently used for high-throughput
screening owing to their high fecundity. Peripheral experimental equipment and analytical software
are required for zebrafish screening, which need to be further developed. Machine learning has
emerged as a powerful tool for large-scale image analysis and has been applied in zebrafish research
as well. However, its use by individual researchers is restricted due to the cost and the procedure of
machine learning for specific research purposes. Methods: We developed a simple and easy method
for zebrafish image analysis, particularly fluorescent labelled ones, using the free machine learning
program Google AutoML. We performed machine learning using vascular- and macrophage-Enhanced
Green Fluorescent Protein (EGFP) fishes under normal and abnormal conditions (treated with
anti-angiogenesis drugs or by wounding the caudal fin). Then, we tested the system using a new set of
zebrafish images. Results: While machine learning can detect abnormalities in the fish in both strains
with more than 95% accuracy, the learning procedure needs image pre-processing for the images of
the macrophage-EGFP fishes. In addition, we developed a batch uploading software, ZF-ImageR,
for Windows (.exe) and MacOS (.app) to enable high-throughput analysis using AutoML. Conclusions:
We established a protocol to utilize conventional machine learning platforms for analyzing zebrafish
phenotypes, which enables fluorescence-based, phenotype-driven zebrafish screening.

Keywords: artificial intelligence; fluorophores; in vivo screening

1. Introduction

Zebrafish is considered one of the main animal models for in vivo chemical testing and toxicity
evaluation. Due to their transparent body, phenotypic evaluation conducted for several screening
experiments, also known as “zebrafish screening”, can be done using live imaging of the target organs
by dye staining or by introducing transgenes for fluorescent proteins. To evaluate the phenotypic
changes, several types of image analysis procedures (software program, macros, and pipelines) have
been developed and applied for large-scale zebrafish screening, such as ImageJ [1], custom R scripts [2],
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or commercial ones [3,4]. In general, freeware programs developed by researchers are semi-automatic
and sometimes challenging to use, while commercial software programs for high-content images
are easy to use, fully automatic, but expensive. We also developed a simple and free fluorescence
quantification software for processing multiple zebrafish images (available on Windows and macOS)
that can be used for zebrafish screening [5]. However, each zebrafish image still needs to be visually
observed by skilled researchers to ensure that the phenotypic changes are properly identified during
the experiments.

Machine learning is an algorithm based on statistical models that are used by computer systems
to perform a specific task effectively by relying on patterns and inference and that do not require
explicit instructions. Machine learning has been applied broadly in many fields, such as image
recognition. In 2005, machine learning was applied for the first time in zebrafish research to analyze
zebrafish transcriptomics as support vector machines [6]. Further, machine learning has been used
for behavior [7,8] and image analysis [9–11]. Cordero-Maldonado et al. recently reported that a
combination of machine learning and robotic manipulation enables microinjection into zebrafish eggs
at a trained target site in a high-throughput manner [12]. The combination of automatic imaging,
quantification, and machine learning should promote large-scale, high-throughput zebrafish screening
in the field of drug discovery. The attractiveness of machine learning is its superior efficacy, although
the analysis pipeline is usually specific for a single purpose and cannot be easily generated, requiring
computer specialists and having a high cost. That means small-to-medium labs rarely use these systems.

In this study, we developed an easy analysis pipeline for zebrafish, particularly the fluorescently
labelled ones, using Google AutoML. AutoML is a web-based application used for creating machine
learning-based methodologies and it is free for an upload of up to 3000 images. We conducted 2 types
of zebrafish experiments using vascular- and macrophage-specific Enhanced Green Fluorescent Protein
(EGFP) expression strains and showed that AutoML can be applied for zebrafish screening with a
few modifications.

2. Materials and Methods

2.1. Ethic Approval

All animal procedures were performed according to the Japanese animal welfare regulatory
practice Act on Welfare and Management of Animals (Ministry of Environment of Japan) in compliance
with international guidelines. Ethical approval from the local Institutional Animal Care and Use
Committee was not sought, as this law does not mandate the protection of fish.

2.2. Zebrafish Experiments

The zebrafish Tg (kdrl:EGFP) strain was a kind gift by Prof. Stefan Schulte-Merker [13], and the Tg
(mpeg1:EGFP) strain was purchased from the Zebrafish International Resource Center (Eugene, OR,
USA). The zebrafish were maintained in our facility according to standard operational guidelines. For
the angiogenesis assay, Tg (kdrl:EGFP) zebrafish were treated with sorafenib (SignalChem, Richmond,
BC, Canada) from 24 h post fertilization (hpf) to 96 hpf, according to the method reported in a previous
study [14]. For the macrophage assay, we used Tg (mpeg1:EGFP) zebrafish [15]. The caudal fin of the
72 hpf zebrafish were injured using a fine glass blade and the images of the macrophages were taken
6 h after the injury.

2.3. Image Capture

The zebrafish images were captured using an all-in-one fluorescence microscope (BZ-X710;
Keyence, Osaka, Japan) equipped with a Nikon CFI 60 Series infinite optical system and
2.83 million-pixel monochrome charged coupled device (CCD [output signal is 14 bit]) camera.
For imaging, zebrafish were anaesthetized with 0.003% tricaine (MS222; Sigma-Aldrich, St. Louis, MO,



Inventions 2019, 4, 72 3 of 8

USA) and mounted laterally on 10-cm dishes coated with 1% agarose dissolved in H2O. The conditions
for image capture were as follows:

4× objective lens with 10× eyepieces (40× total magnification).
High-resolution mode (1920 × 1440 px).
Exposure time; brightfield: 1/7500 s, green fluorescent protein
(GFP: Ex 470/40, Em 525/50): 1.2 s.
The orientation of zebrafish was random.

Merged images (automatically prepared using the BZ-H3AE software; Keyence) were used for
this study.

2.4. Image Processing

Images of the macrophage assay were pre-processed for machine learning. Microsoft Paint was
used to partially cut the image including the wound area (size: 631× 601 px). ImageMagick (Version 7.0;
ImageMagick Studio, Landenberg, PA, USA) was used to rotate the images. ImageMagick and GIMP
software (version 2.10; C Orinda, CA, USA) were used to emphasize the green color of the images.
For a step-by-step protocol, please see the Supplementary Method. In addition, to reduce the file size
and upload time of images to AutoML, we converted TIFF files to the RGB-JPEG format.

2.5. Machine Learning

Machine learning by AutoML was performed according to the website tutorials (https://cloud.
google.com/vision/automl/docs/how-to). Firstly, we set up our projects and created a service account
(https://cloud.google.com/vision/automl/docs/before-you-begin). A service account key, which is
necessary to use AutoML, was created during this procedure. Images selected for machine learning
were divided into a learning set and a test set. We prepared the images of the normal phenotype
(control) and abnormal phenotypes (sorafenib-treated and wounded fishes for the angiogenesis and
macrophage experiments, respectively) for each experiment. The numbers of images used in this study
are summarized in Table 1. Then we created the datasets with a setting of “single-label classification
(normal or abnormal)”, imported each type of image file to the datasets, and labelled the imported
images (https://cloud.google.com/vision/automl/docs/create-datasets). Finally, we trained AutoML,
cloud-hosted the resulting models (https://cloud.google.com/vision/automl/docs/train), evaluated the
models (https://cloud.google.com/vision/automl/docs/evaluate), and deployed them (https://cloud.
google.com/vision/automl/docs/deploy). After completing the models, we retrieved the Project ID and
Model ID from the “making individual predictions” page (https://cloud.google.com/vision/automl/
docs/predict). These procedures are also explained on the ZF-ImageR website (https://github.com/

YShimada0419/ZF-ImageR/wiki). The parameters, except dataset labelling (single-label classification),
were set as default values. We trained AutoML once for each experiment.

Table 1. Numbers of zebrafish images for machine learning.

Experiment Normal Phenotypes Abnormal Phenotypes

Angiogenesis 1 47 65
Macrophage 2 104 156

1 For angiogenesis-related experiment, the normal phenotypes were derived from the control group and the abnormal
ones from the sorafenib (0.5 µM)-treated group. 2 For macrophage-related experiments, normal phenotypes were
derived from the control group and abnormal ones from the wounded fishes.

2.6. ZF-ImageR

To upload the images in batches, we wrote the program ZF-ImageR using Python and then
transferred it to an executable application software for Windows (.exe) and MacOS (.app). The Python
code and the ZF-ImageR software can be downloaded from https://github.com/YShimada0419/ZF-
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ImageR. See the Supplementary video (Video S1) for instructions on how to use. The Python code is
shown and described as follows:

from google.cloud import automl_v1beta1 .... (1)
prediction_client = automl_v1beta1.PredictionServiceClient() .... (2)
prediction_client = prediction_client.from_service_account_json(KEY_FILE) .... (3)
name = ‘projects/{}/locations/us-central1/models/{}’.format(project_id, model_id) .... (4)
payload = {‘image’: {‘image_bytes’: content}} .... (5)
request = prediction_client.predict(name, payload) .... (6)
print(request) .... (7)

(1) Import Python library for Google Cloud.
(2) Create Instance object of AutoML prediction service client.
(3) Import Google Cloud service account key file which is required for accessing GCP services.
(4) Set AutoML prediction model’s ID which is required for (6).
(5) Set Image data to post to AutoML for prediction which is required for (6).
(6) Send a request to Google Cloud AutoML server for prediction of an image data from

an service client which is prepared on (2).
(7) Output prediction result.

3. Results

3.1. Evaluation of Zebrafish after Treatment with Anti-Angiogenesis Drug

Machine learning is used to build a mathematical model based on sample data, known as “training
data”, in order to make predictions for the “test data”. We trained AutoML using multiple normal and
abnormal zebrafish images (training data). Then, the newly prepared zebrafish images (test data) were
used to diagnose them as normal or abnormal by the learned AutoML. The schematic representation
of AutoML is depicted in Figure 1a. We first tested the learned AutoML using vascular-EGFP zebrafish
with or without the treatment with the anti-angiogenic drug sorafenib. Sorafenib is an anticancer
drug used for the treatment of several types of malignancies and it can inhibit multiple kinases such
as vascular endothelial growth factor receptor, which suppresses tumor angiogenesis. As sorafenib
suppresses vascular development in zebrafish embryos [14], we speculated that sorafenib-treated fishes
would be suitable models for machine learning. According to a previous study, fishes treated with
sorafenib (0.5 µM) from 24 hpf to 96 hpf could suppress the vascular development, and in particular the
development of the intersegmental vessels (Figure 1b). AutoML was trained using 47 and 65 images of
control (normal phenotype) and sorafenib-treated (abnormal phenotype) fishes, respectively. Then,
the newly prepared images of the zebrafish with or without sorafenib were tested using the learned
AutoML. Based on the results, the percentages “predicted as normal” and “predicted as abnormal”
in the control group were 99.7 ± 0.2 and 0.31 ± 0.2%, respectively, while the percentages “predicted
as normal” and “predicted as abnormal” in the sorafenib group were 6.0 ± 0.9% and 94.0 ± 0.9%,
respectively (Figure 1c). This indicates that the learned AutoML was able to diagnose whether the
input zebrafish image was from a control or sorafenib-treated sample. Further, we tested this learned
AutoML (Figure 1c) with images of fishes treated with different concentrations (0–0.5 µM) of sorafenib
(Figure 1d). As shown in Figure 1e, the prediction accuracy for samples “predicted as abnormal”
(solid line) increased in a dose dependent manner and drastically increased between 0.25 and 0.5 µM.
To compare the AutoML prediction and manual prediction, we asked three researchers to predict
whether the zebrafish were normal or abnormal using the same images. For the prediction with
or without 0.5 µM sorafenib (Figure 1b,c), the AutoML prediction was very similar to the manual
prediction (Figure S1). In the dose-dependent experiment (Figure 1d,e), there was a similar tendency
between the AutoML result and the manual prediction (Figure S2).

https://github.com/YShimada0419/ZF-ImageR
https://github.com/YShimada0419/ZF-ImageR
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Figure 1. Machine learning to detect anti-angiogenic phenotype. (a) Schematic representation of the 
AutoML machine learning process. (b) Typical images of Tg (kdrl:EGFP) at 96 h-post fertilization (dpf) 
with or without sorafenib (0.5 µM). Sorafenib treatment was started at 24 hpf. The green color 
indicates vasculature. (c) Prediction of normal and abnormal phenotypes by the learned AutoML. The 
AutoML perfectly predicted the normal phenotype in the control group (left white bar) and abnormal 
phenotype in the sorafenib-treated group (right dark bars) with more than 90% accuracy. Note: n = 
20, error bars indicate standard error (SE); *** p < 0.001. (d) Typical images of the test samples treated 
with different concentrations of sorafenib (0–500 nM). (e) Prediction of abnormal phenotypes of the 
sorafenib-treated fishes in a dose-dependent manner. The learned AutoML calculated the accuracy of 
the abnormal phenotype. Note: n = 15, error bars indicate SE. 
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strain. It is well-known that macrophages can migrate to the wound site in the caudal fin as a part of 
the inflammatory response in zebrafish embryos [16]. We prepared the wounded larvae and 
uploaded their images into the learned AutoML (104 control and 156 wounded zebrafish). As shown 
in Figure 2a, macrophage accumulation (green spots) could be seen in the caudal fin. However, the 
learned AutoML could distinguish between these two phenotypes with less than 70% average 
accuracy in both the groups (Figure 2b). To improve the accuracy of AutoML prediction, we focused 
on the caudal fin by trimming the corresponding area (Figure 2c), but it still did not work (Figure 2d). 
Finally, we emphasized the green signals on the caudal fin (Figure 2e), and then the learned AutoML 
could effectively distinguish between normal and abnormal phenotype in the control and wounded 
group with more than 90% accuracy (Figure 2f). These results indicate that machine learning of image 
pre-processing is necessary for machine learning of macrophage-EGFP zebrafish. We also compared 
the final AutoML result (Figure 2f) with the manual prediction result, as shown in Figure S1, and 
found that these results are quite similar (Figure S3). 
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Figure 1. Machine learning to detect anti-angiogenic phenotype. (a) Schematic representation of the
AutoML machine learning process. (b) Typical images of Tg (kdrl:EGFP) at 96 h-post fertilization (dpf)
with or without sorafenib (0.5 µM). Sorafenib treatment was started at 24 hpf. The green color indicates
vasculature. (c) Prediction of normal and abnormal phenotypes by the learned AutoML. The AutoML
perfectly predicted the normal phenotype in the control group (left white bar) and abnormal phenotype
in the sorafenib-treated group (right dark bars) with more than 90% accuracy. Note: n = 20, error bars
indicate standard error (SE); *** p < 0.001. (d) Typical images of the test samples treated with different
concentrations of sorafenib (0–500 nM). (e) Prediction of abnormal phenotypes of the sorafenib-treated
fishes in a dose-dependent manner. The learned AutoML calculated the accuracy of the abnormal
phenotype. Note: n = 15, error bars indicate SE.

3.2. Detection of Macrophage Abnormalities Using Machine Learning.

Next, we applied AutoML for other EGFP transgenic zebrafish, such as the macrophage-EGFP
strain. It is well-known that macrophages can migrate to the wound site in the caudal fin as a part
of the inflammatory response in zebrafish embryos [16]. We prepared the wounded larvae and
uploaded their images into the learned AutoML (104 control and 156 wounded zebrafish). As shown
in Figure 2a, macrophage accumulation (green spots) could be seen in the caudal fin. However,
the learned AutoML could distinguish between these two phenotypes with less than 70% average
accuracy in both the groups (Figure 2b). To improve the accuracy of AutoML prediction, we focused
on the caudal fin by trimming the corresponding area (Figure 2c), but it still did not work (Figure 2d).
Finally, we emphasized the green signals on the caudal fin (Figure 2e), and then the learned AutoML
could effectively distinguish between normal and abnormal phenotype in the control and wounded
group with more than 90% accuracy (Figure 2f). These results indicate that machine learning of image
pre-processing is necessary for machine learning of macrophage-EGFP zebrafish. We also compared
the final AutoML result (Figure 2f) with the manual prediction result, as shown in Figure S1, and found
that these results are quite similar (Figure S3).
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of the caudal fin area. (d) Prediction of normal and abnormal phenotypes by learned AutoML with 
image from panel (c). The prediction accuracy in each group was still lower than 90%, indicating 
insufficient machine learning. (e) Image pre-processing of (c). Green-enhanced images of the caudal 
fin area. (f) Improved AutoML prediction (learned by image set of (e)) of macrophage accumulation 
in the caudal fin. Note: n = 20, error bars indicate SE; * p < 0.05, *** p < 0.001. 
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cells as a model for human disease. Moreover, it is possible to obtain high-throughput data equivalent 
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programs that do not require professional training. In particular, Google (AutoML) has released free 
web-based software for small scale applications, and these can be used for small scale development 
research of image recognition, such as face recognition. 

Vascular-EGFP zebrafish are good samples for image acquisition, probably due to their fixed 
but complex structure. When we examined the images of the zebrafish treated with sorafenib using 
AutoML, small deviations in the accuracy rate were observed (Figure 1c). Although we could not 
deduce exactly why the prediction by AutoML was high, we speculate that it might be because of the 
focus (the area which is preferentially analyzed by the program) of AutoML, which was on the 
vascular structure (not the other parts of zebrafish such as the body). In other words, in the vascular-
EGFP zebrafish study, the focus of AutoML is considered to be closer to the human eye because 
AutoML focuses on vasculature. However, in the macrophage-EGFP zebrafish study, the focus of 
AutoML is clearly different from that of the human eye. For example, in Figure 2a,b, AutoML, unlike 
human eyes, could not consciously observe the caudal fin area and was unable to focus, even after 
the area was enlarged (Figure 2c,d). Finally, by extracting only the EGFP (green signals) of the 
macrophages from the magnified images (Figure 2e,f), AutoML could focus on the macrophages and 
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Figure 2. Machine learning to detect macrophage accumulation in the caudal fin. (a) Typical images
of macrophage-Enhanced Green Fluorescent Protein (EGFP) zebrafish (72 hpf) with a wound in the
caudal fin. (b) Prediction of normal and abnormal phenotypes by learned AutoML with an image
set of (a). The prediction accuracies in each group were lower than 90%, indicating inappropriate
machine learning. (c) Image pre-processing of caudal fin area (white square in (a)). Enlarged images
of the caudal fin area. (d) Prediction of normal and abnormal phenotypes by learned AutoML with
image from panel (c). The prediction accuracy in each group was still lower than 90%, indicating
insufficient machine learning. (e) Image pre-processing of (c). Green-enhanced images of the caudal fin
area. (f) Improved AutoML prediction (learned by image set of (e)) of macrophage accumulation in the
caudal fin. Note: n = 20, error bars indicate SE; * p < 0.05, *** p < 0.001.

4. Discussion

Zebrafish exhibit diverse and complex morphology, which makes them preferable over culture cells
as a model for human disease. Moreover, it is possible to obtain high-throughput data equivalent to cells,
which means that a large number of images can be processed in zebrafish screening experiments. It is
almost impossible for researchers to visually analyze the images on such a large scale, and thus various
analysis programs and software have been developed to achieve this. Despite various disadvantages,
such as the cost of system introduction, difficulty in handling requiring a specialized programmer,
and unsuitability for usage in a general laboratory, machine learning is one of the solutions to this
problem. On the other hand, large IT companies offer machine learning or AI programs that do not
require professional training. In particular, Google (AutoML) has released free web-based software
for small scale applications, and these can be used for small scale development research of image
recognition, such as face recognition.

Vascular-EGFP zebrafish are good samples for image acquisition, probably due to their fixed
but complex structure. When we examined the images of the zebrafish treated with sorafenib using
AutoML, small deviations in the accuracy rate were observed (Figure 1c). Although we could not
deduce exactly why the prediction by AutoML was high, we speculate that it might be because of the
focus (the area which is preferentially analyzed by the program) of AutoML, which was on the vascular
structure (not the other parts of zebrafish such as the body). In other words, in the vascular-EGFP
zebrafish study, the focus of AutoML is considered to be closer to the human eye because AutoML
focuses on vasculature. However, in the macrophage-EGFP zebrafish study, the focus of AutoML is
clearly different from that of the human eye. For example, in Figure 2a,b, AutoML, unlike human
eyes, could not consciously observe the caudal fin area and was unable to focus, even after the area
was enlarged (Figure 2c,d). Finally, by extracting only the EGFP (green signals) of the macrophages



Inventions 2019, 4, 72 7 of 8

from the magnified images (Figure 2e,f), AutoML could focus on the macrophages and identify those
accumulated at the wound site. Machine learning can reveal the differences and discover algorithms
from training images using a different perspective from that of humans. As seen in the case of our
macrophage study, there could be other cases where it is not possible to obtain the results expected
by humans. In such a case, prior image processing is required to support the machine learning.
Alternatively, the researchers could take focused images in regions of interest or use only fluorescent
images. Training AutoML with only fluorescent images would also improve prediction accuracy
in vascular-EGFP zebrafish. To determine which experimental dataset needs image pre-processing,
we used a trial-and-error approach in this study. Further trials using different types of zebrafish image
datasets could determine the guidelines for image preparation, such as which magnifications to use or
colors to emphasize in machine learning, especially for AutoML.

In this study, we utilized free machine learning programs for the diagnosis of zebrafish images.
Ishaq et al. reported the deep learning-based classification of zebrafish deformation [11]. They used
the neural network architecture AlexNet; neural networks and machine learning are different in
principle. Neural networks are suitable for solving complex processes and require more thorough
training compared to machine learning. Thus, for our purpose of determining which fish have
anomalies, machine learning, especially supervised learning, is appropriate and simpler to use.
Notably, small numbers of images are sufficient for training AutoML. For example, about 50 images
were sufficient for our sorafenib experiment. In addition, it is known that repeated training on the
same dataset can lead to different models that give slightly different results. However, there was
no significant difference in prediction accuracy between the trainings with the same images in our
vascular experiment (Figure S4).

While the free software is certainly attractive for many researchers, it has the disadvantage of being
low-throughput. AutoML can upload training images in batches, but it requires uploading experimental
images individually, which can take several minutes to upload 10 images. When combined with
Google Cloud Storage, these test images can be uploaded in batches, although several command line
commands are required to complete the task and it is not free (https://cloud.google.com/vision/automl/
docs/predict-batch). To overcome this problem, we created a batch upload software “ZF-ImageR”
specific for AutoML testing. As shown in the Supplementary video (Video S1), we can easily upload
multiple images to the learned AutoML and retrieve the prediction for each image in a single CSV file
at once. We have provided access to the Windows OS and Mac OS versions of the software as well as
the source code on GitHub (https://github.com/YShimada0419/ZF-ImageR).

5. Conclusions

We succeeded in utilizing AutoML, a web-based machine learning program, to identify the
abnormalities in the phenotypes of fluorescent zebrafish using their images. While few types of images
need pre-processing to improve the focus for AutoML learning, the accuracy rates are similar to
humans, and hence this program is applicable for high-throughput screening in combination with
ZF-ImageR, a batch uploading software.

Supplementary Materials: The following are available online at http://www.mdpi.com/2411-5134/4/4/72/s1.
Supplementary Methods: Image preprocessing procedure to emphasize green signals. Figure S1: Manual
prediction of normal and abnormal phenotypes in zebrafish treated with 0.5 µM sorafenib. Figure S2: Manual
prediction of normal and abnormal phenotypes of zebrafish treated with sorafenib in a dose-dependent manner.
Figure S3: Manual prediction of normal and abnormal phenotypes in wounded zebrafish. Figure S4: Repeated
training of AutoML with the same images did not affect the prediction accuracies in vascular-EGFP zebrafish.
Video S1: How to use ZF-ImageR.
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