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Abstract: The shift from centralized to distributed generation and the need to address energy shortage
and achieve the sustainability goals are among the important factors that drive increasing interests
of governments, planners, and other relevant stakeholders in microgrid systems. Apart from the
distributed renewable energy resources, fuel cells (FCs) are a clean, pollution-free, highly efficient,
flexible, and promising energy resource for microgrid applications that need more attention in
research and development terms. Furthermore, they can offer continuous operation and do not
require recharging. This paper examines the exciting potential of FCs and their utilization in
microgrid systems. It presents a comprehensive review of FCs, with emphasis on the developmental
status of the different technologies, comparison of operational characteristics, and the prevailing
techno-economic barriers to their progress and the future outlook. Furthermore, particular attention
is paid to the applications of the FC technologies in microgrid systems such as grid-integrated,
grid-parallel, stand-alone, backup or emergency power, and direct current systems, including the FC
control mechanisms and hybrid designs, and the technical challenges faced when employing FCs in
microgrids based on recent developments. Microgrids can help to strengthen the existing power grid
and are also suitable for mitigating the problem of energy poverty in remote locations. The paper
is expected to provide useful insights into advancing research and developments in clean energy
generation through microgrid systems based on FCs.

Keywords: balance-of-plant; clean energy; distributed generation; energy shortage; fuel cell stack;
hydrogen fuel; primary fuel; microgrid

1. Introduction

The global electricity systems are currently witnessing a paradigm shift from the traditional
centralized to distributed generation technologies [1,2]. This development, coupled with the necessity
to address the concerns of an energy shortage, ensures energy security and realizes the environmental
sustainability is part of the critical factors responsible for growing interests in microgrid systems across
the world [3–5]. In addition, it is necessary to develop more diversified electrical energy production
resources beyond the current solar, wind, hydro, biomass, diesel, and battery technologies for microgrid
systems. Interestingly, fuel cell (FC) systems are considered as promising energy resources on the
basis of being clean, pollution-free, and efficient, including their potential to store higher calorific
value, in the hydrogen form, compared to the chemical energy that may be stored by using most other
materials [6–9], and the capability to supply energy for a relatively longer time [10]. It was of interest in
this paper to discuss the potential of the FC technologies for microgrid system applications. One way
to engage the technologies is by integrating them with the renewable energy resources, in which they
operate as a storage device for harnessing relatively high renewable energy; another option is to use
them as the source of energy in microgrid systems.
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Microgrid systems are being employed both for on-grid and islanded purposes in several
developed countries and are fueled by several resources like solar, wind, biomass, hydro, diesel,
and natural gas [11]. While the on-grid configuration seeks to support the existing grid, the islanded
mode is used for serving remote or grid-independent applications since the microgrid is disconnected
from the grid [12–16]. However, microgrid systems are limited to the grid-independent application
in several communities in developing countries due to the challenge of poor and inefficient power
grid infrastructure, as is the case in Nigeria [3,17]. Off-grid microgrids, in this instance, are not only
employed for powering remote houses or business premises but also used for meeting a proportion
of the energy demand of those houses or facilities that also have a connection with the national grid
since the supply from the network is erratic in several parts of the country [18]. This paper was,
therefore, motivated by the developments in microgrids and the possibility of powering them by FCs.
Such efforts can help achieve energy security by growing a diversified energy system.

The issue of reliability of some of the existing microgrid systems in developing countries, especially
the solar-photovoltaic (PV) microgrids, using Nigeria as a typical example [18], is another compelling
factor that motivates exploring the potential of other energy resources such as FCs. A lack of
understanding of the intermittent characteristics of solar irradiation and poor technical design is part of
the key factors responsible for systems’ failure. FCs can provide continuous operation, that is, they can
be operated all the time, as long as the fuel is fed to the system [19], making them a highly reliable
energy option that can serve as a backup for variable characteristics in renewable energies and the
limitation on battery systems by the charge/discharge characteristics. The abundance of hydrogen fuel
is one critical factor that favors the energy generation capability of fuel cell technologies [7].

Several studies exist in the literature that examined the application of microgrid systems for
electrification purposes based on solar, wind, hydro, and biomass. However, this paper pays attention
to the application of FC technologies in microgrid systems. Therefore, reviewing current contributions
on the energy-generation capacity of stationary FC systems was among the major goals of this paper.
Relevant background on FCs was discussed, which provided an introduction of inherent features of the
technology, developmental status, and the types that are recognized in the market and being researched
by scientists in the energy research community [20]. A review was published on fuel cell systems
with a power electronic interface, which focused on different FC technologies and their operating
principles [21]. The study also examined the advantages, shortcomings, and possible application of the
technologies for grid-connected systems in household, mobile, industrial, and commercial systems.
Another research study also examined the potential of solid oxide FC systems for micro-power sources
in portable devices [22].

A comparative study was conducted that discussed the different FC technologies [23]. The authors
first presented the general working principle of the technologies and then compared them on the basis of
fuel types, operational specifications, and technical characteristics. The concept of hydrogen and fuels
was discussed with the intent of providing insights into hydrogen production methods, distribution,
delivery, storage, and applications [24]. The paper also discussed the principle of hydrogen FCs and
the stand-alone and co-generation applications. The study published in [25] presented the review of
FC technologies that are engaged for built environment applications. It examined the potential of FCs
for co-generation and tri-generation applications, including their maintenance and benefits such as
emissions savings and reliable energy and heat generation.

The review on direct liquid FC technologies was published with major emphasis on the different
types and their principles, applications, and problems affecting their commercial developments [26].
The use of hydrogen and FC systems for decarbonizing the energy system was discussed [27].
The authors presented a detailed review of the potential use of hydrogen in electrical power and
heat production, including their applications in the industry, transport, and energy storage systems.
A review of solid oxide FCs for electricity generation was also presented [28]. The applications
discussed were extended to marine, transportation, and small-scale residential systems. An overview
of FC technologies was discussed, focusing on the principle and thermodynamic analysis in FCs,
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including new perspectives and the irreversibility of the technologies [29]. A study discussed the
applications and future outlook of hydrogen FCs [30], while the study in [31] considered the emerging
FC systems and their applications. The application of FC technologies as an alternative to traditional
energy production resources was presented [32].

The fundamental principles and use of FC systems was discussed [33]. The authors focused on
providing a review of FCs, history, types, advantages and challenges, developments, and different
applications. The state of the art, technologies, and market positions of hydrogen and FC systems
was discussed [34], while an overview of the stationary FCs was presented in [35]. The theory and
types of fuels engaged both for mobile and stationary applications were discussed [36]. A detailed
overview of the direct carbon FC system was presented [37], while a handbook on FC technologies was
also published [38], focusing on the introduction, applications, thermodynamics, and electrochemical
kinetics, fueling problems, and FC cycles.

A review was presented on a hybrid energy configuration of solar-hydrogen and FC systems with
the main emphasis on electricity production applications [39]. Another study also considered the review
of FC technologies employed for mobile and stationary systems. This work examined the low- and
high-temperature technologies, as well as their applications in transport and co-generation systems.
The review of power-to-gas pilot plants was discussed with emphasis on the production of hydrogen
from renewable electricity. The paper focused on the processes involved in converting excess electricity
into hydrogen fuel, storing and reconverting the fuel into electricity when needed, using FC systems.
A study also examined stationary FC technologies with insights into their commercialization. This work
provided oversight of the current status of commercialization and also examined the key economic
and market segmentation challenges. The review of the development trends of high-temperature solid
oxide FCs was discussed [40]. The authors considered the technical and commercial status of this
technology and those of direct carbon FCs.

A study was also conducted that concentrated on the history of FC systems [41], while the research
study in [42] examined the life-cycle evaluation of the FC system’s components. The paper focused on
FCs engaged for stationary and mobile applications, which were then compared to conventional energy
systems on an environmental basis. A review of FC stack design was published with a particular
interest in high-performance solid oxide FCs [43]; it also examined the development status and trends
in high-performance solid oxide FC cell/stack models. Furthermore, the progress in battery storage,
the FC system, and the hydrogen storage for clean energy systems were discussed in [44]. The authors
also discussed the key problems associated with energy systems.

A recent paper was published that focused on the achievement of battery charge management for
a hybrid energy system, which is based on solar PV, wind, and FCs with a battery storage system [45].
The authors recognized the fact that the charging process in batteries needs to be well coordinated
using an adaptive control, a form of a nonlinear control system. An artificial intelligence (AI) technique
was used in the paper, which also improved the performance of the battery-charging controller device.
A comparison was done for various energy management strategies for minimizing the H2 utilization in
a hybrid design based on FCs, ultracapacitors, and battery components [46]. The authors proposed two
novel approaches referred to as the salp swarm algorithm (SSA) and mine-blast optimization (MBO),
which were reported to perform better than the traditional strategies, like the fuzzy logic, proportional
integral (PI) control, and the state machine, in terms of fuel consumption and system efficiency.

A sizing strategy was proposed for a hybrid power plant that was based on the FC design for
weight minimization [47]. The idea put forward by the authors was that the reduction in the size of
the power plant could also lead to a minimization of the power and energy requirements, and the
enhancement of system’s techno-economic performance. A study was presented on the use of microbial
FCs in bio-sensors [48]. The authors discussed the state-of-the-art review of the technology application,
some of which included the monitoring of microbial activity, testing of biochemical O2 demand,
detection of toxicants, and detection of microbial biofilms that are responsible for the bio-corrosion
effect. A priority-based energy management strategy was discussed for a hybrid configuration of PV,
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FCs, and battery in the grid-independent direct current (DC) microgrid system [49]. The strategy was
introduced by the author to coordinate the energy interchange between the mentioned components in
the microgrid.

These existing studies stand as relevant background for this current paper. The papers considered
several aspects of FCs with extensive scopes that can help in understanding the technologies as
they are employed for stationary and mobile applications. However, this current study presents a
comprehensive review of FC systems, with emphasis on the developmental statuses of the different types
of technologies, technical and operational characteristics including their comparison, the prevailing
techno-economic barriers to the technologies’ progress, and the future outlook, including their prospects
and applications in microgrid systems. The relevance of microgrid systems is that they can provide
ancillary service, thus supporting and strengthening the existing grid and are also useful for addressing
the issue of energy poverty and shortage in off-grid locations.

The transition from the centralized to distributed generation system is occasioned by the need
for energy security and sustainability. The possibility that the existing power grid is in one way
or the other affected by an eventuality such as earthquake, hurricane, cyber-attack, pandemic, etc.,
justifies the necessity of microgrids. In such a situation, microgrids, whether operated in islanded
mode or as an autonomous system, may be used to supply electricity to some parts of the area,
region, or country affected [50–52]. Examples of the autonomous generation are roof-mounted,
building-attached, or ground-mounted microgrid systems. These advantages motivated this paper.

The potential of FCs may be combined with those of renewable energy resources to achieve the
desired sustainable energy system. When hydrogen is produced from renewable energies, it is said to
be a renewable resource, which is then used to drive the operation of fuel cells [53]. Microgrids based
on FCs can provide a reliable energy supply. Therefore, this paper derives its significance from the
potential of FC technologies in microgrid systems, which is expected to provide useful insights into
future directions toward advancing research in clean energy generation through microgrids based
on FCs.

The remaining aspect of the paper is outlined as follows: Section 2 concentrates on the background
and different kinds of FCs; Section 3 discusses the technical comparisons of the FC systems, possible
configurations in microgrid applications, advantages, barriers, FC control mechanisms, and hybrid
designs, including the impact of FCs in a microgrid system; Section 4 presents the developmental trends
of the technologies and future research directions and outlook, while Section 5 concludes the paper.

2. Background on FCs

2.1. Historical Developments

The idea of FCs was discovered in 1839 by a scientist called William R. Grove [38,54]. This technical
breakthrough was achieved while reversing water electrolysis to produce direct current (DC) output
from hydrogen (H2) and oxygen (O2). The electrochemical process involved in FCs is essentially a
reversed electrolysis reaction [23]. A fuel cell was initially called a gaseous voltaic battery (GVB) before
it was eventually named “fuel cell”. The GVB technology employed platinum electrodes, sulfuric acid
electrolyte, and the hydrogen and oxygen reactants. The platinum material in this arrangement was
used to catalyze the reaction between H2 and O2. Several discoveries followed and the historical trends
of FCs are summarized in Table 1, which emphasizes the technology, progress made, scientists or
organizations, and the year of contribution. There were other achievements in the area of automotive
applications, but this paper is focused on FCs for electrical power applications.
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Table 1. History of stationary FC developments.

Technology Progress Scientist/Year

Gaseous Voltaic Battery (GVB)

Reaction between H2 and O2
using platinum electrodes and
tetraoxosulphate (VI) acid as an
electrolyte.

William Grove, 1839 [38,55–57]

Findings closely related to Grove’s
discovery. The mechanism of
chemical action was ascertained.

Christian Friedrich Schoenbein,
1838, 1839, 1843 [38]

New form of GVB

Enhancement of the platinum
electrode’s efficiency.
Coal gas was used as a fuel and it
produced current.

Lord Rayleigh, 1882 [38]

Issue of “electrode flooding” was
addressed by using a matrix. A
prototype was developed for a
practical FC.

Ludwig Mond and Carl Langer,
1889 [38,55,57]

The double aeration plate cells
were developed.

Alder Wright and Thompson, 1889
[38]

Coal-based FCs

Proposed means to solving the
inefficient energy conversion in
steam engine systems, and the use
of electrochemistry to produce
electricity from coal.

Ostwald, 1894 [38,55]

Development of an FC system that
generated electricity from coal, i.e.,
direct coal FC.

William Jacques, 1896 [38,55]

Findings were made on the
“indirect coal” FC system. Haber and Bruner, 1904 [38]

Discovery of a better performance
using nickel as an anode electrode
with carbon monoxide gas fuel.

Baur and Ehrenberg, 1912 [38]

Solid Oxide FCs

A discovery was made on the
“solid electrolyte” Nernst, 1899

Discovered that the solid oxide
electrolyte had to be in a “dry”
state.

Baur and Brunner,1935, 1937
[38,56]

Investigations of the suitable solid
electrolyte and cell design. Baur and Preis, 1937 [38]

Construction of the FC based on
ZrO2 and CaO, electrolyte and
porous platinum electrodes.

Weissbart and Ruka, 1962 [38]

Molten Carbonate FCs

Development of a
high-temperature cell Davtyan, 1946 [38]

Testing electrolyte formulations of
Davtyan and the use of molten
carbonate as the electrolyte.

Broers and Ketelaar, 1960 [38]

Direct use of methane in a
high-temperature was proposed.

The Institute of Gas Technology,
1963, 1965 [38]

The use of a “porous” electrode
with the electrolyte was
considered instead of a matrix.

Douglass, 1960 [38]
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Table 1. Cont.

Technology Progress Scientist/Year

Alkaline FCs

A low-temperature fuel cell was
experimented based on alkaline
electrolyte.

Davtyan, 1946 [38]

Addressed the challenge of the
oxidation of the O2 electrode.
Development of a 6-kW FC stack.

Bacon, 1954,1959 [38,57]

FC power plant was developed for
a 2-week “Apollo missions” to the
moon. The Bacon’s FCs was
modified leading to the
elimination of electrolyte
circulation.

Apollo Space Missions, 1965 [38]

Development of the Double
Skeleton Katalyst (DSK) that
provided mechanical stability,
form, and electrical conductivity
in the cell arrangement.

Justi and Winsel, 1961 [38]

Use of electrolyte vehicle, i.e., the
application of a “porous matrix”
to contain the alkaline electrolyte.

Allis-Chalmers Manufacturing
Company, 1962 [38]

Use of carbon electrodes in an
alkaline FC system. Karl V. Kordesch, 1960 [38]

Waterproof Teflon was introduced
in the cell electrodes. Niedrach and Alford, 1965 [38]

Direct Methanol FCs

The acid electrolyte was used in
FC arrangements. A
self-sustaining 60 W, 6 V FC unit
was developed.

Shell, 1965; ESSO, 1965 [38]

Development of methanol FC
based on potassium hydroxide
electrolyte.

Murray and Grimes, 1963 [38]

Direct methanol FCs with a Nafion
membrane was developed.

Verbrugge, 1989; Jet Propulsion
Laboratory, 1992 [38,55]

Phosphoric Acid FCs

Demonstration of phosphoric acid
FC in homes based on natural gas.
Development of prototype 12.5
kW referred to as “Power Cell 11”

Pratt & Whitney Aircraft Division
and the TARGET Program,
1967–1975 [38,57]

The development of the 1-MW FC
power plant model.

Japanese Companies and the
Moonlight Project, 1981–1992 [38]

A hydrophilic material, i.e., carbon
paper was employed in the cell
arrangements.

Trocciola, 1975 [38]

An impregnation technique was
developed for the use of carbon in
the arrangement.

Petrow and Allen at the Prototech
Company, 1973–1974 [38]

The issue of carbon corrosion was
solved.

Kinoshita and Bett at Pratt &
Whitney Aircraft Division,
1973–1974 [38]
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Table 1. Cont.

Technology Progress Scientist/Year

Solid Polymer FCs

The FC based on a solid
ion-exchange membrane
electrolyte was developed called
the Proton Exchange Membrane
FC nowadays.

Grubb and Niedrach at the
General Electric, 1960 [38,57]

The ion-exchange membrane FC
was constructed by GE for the
2-man Gemini vehicle, the first
commercial application of an FC.

Gemini Space Missions, 1962
[38,57]

The “XR” polymer called Nafion
was introduced.

Grot, at E.I. du Pont de Nemours
& Company, 1972, 1975 [38]

An approach was devised to
employ Nafion in the catalyst
layer.

Raistrick, at Los Alamos National
Laboratory, 1986 [38]

Stack hardware was developed for
the cell called “MK 4” and “MK 5”.

Prater, at Ballard Power Systems,
1987, 1990 [38,57]

The challenge of fuel poisoning by
carbon monoxide was addressed. Gottesfeld and Pafford, 1988 [38]

PEMFCs and SOFCs

R and D focus was shifted towards
proton exchange membrane FCs
and solid oxide FCs, particularly
for stationary applications.

The 1990s [57]

Development of FCs with
energy-efficient and CO2 savings
capability.

The 2000s [57]

Recent technology developments
The uninterruptible power supply
(UPS) based on FCs were adopted
in North America.

Japanese Ene-Farm project, 2009
upwards [57]

New hydrogen compression
technology

Cost optimization of electrolyzer
system and performance
improvement in the conversion of
photosynthetic solar-to-chemical
energy

Linde North America and Air
Products 2010 [58]

Patent invention in FCs

A large number of patents in FCs
(57%) was recorded in several
places, the product of which led to
clean energy generation.

Patents in Japan, Canada, US,
Taiwan, UK, Germany, Korea [59]

Molten carbonate FCs for
stationary applications.

Increased commercialization of
molten carbonate FCs in many
countries of the world such as
Japan, Germany, Asia, North
America, United States, California
and South Korea

Energy & Environmental Services
(2010–2019) [59–61]

2.2. Description of Fuel Cell Systems

FCs may be described as a kind of “electrochemical” device, which can offer a continuous
conversion of chemical energy to electrical energy, while the thermal energy developed and the
water formed in the process are the by-products [38,62–65]; the condition for continuous energy
generation being the constant supply of the fuel and oxidant. FC technologies are made up of four
major components, viz., cathode, anode, electrolyte, and the external circuit, as shown in Figure 1 [23].



Inventions 2020, 5, 42 8 of 35Inventions 2020, 5, x FOR PEER REVIEW 8 of 35 

 
Figure 1. Basic diagram of the FC. 

The reactions are represented by Equations (1)–(3) [66,67]. The reaction at the anode, i.e., 
negative or hydrogen electrode, is described by Equation (1), while the reaction at the cathode or 
positive or oxygen electrode of the FC is represented by Equation (2). The overall reaction is described 
by Equation (3). 2Hଶ → 4Hା + 4eି (1) Oଶ + 4Hା + 4eି → 2Hଶ	O (2) 

2Hଶ + Oଶ → 2HଶO + Energy (Electrical and Thermal) (3) 

The quantity of direct current delivered by FCs is limited by a very small “contact” area among 
the electrodes, electrolyte, and the reactants. Another challenge is that of the distance between the 
cathode and anode of the FC. Due to this, a thin layer of electrolyte is integrated with flat “porous 
electrodes” to maximize the contact area and the efficiency of cells [56]. A single cell produces a low 
output of about 1 V; a series arrangement of some cells leads to the development of the FC “stack”, 
which can produce higher voltage output. The fuel cell power plant arrangement comprises the stack, 
balance of plant (BOP), inverter, and, if required, a fuel reformer may also be integrated [35]. The 
BOP refers to the parts of the FC system other than the generating component, just like balance of 
system (BOS) in the photovoltaic plant. The DC output of the FC stack may also be used to power DC 
appliances or load without the need for an inverter or employed to develop a DC microgrid [68]. 

The FC systems are similar to battery systems by their electrochemical characteristics and the 
process of generating electricity. They are also similar to engines by their capability to generate 
electricity continuously while consuming fuel. On the other hand, they differ from battery 
technologies by the fact that they do not require recharging, while they differ from engines by their 
quiet operation [32,64]. FCs operate efficiently and are emissions-free compared to battery 
technologies and engines; though some form of thermodynamic processes is associated with FCs, 
they differ from thermal engines by not being limited by the Carnot efficiency [38,62,69]. These 
features are of interest in modern energy planning, generation, and development, toward achieving 
decarbonized and sustainable energy future. 

The FC technologies are usually categorized by the kind of electrolyte used in their working 
arrangements [25,70]. The classification is being done by the kind and the level of purity of the fuel 
and oxidant used, and the working temperature. There are different kinds of chemical reactions 

Figure 1. Basic diagram of the FC.

The hydrogen fuel is oxidized into protons and electrons at the anode, while oxygen is reduced to
oxides and the reaction to form water occurs at the cathode [23,56]. Besides, either protons or oxide ions
travel via the electrolyte, while the electrons are transported by way of the external circuit to generate
direct current (DC) as output. At the interface with the cathode, a reaction is created with oxygen
which led to the formation of water and development of heat, owing to the exothermic process [35].
The excess H2 is fed back to the fuel tank through the outlet as shown in Figure 1, which may then be
re-used by the FC.

The reactions are represented by Equations (1)–(3) [66,67]. The reaction at the anode, i.e., negative
or hydrogen electrode, is described by Equation (1), while the reaction at the cathode or positive
or oxygen electrode of the FC is represented by Equation (2). The overall reaction is described by
Equation (3).

2H2 → 4H+ + 4e− (1)

O2 + 4H+ + 4e− → 2H2 O (2)

2H2 + O2 → 2H2O + Energy (Electrical and Thermal) (3)

The quantity of direct current delivered by FCs is limited by a very small “contact” area among the
electrodes, electrolyte, and the reactants. Another challenge is that of the distance between the cathode
and anode of the FC. Due to this, a thin layer of electrolyte is integrated with flat “porous electrodes”
to maximize the contact area and the efficiency of cells [56]. A single cell produces a low output of
about 1 V; a series arrangement of some cells leads to the development of the FC “stack”, which can
produce higher voltage output. The fuel cell power plant arrangement comprises the stack, balance of
plant (BOP), inverter, and, if required, a fuel reformer may also be integrated [35]. The BOP refers to
the parts of the FC system other than the generating component, just like balance of system (BOS) in
the photovoltaic plant. The DC output of the FC stack may also be used to power DC appliances or
load without the need for an inverter or employed to develop a DC microgrid [68].

The FC systems are similar to battery systems by their electrochemical characteristics and the
process of generating electricity. They are also similar to engines by their capability to generate
electricity continuously while consuming fuel. On the other hand, they differ from battery technologies
by the fact that they do not require recharging, while they differ from engines by their quiet
operation [32,64]. FCs operate efficiently and are emissions-free compared to battery technologies
and engines; though some form of thermodynamic processes is associated with FCs, they differ
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from thermal engines by not being limited by the Carnot efficiency [38,62,69]. These features are of
interest in modern energy planning, generation, and development, toward achieving decarbonized
and sustainable energy future.

The FC technologies are usually categorized by the kind of electrolyte used in their working
arrangements [25,70]. The classification is being done by the kind and the level of purity of the fuel and
oxidant used, and the working temperature. There are different kinds of chemical reactions between
the fuel (i.e., hydrogen) and oxidant (i.e., oxygen) according to the different kinds of FC systems.
There exist six categories of FC technologies in the market such as proton exchange FC, alkaline FC,
direct methanol FC, phosphoric acid FC, molten carbonate FC, and solid oxide FC [25,55,71–88].
They are further classified as low, medium, and high temperature, and liquid FCs, which will be
described in detail in subsequent subsections.

2.3. Different FC Technologies

2.3.1. Alkaline Fuel Cell Technology

The alkaline FCs employ the “alkaline” electrolyte, namely, potassium hydroxide (KOH), diluted
in water and operate with pure hydrogen fuel, while pure oxygen serves as the oxidant [35,80].
In their operation, hydrogen fuel is supplied to the anode but oxygen is transported to the cathode.
The exchange of ions is permitted between the cathode and the anode in the liquid KOH, which leads to
the generation of direct current [80]. Materials such as potassium titanate, ceria, asbestos, and zirconium
phosphate gel have been used as “microporous” separators in alkaline FCs [67]. However, asbestos is
not used nowadays because of its toxicity and health hazard. Though early fuel cells of this type had
their operating temperatures between 100 ◦C and 250 ◦C, operating temperatures for current devices
are about 70 ◦C, which is why the alkaline FCs are categorized as a low-temperature technology [89].
Nickel (Ni) is commonly used as the catalyst in alkaline FCs instead of the traditional platinum
material because of its low-temperature property. Ni and Ag (silver) are used as anode and cathode.
Equations (4) and (5) describe the anode and cathode reactions in alkaline FCs [80].

H2 + 2OH− → 2H2O + 2e− (4)

0.5O2 + H2O + 2e− → 2OH− (5)

One of the advantages of alkaline FCs is that they offer relatively high efficiencies of up to 0.6
in some of the applications. According to Alhassan et al. [90], a single alkaline FC can achieve a
voltage output of 0.5 to 0.9 V with an efficiency as high as 0.65 but this depends on the system design.
Furthermore, alkaline FCs can deliver electrical output in the range of 5–150 kW [80], and newer
systems may even be operated at temperatures lower than 70 ◦C [35]. This implies that they can
operate within a wider range of temperatures [80]. One of the disadvantages of the technology is that
the electrolyte (KOH) is corrosive and, because of its liquid state, the sealing of the anode and cathode
gases becomes a very difficult task compared to the use of a solid electrolyte [35]. Another challenge is
that the KOH adsorbs the carbon dioxide, thus reducing the conduction power of the electrolyte; this
is referred to as carbon dioxide “poisoning” of the electrolyte [80,91]. The design of alkaline FCs is
classified into three categories, viz., mobile electrolyte, static electrolyte, and the dissolved fuel type,
and are used in space and submarine applications [80].

2.3.2. Direct Methanol Fuel Cell Technology

The direct methanol FCs are a kind of low-temperature system that employs a fuel directly that
is not hydrogen, unlike most other technologies [35]. These are usually classified as subcategory
polymer electrolyte membrane FCs because of their similar design and internal configuration with
operating temperatures between 60 and 130 ◦C [35,80]. However, the waste products resulting from
the reaction of the direct methanol FCs include carbon dioxide, which differentiates them from the
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polymer electrolyte membrane (PEM) cell technology. A “polymer” membrane is used as an electrolyte
in direct methanol FCs. Though they are a variant of the PEM, the catalyst on their negative electrode
(i.e., anode) extracts hydrogen from the liquid methanol [35]. This development essentially eliminates
the necessity for a “fuel reformer”. Thus, the pure methanol can be used as a fuel. The pure methanol
in combination with the steam is fed into the direct methanol FC at the anode and the resulting reaction
is such that the methanol is transformed into CO2 and hydrogen ions. The electrons then flow through
the external circuit to generate the current, i.e., before flowing back to the cathode, in which case the
protons are transported to the cathode through the electrolyte. Water is formed at the cathode by the
reaction between the protons and electrons with oxygen. The anode and cathode reactions in direct
methanol FCs are described by Equations (6) and (7) [80]:

CH3OH + H2O → CO2 + 6H+ + 6e− (6)

1.5O2 + 6H+ + 6e− → 3H2O (7)

With a typical operating temperature value of about 120 ◦C, direct methanol FCs could develop
an efficiency of around 0.4 [35]. This low operating efficiency is due to “methanol crossover”, which is
the cause of unproductive methanol consumption in the process [67]. The transformation of methanol
to H2 and CO2 occurs at a low temperature and, as a result, a noble metal catalyst is required in
direct methanol FC operational arrangements [80]; the anode and cathode materials are platinum or
platinum-ruthenium (PtRu) and platinum (Pt), respectively, while perfluoro-sulfonic acid (Nafion
membrane) is the electrolyte in direct methanol FCs. One advantage of the technology is that methanol
is cost effective, easy to produce, and could be employed directly in the cell operation. This allows a
simple cell structure and design with relatively low weights, which is why they are employed as a
low-weight alternative to battery technologies for military and other applications. Another advantage
is that it is easy to store methanol devoid of the risk of explosions as in the case of hydrogen fuel; the
technology is apt for portable power for laptops and mobile appliances, including small plants that are
less than 5 kW [67,80]. The major shortcoming of direct methanol FCs is that they have an efficiency of
less than 0.4, which is considered the lowest of all FC technologies [80].

2.3.3. Molten Carbonate Fuel Cell Technology

The molten carbonate FCs, unlike the alkaline and the direct methanol FCs, is a kind of
high-temperature technology, which uses a molten carbonate salt as an electrolyte [35]. The technology
has a working temperature of about 650 ◦C and employs liquid carbonate salts such as lithium
carbonate, potassium carbonate, and sodium carbonate in its technical operation [35,67,91,92]. The FCs
have an electrical efficiency of about 0.6; however, they can achieve an efficiency of around 0.8 if the
waste thermal energy is harnessed for co-generation purposes. When heated to 650 ◦C, the salts in
molten carbonate FCs melt to form carbonate ions (CO3

2−) [80]. These ions migrate from the cathode
to the anode and then combine with hydrogen to form water, CO2, and electrons [35]. The electrons
developed are collected at the anode and made to travel to the cathode through an external circuit,
thus generating direct current and heat [23,35,80]. To replenish or restore the electrolyte in molten
carbonate FCs, oxygen and CO2 combine with electrons to produce carbonate ions [35]. The electrode
materials in molten carbonate FCs are Ni-5Cr and NiO (Li), which are used for anode and cathode, and
the reactions at these two electrodes are represented by Equations (8) and (9), respectively, and the
overall reaction is described by Equation (10) [80]:

H2 + CO2−
3 → H2O + CO2 + 2e− (8)

0.5O2 + CO2 + 2e− → CO2−
3 (9)

H2 + 0.5O2 → H2O (10)
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The molten carbonate FCs, through their high-temperature operation (between 600 and 800 ◦C),
can improve “reaction kinetics”, which implies that they can achieve a high rate of electrode reactions
without the need for platinum catalysts [67]. An external reformer is not also required in their structure
to convert fuels like natural gas and biogas to hydrogen, meaning that they possess a capability to
convert the methane gas and light hydrocarbons or petroleum products in the fuel to hydrogen in
the cell arrangements through a process known as internal reforming [91]. These developments lead
to cost reduction compared to low-temperature technologies such as alkaline, phosphoric acid, and
proton exchange membrane FCs. Another advantage of the molten carbonate FCs is that they are less
susceptible to CO poisoning compared to the low-temperature technologies [35], and it is possible to
efficiently harness the reaction heat for producing more electrical energy [67]. The molten carbonate
FCs are employed for co-generation in decentralized energy systems and could achieve electrical power
output in the range of 0.1 to 2 megawatt (MW) [80]. The issue of durability is one major shortcoming
of the molten carbonate FCs. This problem is attributed to the high temperature associated with the
workings of the cells, which leads to a reduction of performance. The “Gibbs free energy”, for realizing
the oxidation of hydrogen by oxygen, reduces as the operating temperature is increased, and the
electrolyte initiates component degradation and corrosion in the process that eventually leads to a
decrease in cell lifespan [35,67,80,91]. It is reported that 1.23 electron volt (eV), 1.06 eV, and 0.85 eV
are achieved at 25 ◦C, 600 ◦C, and 1000 ◦C, respectively, illustrating the thermodynamic indices and
performance of molten carbonate FCs with temperature [67].

2.3.4. Solid Oxide Fuel Cell Technology

The solid oxide FCs are part of the high-temperature technologies, which use nonporous “solid
ceramic”, namely, zirconium oxide, stabilized with yttrium oxide (yttria-stabilized zirconia) as an
electrolyte, under the operating temperature between 800 and 1000 ◦C [35,91]. In this technology,
oxygen air is fed to the positive electrode, and the mobility of the oxygen ions from the positive to the
negative electrode is being initiated by the nonporous solid ceramic; electrons then flow through an
external circuit to generate current [35]. Water is formed through the reaction between oxygen ions
and hydrogen at the negative electrode. The anode, cathode, and overall reactions in solid oxide FCs
are represented by Equations (11)–(13), respectively [67,80]:

H2 + O2−
→ H2O + 2e− (11)

0.5O2 + 2e− → O2− (12)

H2 + 0.5O2 → H2O (13)

The solid oxide FC technology has classes of designs, namely, planar and tubular technologies,
and can realize fuel-to-electrical efficiencies of >0.6 but could achieve an efficiency of 0.85 if the waste
thermal energy is utilized for co-generation application [35,91]. Just as is the case of molten carbonate
FCs, the high-temperature process in solid oxide FCs allows direct internal reforming that provides the
opportunity of using some of the fuels that contain hydrogen such as natural gas, biogas, coal gas,
propane, etc., and there is no need for a noble catalyst in their operational arrangements [80]. This way,
the cost is reduced in the cell structure design. Solid oxide FCs are employed for co-generation in the
aspect of distributed generation applications with power capacity in the range of 100 to 250 kW [80],
and the electrode materials are nickel-yttria-stabilized zirconia (Ni–YSZ) and lanthanum strontium
manganite (LSM), which are used for anode and cathode, respectively. However, the challenge of
high-temperature corrosion is also prominent in this technology, and one way of mitigating such a
problem is by using expensive protective layers and materials in the cell arrangements [35].
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2.3.5. Phosphoric Acid Fuel Cells

The phosphoric acid FCs may be classified as a technology that falls between the low- and the
high-temperature systems (medium-temperature), and they operate with liquid phosphoric acid
(H3PO4) electrolyte and operating temperatures between 150 and 220 ◦C [35,67,80,93]. The electrolyte
is essentially an acid in a Teflon-bonded SiC structure [91]. The positively charged hydrogen ions
are transported to the cathode via the electrolyte. The electrons produced at the anode flow to the
cathode through the external circuit, thus giving rise to direct current. Water is also formed through the
reaction of electrons and hydrogen ions with oxygen at the cathode. The anode and cathode reactions
in phosphoric acid FCs are described by Equations (14) and (15) [80]:

H2 → 2H+ + 2e− (14)

0.5O2 + 2H+ + 2e− → H2O (15)

The electrode materials in phosphoric acid FCs are platinum or platinum-ruthenium and platinum
for anode and cathode, respectively, and the fuel-to-electrical efficiencies between 0.35 and 0.40 could
be achieved in this technology [35,80]. However, it is possible to realize the efficiency of about 0.85
when the technology is engaged for combined heat and power applications. The phosphoric acid
FCs have a simple structure design and are less prone to carbon monoxide poisoning and electrolyte
volatility and are engaged for small- to medium-sized plants between 50 kW and 11 MW [80], but one
shortcoming is that their efficiency is found to be lower than those of other FC technologies and they are
weighty [35,80,91]. Another disadvantage is that of an increase in system cost due to the requirements
of integrating corrosion-resistant components to mitigate the effect of acid for the electrolyte.

2.3.6. Polymeric Electrolyte Membrane Fuel Cell Technology

The polymeric electrolyte membrane FCs are a low-temperature technology that uses a thin,
permeable, polymetric membrane as a solid electrolyte and are essentially a part of the family of
low-temperature systems [67,91]. The technology has a working temperature of around 80 ◦C with less
warm-up time, and because its membrane is thin and very light and the need for catalysts, platinum
materials, is employed on one or two sides of the permeable membrane [35]. The hydrogen ions are
supplied at the anode of this technology, which is then broken into protons and electrons. The protons
migrate to the cathode across the electrolyte, while the electrons are made to flow through the external
circuit to generate direct current. Water is formed when oxygen air at the cathode reacts with the
hydrogen ions [35]. The materials used as anode and cathode electrodes in polymeric electrolyte
membrane FCs are platinum or platinum-ruthenium and platinum, and Equations (16) and (17)
describe the reactions at the anode and cathode [80]:

H2 → 2H+ + 2e− (16)

0.5O2 + 2H+ + 2e− → H2O (17)

The polymeric electrolyte membrane FCs can achieve a range of efficiencies between 0.4 and 0.6
and have a capability for varying the system output to balance load demand patterns. The technology
can realize electrical power in the range of 5 to 250 kW with a tightly packed and lightweight structure
and is suitable for space and military applications [35,80]. This technology has a high-power density;
a value of >1000 W/kg was reported in the literature [36]. Because a solid electrolyte is used in
this technology, it is easier to seal gases at the anode and cathode terminals, thus making the FC
system cheaper to manufacture compared to some other technologies. Besides, the technology is
less susceptible to corrosion, but in some instances, a low working temperature of 80 ◦C may not be
sufficient to achieve useful combined heat and power (CHP) purposes, and a noble metal catalyst will



Inventions 2020, 5, 42 13 of 35

be needed for separating the hydrogen protons and electrons [35,91]. The use of a platinum catalyst in
this technology also increases costs.

2.4. Techno-Economic Comparison of Fuel Cell Technologies

The comparison of the FC technologies is shown in Table 2, while the merits and challenges of the
different technologies are summarized in Table 3. The technical values presented in Table 2 are based
on different applications that have been reported in the literature.

Table 2. Comparison of evaluative metrics of the FC technologies.

S/N. Technical
Metrics

FC Technologies

Polymeric
Electrolyte

Membrane FCs

Solid
Oxide FCs

Phosphoric
Acid FCs

Alkaline
FCs

Molten
Carbonate FCs

Direct
Methanol FCs

1

Energy
conversion
efficiency

(%)

40 [34],
35–45 [38]

70 [94],
50–65 [95],
50–60 [36]

40–45 [34],
37–42 [80],

40 [38]

45–60 [35],
35–55 [38],
up to 65

[80]

53–57 [34],
>50 [38]

Up to 45 [80],
60–70 if waste
heat is utilized

[80]

10–40 [95], 35
[80]

2 Cell
voltage (V) 1.1 [21] 0.8–1.0 [21] 1.1 [21] 1.0 [21] 0.7–1.0 [21] 0.2–0.4 [21]

3 Lifespan
(h)

2000–3000 [80],
5000–20,000 [96],

>4000 [97]

1000 [80],
>10,000

[97]
>50,000 [80] 8000 [98] 7000–8000 [80] 1000 [80], >4500

[97]

4
Energy
Density

(kWh/m3)

112.20–770.00
[95]

172.00–462.09
[95] 25.00–40.00 [95] 29.9–274 [95]

5
Power

Density
(kW/m3)

4.20–35.00 [95],
3.8–6.5 [21]

4.20–19.25
[95] 0.8–1.9 [21] ~1.0 [21] 1.05–1.67

[95], 1.5–2.6 [21] ~0.6 [21]

6
Specific
Power
(W/kg)

4.00–150.00 [95],
>1000 [36]

1.05–1.67
[95] 120 [36] 12.00–36.70 [95]

7
Specific
Energy

(Wh/kg)

100.00–450.00
[95]

410.00–1520.00
[95] 369.00–607.00 [95] 140.3–960 [95]

8
Energy

cost
($/kWh)

70–13,000 [95] 180–333
[95] 146–175 [95] 3067–3190 [95]

9 Power cost
($/kW)

Up to 10, 200
[95],

3373–5621 [80],
<1500 [21]

481–8000
[95],

1500 [36],
3000 [21]

1350 [80],
3000 [36],
2100 [21]

>200 [36]
projected,
~1800 [21]

3500–4200 [95],
2000–4000 [36],

~2000–3000 [21]

15,000–125,000
[95]

10
Working

Temperature
(◦C)

80 [35,36],
50–100 [38]

800–1000
[35,66]

180–200 [66],
150–220

[35,36,67,80]
220 [38]

70 [35,66],
60–120 [38]

650 [35]
600 [66],

600–800 [67]
70–100 [80]
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Table 3. Merits and challenges of fuel cell technologies.

Fuel Cell Technologies Merits Challenges

Polymeric Electrolyte
Membrane FCs

(i) System construction is devoid of
complexity and highly reliable
[99].

(ii) Its efficiency remains the same
regardless of the size of
fabrication [100].

(i) The ripple factor is somewhat higher [99,101].
(ii) The degree of change in voltage relative to

current density is somewhat not satisfactory
[99,101].

(iii) A high degree of purity in H2 is required in
the operation of the technology because it is
sensitive to impurities [91,102].

(iv) The polymeric electrolyte membrane FC is
exorbitant and its durability left much to be
desired [100,103,104]. It requires expensive
catalysts [91].

Solid Oxide FCs

(i) There is no need for a metal
catalyst as a result of improved
kinetic reactions [35].

(ii) It enjoys long–term stability
with high power efficiency [105].

(iii) It exhibits fuel flexibility, high
efficiency, and suitable for
co-generation [91].

(i) Its maximum functionality depends solely on
high operational temperature [38,106].

(ii) High working temperature results avalanche
of problems such as corrosion, poisoning of
catalyst, mechanical and thermal stress, and
sintering of electrode [91,94].

(iii) High working temperature places stringent
constraints on the choice of materials to be
used in technology [94].

(iv) It is associated with long start-up time [91].

Phosphoric Acid FCs

(i) The technology is suitable for
combined heat and pressure due
high temperature [107].

(ii) Impurities in the fuel may be
tolerated [107].

(i) Rise in cost due to the incorporation of
platinum catalysts [108].

(ii) Insufficient energy generation capacity [108].
(iii) It is sensitive to sulfur [91].

Alkaline FCs

(i) The power density is
satisfactorily high [109].

(i) The life span is satisfactory [109].
(iii) It has a quick start-up [91].
(iv) It enjoys a low operating

temperature [91].

(i) Highly sensitive to impurity, thereby
resulting in the poisoning of FCs [91].

Molten Carbonate FCs

(i) Improved reaction kinetics,
hence there is no need for metal
catalyst [110].

(ii) There is no room for cell
poisoning because of the high
system temperature [110].

(iii) It has the excellent regenerative
ability; hence it can conveniently
produce hydrogen within the
cell through the internal
reforming process [110].

(iv) It exhibits high flexibility,
efficiency, and also suitable for
cogeneration [91].

(i) It experiences a breakdown of cell
components because of the high working
temperature [107].

(ii) It has a comparatively high start-up time
[107].

(iii) It has a low power density [107].

3. Fuel Cells in Microgrid Systems

The application of microgrid technologies in electrical systems may be classified as grid-integrated
and grid-independent systems. Whether the FC technologies are employed for grid-connected or
off-grid purposes, it is necessary to establish the fact that an FC power plant is more the FC stack. This is
due to the constant supply of reactants, i.e., fuel and oxidant, that is critical for achieving continuous
production of electrical power [36]. Therefore, the nexus between FC stack and microgrid is of interest
in this subsection. The fuel and the oxidant, for instance, need to meet a certain predetermined level
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of impurity before being employed to operate the FCs. As a result, the FC power plant is structured
containing some components such as fuel processing, oxidant conditioning, electrolyte management,
and heat energy management units, including the one employed for reaction product removal, etc.
These components were illustrated and detailed with a schematic in [36], but the FC microgrid in
this current paper is based on Figure 2, which is used for the purpose of illustration in line with
fundamental electrical principles. Figure 2 illustrates the additional subsystems required for processing
the energy from the FC stack to the users. The FC microgrids are capable of producing electrical power
from as low as <1 W to hundreds of kW [111].
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The FC stack produces direct current but most of the appliances within the residential, commercial,
and industrial premises, for example, are alternating current (AC) powered. Therefore, a power
conditioning unit, usually regarded as an inverter or otherwise called the DC-AC converter, is employed
to convert the DC output of the FC stack to AC power. FCs also make use of DC–DC power converters
in addition to DC–AC power converters for power conditioning purposes [112]. The inverter, being a
developed power electronic device, has efficiency as high as around 0.96 for MW-rated power
generation systems [36]. Also, the FC power unit generates waste heat. This thermal energy is usually
coordinated by an arrangement of heat exchangers to the FCs to enhance the system’s efficiency and
performance. Besides, some FC technologies make use of the waste heat as input for CHP application
or bottoming cycles for additional generation of electric power [25,35]. One of the advantages of the
CHP application is that it increases the efficiency of the FCs to as high as 0.85 or even more [36,80].
Another merit of the CHP is that the waste thermal energy may be harnessed for household use such
as water and space heating, food processing, drying, and preservation, including raising of steam for
industrial applications.

In FC systems, there are two types of fuels, which are the primary and the secondary fuels.
The primary fuels include natural gas, methanol, low-sulfur extract, solid waste, naphtha, heavy oils,
coal, biomass, etc., while the secondary fuels are hydrogen and carbon monoxide [36]. The conversion
of primary to secondary fuels is necessary because the secondary fuels, hydrogen and/or carbon
monoxide, are considered to be more electrochemically functional in the FCs’ arrangements than the
primary fuels. Therefore, the role of the FC processor is to convert the primary to secondary fuels,
and it usually accounts for about 33% of the plant’s weight and capital cost, especially the one based
on hydrocarbon [36].

The output power, efficiency, water balance, heat utilization, quick start-up, long dormancy, size,
weight, and fuel supply are specific requirements for operating and managing FC technologies [111].
However, realizing improved efficiency and minimized emissions are major market drivers for power
and automobile applications. The expectation is that the FCs used in automobile systems are to have
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an operating lifespan between 3000 and 5000 h, i.e., less than one year, while those used for stationary
applications have an operating lifespan between 40,000 and 80,000 h, i.e., about five to 10 years [111].
This is one of the factors that position FCs used for stationary purposes in a greater market and
business opportunity.

The applications of a stationary system with emphasis on FC microgrid system include the
following:

• Grid-connected [111,113]
• Grid-parallel [111]
• Stand-alone power [111,113]
• Emergency or backup power [97,111,114–117]
• DC microgrid [68]

3.1. Application of Fuel Cells in Microgrid Systems

3.1.1. Grid-Connected

The energy flow in this application is allowed in three different paths such as from the electrical
grid or network to the users’ load, from the FC microgrid to the users’ load, and from the FC microgrid
to the electrical grid [118,119]. By using a “load-following” strategy, the microgrid system may be
designed as a constant energy source to meet the users’ maximum electricity consumption. In this
case, the excess electricity production from the microgrid system may be exported to the electrical
grid. Two sources of energy supply are available to the users in this scenario, i.e., electrical grid and FC
microgrid. The economic benefit of exporting the surplus energy from the FC microgrid system to the
electrical grid is expected to yield a reduction in the electricity bill from the utility [120].

A net metering system is also expected to be part of the electrical system for evaluation purposes.
This design requires standard codes such as the Institute of Electrical and Electronics Engineers (IEEE)
1547 standards for integrating distributed generation systems [121]. A grid-tie hybrid power system
based on FCs and microturbine or a parallel arrangement of three separate FC units is presented
in [122], which was modeled to manage the thermal and electrical loads in a residential premise where
the thermal load is being served by the gas supply and the waste heat from the FCs.

However, the schematic of a grid-connected application of FCs is shown in Figure 3, where the
heavy-current load is being served by the heat from the FCs and the electrical supply, which is different
from the idea presented by the authors in [122]. The heavy-current load such as electric cookers, water
heaters or boiling rings, space heaters, and oven may be operated by the electrical supply. Energy meter
M is employed to quantify the energy purchased from and sold to the power grid. The microgrid
system in Figure 3 was designed with the aim of satisfying the total load requirement in a typical
household by the fuel cell system and the grid. The total load includes the heavy-current load and the
other loads such as the inductive load, TVs, lighting, DVD player, etc. It is a conventional practice to
have an interface between the electrical arrangement and the grid, which depends on the capacity and
configuration. The interface could be a power converter for a domestic application or transformer for
heavy applications.
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3.1.2. Grid-Parallel

In this application, energy may be purchased from the electrical grid to meet the users’ load
when required; however, the FC microgrid is not allowed to export any excess energy to the electrical
grid [111]. This configuration also implies that two energy sources are available to the users, which are
the existing electrical grid and the FC microgrid systems. Therefore, the energy flow is allowed in two
different directions. The microgrid could be designed to balance the users’ demand, while energy could
be imported from the existing grid in cases where there is an increase in users’ demand. An increase in
demand is expected as the users can climb the energy ladder [123]. Since there is no energy flow from
the FC microgrid to the existing power grid, the interconnection codes are not required. Therefore,
Figure 4 represents the grid-parallel application. Also, a battery system (auxiliary power source) is
not included in the arrangement as it has been replaced by the grid, which is also able to provide the
start-up requirements [111].
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3.1.3. Stand-Alone Power

In this application, there is no interaction between the users’ load and the grid, unlike the grid-tied
and grid-parallel modes, nor is there any electrical connection between the FC microgrid system and
the existing power grid [124]. Therefore, energy flow is only available from the on-site power system
to the load. The on-site power system could be a single-source, stand-alone power system that is
entirely based on FC technology or a hybrid system that is based on the combination of FCs and other
technologies like solar PV, biomass, battery, diesel generator, microturbines, etc. A conceptual remote
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hybrid electrification system was described in [125]. However, this paper designed Figures 5–7 for
illustrating different configurations of FC-based, stand-alone power systems.

Figure 5 shows a single-source system based on FCs, while Figures 6 and 7 illustrate hybrid systems
of FCs + PV and FCs + diesel generator. A microturbine generator may also be used instead of diesel
generator in Figure 7, which implies that power sources 1 and 2 could be served from a single primary
fuel—natural gas. Furthermore, a “load-following” approach is usually employed in stand-alone
power systems, which is why battery storage is integrated with the energy generation arrangement to
respond to rapid variations in users’ load demand at some point in the system operation [111,126].
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The stand-alone power has to have the technical capability to satisfy the start-up requirements of
inductive loads such as water pumps, motors, and fans, for instance. This implies that the FC microgrid
(FCs + battery storage) must be modeled to meet maximum continuous load demand for reliability
purposes. In the system presented in Figure 5, the FC stack can provide the charging current for the
battery bank at times when there is low energy demand by the users. However, the users will experience
loss of energy supply if the FC stack is faulty or not available to supply power. This problem may be
addressed by using the complementary characteristics of the hybrid systems, shown in Figures 6 and 7,
as the users will benefit from the hybrid energy generation resources. In this case, some form of
energy management strategy is integrated with the power electronic converters to control the energy
interchange between the power sources and the battery storage system.

3.1.4. Emergency or Backup Power

In the emergency application, the microgrid system must not only possess the technical capability
to meet a fast start-up but also be connected with a battery bank or another peaking plant [111]. The
battery bank can offer a low backup power for a short duration (usually seconds to a few minutes);
however, the FC stack can provide higher backup power in several kW with a longer duration of
>30 min [111,118].

Both the electrolyzer and the hydrogen tank can be integrated with the FC microgrid used in
backup power mode. The significance of this is that the system will be capable of producing its fuel
(i.e., H2) at those periods when electricity is imported from the grid [111]. The electrolyzer consumes
electricity to produce hydrogen by the process of electrolysis of water, while the purpose of the
hydrogen tank is the storage of hydrogen generated by the electrolyzer for operating a hydrogen-fueled
generator [127]. Such a system that makes use of an electrolyzer is known as the regenerative FC.
An example of backup power is the uninterruptible power supply (UPS), which can supply power for
30 to 60 min, and it finds applications in telecom, Information and Communications Technology (ICT),
manufacturing, security, utility substations, and traction (i.e., railway) systems [111].

3.1.5. DC Microgrid Application

The DC generated by the FC stack may be used to power DC appliances, without the need for
an inverter, or employed for developing a direct current (DC) microgrid. Figure 8 illustrates the DC
microgrid with a connection with the existing power grid [68]. The DC microgrid is composed of a DC
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voltage source, i.e., an FC stack, which is connected to the source DC-DC converter for achieving a
higher or lower voltage output depending on the design requirements. A load DC-DC converter is
required, as shown in Figure 8, for interfacing the load with the DC bus, which is used to bring the bus
voltage to the value required by the load or appliance. The common voltage levels that have been
employed for telecom systems are 24 V and 48 V [68,128,129]. It is necessary to provide an interface
between the existing power grid and the DC microgrid; this is achieved by using the bidirectional
AC-DC converter [130]. Through this it is possible to sell back the excess electricity from the DC
microgrid to the existing power grid, as well as purchase energy from the power grid when the output
of the microgrid system is lower than the load demand [131]. The gateway unit requires an AC power
input as it is meant to provide a bidirectional link between the microgrid and the existing grid or other
generation sources in the arrangement.
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3.2. Comparison of Fuel Cell Microgrid Applications

FC systems may be employed for on-grid and off-grid purposes in situations where the microgrid
system is co-located with the load. Suppose that energy supply is being provided mainly by the
FC stack, as shown in Figure 3. Then the microgrid can potentially compete with or serve as an
alternative to the grid supply or provide electricity for grid-independent applications in isolated
communities. Furthermore, operating the FC microgrid in parallel with the existing grid could provide
the opportunity for meeting peak load or baseload requirements since continuous energy generation is
a property of the energy source.

The system may be operated in combination with variable energy generation systems, like the
solar photovoltaic plant, wind generator, or biomass power system, to produce electricity at periods
when these systems are not available to power the load, as illustrated in Figure 5. The system may
also be employed as an emergency energy generator in a situation whereby the existing grid is down
or the other source of electricity is unavailable. Table 4 presents the comparison of the FC microgrid
applications, while the applications of FCs based on rated power output are presented in Table 5.

Table 4. Comparison of the FC microgrid applications [68,111,118,119,121,124].

Application Sources of Energy
Available to Users

Import Energy
From Grid

Export Energy
to the Grid Power Flow Paths

Grid-connected 2 Yes Yes 3
Grid parallel 2 Yes No 2

Stand-alone power 1 (single-source),
2 or more (hybrid) No No 1

Back-up power 2 or more Yes No 2
DC microgrid 2 or more Yes Yes 2 or more
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Table 5. Applications of FC systems based on rated power output.

Rated Power (kW) Applications Technologies

1–10
Utilised in individual households,
recreational vehicles and trailers, and
for portable power [36,111].

Direct Methanol, Alkaline, Polymeric
Electrolyte Membrane FCs
[21,36,80,113]

10–50

As a distributed generation (DG)
used in larger households, a group of
individual households, hall or
mansion, and small business
premises such as shops, and eatery
etc. [36,111].

Alkaline FCs [21,36,80], Polymeric
Electrolyte Membrane FCs
[21,36,80,113], Phosphoric Acid FCs
[80]

50–250

Employed to power small
communities, hospitals, office
building premises, military
camps/yards or stations, base load
generation and back-up power
[36,111].

Alkaline, Phosphoric Acid, Solid
Oxide, Polymeric Electrolyte
Membrane FCs [21,36,80,113] Molten
Carbonate FCs [21,80]

>250

As a DG used for powering a larger
group of houses or a local
community, baseload generation.
The proton exchange membrane FCs
may not be able to compete with
other high-temperature technologies
[36,111].

Molten Carbonate, Phosphoric Acid
FCs [21,36,80,113], Solid Oxide FCs
[21,36,113]

3.3. Other Fuel Cell Technologies

3.3.1. Regenerative Fuel Cell Technology

The regenerative FCs possess a dual operating mode. That is, they may be operated as an
electrolyzer and alternately as FCs, thus providing the opportunity to operate either in the electrolysis
or the FC mode, respectively [111,132]. The electrolyzer consumes electrical energy to generate H2

water electrolysis; the hydrogen that is produced is then fed to the hydrogen storage tank for operating
a hydrogen-fueled generator [127]. The electrolyzer and the FC systems may be integrated to form a
single cell stack; the regenerative FC may also employ two separate cell stacks where one is being used
as the FC while the other is used as an electrolyzer [111]. While the single-cell stack is referred to as a
unitized system, the two separate cell stacks are regarded as a discrete system [132]. Figure 9 illustrates
a microgrid based on solar PV modules and regenerative FCs with master and slave application of the
FCs. Such a configuration is based on a dedicated controller for fuel supply and timing of operation
for the two FCs.

The cell stack produces H2 and oxygen from electrical energy in the electrolysis mode.
However, it produces electrical energy from the stored H2 (and O2 that may be obtained from
the air) in the fuel cell mode [111]. By this characteristic (similar to a secondary battery), regenerative
FC is an energy storage system that utilizes H2 as the storage medium. It possesses the highest
specific energy that may be reached of all rechargeable energy storage technologies. For instance,
specific energy of 400 to 1000 Wh kg−1 (watt hour per kilogram) may be achieved for a practical
system [111,133].
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The technology may be used in applications where it is required to store a large quantity of energy
such as the following [133]:

• Employed as an energy storage system for grid-independent electrification systems.
• Used in combination with variable power sources such as solar and wind.
• Used as emergency power.
• Employed in marine systems, such as “unmanned” underwater vehicle.
• Used in spacecraft as hybrid energy storage or propulsion systems.
• Used as solar rechargeable aircraft for the high-altitude, long-endurance purpose.

The diagram illustrating the use of a regenerative FC system as storage in a solar photovoltaic
microgrid was published in [133]. The overall specific energy of regenerative H2/O2 FCs that ranges
from 400 to 1000 Wh/kg is a multiple of the value achieved for any battery system [111]. For instance,
specific energy values of 100–300 Wh/kg [134,135], 30–50 Wh/kg [69,118], 100–200 Wh/kg [69],
and 10–50 Wh/kg [95] for lithium-ion, lead-acid, sodium-nickel chloride also known as ZEBRA,
and vanadium redox battery (VRB), respectively. These, including the fact that regenerative FCs are
independent of hydrogen infrastructure like the other FC technologies, are important factors that
attract their use in the mentioned applications.

However, certain trade-offs are usually considered for planning and designing regenerative FCs.
These include the choice between oxygen and air feed, single-stack and/or discrete systems, feed,
and the choice of working pressure [111,133]. Each of the mentioned trade-offs may be weighed on
different grounds, but the economic factor, efficiency, and the duty cycles are usually the driving factors
for selecting an oxidant for a particular purpose, for instance.

3.3.2. Biofuel Cell Technology

Biofuel cells (BFCs) are a type of low-temperature technology in which “biological catalytic”
reactions are used to produce DC from the electrolysis of reactants (fuel and oxidant), unlike in
conventional low-temperature FCs where metal catalysts are used [136]. BFCs can use fuels like
H2, methanol, and organic materials to generate electricity. They are categorized into those systems
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that use bacteria and algae (living cells) and those that use enzymes and mitochondria-catalysts
extracted from cells (biological catalysts). The operation of enzymatic FCs involves the utilization of
enzymes to realize fuel and oxidant oxidation at the anode and cathode, respectively, at neutral pH and
ambient temperature considered to be favorable compared to conventional systems. Besides, unlike the
traditional FCs, there is no need for separator and compartments in enzymatic FCs, which is why they
can be designed as miniature cells and membrane-less systems in µm scale [136–138]. The output of
such a technology may be useful for operating electronic devices such as sensors, etc.

3.3.3. Hybrid Systems and Control Mechanisms

It is proven that FCs find applications in the grid and off-grid systems. Using the FC microgrid
as a single-source power system in connection with the existing grid implies that electricity may be
exported from the grid when the microgrid output is not enough to satisfy the load requirements.
Such an electrical arrangement benefits from the complementary characteristics of the two sources
of energy–the FCs and the grid. However, certain limitations exist when technology, such as the
solid oxide FCs, for instance, is employed as the only power source in grid-independent applications.
These are reflected in the degradation of the system’s life span, especially when the operation is
dynamic, and the high capital cost, which affects the proliferation of FC systems [139]. The degradation
of FCs’ lifetime will unavoidably affect their durability. These are among the notable factors that gave
a hybrid system an edge over a single-source system in stationary applications. Then, it is of interest to
put in place some control strategies to coordinate the operation of microgrid systems that are based on
multiple energy systems. [140]

A recent study considered a CHP system that is based on solid oxide and proton exchange
membrane FCs integrated with a hybrid storage configuration for off-grid purposes [139]. The authors
proposed the hybrid CHP solutions that seek to overcome the mentioned limitations, in which case the
solid oxide FCs are used to satisfy the system’s baseload, while the production and storage of pure
H2 from the solid oxide FC anode off-gas was achieved by integrating a purification unit with the
system arrangements. The stored H2 may then be employed for driving proton exchange membrane
FCs when the electricity demand peaks. The main idea of the research was the application of a hybrid
energy storage system, the battery bank and the H2 in this case, to reduce peak electricity demands.
This increased the solid oxide FC’s average “load” and also reduced the installed size, leading to a
nearly constant load operation of the solid oxide FCs and improved durability.

The load-following capability of a hybrid energy system (HES) has been discussed recently for
microgrid operation, which is based on FCs and microturbine [141]. The authors identified a major
limitation of the microgrids that are entirely based on FCs, which is the lack of load-following capability.
This shortcoming has been attributed to the slow “electrochemical” and “thermodynamic” reactions
associated with the internal operational characteristics of the FCs. Proton exchange membrane FC
system, for instance, is one technology that demonstrates appreciable potential when employed in
microgrids, but it requires the integration of energy storage such as the battery or the supercapacitor to
realize a rapid electrical load following [142]. The control mechanism is such that the storage system
responds to the transient load, while the FCs responds to the steady-state load [141].

However, relatively low life span and high capital costs are part of the shortcomings of battery
and ultracapacitor technologies engaged for load following, just like the limitations earlier mentioned
for FCs used for single-source microgrid systems. In light of this, a microturbine (microT) may also be
integrated with the FCs to satisfy both the steady-state and the transient requirements of the load both
in on-grid and off-grid applications [141]. The microT, though similar to a conventional gas turbine,
possesses a quick response because of its favorable compact design, which allows a faster rate of flow of
gas. These properties make the microturbine a suitable option for achieving load-following capability
in FC microgrid systems and the authors employed a conventional loop gain control strategy for the
microgrid operation.



Inventions 2020, 5, 42 24 of 35

The application of FCs and heterogeneous energy storage systems was recently discussed for
the energy management of data centers [143]. The authors identified the “limited” load-following
capability of FCs. This implies that the FC technology is slow in responding to a rapid increase in load
demand due to a limitation placed on fuel delivery. The technology also has a delay in responding to
and adjusting electrical power to a decrease in load, thus wasting energy. The combination of multiple
batteries with FCs has been was introduced in the work to address the issue of limited load-following
capability by providing electricity supply when the output of the FCs is less than the load requirement
and employing the excess energy of the FCs to charge the batteries when the demand is low. An online
algorithm was proposed by the authors, which was based on the principle of classical control policy
(ccP) for dynamic capacity consideration in the specified datacenters.

The dynamic power and cooling generation have been achieved for household purposes by
integrating a solid oxide FC with an organic Rankine cycle (oRc) and absorption chiller systems [144].
The authors proposed a dynamic, physical model that integrates the solid oxide FCs, oRc, and the
absorption chiller to simulate the residential dynamic loads. It was reported that the hybrid design
incorporating dynamic models of oRc and absorption chiller provided a capability to follow the
residential dynamic load and the use of the solid oxide FC dynamic waste heat to generate additional
electrical power or cooling for the households. The idea of such a study was to explore the high
thermal property of the solid oxide FCs in conjunction with bottoming cycles (as illustrated in Figure 3)
to produce extra electrical energy, thermal energy, or cooling for enhancing the system’s efficiency
compared to when an individual system, solid oxide FCs, or oRc and absorption chiller, is operated in
a stand-alone configuration.

The performance analysis of a co-generation system based on proton exchange membrane FCs and
the lithium-ion battery system was achieved, using a typical residential premise in North China as a case
study [145]. The authors recognized the good dynamic performance and the inherent charge/discharge
properties of lithium-ion battery technology as a means to enhance the dynamic response when
integrated with the CHP system, especially in a situation where the electrical generation output does
not match the load. The proton exchange membrane FCs were employed as the prime mover in the
study, and the entire system design had a coordinated thermal and electrical load-following strategy.
It was reported that the hybrid design incorporating the lithium-ion battery produced an efficiency of
81.24% compared to the configuration without the battery that produced an efficiency of 70.22%.

The hybrid energy management (HEM) system model was presented, which was based on proton
exchange membrane FCs, solar PV, and wind generator. [146]. The authors proposed a novel adaptive
control strategy for coordinating the energy flow or interchange in stand-alone microgrid systems.
The HEM system coordinates the hybrid energy sources (HES) and the storage device is based on the
artificial neural network control (ANNc) and fuzzy logic control (fLC) mechanisms. Besides, the ANNc
is used to attain the maximum power point (MPPT) of the solar PV modules, while the fLC is employed
for energy sharing between the HES and the charge/discharge characteristics for optimizing the overall
performance. The fLC is also adopted in the study to enhance the energy-generating performance of
the FCs and its lifespan by controlling the FC stack temperature.

A direct hybrid design of polymer exchange membrane surface FC was achieved with small
aqueous ultracapacitors [147]. It was already established that the proton exchange membrane FCs
possess a high-power density, but this property may be degraded by the size and the weight of the
associated supports or ancillaries required to manage and control the flow rates of air, H2, and the
humidity. A hybrid design based on batteries or ultracapacitors was introduced by several researchers
to overcome the challenges of limitation of fuel cell dynamics by fuel supply mechanism consisting of
the compressor, flow control device, and/or the humidifiers.

However, the authors posited that the FC system’s performance enhancement offered by a hybrid
design with ultracapacitors raises a technical question about the best configurations and control
approaches. In that way, it was desirable not to implement hybrid designs at the expense of the FC’s
durability and reliable operation. Though trade-offs may be entertained in certain situations, the system



Inventions 2020, 5, 42 25 of 35

complexities and capital cost also need to be rationally moderate. In most existing studies, for power
management, the FCs/ultracapacitor hybrid systems usually include one or two DC-to-DC power
electronic converters. It is also possible to have a hybrid design that directly connects the FCs with
the ultracapacitors without the need for a power management mechanism and its associated power
converters. Such design is referred to as passive hybrid design, and how this may be employed to
enhance system performance and reliability with steep load demand variations was the idea proposed
by the authors in [147].

The load-following capability of solid oxide FCs was achieved by using a time delay control
mechanism [148]. The authors also identified the limitation of load following, which affects the solid
oxide FC system’s commercialization. In light of this, they introduced a time delay control with an
observer in the gas supply system to improve the FC’s dynamics–in terms of load following without
curtailing or blocking the fuel supply. The initial approach of a time delay with an observer was
enhanced by integrating a filter to forestall the unwanted effects, such as fuel disruptions, i.e., external
disturbances, on the operation of the FCs. A 5-kW solid oxide FC was developed in the work as a test
case and it was reported that the proposed control approach provided good dynamic performance
when applied to the fuel supply part of the system design.

The optimal fault-tolerant control approach has been introduced in the operation of solid oxide
FCs [149]. The authors recognized that certain critical issues such as load tracking, thermal management,
air excess ratio constraint, high efficiency, low capital cost, and fault detection are key factors required
for developing solid oxide FCs. It was also found that there are little or no research studies focused on
the control strategies that are based on optimization and fault diagnosis in solid oxide FCs. It was
reported that the proposed control strategy can track the electrical, operating temperature, and the air
excess ratio, realizing optimum efficiency, and cost under normal and abnormal (air compressor fault,
for instance) conditions.

The energy management of a HES has been achieved based on the tidal turbine and hydrogen
microgrid system [150]. The idea of the work is to use an EM strategy to convert the energy produced
by the tidal energy converter to H2 efficiently and ensuring the operation of the system components,
and a reduction of losses in the system. Two approaches that are based on the maximum torque/ampere
and the loss minimization were introduced to control the tidal generator to quantify the surplus H2

that may be generated.
The hierarchical energy management system was proposed for the hybrid design of solar PV, H2,

and battery island, direct current microgrid systems [151]. The authors first presented some of the
advantages of DC microgrids such as the fact that they are not being affected by issues of power quality,
synchronization, and the reactive power flow, which are common challenges of the AC microgrid
design. These were part of the factors that motivated a strategy that was introduced to enhance the
performance of the electrical system in terms of cost and robustness. The energy management system
consists of the local control (LC) and the system control (SC) layers. In the LC layer, the components
in the DC microgrid system are managed and controlled based on their working characteristics and
features, while the strategy for minimizing the associated fuel utilization is realized in the SC layer,
including the energy interchange between the FC and battery.

A two-level energy management (EM) strategy was also realized for a DC microgrid system
based on solar PV, FCs, and battery systems [152]. The authors mentioned the shortcoming of the
conventional, distributed-control technique, which is its limitation in satisfying the energy management
requirements for operating the multiple-source DC microgrid system. A two-level EM approach was
then proposed, which was similar to the idea presented in [151]. The strategy is segregated into two,
viz., the device control (dC) and system control (SC), levels. At the (dC) level, the maximum power
point-droop, dual-mode control, and the droop control were introduced to improve the reliability of
the microgrid system, while the power flow between the FCs and the battery was managed at the
(SC) level. The authors posited that the proposed two-level EM approach can achieve lower H2 fuel
consumption compared to the traditional PI control and the state machine control mechanisms.
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3.3.4. Impact of Employing FCs in Microgrids

The microgrid, a low voltage (LV) network, can integrate distributed energy resources and
different kinds of loads, which may be operated in grid-integrated or grid-independent modes [153].
Distributed energy resources include solar, wind, small hydro, biomass, fuel cells, battery, etc.
The output of the microgrid system is usually affected by the behavior of the energy source(s) it
contains. In a practical microgrid, the FC technology is affected by the fuel supply, for instance, and it
also requires the addition of a storage system. The utilization of the FCs in conjunction with the battery
and/or other sources of energy requires some form of control mechanism. This and the impact of
utilizing FCs in microgrids have been detailed in the preceding section based on recent scholarly works.

4. Fuel Cells: Status and Future Outlook

4.1. Developmental Status

The direct methanol FCs are in the early phase of technological developments and, as such,
they are underdeveloped, unlike the other systems [36], Phosphoric acid FCs are, and are regarded
as the first-generation fuel cells that are technically matured and are considered to be ready for
commercialization. Polymeric electrolyte membrane FCs are likely to be in the commercial phase in
the next five to 10 years. Molten carbonate FCs are referred to as second-generation FC systems that
have reached the early demonstration phase with the possibility of attaining the commercial status
after the phosphoric acid FCs within the next five to less than 10 years. Solid oxide FCs are regarded as
the third-generation FC systems, as their attainment of the commercial status is expected to be after the
phosphoric acid and molten carbonate FC technologies, and they are in the developmental phase and
are also likely to be commercialized within the next 5 to 10 years.

4.2. Future Research Direction and Outlook

This study reviewed the FC technologies. It has also paid attention to the exciting potentials and
applications of these technologies in microgrid-based power systems both in grid-tied and off-grid
configurations. However, the future research study will consider the design and comprehensive
analysis of FC-based microgrids for remote communities. This will then be compared with the authors’
previous work on PV microgrids for remote communities, to compare the technical and economic
performance of FC microgrids and solar microgrids.

The finite nature of fossil fuels and the environmental issues associated with their power generation
systems are major factors that led to the efforts by the global community to adopt energy resources that
are eco-friendly and sustainable. One of the products of these efforts is the utilization of renewable
energy resources, solar, wind, biomass, etc., which are already deployed in on-grid and off-grid
microgrid systems around the globe. Batteries are popular storage technologies used to mitigate the
effect of intermittencies in renewable energies [118].

However, FCs have a greater capability for power applications compared to battery technologies,
as they can also provide the ancillary services [154–157] such as voltage and frequency regulation, power
quality support, etc. The capacity of FCs to deliver continuous power makes them a suitable source
of power generation and emergency/backup supply. For instance, in energy management systems,
FCs can provide backup for a longer period than batteries [111]. They can provide constant power
supply, unlike renewable energy sources that have variable characteristics. They are environmentally
friendly, unlike a constant power source such as the internal combustion engines that produce noise
and emissions [38]. FC systems have higher specific energy compared to batteries.

Based on the mentioned factors, there is the possibility that electrical power systems will experience
a wider application of FCs within the next five to 10 years, as they have the technical characteristics and
advantages to compete with other energy resources. This is also dependent on the market dynamics
and developments in R&D that can optimize performance and cost. This is because high capital cost
is one factor that limits the proliferation of the FC power system in the market. With this in mind,
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FC systems have to be cost effective in terms of capital and installation costs to compete with the
conventional electrical power production systems [80]. In addition, intensive research is required to
enhance the lifespan of FCs and also minimize the complexities in fuel processing and system operation.

5. Conclusions

This paper presented a detailed review of FC technologies such as proton exchange membrane,
alkaline, direct methanol, phosphoric acid, molten carbonate, and solid oxide FCs, which are engaged
for stationary applications. The molten carbonate and the solid oxide FCs are categorized as
high-temperature systems, while alkaline, direct methanol, proton exchange membrane, and phosphoric
acid FCs are classified as low-temperature technologies.

The paper also discussed other technologies like the regenerative FCs and the biofuel cells.
The regenerative FCs find applications in energy storage of grid-independent electrifications,
in combination with variable power sources, emergency power or backup systems, marine, spacecraft,
and aircraft systems, while biofuel cells such as enzymatic FCs are used in sensors and electronic
systems. The paper also concentrated on the comparison of operational characteristics of the FCs based
on technical and economic metrics such as operating temperature, efficiency, specific energy, specific
power, energy density, power density, energy cost, and power cost. Generally, the specific energy of
regenerative FCs of 400–1000 Wh/kg is very much higher than the values of those of rechargeable
batteries based on the literature.

The study finds that proton exchange membrane FCs have a relatively high specific power with
a value of >1000 W/kg compared to solid oxide FCs that have a value of 1.05–1.67 W/kg and other
systems. The proton exchange membrane, solid oxide, phosphoric acid, alkaline, and molten carbonate
FCs have efficiencies of 35–45%, 50–70%, 37–45%, 35–60%, >50%, and 10–40%, respectively, but direct
methanol FCs have the lowest efficiency of all the technologies with a value of around 35%, based on the
literature. Besides, solid oxide and molten carbonate FCs being high-temperature technologies have a
working temperature range of 800–1000 ◦C and 600–800 ◦C, respectively, compared to proton exchange
membrane, phosphoric acid, alkaline, and direct methanol FCs that have a working temperature of
50–100 ◦C, 150–220 ◦C, 60–120 ◦C, and 70–100 ◦C.

The specific energy of proton exchange membrane, solid oxide, molten carbonate, and direct
methanol FCs are in the range of 100–450, 410–1520, 369–607, and 140.3–960 Wh/kg. The power
cost of PEMFCs, SOFCs, PAFCs, AFCs, MCFCs and DMFCs are up to $10,200/kW, up to $1500/kW,
about $3000/kW, >$200/kW, $2000–4000/kW, and $15,000–125,000/kW, respectively, which is higher
than the cost of most of the other power-generation technologies. The power density of proton
exchange membrane, solid oxide, molten carbonate, and direct methanol FCs is in the range of 4.20 and
above, 4.20–19.25, 1.05–1.67, and 1.00–300 kW/m3, respectively. The energy density of proton exchange
membrane, solid oxide, molten carbonate, and direct methanol FCs is in the range of 112.2–770 kWh/m3,
172–462.09 kWh/m3, 25–40 kWh/m3, and 29.9–274 kWh/m3. Furthermore, the comparative assessments
reveal that proton exchange membrane, solid oxide, phosphoric acid, alkaline, molten carbonate,
and direct methanol FCs are in the range of up to 3000, 1000, >50,000, 8000, 7000–8000 and 1000 h,
respectively, as obtained from the literature.

Besides, particular attention was paid to different technical applications of the FC technologies
such as grid-integrated, grid-parallel, emergency or standby power, stand-alone power, and DC
microgrid configurations, which are of interest both in the on-grid and off-grid microgrid systems.
The study also considered the FC control mechanisms and hybrid designs, and the technical challenges
posed when employing FCs in microgrids based on recent developments.

Furthermore, the advantages of the various technologies were presented including the technical
barriers associated with the mode of operation of each system. The study also discussed the
developmental trends of different technologies. The direct methanol FCs are in the early phase of
technological developments and, as such, they are not as developed as other systems. Phosphoric acid
FCs are technically matured systems that are ready for commercialization and they are regarded as the
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first-generation FCs, while the proton exchange methanol FCs are likely to be in the commercial phase
in the next five to 10 years. Molten carbonate FCs are referred to as second-generation systems that
have reached the early demonstration phase, with their developments and possibility of attaining the
commercial status after the phosphoric acid FCs within the next 5 to less than 10 years. Solid oxide FCs
are regarded as the third-generation systems as their attainment of the commercial status is expected
to be after the phosphoric acid and the molten carbonate FCs, and they are in the developmental phase
and are also likely to be commercialized within the next five to 10 years.

Based on the mentioned factors, there is the possibility that electrical power systems will experience
a wider application of FCs within the next five to 10 years as they have the technical characteristics and
advantages to compete with other energy resources. This is also dependent on the market dynamics
and developments in R&D that can optimize performance and cost. This is because high capital cost
is one factor that limits the proliferation of the FC power system in the market. With this in mind,
FC systems have to be cost effective in terms of capital and installation costs to compete with the
conventional electrical power production system. Also, intensive research is required to enhance
the lifespan of FCs and also minimize the complexities in fuel processing and system operation and
ensuring the safety of users given the volatility nature of hydrogen.

The paper demonstrated interests in the application of FCs in microgrid systems based on some
attractive features such as being clean, pollution-free, highly efficient, and flexible and promising
energy resource for microgrid applications that need more attention in research and development terms.
Furthermore, they can offer continuous operation and do not require recharging. Since microgrid
systems can help to strengthen the existing power grid and are suitable for solving the problem of
energy poverty or shortage in remote locations, the research paper is expected to provide useful
insights into advancing research and developments in clean energy generation through microgrid
systems based on FC technologies.
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