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Abstract: Reducing agricultural losses is an effective way to sustainably increase agricultural output
efficiency to meet our present and future needs for food, fiber, fodder, and fuel. Our ever-improving
understanding of the ways in which plants respond to stress, biotic and abiotic, has led to the
development of innovative sensing technologies for detecting crop stresses/stressors and deploying
efficient measures. This article aims to present the current state of the methodologies applied in the
field of agriculture towards the detection of biotic stress in crops. Key sensing methodologies for plant
pathogen (or phytopathogen), as well as herbivorous insects/pests are presented, where the working
principles are described, and key recent works discussed. The detection methods overviewed for
phytopathogen-related stress identification include nucleic acid-based methods, immunological
methods, imaging-based techniques, spectroscopic methods, phytohormone biosensing methods,
monitoring methods for plant volatiles, and active remote sensing technologies. Whereas the pest-
related sensing techniques include machine-vision-based methods, pest acoustic-emission sensors,
and volatile organic compound-based stress monitoring methods. Additionally, Comparisons have
been made between different sensing techniques as well as recently reported works, where the
strengths and limitations are identified. Finally, the prospective future directions for monitoring
biotic stress in crops are discussed.

Keywords: biosensors; hyperspectral; thermography; electrochemical; hormones; fluorescence;
acoustic; spectroscopy; remote sensing; volatile organic compounds

1. Introduction

Global demand for food, water, and energy, with climate change and increasing
variability in growing conditions, are among the key defining challenges of our time.
According to the United Nations, the global population is expected to reach 9.55 billion by
the year 2050 and 11.2 billion in 2100 [1], and the demand for food is expected to increase
anywhere between 59% to 98% by 2050 [2]. Considering the unpredictability in climate,
reduced land fertility from drought, erosion, and poor management, and agriculture’s
impact on the environment and the ever-increasing public expectation for implementing
sustainable practices, achieving sustainability in agriculture has never been more important.
In order to achieve the agricultural output goals in a sustainable fashion, we not only need
to improve crop production efficiency through precision resource management but also
reduce yield losses due to stresses in plants.

Presently, an estimated average of 21.5% of wheat, 30% of rice, 22.5% of maize, 17.2% of
potato, and 21.4% of soybean yields are lost due to pests and diseases, globally [3]. Overall,
an estimated 20% to 40% of all crop yield losses are caused by pests and plant pathogens
(phytopathogens), worldwide [4]. Losses of staple food crops such as, rice, wheat, maize, and
potatoes directly impact food security and nutrition, while losses in key commodity crops
such as fruits, nuts, and flowers have major impact ranging from household to national
economies. Additionally, the threat of plant pests and diseases are increased by climate
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fluctuations causing additional hindrance towards achieving sustainability in agriculture.
Therefore, reduction in crop losses will prove to be a major part of boosting agricultural
efficiency, and will require significant efforts towards improved management of pathogenic
and pest related stresses in plants.

Traditionally, biotic attacks on crops are determined through manual visual inspec-
tions based on physiological signatures such as lesions, tumors, wilting, stunted growth,
discolorations, and cell death. At that stage, the majority of the damage has already oc-
curred, leaving little to no room for treatments. Alternatively, based on prior knowledge
and/or rule of thumb, growers may apply agrochemicals like, pesticides, fungicides, or
bactericides to prevent pest and/or phytopathogenic damages, however, the application
is not optimized and often the chemicals are used in excess leading to environmental
contamination as well as economic stress. Therefore, identifying stress responses in plants
in a timely manner is of critical importance with direct impact on yield, food security,
agricultural economics, and the environment.

The progress made towards understanding the defense mechanisms in plants, from
the moment of coming in contact with a stressor to expressing physiological measures and
effects, has paved the way for developing sensing techniques for crop health management to
improve the sustainability of agroecosystems. Methodologies enabling early and accurate
detection of plant stress due to pathogens and pests provide a way for optimal deployment
of countermeasures for reducing of losses in yield. Our group has been pursuing agriculture
sensor design for soil [5–17] and plant health [18–26], modeling for soil moisture/nutrients
and plant growth dynamics [27,28], and decision-making for irrigation and fertilization for
over a decade [27,29].

This article aims to present the current state of the sensing methodologies applied
towards stress detection in plants caused by pests/insects and phytopathogens, while
discussing the gap in technologies which may, in the future, help reduce crop yield losses
bringing us closer to achieving sustainability in agriculture. Figure 1 shows an outline of
the methodologies discussed in this article. The paper is organized into several sections:
Section 1 provides the introduction, whereas Section 2 addresses the question: how do
plants respond to stress? Section 3 discusses sensing methods developed for detecting
pathogenic stresses in plants; Section 4 describes the methods applied towards the determi-
nation of pest attacks in crops; Section 5 discusses methods for volatile organic compound
emissions as an indicator of biotic stress; Section 6 focuses on the application of active re-
mote sensing technologies for detecting biotic stress in plants. Section 7 presents discussion
and conclusion while Section 8 focuses on the future of biotic stress monitoring in plants.
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Figure 1. An outline of the plant biotic stress sensing methodologies discussed in this article.

2. How do Plants Respond to Stress?

Plants are constantly exposed to the ever-varying elements of nature, and have evolved
unique mechanisms for detecting and responding to different types of stress. Stress in
plants can be defined as any unfavorable condition that causes significant disruptions
in the plant’s “normal” metabolism, growth, and development processes. Stress can be
caused by biotic or living agents such as, fungi, bacteria, oomycetes, viruses, pests, or by
abiotic or environmental factors such as, drought, nutrient deficiency, extreme temperatures,
radiation, and pollution. As compared to animals, plants have evolved a less intricate but
effective immune system. Plant defenses can be broadly classified into two categories: (i)
physical defenses that include preformed barriers like, bark, plant cell walls, waxy cuticles,
trichomes, thorns, spines, and thicker leaves, and (ii) induced defenses such as, accumulation
of signaling hormones, production of toxic chemicals, release of attacker deterring volatile
organic compounds, and deliberate cell suicide. Defense responses in plants are tightly
regulated by complex signaling pathways depending on stimulus perception as there is
high energy cost and nutrient requirements associated with them.

This article focuses primarily on the sensing methodologies developed in agriculture
for monitoring diseases and stress caused due to biotic aggressors—pathogens and pests. A
recent article by our group provided a comprehensive survey of soil moisture and nutrient
sensing that cover the key abiotic sources of stress [19]. This section presents an overview
of the responses of biotic stresses in plants that enables the development of technologies
to detect them. Figure 2 presents a brief overview of the recognition mechanisms against
phytopathogen and pest/insect attacks in plants resulting in the onset of induced defenses
and hormone signaling.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3346861/

Figure 2. Recognition mechanisms of biotic stresses due to phytopathogens and pests. Reprinted
from [30], Copyright (2012), with permission from Elsevier. MAMPs, PAMPs, DAMPs, and HAMPS
refer to microbe-, pathogen-, damage-, and herbivore-associated molecular patterns, respectively;
PRRs are pattern recognition receptors; PTI/ETI and HTI refer to PAMP/effector- and herbivore-
triggered immunity, respectively; WIR refers to wound-induced resistance; uncharacterized elements
are indicated by broken lines.

2.1. Responses against Phytopathogens

Phytopathogens can be divided into three main categories: (i) biotrophs, these pathogens
feed silently on the living tissue, extracting nutrients gradually while keeping their host
plants alive and functioning; (ii) necrotrophs overwhelm the plants defenses by producing
toxins and tissue-degrading enzymes, feeding on the dead tissue resulting in rapid loss
of nutrients from the host; (iii) hemibiotrophs, these pathogens act as biotrophic during
initial stages of infection, but turn necrotrophic in later stages of the disease [31]. Sub-
sequent to the physical defense barriers, the next line of active resistance comes from
the induced innate immunity in plants, also known as basal resistance. This occurs at the
plant cell surface when pathogen- or microbe-associated molecular patterns (PAMPs or
MAMPs) such as, specific proteins, liposaccharides, β-glucans, chitin, pepetidoglycans and
bacterial flagellin, which are commonly found on the microbes, are detected on the host
(plant) cell surface through special trans-membrane proteins called pattern recognition
receptors (PRRs) [32,33]. PAMP/effector-triggered immunity (PTI/ETI) is considered to
be responsible for non-host specific resistance, occurring at or above the species level [34].
Refs. [32,35,36] studied physiological responses, local to attack-site, under PTI/ETI that
include increase in Ca2+ concentration, plant cell membrane adaptations, production of
reactive oxygen species (ROS), and cell wall fortification.

Adapted pathogens can tackle PTI by injecting effector molecules, which are microbe-
produced proteins/toxins, that can suppress the function of host immune regulators,
promoting pathogen virulence. For example, Pseudomonas syringae (P. syringae) strains
contain dozens of such effectors like, AvrPto1 of P. syringae, that have been shown to
promote pathogen virulence by suppressing immune-related proteins in tomato plant [32].
In response, plants have developed intracellular immune receptors known as resistance
(R) proteins that can activate effector-triggered immunity. This second level of immunity is
commonly characterized by hypersensitive response (HR) which is typically associated with
programmed cell death at/near the infection site to prevent further pathogen transport to
other parts of the plant, as well as the production of antimicrobial molecules. In contrast
to the PAMP-triggered immunity (PTI), effector-triggered immunity (ETI) is specific to a
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microbe. Fungi, bacteria, viruses, and microscopic nematodes are all subject to induction
of HR. A local HR response can also trigger immunity against future infections for an
extended period of time, this phenomenon has been termed as, systemic acquired resistance
(SAR) by A. Frank Ross in 1961, who discovered it for tobacco plants infected with tobacco
mosaic virus (TMV) [37]. SAR represents a long-lasting, broad spectrum immune response,
where resources are mobilized throughout the plant for taking quick measures in case of
any future attacks.

Moving immune signals play a critical role in SAR, and understanding the signaling
mechanisms related to SAR is a major area of research. These signals are generated in
the infected tissue and are rapidly transported to other parts of the plant. The onset of
SAR is accompanied by the accumulation of signaling plant hormones or phytohormones,
major among which include, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and
Abscisic acid (ABA) [32,38]. In general, it has been established that phytohormone signal-
ing mediated by ABA promotes abiotic stress tolerance while SA promotes biotic stress
tolerance [39]. Additionally, SA mediated responses have been linked primarily with
biotrophic phytopathogen attacks whereas JA/ET hormone signaling have been associated
with necrotrophic phytopathogens and pest attacks [40,41]. Moreover, molecular crosstalk
exists between the different hormone signaling mechanisms, where under abiotic stress,
ABA-based defenses suppress signaling of biotic stress-related phytohormones [39]. Fur-
thermore, increasing evidence indicates mutually antagonistic relation between SA- and
JA/ET-mediated pathways [38,41].

2.2. Responses against Herbivorous Pests/Insects

Plants have evolved specific defense mechanisms to recognize and respond to herbiv-
orous pest/insect attacks which include physical barriers such as waxy cuticle, trichomes
(often toxic), spines/thorns, and hardened leaves, plus the induced defenses which are gen-
erally triggered by mechanical damage to the plant tissue. Plants can distinguish between
general wounding and insect feeding based on the presence of elicitors contained in the
saliva of insects [31]. Similar to PTI/ETI in case of phytopathogens, herbivore-associated
molecular patterns (HAMPs) which are insect-derived compounds are recognized by re-
ceptors on the attack site which leads to herbivore-triggered immunity (HTI). Additionally,
wounding leads to the release of damage-associated molecular patterns (DAMPs) resulting
in wound-induced resistance (WIR) [30,34]. Pests not only cause physical damage to the
plant tissue but also act as vectors for diseases while providing entry points for carrier
phytopathogens through wounds. Clear identification of HTI and WIR trigger mechanisms
is an active area of research, where several studies have been conducted to distinguish
HTI (based on insect secretions) and WIR (self triggered) [30]. HTI/WIR responses include
increased to calcium signaling, and release of ROS and deterring chemicals/toxins; their
detailed roles and mechanisms are described in [36].

Most herbivores inflict much greater cell damage than simple phloem feeders, and
activate hormone signaling, where resistance traits are induced by largely JA/ET path-
ways. Systemic signaling via the vascular system induces defense throughout the plant,
similar to the phenomenon of induced SAR after pathogen attack. The broad spectrum of
defense responses induced by hormone signaling pathways include antioxidative enzymes,
proteinase inhibitors (PIs), and released volatile organic compounds (VOCs), including
monoterpenoids, sesquiterpenoids, and homoterpenoids that have been known to repel
harmful insects and attract beneficial predators [31,36].

3. Methodologies for Sensing Pathogenic Fragment/Stress in Plants

Sensing methodologies for pathogenic disease detection in plants can be classified
into two broad categories: Direct versus indirect methods. Table 1 presents a general
qualitative comparison between the key microbial stress detection methods in plants.
Detailed comparisons wherever necessary among various methods are presented in the
subsequent sections.
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Table 1. Brief comparison of the direct sensing methods discussed in this article for monitoring phytopathogenic stress
in plants.

Direct Phytopathogen Detection Methods

Sensing Method Brief Description Performance
(Sensitivity) Strengths Limitations

Polymerase chain
reaction (PCR)

Pathogens are
identified by selective
DNA amplification
using specific primers
and thermal cycling.

1–100 fg/µL [42]

Highly selective,
reliable and sensitive,
cost effective, well
established.

Extensive sample
preparation and precise
thermal cycling
required, non-portable.

Isothermal DNA
amplification

Utilizes special primers
only without thermal
cycling for DNA
amplification.

0.01–1 pg/µL [43,44]

Selective, reliable,
thermal cycling not
required making
operation simpler.

Complex primer needs
for successful testing,
elaborate sampling and
testing procedure.

ELISA

Detection mechanism
consists of
affinity-based
interaction between
antigen
(pathogen-specific
protein) and antibody.

1–100 fg/µL [45]

Easy to use, suitable for
high throughput
testing, and
particularly useful for
detecting viral antigens

Time consuming,
elaborate sample
preparation and
labeling (antigen
extraction) maybe
required.

Lateral flow
immunoassay

Based on colorimetric
detection of the
formation of
antigen–antibody
complex.

0.1–1 pg/µL [46–48] Portable, inexpensive
and easy to use.

Qualitative-only,
sample preparation is
often required to
extract antigen
proteins.

Immunosensors

Identification of the
antigen–antibody
complexes using
various transduction
mechanisms.

0.1–10 pg/µL [49,50]
Highly portable,
quantitative, easy to
use

Variability in operation.

ELISA = Enzyme-linked immunosorbent assay.

3.1. Direct Pathogen Detection Methods

Direct detection methods refer to the techniques where the pathogens are identified
directly as a way of sensing for diseases. These methods are most commonly used in
the laboratory setting for high-throughput analysis, but have also recently been reported
for use in portable and/or in-field sensing applications. Direct phytopathogen detection
methods discussed in this article can be largely classified into two categories: nucleic
acid-based methods, and serological/immunological methods.

Nucleic acid-based methods use various forms of deoxyribonucleic acid or ribonucleic
acid (DNA/RNA) recognition techniques to identify the disease causing micro-organisms.
In general, these techniques work by selective amplification and subsequent detection
of the target DNA. Common amplification choice in nucleic acid based methods include
polymerase chain reaction (PCR), recombinase polymerase amplification (RPA), loop-
mediated isothermal amplification (LAMP), nucleic acid sequence-based amplification
(NASBA), and helicase-dependent amplification (HDA). Among these, PCR is the most
established method and requires thermal cycling for DNA/RNA amplification whereas
RPA, LAMP, NASBA, and HDA are contemporary methods that operate under isothermal
conditions while using specific enzyme cocktails for DNA/RNA amplification.

Serological/immunological methods rely on identifying pathogen specific
bio-molecules (antigens). The immune reaction in plants (host) is triggered based on
the recognition of an invader through the ability of specific host proteins (antibodies) to
bind to unique pathogen proteins (antigens). Following the similar principle of recognition,
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serological methods operate by extracting serum from the infected plant tissue and test-
ing for antigens related to pathogens using specific antibodies. Key serological methods
include enzyme-linked immunosorbent assay (ELISA), lateral flow immunoassays, and
antibody-based biosensors/immunosensors.

3.1.1. PCR-Based Methods

PCR is a versatile tool that was developed by Kerry B. Mullis for which he was
awarded the Nobel prize in 1993 [51]. It has since been used extensively in diagnostics
to detect diseases through pathogen identification by rapidly synthesizing millions of
copies of specific DNA sequences. As shown in Figure 3, the process begins by separating
the extracted double-stranded DNA (dsDNA) into two single-stranded DNA (ssDNA)
molecules by heating to 95 ◦C, the temperature is then reduced to 40–65 ◦C allowing for
the binding of the primers at each end of the target ssDNA’s region to be amplified [52].
The primers are short pieces of ssDNA which bind specifically to the target DNA sequence
by complementary base paring. Finally, the complementary strand to the target sequence
in the ssDNA sandwiched between the primers is generated at around 72 ◦C using the
thermostable enzyme, DNA polymerase, and deoxyribonucleoside triphosphates (dNTPs).
In this way after each cycle the number of copies of the target DNA sequence are dou-
bled, and in a few hours, millions of such copies can be generated. The overall process
requires only a few ingredients (DNA, buffer, dNTPs, primers and DNA polymerase) and
a programmable heating block forming the majority of a PCR machine.

Sampling and 

DNA/RNA 
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Target 

DNA/RNA 

amplification

Nucleic acid 

detection and 

quantification

Sampled leaf
Leaf extract

Extracted DNA
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Figure 3. General steps involved in nucleic acid amplification-based phytopathogen detection.

The amplified DNA can be detected using methods like gel electrophoresis (most
commonly used), colorimetric assays, and fluorometric assays. Over time, several advances
have been made to the basic PCR such as, (i) reverse-transcriptase PCR (RT-PCR) that
extends the application for replicating RNA by reverse transcribing the RNA templates
with the enzyme reverse transcriptase to produce complementary DNA, (ii) nested-PCR
(n-PCR) that improves the sensitivity and specificity through a second PCR reaction using
primers that recognize a region within the PCR product amplified by the first set [52], (iii)
multiplexed PCR (m-PCR) where several PCR primers are used in the same reaction to
identify multiple pathogens, and (iv) quantitative real-time PCR (qPCR).Standard PCR is
not inherently quantitative and may not correctly represent the concentration of the target
DNA originally present, however, qPCR has emerged as a successful technique widely
used in laboratory-based as well as portable applications for pathogen detection. This
technique monitors the amplification of the target DNA in real-time via a target-specific
fluorescent signal which can also be used for quantification.

Sample preparation and DNA extraction for PCR molecular analysis are critical steps
that require precise procedures for reproducible results. Figure 4 shows a comparison
between the standard conventional DNA extraction techniques versus a recently reported
micro-needle-based approach. According to the extracted genomes, RNA, ssDNA or
dsDNA, specific protocols for PCR analysis have been designed for use in commercial as
well as research applications [53,54]. Some of the commonly used commercially available
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PCR kits include, DNeasy and RNeasy Plant System from Qiagen, Ultra Clean Plant RNA,
DNA isolation kits from MoBio, and the Easy-DNA Extraction kit and Extract-N-Amp
Plant PCR kit from Sigma Aldrich [55]. In addition to the specific sample preparation
and DNA/RNA extraction protocols, accurate design of primers, oligonucleotides, and
probes also play a critical role in molecular detection methods for sensing plant pathogens.
Functional target sequences can be found using the databases such as GenBank® nucleotide
sequence search program provided by the National Center for Biotechnology Information
(NCBI, Bethesda, MD, USA).

Figure 4. DNA extraction procedures for nucleic acid-based methods, a comparison between conven-
tional method (cetyltrimethylammonium bromide; CTAB) and a micro-needle (MN)-based approach.
Reprinted with permission from [56]. Copyright (2019) American Chemical Society.

PCR-based methods are among the most commonly used techniques in plant pathol-
ogy in laboratory settings, but face several challenges for portable operation such as, sample
preparation, DNA extraction, portable temperature control system, and fouling due to
exposure to variable surrounding conditions. Despite these challenges, several PCR-based
techniques, portable or otherwise, for direct disease detection in plants have been reported
in the literature with key recent works described here.

A complete real-time microchip PCR system composed of a thin-film heater integrated
PCR reaction chamber, a compact fluorescence detector for detecting amplified DNA, and
a microcontroller that controls the entire operation for portable plant disease diagnosis
was reported in [57]. The disposable microchip requiring 8 µL sample volume was made
of two glass slides, where the bottom slide has a stationary reaction chamber holding the
PCR sample and the top slide has a thin film heater (patterned Cr/Au deposited on glass
using e-beam evaporation). An optical set-up was used for real-time PCR system based on
the detection of fluorescence dyes that intercalate with DNA, where fluorescent intensity
is proportional to the amount of amplified DNA. The dye is excited with light emitted
from an LED, and the emission light passing through series of filters and lenses is detected
through a photomultiplier tube. The entire system was 25 × 16 × 8 cm3 in size and 843 g
in weight, and consumed 110 mAh of power for each PCR run. The developed system was
tested using prepared samples containing Fusarium species and Pseudomonas species as
fungal and bacterial phytopathogens, respectively. DNA extraction was performed using
a commercial kit (Plant/Fungi DNA Isolation Kit, Norgen Biotek Corp., Thorold, ON,
Canada). The sensor exhibited a detection limit of 5 ng/8 µL sample with a 100% success
rate, validated using gel electrophoresis.
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A droplet digital PCR (ddPCR) sensing system for detecting common bunt disease
(caused by Tilletia laevis) in wheat was reported in [42]. The ddPCR exhibited superior
detection limit of 30 fg/µL as compared to qPCR (100 fg/µL). In case of qPCR, a parameter
called quantification cycle (Cq or threshold cycle, Ct) is defined which represents the PCR
cycle number after which the real signal from the sample becomes detectable against
background fluorescence. Hence, Cq controls the limit of detection in a given qPCR system
as shown in the Figure 5. Whereas in case of ddPCR, the sample (a few µL) is divided
into hundreds of nL droplets suspended in an oil using a droplet generator, and after
thermal cycling, the droplets are classified as positive or negative based on the fluorescence
response recorded using a droplet reader. In the presented work, a ddPCR system (QX200,
Bio-Rad, Hercules, CA, USA) was used for generating and analyzing droplets, where 40 µL
of PCR master mix (containing primers, target DNA, and ddPCR probes) and 70 µL of
droplet-generating oil (186-3005, Bio-Rad, Hercules, CA, USA) was used as inputs to the
ddPCR system.

Figure 5. Cq value on a quantitative real-time PCR amplification curve [58].

A micro-needle (MN) patch-based DNA extraction method was reported in [56] to
enable a truly portable PCR-based plant disease detection system. qPCR was used to
detect late blight (caused by Phytophthora infestans) disease in tomato, where the MN
extraction achieved 100% detection rate when compared to the conventional gold stan-
dard cetyltrimethylammonium bromide (CTAB)-based DNA extraction method. The leaf
samples were collected three days after inoculation. The MN-based method significantly
shortened the time of plant DNA extraction from ∼3 to 4 h in a conventional method to
around 1 min as shown in Figure 4, while overcoming the requirement for using bulky and
expensive equipment.

In addition to the aforementioned works, several other efforts related to PCR-based
phytopathogen detection have been reported in the past decade, such as a multiplex RT-PCR
(mRT-PCR) method for simultaneous detection of five grapevine viroids [59], the use of qPCR
for the detection and quantification of filamentous fungi and oomycetes within host tissue, soil,
air, and water [60], a qPCR assay for the detection and quantification of Verticillium dahliae in
spinach seed resulting in reliable measurements with sensitivity limit of about 1 infected seed
per 100 [61], and an on-site system for detecting soil-borne pathogen (Spongospora subterranea)
that causes Powdery scab in potato using magnetic bead-based nucleic acid extraction, and
portable qPCR (fluorogenic probe-based assay) [62].

Alternative nucleic acid-based methods overcoming the need for precise temperature
cycling in PCR have also been developed, key among which include RPA and LAMP-based
methods which are overviewed next.
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3.1.2. Isothermal Nucleic Acid Amplification-Based Methods

RPA is an isothermal nucleic acid amplification method which does not require thermal-
cycling like in PCR-based methods and can generally be performed at a constant temperature
between 25 to 42 ◦C, achieving amplification in as little as 15 min [63]. RPA mechanism starts
when a recombinase protein binds to the primer forming recombinase-primer complex which
interrogates dsDNA seeking homologous sequence and promotes strand invasion by the
primer at the cognate site. Next, to prevent the ejection of the inserted primer by branch
migration, the displaced DNA strand is stabilized by the ssDNA-binding protein. Finally, the
recombinase disassembles and a strand-displacing DNA-polymerase binds to the end of the
primer to elongate it in the presence of dNTPs [64]. Cyclic repetition of this process results in
the exponential amplification of the target DNA sequence.

An isothermal amplification of target pathogen DNA sequences by RPA followed by
gold nanoparticle-based electrochemical assessment with differential pulse voltammetry
(DPV) was reported in [65]. The RPA coupled with gold nanoparticles (AuNP) electro-
chemical (EC) biosensor was developed to detect the pathogen Pseudomonas syringae in
Arabidopsis plant. The DNA was extracted from plant samples using the solid phase
reversible immobilization (SPRI) method, followed by mixing with the primers for amplifi-
cation. After amplification, the resulting amplicons, containing a barcode sequence on one
end and biotin on the other, were hybridized to AuNPs using DNA probes complemen-
tary to the barcode sequence. Streptavidin magnetic beads were then used to enrich for
AuNPs/DNA/biotin products. The magnetic beads/AuNPs/DNA/biotin products were
heated to denature the dsDNA amplicons and to release any bound AuNPs into solution,
where the electrochemical reduction of Au (III) to Au (0) was measured with DPV. The
data indicated that RPA-EC assay (214 pM) was 100 times more sensitive than PCR-gel
electrophoresis (21,400 pM).

In another work, a rapid, equipment-free detection of Phytophthora capsici (oomycetes
that infect multiple plant species including Cucurbitaceae, Solanaceae, and Leguminosae) using
lateral flow strip-based RPA (LF-RPA) assay was developed [66]. A 30 s equipment-free
DNA extraction method using cellulose-based dipstick to rapidly capture nucleic acids was
employed. The dipstick method was proposed in [67], where a cellulose strip coated with
nucleic acid binding proteins is dipped in homogenized tissue sample and then washed in
buffer resulting in a rapid and simple DNA extraction procedure. It was determined that
10 to 20 min of DNA amplification time at 40 ◦C is sufficient for LF strip-based detection.
LF strips enable detection of biotin- and 6-carboxy-fluorescein (FAM)-labeled amplicons
produced during RPA. The primers used in DNA amplification were labeled with biotin
and fluorescence probes (like FAM) that bind to LF strips and causes visible changes. The
developed method exhibited a detection limit of 10 pg of genomic DNA.

In addition to the studies described above, several other recent works have been
reported using RPA-based phytopathogen detection including (i) the design of four separate
RPA assays for the detection of four pathogens, Xanthomonas gardneri, X. euvesicatoria, X.
perforans, and X. vesicatoria that cause bacterial spot of tomato [68]; (ii) the detection of bean
golden yellow mosiac virus, tomato mottle virus, and tomato yellow leaf curl virus (TYLCV) in
tomato and beans [63], where RPA was able to detect 9.6 pg and PCR was able to detect 9.6
fg of purified TYLCV DNA indicating the sensitivity of PCR (however, PCR was unable to
generate visible amplicoms during gel electrophoresis unlike RPA which produced results
even with crude sample extraction); (iii) the detection of plum pox virus (a disease causing
virus in stone fruit trees) using a commercial reverse transcription-RPA (RT-RPA) platform
called AmplifyRP, where the whole process from sample preparation to results took about
20 min and provided better sensitivity as compared to ELISA-based detection [69]; (iv) the
rapid detection of Cucumber green mottle mosaic virus by RT-RPA, where a detection limit of
0.5 pg of total viral RNA was observed [70]; (v) the detection of Little cherry virus 2 using
RT-RPA, where a crude sample extraction method involving homogenization of leaf tissue
in a mesh bag with an extraction buffer was employed [71], and in which the incubation
for the RT-RPA was performed at 39 ◦C for 15 min before visual detection using LF strips.
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LAMP in another prominent isothermal DNA amplification technique applied towards
phytopathogen detection. In LAMP, four to six target-specific primers (categorized into
forward and reverse primers) each consisting of a 3′ and a 5′ region and DNA polymerase
enzyme for strand displacement are required to generate products. Amplification begins
by denaturation of the dsDNA into ssDNA after which a forward inner primer binds to its
respective region on the ssDNA and the complementary bases are generated by the DNA
polymerase. Another different forward primer then binds to target upstream (in 5′ to 3′

direction) of the first primer’s site and displaces the strand formed by the first primer by
synthesizing complementary DNA (cDNA). The reverse inner primer now binds to the
newly released strand at its respective target and initiates reverse (in 3′ to 5′ direction)
DNA synthesis using the polymerase enzyme, and then another reverse primer binds to
target downstream of the first reverse primer’s site and displaces the strand formed by the
first reverse primer by synthesizing cDNA. The strand synthesized by the action of the two
forward and reverse primers contains two complementary regions which bind together to
form a dumbbell shape with 2 loops [72,73]. This dumbbell structure forms the basis of
cycling phase. LAMP-based amplification takes place at a constant temperature around
65 ◦C and is faster than PCR taking about 30 min for detectable results [43,74].

Several recent LAMP-based phytopathogen detection systems are reported in the
literature including (i) the detection of root infecting fungi in turfgrasses [74]; (ii) the
detection of quarantine plant pathogens such as Xylella fastidiosa, Ceratocystis platani, and
Phytophthora ramorum, three of the most devastating pathogens of trees and ornamental
plants in Europe and North America, where a detection limit of 0.02 pg/µL of DNA was
achieved [43]; (iii) a comparative study using LAMP and ddPCR for detecting Phytophthora
infestans which causes potato late blight [44]. It was observed that ddPCR exhibited the
lowest detection limit of 100 fg/µL whereas with SYBR green LAMP-based method a
detection limit of 1 pg/µL was observed.

Isothermal nucleic acid amplification-based techniques for phytopathogen detection
have gained momentum in the recent years owing to their simpler equipment needs, lower
cost, faster operation, and better potential for in-field or portable operation as compared to
conventional PCR-based methods.

In general, utilizing the power of DNA amplification technology requires develop-
ing specific DNA primers and a reliable assay protocol but offers excellent selectivity
and reliability which has made them a standard laboratory technique for pathogen iden-
tification and quantification. However, there are some limitations associated with the
techniques such as large time consumption, requirement for sophisticated equipment,
elaborate sample preparation, and expert training. Continuous efforts are being directed
towards making the techniques portable, easy to use, economical, and developing new
standard procedures/protocols for fast reliable measurements.

3.1.3. Serological/Immunological Methods

ELISA is among the most widely used serological techniques in disease diagnostics
for both animals and plants. It is a fairly mature technology with several phytopathogen
identification kits available commercially [75,76]. The basic principle of ELISA involves first,
the immobilization of the antigen (target protein in the sample) to be detected onto a solid
surface through adsorption. During this step, the antigen can directly be adsorbed on the
surface, or alternatively, a capture antibody (or primary antibody), previously adsorbed on
the surface, can be used to immobilize the antigen. Then, the surface is rinsed to remove
unadsorbed/excess material. Next, the secondary enzyme-linked antibodies are introduced
that bind to the target antigen, followed by the addition of the enzyme’s substrate or fluores-
cent dye to detect the antigens through a change in color. Only in the presence of specific
antigen–antibody interaction is the signal generated. A colorimeter is often used to measure
the intensity of the color change and calculate the concentration of the antigen precisely.
In addition to the basic ELISA mechanism (direct ELISA), other variants have also been
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developed such as indirect ELISA, sandwich ELISA and competitive ELISA [77] along with
multiplexed phytopathogen detection [45].

Lateral flow immunoassay (LFIA) is another major serological/immunological tech-
nique developed for detecting antigens. LFIA is a low-cost, easy-to-use paper-based
platform, where a liquid sample containing the analyte of interest (antigen) moves un-
der the effect of capillary action through various zones of polymeric strips impregnated
with antibody molecules followed by colored or fluorescent particles (most commonly
colloidal gold and latex microspheres) that label the antibody–antigen complex, if present
(see Figure 6). The sample together then migrates to the detection zone where specific
immobilized bio-molecules interact with the conjugated antigen–antibody complex and
produces a recognition signal in form of a visual color change [78]. In many cases, a
control line is present after the detection zone/test line which indicates proper liquid flow
through the strip. In contrast to ELISA-based detection, LFIA-based sensors are more
suitable for in-field or portable applications but are often less sensitive and exhibit inferior
quantitative capability.

Test line

Control line

Absorbent pad

Conjugate/labelling pad

Sample pad

Antigen specific antibody

Labelling tags

Control line tagsPolymeric membrane

Substrate

Flow direction

Figure 6. Schematic of a general lateral flow immunoassay-based device.

Several LFIA-based sensors have been reported for phytopathogen detection, where
some key recent studies include (i) a double enhanced LFIA containing magnetic and
gold nanoparticles (MNPs and AuNPs) for the detection of potato virus X (PVX; genus
Potexvirus) [79], where the concentration of analyte was increased in the samples using
conjugates of MNPs with specific antibodies and visibility of the label was increased
through MNP aggregation caused by AuNPs. A detection limit of 0.25 ng/mL was observed
as compared to 8 ng/mL in case of non-enhanced LFIA with operation time of 10 to
15 min; (ii) a multiplex LFIA for the simultaneous determination of three mycotoxins (toxic
metabolites produced by fungi) in corn, rice, and peanut [80]. Here the LFIA strip consisted
of three test lines, one for each mycotoxin, and exhibited a detection limit of about 10
µg/kg to 50 µg/kg; (ii) another multiplex LFIA-based sensor for mycotoxin (aflatoxin B1,
zearalenone and deoxynivalenol) determination in cereal crops (maize and wheat samples)
with a visual detection limit of 0.03 to 10 µg/kg [47]; (iv) an Ag-enhanced LFIA for the
detection of potato leafroll virus [46], where the Ag enhancement is based on the reduction
of Ag ions on the surface of AuNP (used for labeling) resulting in a significant increase of
initial AuNP-caused coloration. A detection limit of 0.2 ng/mL and an operation time of
15 min was observed; (v) an LFIA device for detecting ochratoxin A (a mycotoxin) in wines
and grapes, where a gold-silver enhancement scheme was implemented. A detection limit
of 0.9 µg/L was achieved with an assay time of 10 min [48].
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Immunosensors or antibody-based biosensors can also be categorised under serological
techniques, where the general detection mechanism involves the study of antigen–antibody
interactions and their quantification using electrochemical (EC), optical, and spectroscopic
methods. The application of immunosensors is a growing area of study in plant pathology
as they a provide quantitative information while exhibiting potential for rapid, portable,
and low cost analysis. A few key recent works covering the application of immunosensors
in plant pathology are discussed here.

A label-free electrochemical (EC) immunosensor based on electro-deposited Prussian
blue (PB) and AuNPs for the detection of citrus bacterial canker disease (caused by Xan-
thomonas citri subsp. citri.; Xcc) based on the directly recognizing the effector protein PthA
was developed in [81]. The sensor fabrication involved sequential electro-deposition of
PB and AuNPs on multiwall carbon nanotubes (MWCNTs)-ionic liquid nanocomposite
modified glassy carbon electrode. After immobilization of the anti-PthA antibody and
blocking with bovine serum albumin (BSA) protein, the immunosensor was used for deter-
mination of different concentrations of PthA antigen under the optimal conditions. The
developed sensor was characterized using cyclic voltammetry (CV) and EC-impedance
spectroscopy (EIS), where a linear dynamic range of 0.1 to 50 nM with a detection limit of
0.028 nM was achieved.

An EC immunosensor to determine zearalenone (ZEA; a mycotoxin) in maize using
carbon screen printed electrodes modified with MW-CNTs/polyethyleneimine/AuNPs
was presented in [82]. Anti-ZEA poly-clonal antibodies were immobolized on the AuNPs,
where the immunoassay was based on a direct competitive assay between ZEA in maize
samples and ZEA labeled with horseradish peroxidase enzyme (ZEA-HRP). The EC sensor
was characterized using amperometry where first, H2O2 (added to the sample solution)
was reduced to H2O by HRP, and then the remaining H2O2 was reduced electrochemically
leading to an EC signal proportional to the antigen ZEA in the sample. The developed
sensor exhibited a linear detection range of 10−4 to 10−1 ng/mL with a detection limit of
0.15 pg/mL.

Gold nano-rods (AuNRs)-based fiber optic particle plasmon resonance (PPR) im-
munosensors for the label-free detection of orchid viruses, Cymbidium mosaic virus (CymMV),
and Odontoglossum ringspot virus (ORSV), was presented in [49]. AuNRs were synthesized
by seed-mediated growth method and immobilized on the fiber core followed by the
functionalization of antibodies for CymMV or ORSV via a mixed self-assembled mono-
layer of alkanethiols using the reagents, 1-ethyl-3-(3-dimethylamino- propyl) carbodiimide
hydrochloride, and N-hydroxysuccinimide (EDC/NHS). The principle of operation was
based on the localized evanescent field absorption by the AuNRs upon biomolecular bind-
ing, resulting in decreased transmission intensity measured at the distal end of the fiber.
Using the developed sensor, a detection limits of 48 pg/mL and 42 pg/mL for CymMV
and ORSV, respectively, were achieved.

A bioelectronic plum pox virus (PPV) biosensor based on a electrolyte-gated or-
ganic field effect transistor (EGOFET) was reported in [50], where a poly-crystalline gold
wire gate electrode was functionalized with anti-PPV. The immobilization procedure in-
volved first, covalent binding of a (sub)monolayer of recombinant Protein G onto the
gold surface followed by anti-PPV antobodies (Abs) adsorption. Additionally, a (11-
Mercaptoundecyl)tri(ethylene glycol), OEG, self-assembled monolayer was deposited to
avoid non-specific adsorption to the gold surface spots not covered by the ProteinG/Ab.
EGOFET was tested by incubating the functionalized gate ex-situ, in solutions containing
increasing PPV and recording the transfer characteristics in phosphate buffer saline (PBS)
50 mM, pH 7.4 to extract transistor parameters in linear regime. A calibration curve based
on transconductance changes as a function of PPV was constructed, where a detection limit
of 180 pg/mL and a dynamic linear range of 5 ng/mL to 50 µg/mL was observed.
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In addition to the above-described works, several other recent immunosensing studies
have been reported in the literature including: (i) an EC immunoassay for detecting
Pantoea stewartii sbusp. stewartii-NCPPB 449 (PSS) in maize using AuNPs and HRP for dual
signal amplification, where HRP-labeled anti-PSS antibodies (D-Ab-HRP) were attached
to the surface of AuNPs and a sandwich immunosensor of capture anti-PSS antibody
(C-Ab), PSS, and D-Ab-HRP was established. A linear detection range of 2 × 107 to 4 ×
104 cfu/mL with a detection limit of 7.8 × 103 cfu/mL was achieved [83]; (ii) a lab-on-
a-chip platform consisting of an array of gold inter-digitated electrodes functionalized
with EDC/NHS/anti-Pectobacterium atrosepticum antibodies for monitoring blackleg and
soft rot disease of potato. EIS measurements were conducted for quantification, where
the measured impedance was directly proportional to the antigen concentration [84]. A
detection limit of 104 cfu/mL was observed; (iii) an SPR-based biosensor for the detection
of maize chlorotic mottle virus (MCMV), where 11-Mercaptoundecanoic acid was applied
on a gold surface to form a self-assembled monolayer, and a layer of anti-MCMV antibody
was crosslinked on the surface using EDC/NHS-based linkage [85].

Overall, serological/immunological methods are uniquely suited for large-scale test-
ing and operate by detecting pathogen-specific proteins. The key advantages of the method
includes good selectivity, fast operation, low-cost, and better potential for in-situ testing
as compared to nucleic acid amplification-based methods. However, serological methods
generally exhibit poorer detection limit and specificity in comparison with nucleic acid
amplification-based techniques, while still providing quantitative results.

3.2. Indirect Phytopathogen Detection Methods

Indirect detection methods refer to techniques where the plant’s responses to the
pathogenic stress are identified as an indicator of the disease. The stress responses may
include morphological and/or physiological changes such as variations in the tissue tem-
perature, color, transpiration rate, and accumulation of metabolites and hormones. Key
indirect methods for detecting phytopathogenic stress in plants discussed here include
imaging-based techniques such as visible/RGB (red, green, and blue)-imaging, hyper-
spectral imaging, and thermography; visible/infrared (VIS/IR) reflectance/transmittance
spectroscopy and Raman spectroscopy; chlorophyll fluorescence-based methods; hor-
mone biosensing methods; VOC monitoring-based methods (discussed in Section 5).
Table 2 presents a qualitative comparison of the mentioned indirect phytopathogen detec-
tion methods.

Table 2. Brief qualitative comparison of the indirect sensing methods discussed in this article for monitoring phy-
topathogenic stress in plants.

Indirect Phytopathogen Detection Methods

Sensing Method Brief Description Strengths Limitations

Visible/RGB imaging

Color-based features are
identified and extracted
followed by classification
using computational
algorithms.

Relatively inexpensive
hardware (often
smartphone-based),
non-invasive.

Low scope for
pre-symptomatic detection,
complex data processing.

Hyperspectral imaging

Spatio-spectral features are
extracted in 100s of
wavelength bands forming a
hypercube followed by data
processing to detect
symptoms.

Good scope for
pre-symptomatic testing, and
potential for in-situ
automated operation.

Requires sophisticated
hardware and complex
software.

Thermography

Passive thermal radiation is
recorded where local
temperature anomalies are
used to detect diseases.

Relatively inexpensive, fast
response, computationally
simple.

Poor specificity, and suitable
only for generalized plant
health monitoring.
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Table 2. Cont.

Indirect Phytopathogen Detection Methods

Sensing Method Brief Description Strengths Limitations

VIS/IR spectroscopy

Spectral information from
ambient light recording and
analyzed using a
spectroradiometer.

Low-cost, simple set-up, and
good general sensitivity.

Poor specificity, no spatial
information is recorded
making it unsuitable for
in-situ operation.

Raman spectroscopy

Detection of disease is based
on chemical changes in the
plant tissue identified using
molecular signature initiated
by a laser source.

Easy to use, fast response, and
scope for specific disease
detection.

Prone to interference from
background fluorescence,
special hardware is required,
difficult application for
in-field operation.

Chlorophyll fluorescence

Based on variations (due to
stress) in fluorescence that
occurs during photosynthesis
in the plants.

Provides information about
the photosynthetic efficiency
that may improve the
accuracy when used in
conjunction with
imaging-based methods.

Time consuming experimental
apparatus is required (dark
adapting the sample plants).

Phytohormone biosensing

Defense related hormonal
signatures are monitored as a
indicator of biotic stress in
plants

Scope for high specificity,
low-cost, fast response, and
in-situ application.

Invasive sampling.

VOC emission monitoring
Changes in gaseous emissions
from plants are detected as
measure of plant health.

Suitable for general plant
health monitoring,
non-invasive, and scope of
automated continuous
monitoring.

Challenging experimental
set-up, complex sampling and
testing, low specificity.

Active remote sensing
methods

RADAR and LiDAR
technology is used to
detection symptomatic
morphological changes

Suitable for large-scale
non-specific plant health
monitoring, LiDAR has scope
to detect parameters like CO2
and plant water content.

High initial cost, complex
sampling and data processing,
low specificity.

RADAR = Radio detection and ranging; LiDAR = Light detection and ranging.

3.2.1. Visible/RGB Imaging-Based Methods

Digital photography and imaging have emerged as important tools for crop health
monitoring as well as phenotyping applications where various types of imaging techniques
have been developed such as, visible/RGB imaging, hyperspectral imaging, thermography,
and fluorescence imaging. Table 3 presents a comparison between key recent works on
visible/RGB imaging-based crop disease detection. RGB imaging refers to the digital
photographic analysis performed in the visible range of the electromagnetic (EM) spectrum,
where the captured colored-image can be expressed in the red, green and blue channels.
Along with the RGB color space, the image can be transformed into other spaces such
as L∗a∗b∗ (L∗ is lightness, a∗ is red/green value, and b∗ is blue/yellow value), CMYB
(Cyan, Magenta, Yellow, Black), and HSV (hue, saturation, value). Additionally, parameters
like texture, gray levels, and shape can also be defined as features for disease symptom
detection and identification. In general, the image processing for plant disease detection
consists of three main steps (see Figure 7):

• Segmentation of the region of interest.
• Feature extraction.
• Detection and classification.
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Table 3. A comparison of the key recent visible/RGB-imaging-based sensing methods for monitoring pathogenic stress in plants.

Sensing Application Brief Description Accuracy Strengths Limitations Ref., Year

Cercospora leaf spot and four
other diseases in sugar beet

Images taken using a smartphone and
processed on servers, a support vector
machine (SVM) based classifier with
radial basis function (kernel) was
employed

68% to 90% Smartphone-based imaging,
multi-disease detection

Poor accuracy for some
diseases [86], 2018

Three wheat diseases:
septoria, rust, and tan spot

Hot-spots were first extracted followed
by classification using
Random-Forest-based statistical
inference methods

80%
Images were captured using mobile
devices, and a mobile application was
developed for fast processing

Moderate specificity, not
suitable for early disease
detection

[87], 2017

Vineyard disease based on
grape leaf images

Color as well as texture based features
were extracted, and a histogram
comparison based approach was
followed for classification

90% A phone application was developed for
generalized plant health monitoring

Lacks specificity in disease
detection [88], 2017

Detecting 26 diseases across
14 crop species

Images taken from PlantVillage dataset
and classified using deep learning
architectures named: AlexNet and
GoogLeNet

over 99% (under specific
conditions)

Multi-disease multi-crop system, large
diverse dataset, good classification
accuracy

Computation-ally intensive,
accuracy reduces to 31% for
uncontrolled imaging
conditions

[89], 2016

Multi-plant multi-disease
detection

Color-channel-based pairwise
classification approach was applied
using a histogram-based structure

58% (average)
Diverse plant and disease database,
images largely captured under real field
conditions

Poor accuracy, limited dataset [90], 2016

Powdery mildew and TSWV
in bell peppers

A mobile imaging set-up coupled to
principle component analysis- or
coefficient of variation-based
classification system was developed

64.3% (average) Mobile system suitable for greenhouse
operation

Moderate accuracy, in-field
testing needed [91], 2016

Cercospora leaf spot in sugar
beet

Robust template matching (to detect and
extract features) coupled with pattern
recognition using SVM for classification

33% to 83% depending on
leaf age

Leaf tracking capability against changes
on open field

Poor accuracy in younger
leaves, moderate accuracy in
older leaves

[92], 2015

Huanglongbing (HLB)
disease in citrus plants

Based on the observation that starch in
HLB infected leaf rotates the
polarization plane of light

97% (average) Good classification accuracy, simple
imaging setup

Cross-validation training
method may have caused
information loss and/or
over-fitting

[93], 2015

TSWV = Tomato spotted wilt virus.
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Figure 7. General workflow of visible/RGB imaging-based plant disease detection.

In a recent work, a smartphone-based RGB image processing system was reported
to detect and automatically classify five diseases (Cercospora leaf spot caused by the
fungus Cercospora beticola, Ramularia leaf spot caused by Ramularia beticola, Phoma leaf
spot caused by Phoma betae, Beet rust caused by Uromyces betae, and Bacterial blight of
sugar beet caused by Pseudomonassyringae pv. aptata) in sugar beet [86]. An image database
was created with infected crop under controlled as well as field conditions with over
1870 images of diseased (1420 images) as well as healthy leaves (450 images). The data
processing started with region detection, where the areas of interest were identified based
on the shapes and RGB pixel values. Then, feature extraction was performed to compute
the following values from the RGB values: (i) red-channel (R), (ii) green-channel (G),
(iii) blue-channel (B), (iv) intensities (INT), (v) local binary patterns (LBPs) of intensities
(INTLBP), (vi) gradient magnitudes (Gmag), (vii) gradient directions (Gdir), and (viii) LBPs
of gradient magnitudes (GmagLBP). Next, a one-versus-one multi-class support vector
machine (SVM)-based classifier with radial basis function (kernel) was trained using the
extracted parameters. The accuracy of the sensing system was given by,

Accuracy =
TN + TP

FN + FP + TN + TP
, (1)

where FN = false negative, FP = false positive, TP = true positive,and TN = true negative.
The accuracy values between 68% (for Phoma leaf spot) and 90% (Beet rust) were reported.

A smartphone-based image processing application for plant disease diagnosis was
reported in [88], where the developed system was tested for vineyard diseases based on
photographs of grape leaves. The analysis begins by isolating region lesions (areas of
interest or disease) from background (assumed to be significantly brighter than the leaf by
using a white colored background while imaging) and healthy tissue through thresholding
of the RGB pixel values. Then, the following lesion features are extracted: number of spots,
their gray level and area, followed by a histogram construction indicating the number
of pixels that have a specific red, green, or blue color level. For test images, the color
histograms are extracted and compared within the predefined limits, and the top three
possible diseases are indicated. Success rate of about 90% were observed.

An imaging system for continuous plant level (single leaf based) monitoring of Cer-
cospora leaf spot (CLS) in sugar beet by template matching and pattern recognition was
presented in [92]. The first stage employs a robust template matching strategy called
orientation code matching (OCM) for continuously tracking a single leaf of a plant over
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time by searching for its corresponding position based on the matching of orientation codes
(OC) between two images from adjacent image frames. The second stage uses SVM with
radial basis function kernel as pattern recognition method for classifying CLS against the
field background using the following three features derived from RGB images as inputs:
L∗, a∗, and entropy × density, where entropy and density of an image represent richness
of intensity and contrast, respectively. Although, high classification accuracy (above 95%)
was achieved, in case of real-world application, precision values ( true positive

all positive ) between 30%
to 83% were observed with better results in case of infection in older leaves than younger
ones which was attributed to more saturated RGB colors (darker green and better contrast)
in the older leaves.

A multi-plant multi-disease detection system using digital image processing was
developed in [90], where disease identification was performed based on color transfor-
mations, color histograms and a pairwise-based classification system. Unconstrained set
of leaf images were taken from 12 different plant species under 82 different stresses (74
biotic, 4 pests, and 4 abiotic) using common digital cameras and mobile devices with 15%
in controlled laboratory conditions while 85% in the field. The first task in data processing
was the leaf segmentation to remove the background, done using guided active contour
(GAC) method. The second step was symptom segmentation, which is identifying the
boundary between disease tissue and healthy tissue on a leaf. Four segmentation masks
were generated as binary functions of the parameters, r1 and r2, which can be defined for
each pixel as follows:

r1 = R/(G + e), and r2 = B/(G + e), (2)

where R, G, and B are the pixel values of the red, green, and blue channels of the RGB
representation, respectively, and e is an arbitrarily small value for avoiding divisions by
zero. Next, the segmented RGB images were transformed arithmetically to generate ten
new color channels (H, S, V, L, a, b, C, M, Y, and K). A color-channel-based pairwise
classification approach was applied to address the problem that many of the diseases
present quite similar visual symptoms (classes not well defined), and one approach was to
divide the problem containing c classes into c(c − 1)/2 binary (or two-class) problems. In
the training process, a 100-bin reference histogram was generated for each disease and color
channel aimed at capturing the general behavior of each disease for all color channels. The
color channels, whose reference histograms correlated the least for each pair of diseases,
were taken as the ones with the best discriminative capabilities for those pairs, and used
in the next step. Next, the cross-correlations between each selected reference histogram
and the histograms of all corresponding images in the training set were calculated and
averaged, resulting in a consistency value (the closer it is to one, more consistent was the
color channel for that disease). For the test images, the corresponding histograms were
generated and cross-correlations with the reference histograms as well as the consistency
values were calculated. Then, a maximum likelihood operation was performed to estimate
the most likely disease. Accuracy of about 58% was observed while the correct disease was
ranked in the top two or three likely diseases in about 80% of the cases.

An image-based multi-plant multi-disease detection system was reported in [89],
where a public dataset (PlantVillage) of 54,036 images (of 14 crop species with 26 diseases)
collected under controlled conditions of diseased and healthy plant leaves were used to
train deep learning networks for classification. The applicability of deep convolutional
neural networks (DCNN) with focus on AlexNet and GoogLeNet were evaluated for the
classification problem. Both the DCNNs were computationally intensive during training
phase but faster under testing. The reported system achieved a top accuracy of 99.35%.
However, when tested on a set of images taken under conditions different from the images
used for training, the model’s accuracy reduced substantially, to just above 31%.

A monochrome vision-based system for detecting Huanglongbing (HLB) disease in
citrus trees (particularly, orange) was developed in [93], where increased level of starch
accumulation in HLB-symptomatic leaves was characterized using the rotation of the
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polarization of light by 90◦ at 591 nm. The imaging set-up consisted of a monochrome
camera equipped with a wide lens (6 mm focal length) and a rotating polarizer housed
inside a wooden box with an light emitting diode (LED) diode panel for illumination at
591 nm. Sixty citrus leaf samples were acquired in laboratory setting while 30 in the field
setting from four known classes: HLB-positive, HLB-negative, zinc deficient HLB-positive,
and zinc deficient HLB-negative. qPCR was performed in order to verify the HLB status
of all the samples. The gray scale histograms of the symptomatic areas were obtained for
each image for classification, where gray value (ranging between 1 and 255) represented
the light intensity for each pixel. The mean and standard deviation (SD) of the gray value
were extracted from the normalized histograms, and were used to train a support vector
machine (SVM)-based maximum margin classifier. A three-fold cross validation method
was employed in the classification process in which the dataset was randomly divided into
three folds, two were used for training and one for validation. This process was repeated
fifty times, and the average classification accuracy of about 97% was achieved.

An automatic multi-disease diagnostic system for detecting three diseases in wheat,
septoria, rust, and tan spot, using common mobile capture devices was reported in [87]. The
image analysis was carried by first pre-processing the images by means of color constancy
algorithms to minimize natural illumination variability effects. Next, leaf segmentation
was performed, where automated as well as user assisted approaches were developed.
Finally, during disease classification step, a primary segmentation was done in order
to detect and select any suspicious sub-region on the leaf as a disease candidate (hot-
spots). Each obtained hot-spot region was described by means of two visual descriptors:
color and texture. For each disease and descriptor, a Random-Forest based classifier was
trained providing a hot-spot-based disease feasibility value. Then, a meta-classifier module
weighed all individual decisions to make a global assessment. The algorithm was deployed
on a real smartphone application and validated under real field conditions in a pilot study
located in Spain and Germany with over more than 36 wheat varieties, where an overall
accuracy of 80% was achieved.

An image processing-based wireless sensor network (WSN) for vineyard monitoring
was reported in [94], where each sensor node consisted of a webcam mounted on stepper
motor (that can rotate to cover a wider field) connected with a wireless router for commu-
nication. The sensor nodes were scattered across the vineyard on 6 m high posts to get a
clear field of view and avoid any obstruction in the line of sight for communication. The
image processing began with thresholding, which uses the RGB data as well as the hue,
saturation, value (HSV) data, derived from RBG images, to distinguish healthy (green)
leaves from unhealthy (discolored) leaves. Second, the leaf size was estimated based on
mean pixel variation in the parts of the image corresponding to the healthy (green) tissue.
It was shown that green (or healthy) leaves appearing smaller in the image (due to being
farther from the camera) show greater pixel variation, or normalized difference index (NDI)
which was defined as:

NDI =
G− R
G + R

. (3)

Next, a set of morphological operations using masks to smooth boundaries, fill holes,
and remove artifacts were applied to reduce noise without eliminating useful features.
Finally, in the detection step, the diseased leaves ratio in each image was calculated as
the ratio of the features left in the mask (after previous operations) and the leaf size (to
eliminate the effect of dead leaves on the ground), based on which the plant health was
determined. Overall, a WSN-based sensing system at the field level was demonstrated but
no performance metrics like accuracy were mentioned.

In general, RGB-imaging-based methods are particularly suitable for general plant health
monitoring and in most cases, common imaging devices such as smartphones or digital
cameras can be employed making the sensing set-up inexpensive. However, the classification
of diseases is often computationally intensive while exhibiting moderate accuracy.
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3.2.2. Hyperspectral Imaging

Hyperspectral (HS) imaging-based systems have emerged as a promising technology
for fast non-contact/non-invasive sensing and has been successfully applied in the field of
plant disease diagnostics. In contrast to RGB imaging, where the extracted information is
based on color spaces, in HS imaging the reflected light from the plants is segregated into
hundreds of narrow spectral bands across the EM spectrum to obtain a hypercube (images
comprising of two spatial and one wavelength dimensions), which is then characterized
using sophisticated data processing algorithms (see Figure 8). Unlike, visible/RGB imaging
which only captures images from 400 nm to 700 nm wavelengths (visible region of the
EM spectrum), hyperspectral imaging systems are designed to capture spectral as well as
spatial information beyond the human vision ranging from ultraviolet (UV) to shortwave
infrared (SW-IR) wavelengths, between 350 nm and 2500 nm. Different wavebands may
offer diverse information, where healthy plants typically absorb visible light (VIS 400–
700 nm) strongly due to chlorophyll/photosynthesis related pigments, whereas the light
scattered in the near-infrared (NIR 700–1000 nm) is largely dependent on the leaf cell
structure, and the leaf reflectance in the SW-IR (1000–2500 nm) is influenced by the leaf
water and chemical content [95]. Therefore, HS images can offer rich spectral information
leading to better characterization, modeling, classification, and detection of diseases in
plants.

Hypercube

Data extraction

Data processing

Figure 8. General workflow of hyperspectral imaging-based plant disease detection. Adapted
from [96], Copyright (2017), with permission from Elsevier.

In addition to specialized HS imaging camera set-up, data processing software is
also crucial. Various image processing strategies in the HS domain have been applied for
predictive crop disease modeling, including empirical models, and machine learning-based
algorithms. Several works on HS analysis for plant disease detection have been reported in
literature of which some of the key recent works are discussed here, and a brief comparison
is presented in Table 4.
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Table 4. A comparison of the key recent hyperspectral (HS) imaging-based sensing methods for monitoring pathogenic stress in plants.

Sensing Application Brief Description Accuracy Strengths Limitations Ref., Year

Target spot and bacterial spot
in tomato

35 spectral vegetative indices and 2
classifiers were evaluated using
UAV-based and benchtop-based HS
imaging.

97% to 99%
Good accuracy, in-field as well as
laboratory-based operations were
developed and compared

Computationally intensive,
spatial resolution as well as
specificity not discussed

[97], 2020

Early TSWV detection in
sweet pepper

Analysis method based on generative
adversarial nets, named as outlier
removal auxiliary classifier generative
adversarial nets (OR-AC-GAN) was
presented

96.25%, under controlled
conditions

Early disease detection capability
exhibited, all-in-one method (from
image segmentation to classification)

Computationally complex,
special hardware required,
in-field testing not explored

[98], 2019

Charcoal rot in soybean RGB-imaging-based segmentation
followed by 3D CNN based classification

95.73%, under controlled
conditions

Importance of specific hyperspectral
bands using saliency map visualizations
was studied

Not applicable for early
detection, in-field operation
not explored

[99], 2019

Yellow rust in winter wheat

Drone-borne HS imaging system, where
vegetative index value was used to
identify vegetation, and a DCNN-based
model was employed for classification

85% Field-deployable, good accuracy and
resolution

Expensive hardware,
complex computations
required

[100], 2019

Early detection Of TMV in
tobacco plant

Spectral as well as textural features were
extracted, where several machine
learning algorithms were evaluated to
classify disease stages with effective
wavelengths, texture features, and data
fusion, respectively

95% Good accuracy, early disease detection
exhibited

Computationally complex, no
clear conclusions were made
on selecting a machine
learning classifier

[101], 2017

TSWV detection in capsicum
plants

Discriminatory features were extracted
using the full spectrum, a variety of
vegetation indices, and probabilistic
topic models. An SVM-based classifier
was trained

90% Good accuracy under controlled imaging
conditions

Requires sophisticated
hardware and complex
software, in-field operation
not evaluated

[95], 2017

Late blight and early blight in
potato

10 different spectral and textiral features
were extracted and a multi-class
SVM-based classification model was
developed

95% Good accuracy under controlled imaging
conditions

Dependent on visual features
therefore, pre-symptomatic
detection is not feasible

[102], 2017

TMV = Tobacco mosaic virus.



Inventions 2021, 6, 29 22 of 47

An HS reflectance imaging-based early detection system for tomato spotted wilt virus
(TSWV) in tomato plants was reported in [98], where a machine learning based sensing
platform named outlier removal auxiliary classifier generative adversarial nets (OR-AC-
GAN) was developed. OR-AC-GAN is a variant of generative adversarial network (GAN),
a neural network architecture in deep learning domain [103]. The developed method
integrates the tasks of plant segmentation, spectrum classification and image classification.
The OR-AC-GAN model used 83 wavebands between 395 nm and 1005 nm and was shown
to achieve an average classification accuracy of 96.25% before the appearance of visible
symptoms, as early as 5 days after inoculation (DAI). Additionally, the combination of OR-
AC-GAN with three band selection algorithms was explored, where maximum variance
principle component analysis (MVPCA)-based band selection technique provided similar
accuracy as stand-alone OR-AC-GAN but with 8 spectrum bands.

In addition to the spectral features like, reflectance or transmittance at different wave-
lengths, HS images also contain images-based spatial features like, textural properties.
Traditionally, only spectral features are extracted from the HS images, however texture-
based variables may additionally provide supplementary information leading to better
accuracy in classification. An early rapid tobacco mosaic virus (TMV) infection detection
system using HS imaging in the VIS/NIR spectral region (380 nm to 1023 nm) was re-
ported in [101], where both spectral and textural features at selected wavelengths were
used for four-class classification (healthy, 2 DAI, 4 DAI, and 6 DAI). Coupled with the
successive projections algorithm (SPA) and machine-learning-based classifiers, correlations
were established among the reflectance spectra, texture features, and the stage of diseased
development. Based on SPA, 8 out of 434 EWs were selected, where majority of the EWs
were found to be in the short-near infrared region. A broad set of classifiers were evaluated,
including partial least squares-discrimination analysis (PLS-DA), random forest (RF), sup-
port vector machine (SVM), back propagation neural network (BPNN), extreme learning
machine (ELM), and least squares support vector machine (LS-SVM). The classification
was performed for three different datasets at the selected EWs: spectral features, textural
features (contrast, correlation, entropy, and homogeneity), and data fusion (both spectral
and textural features). ELM classifier resulted in the best overall classification accuracy of
98.33% using only spectral features, whereas a maximum accuracy of 93.33% was achieved
using BPNN classifier with textural variables, and around 95% accuracy was achieved with
data fusion using BPNN classifier.

A sensing system for TSWV disease detection in capsicum plants using HS imaging
was developed in [95], where SVM classifiers on three types of features: the full spectrum,
spectral vegetative indices (VIs), and features generated using data driven probabilistic
topic models, were trained on both VIS-NIR and SW-NIR hypercubes resulting in over 90%
accuracy. The HS imaging system consisted of two push-broom hyperspectral cameras
from Headwall, the VNIR A-series, and the SWIR M-series, and six 20 W halogen lights for
illuminating the leaf sample. A thread grid was used to hold the leaf sample flat against the
plate during imaging, and for reference, the image with camera cap “on” served as the 0%
reflectance, while the image of a standard white teflon target served as the white reference
(99.9% reflectance). Prior to classification, hypercube pre-processing was performed to
segment the leaf from the background in the spectral domain (by an unsupervised K-means
clustering algorithm), and grid removal (by spatial matched filter approach).

In another work, an HS imaging-based system for early detection of Phytophthora infes-
tans (late blight) and Alternaria solani (early blight) diseases in potato was presented in [102],
where SVM-based supervised learning model was developed using spectral, textural, and
contextual features. A total of 300 images of potato leaves spread across the three class
labels, late blight affected, early blight affected, and healthy leaves, were analyzed. The im-
ages were taken from a publicly available database, plant village (www.plantvillage.com).
Firstly, leaf segmentation was performed using the mask filtering process to identify and
select the regions of interest. Next, 10 different features/variables were selected for SVM

www.plantvillage.com
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(multiclass with linear kernel)-based classification. Of the 300 images, 180 were used for
training and 120 for testing, where 95% classification accuracy was achieved.

A deep convolutional neural network (DCNN)-based approach for automated yellow
rust disease (caused by Puccinia striiformis f. sp. Tritici) detection in winter wheat using a
unmanned aerial vehicle (UAV) based HS imaging system was reported in [100], where
the study was conducted over a whole crop cycle on four 220 m2 plots, two infected with
the disease and two healthy. HS imaging was conducted five times using a UHD 185
firefly sensor (Cubert GmbH, Ulm, Baden-Württemberg, Germany) mounted on a DJI
S1000 UAV system, where reflected radiation between 450 nm and 950 nm with a total of
125 bands was captured from a height of 30 m (resolution of 2 cm per pixel). Normalized
difference vegetation index (NDVI) was calculated and used to separate vegetation from
bare soil in the images, where NDVI greater than 0.3 was labeled as vegetation. In the data
pre-processing step, sliding window image segmentation algorithm was implemented to
extract spatial and spectral information. Next, a DCNN model comprising of multiple
Incetion-Resnet blocks was used for feature extraction followed by an average pooling layer
and a fully connected layer for transforming the feature maps into a three-class classifier:
rust, healthy, and other. An accuracy of 85% was observed at the field scale.

In another work, a 3D-CNN-based model for the detection of charcoal rot disease
(caused by the fungus, Macrophomina phaseolina) in soybean was reported, where the data
pre-processing consisted of using RGB wavebands of the HS images for the segmentation
of the charcoal rot stem [99]. The RGB images were transformed to HSV color space,
followed by segmenting of the charcoal rot stem by simple thresholding. Healthy and
infected soybean stem samples were collected at 3, 6, 9, 12, and 15 DAI, and 3D-CNN
model was used to extract features jointly across the spatial and spectral dimension for
classification. The 3D-CNN model consisted of two convolutional layers interspersed with
two max pooling layers followed by two fully connected layers, and was able to achieve
a classification accuracy of 95.73% across 539 test images. Additionally, saliency map
visualizations of the healthy and infected samples were constructed to study and explain
the importance of specific hyperspectral wavelengths in classification.

In a comparative study, a UAV-based and a benchtop-based HS imaging (380 nm to
1020 nm) system for detecting target spot (caused by fungus Corynespora cassicola) and
bacterial spot (caused by Xanthomonas perforans) diseases in tomato were developed and
compared [97]. Tomato leaves were classified into four categories: healthy, asymptomatic,
early, and late disease development stages, while 35 spectral vegetation indices (VIs)
were calculated and evaluated for optimal detection response. Two different classification
methods were utilized: (i) multi-layer perceptron neural network (MLP) and (ii) stepwise
discriminant analysis (STDA), and compared. Based on the analysis, it was reported that
the most significant VIs include photochemical reflectance index (PRI) for both diseases,
the normalized difference vegetation index (NDVI850) for bacterial spot in all stages, and
the triangular vegetation index (TVI), NDVI850, and chlorophyll index green (Chl green)
for target spot (TS) asymptomatic, TS early, and TS late disease stage, respectively. Of the
classification methods, MLP-based classifier exhibited superior classification accuracy of
99% under field (UAV-based) and laboratory conditions.

In addition to the aforementioned works, several other HS imaging-based crop disease
detection systems have been reported in the past decade or so [104,105]. In general, HS
imaging is active area of research for pre-symptomatic crop health monitoring. Though com-
putationally intensive, reasonably selecting spectrum wavebands, and analysis methods
can reduce the computation time for sufficient accuracy, providing potential for automated
in-field applications. However, unlike RGB-imaging, specialized hardware (HS cameras) is
required which make the method expensive.
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3.2.3. Thermography

According to Planck’s radiation law, every object at temperature above absolute zero
emits electromagnetic radiation (blackbody radiation), and the amount of radiation emitted
is a function of its emissivity (ε) and absolute temperature (T), and can be given according
to the Stefan–Boltzmann law as,

W = εσT4, (4)

where W is the spectral radiant emittance (in W/m2), and σ is the Stefan boltzmann
constant (=5.67× 10−8 W m−2K−4). Thermography is a non-contact method for plant
health monitoring, where surface temperatures of leaves, plants, or crop canopies are
observed using their inherent thermal radiation. The emitted infrared (IR) radiation is
recorded using thermographic cameras in the IR wavelength region of 8–12 µm to produce
false color images, where each pixel relates to a particular temperature value. The principle
of detection is based on the disturbances in stomatal conductance, photosynthesis, and
transpiration in a diseased plant, leading to thermal variations in the plant tissue that may
act as indicators of stress [106].

An application of thermal imaging for rapid diagnosis of crop disease was reported in a
recent study, where tomato mosaic disease and wheat leaf rust were taken as examples [107].
Leaf temperatures were continuously monitored for the two crops during the incubation
period. The results showed that the maximum temperature difference (MTD) of the tomato
mosaic disease ranged from 0.2 ◦C∼1.7 ◦C, and that of wheat leaf rust ranged from 0.4 ◦C∼2
◦C. As the disease progressed, the MTD of both plants showed an increasing trend while the
average temperature decreased. The variations in MTD were evident 5 to 7 days prior to the
visible symptoms, demonstrating the early disease detection capability of thermography.

In another work, the suitability of IR thermography was assessed for sensing scab
disease in apple caused by the phytopathogenic fungi, Venturia inaequalia, colonizing apple
leaves below the cuticle [108]. It was observed that the fungal growth caused localized
decrease in temperature before symptoms appeared that significantly increased the MTD
of leaves. The MTD increased linearly with the size of the infection (R2 = 0.85), and later
decreased due to leaf senescence.

A UAV-borne thermal system for detecting disease-induced canopy temperature
increase due to red band needle blight (caused by the fungus Dothistroma septosporum) in
pine plantations was presented in [109]. Sixty sample trees were surveyed and thermal
imagery was acquired at six different times of a day from an altitude of 60 m. Statistically
significant correlation between canopy temperature depression (CTD) and disease levels
was observed with R2 between 0.27 and 0.41, which may be related to the needle damage
symptoms caused by the disease, i.e., loss of cellular integrity, necrosis, and eventual
desiccation. Additionally, the inclusion of light detection and ranging (LiDAR)-based
structural metrics (changes in canopy structure with disease) in the overall disease detection
analysis was studied, and only a slight improvement was observed.

A pre-symptomatic detection mechanism for cucumber downy mildew (caused by
oomycete, Pseudoperonospora cubensis) using thermography and fourier transform infrared
(FTIR) spectroscopy was reported in [110]. First, using thermal imaging under controlled
conditions, it was observed that MTD-based detection was possible at 4.42 DAI, whereas
visible symptoms appeared after 5.36 DAI. However, MTD peaked at around 7 DAI after
which it decreased sharply. Second, the FTIR spectra was obtained from the regions
between the diseased and healthy areas at three characteristic wavenumbers: 2977 cm−1,
1544 cm−1 and 1050 cm−1 for pre-symptomatic analysis. At these points, maximum
variation between the spectra for healthy and disease regions occurred, which was used to
distinguish between the pre-symptomatic, visually detectable, and later stages of downy
mildew disease progression in cucumber leaves.
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Several other works have been reported regarding the use of thermography for disease
detection in plants including (i) a thermal vision system for identifying powdery-mildew and
gray-mold disease in rose plants [111], where the regions of the interest in thermal images
were identified by segmenting the corresponding visual images. Performance of the designed
neuro-fuzzy classifiers were evaluated with the thermal images captured using an automatic
imaging setup and correct estimation rates of 69% and 80% were achieved at 2 DAI; (ii)
thermographic visualization of leaf response in cucumber plants infected with the soil-borne
pathogen Fusarium oxysporum f. sp. cucumerinum (FOC) [112], where the variations in the
MTD, transpiration rate, stomatal conductance, and relative membrane injury were studied.
Correlations between FOC infection stages and the mentioned parameters were observed.

Overall, thermography-based sensing methods are relatively less computational as
compared to RGB or HS imaging methods, but require special camera equipment and can
only provide generalized indication of biotic stress in plants, exhibiting poor specificity.

3.2.4. Non-Imaging Spectroscopic Methods

Non-imaging spectroscopic methods include Visible/Infrared (VIS/IR) reflectance and
transmittance spectroscopy-based methods, and Raman spectroscopy-based approaches.
The VIS/IR spectroscopy is a subset of hyperspectral imaging where only the spectral in-
formation (and not spatial/pixel information) in the VIS/IR wavelength region is recorded.
Either the reflectance of the leaf/tissue surface or the transmitted light through the leaf
tissue is measured and correlated with the plant health. A VIS-NIR reflectance spectroscopy-
based system for detecting HLB or citrus greening disease in citrus trees was reported
in [113], where two portable halogen lamps (as light source) and a field-portable SVC HR-
1024 spectroradiometer (Spectra Vista Cooperation, NY) were used to collect the reflectance
data between 350 nm to 2500 nm (989 data points). The complete system also consisted of
a laser pointer to denote the area for which the data were recorded, and was mounted on a
mobile platform for in-field operation. Various classification algorithms were tested where
quadratic discriminant analysis (QDA)-based algorithm yielded the highest overall average
classification accuracy of about 95%. In another work, NIR spectroscopy was evaluated as a
method for detecting zebra chip (ZC) disease (caused by Candidatus Liberibacter solanacearum
bacteria) in potatoes [114]. A bench-top spectroradiometer was used for obtaining spectral
information for each individual potato where two models were tested: (i) direct correlation
between spectra and ZC, and (ii) correlating sugar content in potatoes with ZC. Stepwise
regression in conjunction with canonical discriminant analysis (CDA) was applied to the
raw spectra where a total classification accuracy of 98.35% was achieved. The same analysis
when applied to second derivative spectra yielded 97.25% accuracy. Alternately, CDA
applied to sucrose, glucose, and fructose concentrations previously determined by HPLC
yielded 96.7% classification accuracy.

Several other recent works have been reported on spectroscopic methods for plant
disease detection including (i) investigation of early detection of potato late blight using
contact leaf reflectance measurements with a spectroradiometer where the leaf was clipped
on to a surface and illuminated with halogen light sources [115]. The spectral responses
were measured for two different genotypes (one with a resistance gene) and at different
stages of infection: early infection, biotrophy, necrotrophy, and sporulation. Three dif-
ferent classification approaches: random forest discrimination (RF), partial least squares
discrimination analysis (PLS-DA), and normalized difference spectral index (NDSI) were
applied where accuracy between 60% to 85% were obtained for each technique; (ii) detec-
tion of pepper fusarium disease under laboratory settings using spectral reflectance and
a K-nearest neighbor (KNN)-based classifier where a classification accuracy of over 90%
was achieved, however specificity with respect to other diseases was not evaluated [116];
(iii) NIR spectroscopy-based detection of bitter pit disorder in honeycrisp apples where the
spectra for 40 apples (20 healthy and 20 bitter pitted, kept in cold storage) were recorded at
0, 35, and 63 days after harvest [117]. Spectral data in the nine spectral bands (though to be
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associated with bitter pit) between 971 nm and 1143 nm were collected and classified using
QDA and SVM-based classifiers yielding an average accuracy in the range of 78% to 87%.

Overall, non-imaging VIS/IR spectroscopy (VIS/IR-spec) exhibits some unique
strengths like simpler experimental set-up consisting largely of a light source or lamp
and a spectroradiometer making it relatively cheaper as compared to HS imaging. More-
over, data analysis procedures are relatively non-complex as image pre-processing steps
are no longer needed. However, unlike HS imaging, VIS/IR-spec lacks spatial information
making it difficult to implement under field settings (special data capturing apparatus
is required) as there can be significant interference from the surroundings. Additionally,
imaging-based techniques can capture textural features providing functional supplemen-
tary information leading to greater scope for pre-symptomatic crop disease detection with
relatively higher specificity.

Raman spectroscopy (RS) is the other analytical spectroscopic technique that provides
information related to the molecular structure of the specimen based on the molecular
vibrations through inelastic photon collisions (by shining a laser beam at the object).
Figure 9 shows the schematic of a general Raman-spectroscopy-based plant health monitor-
ing system. In a recent work, the detection and identification of fungal pathogens (spergillus
flavus, A. niger, Fusarium spp., or Diplodia spp.) in maize kernels using a hand-held Ra-
man spectrometer was explored [118]. The Raman spectra from individual maize kernels
was recorded using a hand-held portable Rigaku Progeny ResQ spectrometer (Rigaku
Analytical Devices, Inc., Wilmington, MA, USA), equipped with a 1064 nm Nd:YAG laser.
Next, multivariate data modeling based on orthogonal partial least-squares discriminant
analysis (OPLS-DA) was performed where in the final step, 4 predictive components, 3
orthogonal components, and 391 out of 512 original wavenumbers, were used to generate
the misclassification table. It was demonstrated that the model was able to classify the
four disease with 100% accuracy. However, the method was applied for post-symptomatic
(tissue already damaged) analysis where the information about the extent of infection
(sampling at a particular DAI) was missing as well as the number of sample were not
clearly disclosed. Moreover, the kernels were extracted from the cob and placed in special
apparatus before analysis making the sampling process complex.
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Figure 9. Schematic of Raman spectroscopy-based plant health monitoring system.
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Other recent works on RS-based plant disease detection include (i) A handheld RS-
based system for the detection of Abutilon mosaic virus (AbMV) in Abutilon (ornamental
crop) was reported in [119] where spectra of leaves from healthy and infected plants were
recorded, and difference in the intensity of the bands, particularly the one at 1526 cm−1,
was proposed as a basis for the early detection. An accuracy of 99% was reported with a
coherent intensity variation across all bands which indicates the lack of specificity, and may
occur due to general discoloration of the infected leaf; (ii) diagnosing of citrus greening
(or HLB disease) from the Raman spectra of citrus leaves, obtained using a SENTERRA
confocal microprobe Raman spectrometer [120]. The samples were divided in to five
infection categories: serious, moderate, slight, nutrient deficient, and healthy. Identification
of spectral peaks of interest and background removal was done by taking first derivative
and linear fitting while the spectral variables were screened using PCA- and SPA-based
methods in the range 715.0 to 1639.5 cm−1. Next, PLS-DA was applied for classification
and a recognition rate of 100%; (iii) early detection and discrimination of two economically
important viral infections (caused by tomato yellow leaf curl Sardinia virus; TYLCSV and
TSWV) in tomato plants [121], where manually inoculated plants were monitored over
28 days with samples tested using RS and PCR. PCA and PLS-DA-based analyses were
performed for feature selection and classification, respectively yielding accuracy of over
70% for TYLCSV at 14 DAI and over 85% for TSWV at 8 DAI. The scope for using RS-based
method for early detection of common viral diseases in tomatoes was demonstrated.

In general, RS-based methods hold greater potential than VIS/IR-spec for specific
disease identification, and a growing number of RS-based studies are being reported
with high accuracy plant disease detection where hand-held portable systems have been
demonstrated. However, some drawbacks associated with the technique include relatively
higher cost of equipment, complex data analysis, and susceptibility to background fluores-
cence from chemical as well as physical (for example, dirt) compounds. Furthermore, the
sample area of a typical Raman spectrometer probe (laser beam) is of the order of 10s of
microns which if not focused appropriately may lead misdiagnosis as the infection in the
plant tissue may not spread uniformly, and the high energy beams may lead to undesired
tissue damage.

3.2.5. Chlorophyll Fluorescence Imaging

Chlorophyll fluorescence (ChlF) imaging is a relatively new method applied towards
disease detection in plants. Light energy absorbed by chlorophyll molecules in the leaf can
(i) drive photosynthesis (photochemistry); (ii) be re-emitted as heat; or (iii) be re-emitted
as light (fluorescence). All the three processes compete with each other and can provide
information about quantum efficiency and heat dissipation, and indirectly the plant health.
ChlF is particularly a measure of the re-emitted light in the red part of the EM spectrum
from Photosystem II (water-plastoquinone oxidoreductase; PS-II)-based photo-chemical
reaction [122]. The ChlF-based sensing principle involves illuminating a darkness adapted
plant and recording the fluorescence spectra, which is dependent on the photosynthetic
apparatus of the leaf that in turn is dependent on the plant’s health. In general, a depression
in the ChlF value is observed as pre-symptomatic indication of plant disease.

Several works have been reported on ChlF-based imaging including (i) a thermog-
raphy versus ChlF imaging for detection and quantification of apple scab [123], where it
was reported that thermography exhibited higher sensitivity; (ii) the detection of sweet
potato feathery mottle virus (SPFMV) and sweet potato chlorotic stunt virus (SPCSV) in
sweet potato using thermal imaging and ChlF [124], where it was demonstrated that the
operating efficiency of PS-II and photochemical quenching were the most sensitive param-
eters for the quantification of virus effects compared with maximum quantum efficiency,
non-photochemical quenching, and leaf temperature; (iii) an early detection system using
HS- and ChlF-imaging in conjunction [125]. Combining both techniques in one device
that also guaranteed integrated and congruent images reduced classification errors to
less than 5%.
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Overall, the ChlF imaging is mainly applied towards phenotyping applications and
provides insight into the photosynthetic processes in plants, and is largely applied to plant
disease detection in conjunction with other imaging methods to improve accuracy [125,126].
However, because of the need for dark adaptation before imaging, the method has limited
potential for fast in-field crop health monitoring.

3.2.6. Biosensing Methods for Phytohormones Detection

As mentioned previously in Section 2.1, the onset of SAR is one of the key ways
plants achieve immunity and the phytohormones SA, JA, and ET play critical roles in
the signaling process. Therefore, sensing the levels of these hormones have been used
as indicators of stress in plants. Conventionally, the phytohormones are detected un-
der laboratory conditions using standard analytical techniques like high-performance
liquid chromatography-mass spectrometry (HPLC-MS) [127–129]. In general, these meth-
ods require extensive sample preparation involving analyte-specific extraction chemistry
followed by ionization, separation, and quantification of the ions on the basis of their
mass/charge ratio. Alternative to analytical methods (which are time, cost, and labor inten-
sive while being largely restricted to laboratories), several biosensing methodologies for
fast, portable, and economical detection phytohormones have been developed, including
enzymatic sensors, aptamer-based sensors, molecularly imprinted polymer (MIP)-based
sensors, and electro-catalysis-based sensors. Key recent advances in detecting primary
defense-related hormones, SA, and JA are presented here, while sensing methods for
ET/VOCs are described later in Section 5, as they largely correspond to both pathogenic
and pest-based stresses in the plants.

SA Detection

An enzymatic sensing approach for the detection of methyl-salicylate was reported
in [130], where a bi-enzyme recipe containing the enzymes, Salycilate hydroxylase (SH)
and Tyrosinase (TYR) was employed. The sensors was fabricated on a glassy carbon (GC)
electrode exhibiting a sensitivity of about 30.6 µA cm−2 µM−1. The principle of detection
was based on the bi-enzyme-based reactions as follows [131]:

SA + NADH + 2H+ + O2
SH−→ Catechol + NAD+ + H2O + CO2;

Catechol + 1/2O2
TYR−−→ o-quinone + H2O;

o-quinone 2H+ + 2e− + Catechol.

In another work, a bi-enzyme microfluidic electrochemical sensor utilizing the en-
zymes SH ad TYR recipe on graphene oxide substrate was reported [24]. The sensing
device consisted of 3-electrode system forming a 3D structure and was characterized using
chrono-amperometry while showing a sensitivity of 34.4 µA cm−2 per decade change in
SA concentration in (µM).

A structure-switching aptamer-based sensor for SA determination was reported
in [132], where the identified SA aptamer was incorporated onto a nano-structured Fabry–
Perot interference sensor, and the interference fringes of the reflected white light from the
sensor were used as transducing signals for SA quantification. The sensor exhibited a
detection limit of 0.1 µM with a range of 10−1 µM to 100 µM, and the sensor was tested
for SA determination in rice or Arabidopsis leaf samples. Aptamers are oligonucleotide
or peptide molecules with affinity towards a specific target molecule often accompanied
by structural changes during binding. The aptamer for SA-binding was developed as
follows: the ssDNA library was hybridized to a short piece of capture complementary
DNA (cDNA) immobilized on magnetic beads, where SA-binding induced conformational
changes and subsequent de-hybridization from the captured cDNA, while the non-binders
remained on the magnetic beads and could be removed. The SA binding sequences were
further amplified through asymmetric PCR. In general, aptamers offer advantages like
reproducible operation, low cost production, and tolerance to a wide range of pH and
temperature changes as compared to other bio-agents like enzymes and antibodies.
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A photo-electrochemcial (PEC) sensor for SA detection using dual functional MIP-
modified organometal lead halide perovskite (CH3NH3PbI3), deposited on indium tin
oxide (ITO) glass electrode, was presented in [133]. The MIPs precursors were prepared
by thermally initiated free radical polymerization with SA as the template molecule,
methacrylic acid (MAA) as the monomers, ethylene glycol dimethacrylate (EGDMA)
as the cross-linker, and azobisisobutyronitile (AIBN) as the initiator. Next, during film
deposition of perovskite on the ITO glass, the MIPs precursor solution was added forming
MIPs/CH3NH3PbI3/ITO electrode, which was characterized by recording the photocurrent
under illumination at different concentrations of SA. The developed sensor exhibited a
linear relationship between the photocurrent changes and the logarithm of SA concentration
from 7 × 10−13 M to 1 × 10−8 M with a detection limit of 2 × 10−13 M. Overall, the sensor
displayed good selectivity and sensitivity but had limited range of operation.

In addition to aforementioned approaches employing bio-agents such as enzymes,
aptamers, and MIPs, electro-catalysis-based sensors for SA detection have also been
reported [25,134,135]. The working principle involves the characterization of the electro-
oxidation of SA on metallic or carbon electrodes using electrochemical (EC) methods
such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The reac-
tion mechanism of SA oxidation involves the formation of dihydroxybenzoic acids as the
main product, and SA-polymeric compounds as additional products [134,135]. A low-cost
bio-agent-free EC sensor for SA detection using electro-reduced graphene-oxide screen
printed electrode was reported in [25], where the developed electro-oxidation-based device
exhibited a range of 2 µM to 512 µM, with maximum sensitivity of 600 µA/mM/cm2.
The determination of SA through EC-oxidation on carbon-fiber electrode was presented
in [135], where the developed sensor exhibited a linear range of 2 µM to 3 mM, with a
limit of detection of 1.7 µM. A carbon tape electrode modified with handed pencil trace
for real-time SA detection in infected tomato leaves was presented in [136], where a linear
range of 10−6 M to 10−4 M, with a detection limit of 10−7 M was observed. Additionally, a
selectivity test was performed with other common compounds that may be present in the
plant sap such as indole-3-acetic acid, succinic acid, methyl jasmonate, abscisic acid, malic
acid, and citric acid, where good selectivity was observed. In another work, a paper-based
electroanalytical device for in-situ determination of SA in living tomato leaves was devel-
oped [137]. The sensor consisted of MWCNTs/nafion modified carbon tape electrodes,
where a piece of the tomato leaf (with a small hole punched in) was sandwiched between
the fabricated electrode and filter paper. The developed sensor exhibited a linear detection
range of 0.5 to 100 µM.

JA Detection

Relatively fewer sensing systems have been reported for JA detection (when com-
pared to SA sensing) where most of the research has been limited to JA determination in
laboratory-based settings using analytical methods. An analytical method for the determi-
nation of JA in plant tissue using HPLC with fluorescence detection (HPLC-FD) was re-
ported in [138]. Soybean mosaic virus-infected leaves were collected and the samples were
prepared by grounding the frozen leaves (in the presence of liquid nitrogen) in to a powder,
followed by addition of acetonitrile and ultrasonication at 4 ◦C, and finally, the extractant
was obtained through centrifugation. Next, the derivatization (or labeling) of JA was per-
formed in the presence of 1,3,5,7-tetramethyl-8-aminozide-difluoroboradiaza-s-indacene
(BODIPY-aminozide), which exhibits strong fluorescence. Using BODIPY-aminozide as a
precolumn derivatizing reagent, HPLC-FD was carried out yielding a range of operation of
5 × 10−10 M to 5 × 10−7 M, and a detection limit of 1.14 × 10−10 M. In another work, a
methyl jasmonate (MeJA) EC sensor based on the electro-catalytic oxidation of the alkylene
group in MeJA molecule using a phosphotungstic acid/graphene oxide (PTA/GO) nanohy-
brid modified graphite electrode was reported [139]. The sensor exhibited a detection range
of 5 × 10−7 M to 8 × 10−5 M with a detection limit of 2 × 10−7 M in an acidic supporting
electrolyte medium (0.1 M HClO4).
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Overall, phytohormone level-based plant health monitoring sensors hold great promise
for conclusive (as compared to imaging-based or spectroscopic methods) stress detection.
Understanding the role of SA and other hormones in various aspects of plant growth, devel-
opment and interaction with its environment is a rapidly progressing area of research. Low-
cost phytohormone sensing devices may provide a convenient way for pre-symptomatic
disease detection and identification. However, in the present state, there is a need for
developing not only innovative sensing technologies but also definitive correlations for
hormonal activity and stress in plants.

4. Methodologies for Monitoring Herbivorous Pests/Insects

Herbivorous insect/pest detection methodologies can be classified into three broad
categories: (i) imaging-based techniques, (ii) VOC monitoring-based detection, and (iii)
acoustic methods for pest detection.

4.1. Imaging-Based Methods for Pest Detection

Similar to phytopathogen detection, several imaging-based methods have been ap-
plied towards plant pest detection, and key recent studies are discussed here. Table 5
presents a comparison of the key recent imaging-based sensing methods for herbivorous
pest monitoring in crops. The general working principle is similar to RGB imaging-based
phytopathogen detection, where the collected insect/pest images are processed to deter-
mine and segment the regions of interest, followed by the identification and classification
of the insect/pest-based on the physical characteristics.
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Table 5. A comparison of the key recent imaging-based sensing methods for herbivorous pest monitoring in crops.

Sensing Application Brief Description Perfor- mance Strengths Limitations Ref., Year

Green- house insect pest
monitoring

Sticky traps were used to sample pests for
spatio-temporal monitoring, RGB images were
classified using an SVM-based approach

93% (accuracy)
Good accuracy, low-cost system, and
integrated humidity, temperature and
light sensors

Lacks specificity [140], 2020

Monitoring asian citrus
psyllid in orchards

Ground-based vehicle was equipped with
trapping and imaging set-up. Taken images
were classified using CNN-based approach

80% (precision)
95% (recall)

Field-deployable, easy sampling of each
tree, good performance

Expensive, not for
generalized use (application
specific)

[141], 2019

Monitoring banana corm
weevil in banana

Various parts of the plants (shoot, fruit and
leaves) were imaged, and three CNN-based
architectures were evaluated

90% (average
accuracy) Large dataset created, good accuracy Complex sampling procedure [142], 2019

Multi-class pest detection (16
species)

Region Proposal Network (RPN) for providing
pest regions and Position-Sensitive Score Map
(PSSM) for pest classification and bounding box
regression was proposed

75.46% (mAP)
Multi-pest detection system, created a
large dataset, images were collected
in-field conditions

Moderate accuracy, not fully
automated [143], 2019

Multi-class pest detection (10
pests)

A human-vision-inspired feature extraction
model coupled with an SVM-based classifier
was developed

85.5% (recognition
rate)

Good performance, multi-pest sensing
system

In-field operation was not
demonstrated [144], 2018

Detection of Thrips in
strawberry greenhouse

A mobile robot equipped with photography
hardware and software, image processing
coupled with SVM-based classifier

2.25% (mean
percent error)

Mobile system that travel along the rows
of plants, good accuracy Limited operation capability [145], 2017

Monitoring Codling moths

Moths images were sampled in the field using
pheromone traps. The images were then
pre-processed, and classified using a
CNN-based algorithm

93.4% (P-R-AUC) In-field operation demonstrated, good
performance

Specificity not tested, not
automated [146], 2016

Whitefly and Thrips
detection in greenhouses

Sticky insect traps were imaged, the captured
images were processed, and then, classified
using a feed-forward multi-layer artificial
neural network

92% to 96%
(precision) using
sample images

Semi-automated, good specificity
between the insect species

Performance drops during
in-field operation [147], 2016

Detection of aphids in wheat
fields

A maximally stable extremal region descriptor
was used to process the images, and an
SVM-based classifier was used for identification

86.81% (average
accuracy)

In-field operation tested, moderate
accuracy

Manual image collection
procedure [148], 2016

mAP = mean average precision; P-R-AUC = area under the precision–recall curve.
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An automated vision-based system for monitoring Asian citrus psyllid (ACP) in citrus
orchards using artificial intelligence (AI) was reported in [141]. ACP is a key pest of citrus
due to its role as a vector of HLB disease. The system comprised of a modified ground-
based vehicle equipped with the following: (i) a tapping mechanism to strike tree branches
so that ACP may fall on a white board (serving as the sampling space), (ii) a grid of cameras
to acquire images of the white board, (iii) a real-time kinematic Global Positioning System
(RTK-GPS) to geolocate ACP detection, and (iv) NVIDIA Jetson TX2 embedded compu-
tational unit (NVIDIA TX2 Developer Kit, Santa Clara, CA, USA) for image processing.
A two-step CNN-based ACP detection system was developed, where the first CNN was
trained using You Only Look Once (YOLOv3), an object detection system [149] sensitive to
ACP detection (all possible objects that can be ACP), but not accurate. The second CNN,
based on YOLOv1, used the images from the first network’s output for final classification.
The developed system was used to test 90 tress in a citrus grove and displayed a preci-
sion ( true positives

true positives+false positives ) of 80% and recall of ( true positives
true positives+false negatives ) of 95%. The

estimated cost of the automated vision-based ACP detection system was estimated to be
around $1000.

An automatic detection pipeline for identifying and counting pests in images taken
inside field traps, using deep learning was proposed in [146], where Codling moths [150]
were identified. Moths captured by pheromone traps containing an adhesive liner were
imaged using a digital camera. The data analysis involved pre-processing using gray-world
method to minimize variations due to imaging conditions and provide white-balanced
images prior to detection. Then, a sliding window approach based on CNN was used,
where a trained classifier was applied to local windows at various locations of the entire
image to determine the probability (a scalar output between 0 and 1) of the presence of
moth in a particular patch. Next, non-maximum suppression was performed, followed by
thresholding, to retain only the windows with maximum local probability, and then only
the patches over a certain probability were kept. The precision–recall area under the curve
of about 0.934 was observed.

A mobile agricultural robot equipped with photography hardware and software for
the detection of thrips (Thysanoptera), a pest related to strawberry plant, in greenhouses
was developed in [145]. The robot moved along the rows of potted plants capturing flower
images (RGB) using a digital camera (Canon EOS M, 18 MP, CMOS, Japan) mounted
on the robot arm. The image processing was performed as follows: (i) the non-flower
regions in the captured images were removed by applying the gamma operator. Next,
histogram equalization and contrast stretching followed by intensity thresholding were
used to remove the remaining background noise. Then, HSV components were extracted
from the RGB values to serve as inputs for a SVM-based classifier with radial-basis kernel
functions. The classifier was trained to not only detect pests but also identify thrips from
other insects like houseflies, ants, and whiteflies. Moreover, since the shape and color of
thrips also vary across larvae to adult stages, during the classification, two classes, one for
larvae and another for adult were dedicated to thrips. Overall, a mean percent error (MPE)
of about 2.5% was observed in the reported image processing system.

A human-vision-inspired method for pests detection in tea plants was reported
in [144], where a collection of 10 categories of insect pests: Locusta migratoria, Parasa lepida,
Euproctis pseudoconspersa Strand, Empoasca flavescens, Spodoptera exigua, Chrysochus chinen-
sis, larva of Laspeyresia pomonella, larva of S. exigua, Acrida cinerea, and L. pomonella was
investigated. For each category, about 40 to 70 sample images were collected from online
resources. The identification method was based on computational models used to model
human-vision system. First, the saliency using natural statistics (SUN) model was used
to extract the region of interest. Then a well known model for object recognition with
cortex-Like mechanisms called Hierarchical Model and X (HMAX) [151] was extended
by integrating scale invariant feature transform (SIFT) and non-negative sparse coding
(NNSC) for improved rotational sensitivity of HMAX. Next, SIFT-HMAX model and local
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configuration pattern algorithm were employed to extract the invariant features, which
were then fed to the SVM-based classifier for recognition. The proposed method achieved
a recognition rate of 85.5%.

An artificial neural network (ANN) coupled image processing system for identifying
whiteflies (Bemisa tabaci) and thrips (Frankliniella occidentalis) on sticky traps in green house
agriculture was presented in [147]. Solid yellow and blue colored traps (to minimize back-
ground effects) were digitized using Scoutbox sensor (Cropwatch Company, Wageningen,
Netherlands), which consisted of a closed box, housing a digital camera to insulate light
conditions. A total of 3185 images were acquired in RGB color format. First, the region of
interest were identified on each trap based on pixel intensity histograms, where pixels with
frequency of intensities above 10,000 (predetermined threshold) were set as background.
Next, a binary image was created from each RGB channel, where pixels on the channel
outside the background intensity range were classified as objects and only solid objects
with an area from 50 to 2000 pixels were selected. Image segmentation was then performed
by first converting the images to L∗a∗b∗ for yellow traps, and HSV format for blue traps.
Automatic identification of the intensity threshold values was then implemented on each
channel, and a logical conjunction operation was performed. Subsequently, the morpholog-
ical features (area, convex area, eccentricity, equivalent diameter, major axis length, minor
axis length, perimeter, centroid, solidity, and extent) were calculated for each region of
pixels. Finally, a multi-layer feed-forward neural network consisting of a two-layer percep-
tron was trained for classification using 15 previously extracted features. The developed
algorithm achieved precision of 0.96 and recall of 0.95 in whitefly identification, while
precision of 0.92 and recall of 0.96 were obtained for thrip identification.

An imaging system powered by deep CNN (DCNN)-based classification for identify-
ing five major diseases and pest (banana corm weevil) in banana plants was developed
in [142], where the dataset comprised of about 18,000 images collected under field setting
across Africa and Southern India. Images of various parts of the plant including the whole
banana bunch, leaves, cut pseudostem, fruit bunch, and cut fruit were collected. Three
different CNN architectures, ResNet50, InceptionV2, and MobileNetV1 were trained us-
ing the python deep learning library called Tensonflow. The diseases were grouped by
plant parts, and a different model was trained for each plant part, where mean average
precision (mAP)-based metric was used to measure the accuracy and effectiveness in object
detection models:

mAP =
1

#classes

#classes

∑
1

#TP
#TP + #FP

. (5)

In addition to mAP score, a confusion matrix (CM) for each selected model was
also computed which gave an accuracy per disease (class), together with quantitative
representation of the classes in which the model was mis-classifed or confused. The
experimental results achieved accuracy between 70 to 99%, where MobileNetV1-based
architecture provided best results for banana corm weevil.

In addition to the aforementioned imaging-based pest detection methods, several
other works have been reported in recent years including (i) a WSN for monitoring green-
house insect pest, where the each wireless sensing node consisted of three core components:
a Raspberry Pi 3 embedded system, a digital camera module, and add-on environmental
sensors [140]. Sticky paper traps were imaged every ten minutes while humidity, tempera-
ture, and ambient light were also recorded. The RGB-to-L∗a∗b∗ color model conversion
was performed, followed by an object segmentation by first removing the yellow sticky
trap background using static binary thresholding. Selective blob detection was then per-
formed on the pre-processed image to locate the centroids of the blobs (objects) in the
image, where smaller (16 × 16 pixels; dirt) and larger (128 × 128 pixels; glare) blobs were
removed. The cropped 128 × 128 RGB images obtained from the blob centroids were clas-
sified using an SVM-based classifier, where an average temporal accuracy for insect pest
counting of 93% was achieved; (ii) a CNN-based architecture named PestNet, developed
for large-scale multi-class pest detection [143]. An in-field imaging system was developed
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consisting of a pest attracting light, and a pest collection tray fitted with a camera to collect
pictures. 16 pest classes were considered, where an mAP score of 75.46% was achieved;
(iii) a computer-vision technique for detecting aphids in wheat fields [148]. The original
images were pre-processed with filtering to enhance the contrast and reduce noise followed
by the extraction of histogram of oriented gradient (HOG) feature vectors which were
subsequently used to establish SVM-based classification. Meanwhile, a maximally stable
extremal region (MSER) algorithm was used on the original images to extract regions of
interest and a trained SVM was used to identify aphids within the MSERs. An accuracy of
86.81% was achieved.

4.2. Acoustic Methods for Detecting Pests

One of the key ways pests/insects communicate with each other and their surround-
ings is through acoustic signals which can be used as signatures for detecting their presence.
Studies on acoustic detection of pests have been reported since the early 1900s but have
only gained momentum in the last two decades [152]. A bio-acoustic sensor for the early
detection of the red palm weevil (RPW) was reported in [153], where the sensing device was
composed of an audio probe inserted inside the palm tree trunk, with real-time processing
circuit, wireless interface for periodic data transfer, and a solar panel/battery-based power
supply system. A sound representative of the RPW larvae feeding action was chosen for
detection, where the energy distribution (frequency domain representation) of the sound
was used as the spectral fingerprint. A detection accuracy of about 90% was observed.

Several other recent works have been reported on acoustic pest detection including (i)
an automated acoustic detection platform for detecting cicadid pest (Quesada Gigas; QG)
in coffee plantations, where an SVM-based classifier was developed for distinguishing
between background noise and QG’s sound [154]. The sensing system was field deployable,
costing around $30 while exhibiting an accuracy of 96.41%; (ii) the detection of RPW, where
piezoelectric microphones (inserted inside the tree trunk) were used to collected sound
signals from a quarantined set of palm trees [155]. The larval feeding sounds: short “clicks”
and “snaps” in the frequency range of 1 kHz to 8 kHz, and longer lasting sounds around 3
kHz were recorded. Manual and automated energy thresholds were used to identify pests,
where an average true positive rate of 75% was achieved; (iii) the exploration of using
active sound production of scarab beetle larvae (i.e., stridulations) for species-specific pest
monitoring in soils [156].

Acoustic signature detection for monitoring pests is a non-invasive, real-time, contin-
uous, low cost method which takes advantage of the developed microphone and signal
processing technologies. However, the method has limited scope as only a small fraction of
pests make species-specific sounds. Moreover, acoustic signaling-based methods are prone
to interference from surroundings (natural and man-made) and in general, more studies
are required to properly access the practical in-field applicability of the method.

5. ET/VOCs Detection Methods for Monitoring Biotic Stress in Plants

Etheylene (ET) and other volatile organic compounds (VOCs) are common to plant
response under both pathogenic and pest/insect related stresses, and so we discuss their
detection in their own section here. The hormonal activity of ethylene spans a multitude of
physiological plant processes including seed germination, fruition, and tissue senescence
in case of phytopathogen and/or pest attacks. In addition to ET, several other VOCs
play important roles in general crop health and physiological activities such as intra- and
inter-plant communication [157], interaction with microbes [158], deterring herbivorous
pests [36], and inducing defense responses [159]. This section describes key methodologies
for the detection of ET/VOCs in agriculture, involving mass-spectroscopy and electronic
nose technology (see Figure 10).
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(a) GC-MS test (b) E-nose test 

Figure 10. Schematic of an E-nose and a GC-MS-based system for VOC detection in plants [160].

Conventionally, gas analysis for plant VOCs is performed using standard analytical
techniques like the well established gas chromatography-mass spectrometry (GC-MS)
methods [161,162], and the relatively recent proton transfer reaction mass spectrometry
(PTR-MS) method [163,164]. In GC-MS-based plant VOC analysis, the VOCs can be
sampled from the airflow using an absorbent filter, which is then rinsed in a solvent
and introduced in the heated GC-MS chamber, or alternatively, by headspace and solid-
phase microextraction (HS-SPME), where the VOC are collected using a solvent coated
fiber and directly introduced into the heated GC-MS column [161]. The gas molecules are
then separated using a mass spectrometer (based on the molecular mass). Alternatively,
PTR-MS works by ionizing the gas sample inside a drift tube by proton transfer (sourced
from hydronium ion), where the fixed length of the drift tube provides a fixed reaction
time for the ions as they pass along the tube into a mass spectrometer. The reaction time
can be calculated from ion transfer properties to separate the gases, and the ion signal ratio
(proton donor/proton acceptor) can be used to estimate the concentration of the analyte,
and by combining reaction kinetics with mass spectrometry, both identity and quantity
of individual organic gases can be obtained [164]. The main advantage of PTR-MS over
GC-MS is its quick response. Although accurate and sensitive, GC-MS and PTR-MS require
sophisticated equipment, and are thus better suited for laboratory-based testing.

With regards to portable ET/VOCs sensing, bio-mimetic electronic nose (E-nose) devices
have emerged as a novel technology for gas detection. Several E-nose devices are com-
mercially available [165–167], and have been employed for VOC detection. E-nose sensors
consist of an array of chemical gas sensors coupled with transducers such as conductive
polymers (polymers impregnated gas adsorbing materials resulting in resistance changes),
Metal Oxide Semiconductor (MOS) device, piezoelectric/acoustic (changes in mass and
resonance due to gas adsorption) devices, and optical/fluorescent sensors. The signal
from the transducers is then processed using classification and/or pattern recognition algo-
rithms. The sensor arrays can employ gas-specific sensing materials, deposited on the listed
transducers, which selectively adsorb (or absorb) different gases. Gas-specific properties of
several chemo-responsive materials for detecting various gases are summarized in [168].
Various studies have been reported on the use E-nose devices for plant-defense-related
VOC monitoring, such as: (i) diagnosing Aphid-stressed tomato plants by first using
GC-MS and identifying the VOCs emitted by the plant under stress including linalool,
carveol, and nonane 2,2,4,4,6,8,8-heptamethyl and enhanced some terpene compounds
(e.g., caryopllyllene). Next, commercial E-nose devices were employed and a PCA-based
algorithm was developed for portable VOC recognition with a classification accuracy of
86.7% [160]; (ii) application of E-nose for diagnosing grapevine crown gall disease (caused
by Agrobacterium vitis) [169], where infected grapevine rootstock was sampled in glass
tubes overnight and target VOCs were determined using HS-SPME coupled GC-MS. Next,
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commercial E-nosed devices were employed and VOC data analysis was performed using
PCA and linear discriminant analysis (LDA). An accuracy of 83.3% was achieved; (iii) an
early detection of bacterial disease (fire blight caused by Erwinia amylovora and blossom
blight caused by Pseudomonas syringae) in apple plants by monitoring VOC profiles [170],
where the possible markers were identified using GC-MS and PTR-MS, while the applica-
tion of commercial E-nose devices were assessed for portable operation demonstrating an
accuracy of 75% using LDA-based data analysis.

In addition to the above-mentioned approaches, other ET/VOC sensing have also
been reported including a smartphone-based VOC fingerprinting platform [171], where the
diagnosis of late blight (caused by Phytophthora infestans) in tomato was demonstrated using
leaf volatile emissions in the field. The handheld device integrated a disposable colorimetric
sensor array consisting of plasmonic nanocolorants and chemo-responsive organic dyes
to detect key plant volatiles at the ppm level within 1 min of reaction. Cysteine (Cys)-
functionalized gold nanoparticles (AuNPs) or nanorods (AuNRs) were used as plasmonic
aggregative colorants for specific recognition of gaseous (E)-2-hexenal, one of the main
VOC markers emitted during P. infestans infection, with a detection limit of 0.4 ppm.
Later, a multiplexed sensor array combining Cys-functionalized Au nanomaterials and
conventional organic colorants were developed for the detection and differentiation of
a variety of leaf volatiles, including three green leaf volatiles ((Z)-3-hexenal, 1-hexenal
and (E)-2-hexenol), two phytohormones (methyl jasmonate and methyl salicylate), two
characteristic late blight markers ((E)-2-hexenal and 2-phenylethanol), and three aromatic
VOCs (benzaldehyde, 4-ethylguaiacol, and 4-ethylphenol) to demonstrate the capability
for multiplexing.

A molecularly imprinted sol-gel (MISG)-based localized surface plasmon resonance
(LSPR) sensor for detecting cis-jasmone (CJ), a plant VOC released in response to herbivore
insect infestation, was reported in [172]. LSPR involves the interaction of metallic nanopar-
ticles (NPs) with EM waves to induce plasmon oscillations at the NP surface and can be
used as a transduction mechanism for observing changes in the local refractive index (RI).
Gold nano-islands were fabricated on a glass substrate by vacuum sputtering followed by
three dimensional imprints of CJ molecules with the MISG around the Au nano-islands. It
was observed that MISGs containing the functional monomer trimethoxyphenylsilane at a
3:1 (v:v) ratio exhibited a higher sensitivity and selectivity among the imprints tested while
a detection limit of 3.5 ppm in air was recorded.

A quartz crystal microbalance (QCM) gas sensor array based on MIPs for identifying
wood borers infestation by monitoring terpene emissions from Platycladus orientalis trunks
was reported in [173]. MIPs were prepared using the methacrylic acid (MAA) polymer-
matrix and four characteristic terpenes/VOCs (α-pinene, β-phellandrene, 3-carene, and
cis-thujopsene) as template molecules for discriminating between Semanotus bifasciatus
(Motschulsky) and Phloeosinus aubei Perris (Coleoptera: Scolytidae) infestations. The ex-
perimental set-up consisted of the four terpene MIPs-based QCM sensors inside a sealed
chamber with inlet and outlet for gaseous samples. The QCM gas sensors measured the
static headspace vapors of infested and uninfested trunks after generation for 24 h at 25 ◦C
in uniform and suitable Tedlar bags where the absolute value of frequency shift based on
the sensor response curve was defined as a feature. The response data were processed
with PCA-LDA for visualization, and for discrimination/classification, an SVM-based
architecture exhibited a satisfying response with an accuracy of 93.75%.

In another work, a plasmonic crystal-based optical gas sensor for ET, methanol, and
ammonia detection was reported in [22], where the sensing surface consisted of a thin
graphene-oxide (GO) layer deposited over a gold coated polymeric nanoposts. The work-
ing principle involved the gas adsorption by the GO layer modifying the refractive index
of the plasmonic structure, resulting in a shift in the resonance wavelength of the sur-
face plasmon polariton. To distinguish between the three types of gaseous species, an
array of nanostructured sensors with varying thickness of GO were designed as the ad-
sorption of different gases varies with GO thicknesses. A principle component analysis
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(PCA)-based framework was employed to identify the three gases, where sensitivities
of 0.6 pm/ppm, 3.2 pm/ppm, and 12.84 pm/ppm were observed for ET, methanol, and
ammonia, respectively.

6. Application of Remote Sensing Technologies for Monitoring Biotic Stress in Plants

In general, the indirect plant disease and pest detection methods discussed so far in
this article, particularly optical/imaging-based methods, have the potential to be integrated
with a satellite and/or an airborne carrier and can broadly be classified as remote sensing
(RS) methods. However, another class of active RS technology which includes radio
detection and ranging (RADAR) and light detection and ranging (LiDAR) have also been
applied towards sensing biotic stresses in plants. RADAR and LiDAR have traditionally
been used as active methods for measuring distances by recording the travel time of
emitted electromagnetic waves (radio waves for RADAR, and light/laser sources for
LiDAR) reflection from a target object. Both RADAR and LiDAR inspired systems are
applied in plant stress monitoring where some key research works are discussed here.
The principle of operation of these systems involve capturing structural or morphological
changes due to diseases and pests.

A ground-based LiDAR also known as terrestrial laser scanning (TLS) system for
detecting basal stem rot (caused by white-rot fungus Ganoderma boninense) in oil palm
canopies was reported in [174]. A total of 40 samples of oil palm trees at the age of nine-
years-old (with heights between 10 to 11 meters) were selected and categorized into four
disease levels: healthy/disease-free, mildly infected, moderately infected, and severely
infected. The canopy biometrics were extracted using a TLS scanner which was mounted at
a height of 1 m, and scans were performed from four different positions per palm to obtain
a 3D image of the tree. The following parameters were analyzed: S200 (canopy strata at 200
cm from the top), S850 (canopy strata at 850 cm from the top), crown pixel (number of pixels
inside the crown), frond angle (degree of angle between fronds), and frond number, where
JMP software (SAS Institute, North Carolina, USA) was used to analyze the parameters
using one-way analysis of variance (Kruskal–Wallis test). It was concluded that a linear
model consisting of all the five parameters provides best results where an average accuracy
of 80% for severity level classification and 86.67% for healthy–unhealthy classification
was observed.

The capability of ground-penetrating radar (GPR) for evaluating the internal struc-
ture of tree trunks and detecting tree decay associated with emerging infectious diseases
like Ash dieback, acute oak decline (AOD), and Xylella fastidiosa was reported in [175].
Measurements of tree trunk samples were taken using the Aladdin 2-GHz hand-held CO
antenna from IDS GeoRadar (part of Hexagon). The core measurement principle involved
digital reconstruction of the internal tree trunk structure based on Debye properties of the
tree layers using the GPR system. Two data processing methodologies: modified Kirchhoff
migration and reverse-time migration were applied for qualitative reconstruction. It was
shown that the system was able to model the internal structure of the tree trunk, however,
further investigation with a larger number of samples may be required to fully assess the
proposed method’s performance.

Other recent works on active RS-based methods for plant health monitoring include:
(i) assessing the potential of dual-wavelength terrestrial LiDAR in early detection of bark
beetle (Ips typographus) infestation [176]. Two terrestrial LiDAR systems (operating at 905
nm and 1550 nm) were used to measure 29 mature Norway spruce trees that showed mild
to moderate symptoms. Several intensity metrics were derived from LiDAR data as inputs
and LDA-based analysis was performed yielding an average classification accuracy of
about 66%; (ii) evaluation of a GPR-based system for detection HLB infection in citrus
trees by mapping their root architecture [177]. A GPR (TRU™ Model, Tree Radar, Inc.,
Silver Spring, MA, USA) equipped with a 1600 MHz antenna was mounted on a mobile
cart to generate root morphology. The system was able to distinguish between dead
and alive roots, based largely on the difference between their dielectric properties due
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to water content variations. Qualitative efficacy of the developed system was shown
and proposed to be of use in detecting soil-borne diseases in citrus trees; (iii) a bistatic
LiDAR system mounted on a UAV/drone for monitoring strawberry canopies inside a
greenhouse to detect symptoms of powdery mildew [178]. The principle of operation
was based on detecting the changes in plant’s carbon dioxide (CO2) flux resulting from
variation in the photosynthesis efficiency due to infection (CO2 emissions decrease with
disease progression). The developed system consisted of a static receiver that recorded the
LiDAR signal (wavelength between 1572.38 nm to 1572.98 nm) from a transmitter mounted
on the UAV, and the data was processed to determine the CO2 flux based on the absorption
characteristics above the crop canopies. The feasibility of the system was demonstrated;
however, quantitative performance was not reported.

Overall, RADAR and LiDAR are well-developed technologies that have recently found
use in plant biotic stress monitoring applications where extensive studies and experimenta-
tion is required to fully evaluate their capabilities. In addition to detecting plant stress, the
active RS technology is employed in various other agro-ecosystem monitoring applications
such as phenotyping plants based on their physical characteristic [179], visualizing plant
structures like canopies and roots [180,181], and observing pest and/or herbivore behav-
iors [182]. In the present scenario, active RS-based systems exhibit a unique advantage in
terms of feasibility for high-throughput automated drone/UAV-based agricultural sensing
applications but often come with a high initial cost.

7. Discussion and Conclusions

This article described the current state of the sensing methodologies for monitoring
biotic stresses in plants. Key methods for detecting phytopathogenic infections and her-
bivorous pest/insect infestations were reviewed, where the sensing mechanisms were
described and key recent works reported. Phytopathogen sensing methods were catego-
rized as direct pathogenic versus indirect plant response-based. Direct methods focused
on identifying the pathogen directly using nucleic acid-based and pathogen-protein-based
(serological/immunological) techniques such as PCR, RPA, LAMP, ELISA, LFIA, and im-
munosensors. Alternatively, indirect phytopathogen detection methods identified the plant
defense related responses, both morphological and physiological. The plant response-
based indirect disease detection techniques reported here include, imaging-based methods,
fluorescence-based methods, spectroscopic techniques, phytohormone-level-based meth-
ods, and VOC-based sensors. Overall, direct pathogen detection methods offer excellent
specificity, while the indirect ones provide a crop health analysis following plant immune
responses. In general, indirect methods are relatively less labor intensive and hold greater
scope for early detection under practical in-field setting. Monitoring primary defense-
related phytohormone-levels may hold potential for identifying diseases, but more studies
are required to discover and establish the essential correlations. Summarily, in the present
state, direct and indirect methods for sensing pathogenic presence/stress can be used
simultaneously and in conjunction to form a complete system for crop health monitoring
and response, where the early signs of stress can be monitored using plant response-based
indirect approaches, while further analysis can be performed using the direct pathogen
identification methods.

The article further surveyed the pest/insects detection methods, that included machine-
vision-based methods, pest acoustic-signal detection, and VOC sensing-based methods. In
the case of pest attacks, the density of a specific infestation is a critical stress parameter,
and therefore the sensing techniques largely focus on spatio-temporal count and identity
of the pest. The common steps involved in imaging-based detection are photographing the
insect prior to analysis, either directly or on the plant tissue or using specially designed
traps, and then classify for obtaining insect species and count. Several systems have been
developed, however, continuous efforts are being directed towards improving the accuracy
and specificity of imaging-based methods. Acoustic-signaling-based approaches, on the
other hand, rely on detecting the infestation depending on the sounds emitted by the
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insects while communicating or interacting with their environment. These methods are
applicable only to a small subset of pests and require further studies in order to develop
robust in-field monitoring systems.

Monitoring VOCs have also been reported as early indicators of biotic stresses in
plants, however clear distinction between VOC emissions in plants due to specific pest
and/or pathogen attacks are not completely understood. However, continuous progress is
being made towards forming functional VOC-stress correlations as well as developing VOC
detection methods. The approaches discussed here include: analytical methods (GC-MS),
E-nose devices, and other approaches (biosensing and optical). Among these, E-nose-based
sensors have emerged as an effective technology offering great potential for in-field opera-
tion where efforts are being directed towards effective sampling procedures, improving
accuracy and specificity, and developing long-term continuous monitoring systems. Where
E-nose devices focus on detecting common agriculturally and environmentally important
gases, biosensing and optical methods aim to identify specific VOC emissions like terpenes,
and other gaseous metabolites (for example cis-jasmone, and methyl salicylate).

Additionally, active RS technologies like RADAR and LiDAR also find use in appli-
cations for sensing biotic stress in plants. These technologies are fairly well-known and
are being progressively used in various aspects of agriculture such as recording canopy,
plant height and root structures, and phenotyping applications. While both RADAR- and
LiDAR-based systems commonly provide morphological information, LiDAR may have
the potential to record plant’s physiological parameters like, water content and CO2 flux.
Overall, testing the application of active RS technologies to provide plant stress-related
information is a rapidly progressing area of research that may soon enable large-scale
automated crop and forest health monitoring systems.

8. Future Prospects and Research Directions for Monitoring Biotic Stress in Plants

In the present scenario, there is great scope for making significant improvements in
agricultural output efficiencies by reducing crop losses to meet the present and future demands
of humanity. Use of technology in farming practices is gaining rapid momentum where
reportedly, the global technology market in agriculture is expected to grow at a compound
annual growth rate (CAGR) of 14.1% from 2019 to reach $34.9 billion by 2027 [183].

As described in this article, there are a variety of technologies available for detecting
and identifying the different types of biotic stresses in crops. However, to increase the
applicability and adoption of the stress monitoring technologies future efforts may be
directed towards first, developing functional, easy-to-use, and reliable sensing methods for
predictive/pre-symptomatic monitoring as well as accurate post-symptomatic diagnosis for
enabling effective measures to minimize losses while reducing the use of harmful chemicals.
Second, it is known that biotic stressors vary with plant species as well as locations across
the globe, therefore, effective site and species specific strategies for standardized protocols
and minimal sampling needs to be developed for both generalized as well as specific plant
health monitoring that are cost-effective, portable, and high impact. Thirdly, in addition
to water, nutrient, and environmental sensing data, crop stress monitoring must also be
considered as an important parameter in agricultural management to accurately access the
crop needs leading to sustainability through precision in agriculture. Finally, the overall
development of the methodologies for monitoring biotic stress in plants stem from studies
focusing on understanding their physiological processes and defense mechanisms hence,
continuous progress is required in improving our knowledge about the rules of life and
survival across the diverse flora on earth.



Inventions 2021, 6, 29 40 of 47

Author Contributions: Conceptualization, B.K.; methodology, B.K.; formal analysis, B.K.; investiga-
tion, B.K.; resources, B.K.; writing—original draft preparation, B.K.; writing—review and editing,
B.K. and R.K.; visualization, B.K.; supervision, R.K.; project administration, R.K.; funding acquisition,
R.K. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported in part by the National Science Foundation under the Grants
CCF-1331390, ECCS-1509420, PFI-1602089, and CSSI-2004766.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Population Projected to Reach 9.8 billion in 2050, and 11.2 billion in 2100. Available Online: https://www.un.org/

development/desa/en/news/population/world-population-prospects-2017.html (accessed on 25 July 2020).
2. Elferink, M.; Schierhorn, F. Global Demand for Food Is Rising. Can We Meet It? Available Online: https://hbr.org/2016/04/

global-demand-for-food-is-rising-can-we-meet-it (accessed on 2 December 2020).
3. Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on

major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [CrossRef] [PubMed]
4. Global Burden of Crop Loss. Available online: https://www.cabi.org/projects/global-burden-of-crop-loss/ (accessed on 2

December 2020).
5. Xu, Z.; Dong, L.; Kumar, R. Electrophoretic Soil Nutrient Sensor for Agriculture. U.S. Patent 10,564,122, 18 February 2020.
6. Kumar, R.; Weber, R.J.; Pandey, G. Low RF-Band Impedance Spectroscopy Based Sensor for In-Situ, Wireless Soil Sensing. U.S.

Patent 10,073,074, 18 September 2018.
7. Pandey, G.; Weber, R.J.; Kumar, R. Agricultural cyber-physical system: In-situ soil moisture and salinity estimation by dielectric

mixing. IEEE Access 2018, 6, 43179–43191. [CrossRef]
8. Xu, Z.; Wang, X.; Weber, R.J.; Kumar, R.; Dong, L. Nutrient sensing using chip scale electrophoresis and in situ soil solution

extraction. IEEE Sens. J. 2017, 17, 4330–4339. [CrossRef]
9. Ali, M.A.; Jiang, H.; Mahal, N.K.; Weber, R.J.; Kumar, R.; Castellano, M.J.; Dong, L. Microfluidic impedimetric sensor for soil

nitrate detection using graphene oxide and conductive nanofibers enabled sensing interface. Sens. Actuators B Chem. 2017,
239, 1289–1299. [CrossRef]

10. Xu, Z.; Wang, X.; Weber, R.J.; Kumar, R.; Dong, L. Microfluidic eletrophoretic ion nutrient sensor. In Proceedings of the 2016 IEEE
SENSORS, Orlando, FL, USA, 30 October–3 November 2016; pp. 1–3.

11. Pandey, G.; Wang, K.N.; Kumar, R.; Weber, R.J. Employing a metamaterial inspired small antenna for sensing and transceiving
data in an underground soil sensor equipped with a GUI for end-user. In Proceedings of the 2014 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014; pp. 3423–3428.

12. Britz, B.; Ng, E.; Jiang, H.; Xu, Z.; Kumar, R.; Dong, L. Smart nitrate-selective electrochemical sensors with electrospun nanofibers
modified microelectrode. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
San Diego, CA, USA, 5–8 October 2014; pp. 3419–3422.

13. Pandey, G.; Kumar, R.; Weber, R.J. A low profile, low-RF band, small antenna for underground, in-situ sensing and wireless
energy-efficient transmission. In Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control,
Miami, FL, USA, 7–9 April 2014; pp. 179–184.

14. Pandey, G.; Kumar, R.; Weber, R.J. Design and implementation of a self-calibrating, compact micro strip sensor for in-situ
dielectric spectroscopy and data transmission. In Proceedings of the SENSORS, Baltimore, MD, USA, 3–6 November 2013; pp.
1–4.

15. Pandey, G.; Kumar, R.; Weber, R.J. Real time detection of soil moisture and nitrates using on-board in-situ impedance spectroscopy.
In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October
2013; pp. 1081–1086.

16. Pandey, G.; Kumar, R.; Weber, R.J. Determination of soil ionic concentration using impedance spectroscopy. In Sensing Technologies
for Global Health, Military Medicine, and Environmental Monitoring III; International Society for Optics and Photonics: Bellingham,
WA, USA, 2013; Volume 8723, p. 872317.

17. Pandey, G.; Kumar, R.; Weber, R.J. A multi-frequency, self-calibrating, in-situ soil sensor with energy efficient wireless interface.
In Sensing for Agriculture and Food Quality and Safety V; International Society for Optics and Photonics: Bellingham, WA, USA,
2013; Volume 8721, p. 87210V.

18. Kumar, R.; Tabassum, S.; Dong, L. Nano-Patterning Methods Including:(1) Patterning of Nanophotonic Structures at Optical
Fiber Tip for Refractive Index Sensing and (2) Plasmonic Crystal Incorporating Graphene Oxide Gas Sensor for Detection of
Volatile Organic Compounds. U.S. Patent 10,725,373, 28 July 2020.

19. Kashyap, B.; Kumar, R. Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring. IEEE Access 2021,
9, 14095–14121. [CrossRef]

https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html
https://hbr.org/2016/04/global-demand-for-food-is-rising-can-we-meet-it
https://hbr.org/2016/04/global-demand-for-food-is-rising-can-we-meet-it
http://doi.org/10.1038/s41559-018-0793-y
http://www.ncbi.nlm.nih.gov/pubmed/30718852
https://www.cabi.org/projects/global-burden-of-crop-loss/
http://dx.doi.org/10.1109/ACCESS.2018.2862634
http://dx.doi.org/10.1109/JSEN.2017.2704918
http://dx.doi.org/10.1016/j.snb.2016.09.101
http://dx.doi.org/10.1109/ACCESS.2021.3052478


Inventions 2021, 6, 29 41 of 47

20. Tabassum, S.; Dong, L.; Kumar, R. Determination of dynamic variations in the optical properties of graphene oxide in response to
gas exposure based on thin-film interference. Opt. Express 2018, 26, 6331–6344. [CrossRef]

21. Tabassum, S.; Kumar, R.; Dong, L. Nanopatterned optical fiber tip for guided mode resonance and application to gas sensing.
IEEE Sens. J. 2017, 17, 7262–7272. [CrossRef]

22. Tabassum, S.; Kumar, R.; Dong, L. Plasmonic Crystal-Based Gas Sensor Toward an Optical Nose Design. IEEE Sens. J. 2017,
17, 6210–6223. [CrossRef]

23. Tabassum, S.; Kumar, R. Selective Detection of Ethylene Using a Fiber-Optic Guided Mode Resonance Device: In-Field Crop/Fruit
Diagnostics. In CLEO: Applications and Technology; Optical Society of America: Washington, DC, USA, 2020; p. ATu4I-6.

24. Kashyap, B.; Kumar, R. Salicylic acid (SA) detection using bi-enzyme microfluidic electrochemical sensor. In Smart Biomedical and
Physiological Sensor Technology XV; Cullum, B.M., Kiehl, D., McLamore, E.S., Eds.; International Society for Optics and Photonics,
SPIE: Bellingham, WA, USA, 2018; Volume 10662, pp. 97–103.

25. Kashyap, B.; Kumar, R. Bio-agent free electrochemical detection of Salicylic acid. In Proceedings of the 2019 IEEE SENSORS,
Montreal, QC, Canada, 27–30 October 2019; pp. 1–4.

26. Tabassum, S.; Wang, Q.; Wang, W.; Oren, S.; Ali, M.A.; Kumar, R.; Dong, L. Plasmonic crystal gas sensor incorporating graphene
oxide for detection of volatile organic compounds. In Proceedings of the 2016 IEEE 29th International Conference on Micro
Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 913–916.

27. Bhar, A.; Kumar, R.; Qi, Z.; Malone, R. Coordinate descent based agricultural model calibration and optimized input management.
Comput. Electron. Agric. 2020, 172, 105353. [CrossRef]

28. Bhar, A.; Kumar, R.; Malone, R.W. Comparing a Simple Carbon Nitrogen Model with Complex RZWQM Model. In Proceedings
of the 2019 ASABE Annual International Meeting, American Society of Agricultural and Biological Engineers, Boston, MA, USA,
7–10 July 2019; p. 1.

29. Bhar, A.; Kumar, R. Model-Predictive Real-Time Fertilization and Irrigation Decision-Making Using RZWQM. In Proceedings of
the 2019 ASABE Annual International Meeting, American Society of Agricultural and Biological Engineers, Boston, MA, USA,
7–10 July 2019; p. 1.

30. Erb, M.; Meldau, S.; Howe, G.A. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 2012, 17, 250–259.
[CrossRef]

31. Freeman, B.C.; Beattie, G. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Health Instr. 2008. [CrossRef]
32. Spoel, S.H.; Dong, X. How do plants achieve immunity?: Defence without specialized immune cells. Nat. Rev. Immunol. 2012,

12, 89–100. [CrossRef]
33. Pel, M.J.C.; Pieterse, C.M.J. Microbial recognition and evasion of host immunity. J. Exp. Bot. 2012, 64, 1237–1248. [CrossRef]
34. Miller, R.N.G.; Costa Alves, G.S.; Van Sluys, M.A. Plant immunity: Unravelling the complexity of plant responses to biotic

stresses. Ann. Bot. 2017, 119, 681–687. [CrossRef]
35. Wu, S.; Shan, L.; He, P. Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci. 2014,

228, 118–126. [CrossRef]
36. War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense

against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [CrossRef]
37. Ross, A. Systemic acquired resistance induced by localized virus infections in plants. Virology 1961, 14, 340–358. [CrossRef]
38. Vos, I.A.; Pieterse, C.M.J.; van Wees, S.C.M. Costs and benefits of hormone-regulated plant defences. Plant Pathol. 2013, 62, 43–55.

[CrossRef]
39. Berens, M.L.; Wolinska, K.W.; Spaepen, S.; Ziegler, J.; Nobori, T.; Nair, A.; Krüler, V.; Winkelmüller, T.M.; Wang, Y.; Mine, A.;

Becker, D.; Garrido-Oter, R.; Schulze-Lefert, P.; Tsuda, K. Balancing trade-offs between biotic and abiotic stress responses through
leaf age-dependent variation in stress hormone cross-talk. Proc. Natl. Acad. Sci. USA 2019, 116, 2364–2373. [CrossRef]

40. Mao, Y.B.; Liu, Y.Q.; Chen, D.Y.; Chen, F.Y.; Fang, X.; Hong, G.J.; Wang, L.J.; Wang, J.W.; Chen, X.Y. Jasmonate response decay and
defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistanceNature Communications. Nat.
Commun. 2017, 8, 13925. [CrossRef]

41. Li, N.; Han, X.; Feng, D.; Yuan, D.; Huang, L.J. Signaling Crosstalk between Salicylic Acid and Ethylene/Jasmonate in Plant
Defense: Do We Understand What They Are Whispering? Int. J. Mol. Sci. 2019, 20, 671. [CrossRef]

42. Xu, T.; Yao, Z.; Liu, J.; Zhang, H.; Din, G.M.U.; Zhao, S.; Chen, W.; Liu, T.; Gao, L. Development of droplet digital PCR for the
detection of Tilletia laevis, which causes common bunt of wheat, based on the SCAR marker derived from ISSR and real-time
PCR. Sci. Rep. 2020, 10, 16106. [CrossRef]

43. Aglietti, C.; Luchi, N.; Pepori, A.L.; Bartolini, P.; Pecori, F.; Raio, A.; Capretti, P.; Santini, A. Real-time loop-mediated isothermal
amplification: an early-warning tool for quarantine plant pathogen detection. AMB Express2019, 9, 50. [CrossRef]

44. Ristaino, J.B.; Saville, A.C.; Paul, R.; Cooper, D.C.; Wei, Q. Detection of Phytophthora infestans by Loop-Mediated Isothermal
Amplification, Real-Time LAMP, and Droplet Digital PCR. Plant Dis. 2020, 104, 708–716. [CrossRef]

45. Charlermroj, R.; Himananto, O.; Seepiban, C.; Kumpoosiri, M.; Warin, N.; Oplatowska, M.; Gajanandana, O.; Grant, I.R.;
Karoonuthaisiri, N.; Elliott, C.T. Multiplex Detection of Plant Pathogens Using a Microsphere Immunoassay Technology. PLoS
ONE 2013, 8, 1–11. [CrossRef]

46. Panferov, V.G.; Safenkova, I.V.; Byzova, N.A.; Varitsev, Y.A.; Zherdev, A.V.; Dzantiev, B.B. Silver-enhanced lateral flow immunoas-
say for highly-sensitive detection of potato leafroll virus. Food Agric. Immunol. 2018, 29, 445–457. [CrossRef]

http://dx.doi.org/10.1364/OE.26.006331
http://dx.doi.org/10.1109/JSEN.2017.2748593
http://dx.doi.org/10.1109/JSEN.2017.2740176
http://dx.doi.org/10.1016/j.compag.2020.105353
http://dx.doi.org/10.1016/j.tplants.2012.01.003
http://dx.doi.org/10.1094/PHI-I-2008-0226-01
http://dx.doi.org/10.1038/nri3141
http://dx.doi.org/10.1093/jxb/ers262
http://dx.doi.org/10.1093/aob/mcw284
http://dx.doi.org/10.1016/j.plantsci.2014.03.001
http://dx.doi.org/10.4161/psb.21663
http://dx.doi.org/10.1016/0042-6822(61)90319-1
http://dx.doi.org/10.1111/ppa.12105
http://dx.doi.org/10.1073/pnas.1817233116
http://dx.doi.org/10.1038/ncomms13925
http://dx.doi.org/10.3390/ijms20030671
http://dx.doi.org/10.1038/s41598-020-72976-7
http://dx.doi.org/10.1186/s13568-019-0774-9
http://dx.doi.org/10.1094/PDIS-06-19-1186-RE
http://dx.doi.org/10.1371/journal.pone.0062344
http://dx.doi.org/10.1080/09540105.2017.1401044


Inventions 2021, 6, 29 42 of 47

47. Song, S.; Liu, N.; Zhao, Z.; Njumbe Ediage, E.; Wu, S.; Sun, C.; De Saeger, S.; Wu, A. Multiplex Lateral Flow Immunoassay for
Mycotoxin Determination. Anal. Chem. 2014, 86, 4995–5001. [CrossRef]

48. Anfossi, L.; Di Nardo, F.; Giovannoli, C.; Passini, C.; Baggiani, C. Increased sensitivity of lateral flow immunoassay for ochratoxin
A through silver enhancement. Anal. Bioanal. Chem. 2013, 405, 9859–9867. [CrossRef]

49. Lin, H.Y.; Huang, C.H.; Lu, S.H.; Kuo, I.T.; Chau, L.K. Direct detection of orchid viruses using nanorod-based fiber optic particle
plasmon resonance immunosensor. Biosens. Bioelectron. 2014, 51, 371–378. [CrossRef] [PubMed]

50. Berto, M.; Vecchi, E.; Baiamonte, L.; Condò, C.; Sensi, M.; Di Lauro, M.; Sola, M.; De Stradis, A.; Biscarini, F.; Minafra, A.;
Bortolotti, C.A. Label free detection of plant viruses with organic transistor biosensors. Sens. Actuators B Chem. 2019, 281, 150–156.
[CrossRef]

51. Mullis, K.B. The Unusual Origin of the Polymerase Chain Reaction. Sci. Am. 1990, 262, 56–65. [CrossRef] [PubMed]
52. WARD, E.; FOSTER, S.J.; FRAAIJE, B.A.; MCCARTNEY, H.A. Plant pathogen diagnostics: Immunological and nucleic acid-based

approaches. Ann. Appl. Biol. 2004, 145, 1–16. [CrossRef]
53. Athman, A.; Tanz, S.K.; Conn, V.M.; Jordans, C.; Mayo, G.M.; Ng, W.W.; Burton, R.A.; Conn, S.J.; Gilliham, M. Protocol: A fast

and simple in situ PCR method for localising gene expression in plant tissue. Plant Methods 2014, 10, 29. [CrossRef] [PubMed]
54. Lee, M.H.; Song, K.Y.; Hwang, H.J.; Kim, J.H.; Hwang, I. Development of fast and sensitive protocols for the detection of viral

pathogens using a small portable convection PCR platform. Mol. Biol. Rep. 2019, 46, 5073–5077. [CrossRef]
55. Martinelli, F.; Scalenghe, R.; Davino, S.; Panno, S.; Scuderi, G.; Ruisi, P.; Villa, P.; Stroppiana, D.; Boschetti, M.; Goulart, L.R.; Davis,

C.E.; Dandekar, A.M. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 2015, 35, 1–25. [CrossRef]
56. Paul, R.; Saville, A.C.; Hansel, J.C.; Ye, Y.; Ball, C.; Williams, A.; Chang, X.; Chen, G.; Gu, Z.; Ristaino, J.B.; Wei, Q. Extraction of

Plant DNA by Microneedle Patch for Rapid Detection of Plant Diseases. ACS Nano 2019, 13, 6540–6549. [CrossRef]
57. Koo, C.; Malapi-Wight, M.; Kim, H.S.; Cifci, O.S.; Vaughn-Diaz, V.L.; Ma, B.; Kim, S.; Abdel-Raziq, H.; Ong, K.; Jo, Y.K.; et al.

Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis. PLoS ONE 2013, 8, 1–11. [CrossRef]
58. What Is a Cq (Ct) Value? Available Online: https://bitesizebio.com/24581/what-is-a-ct-value/ (accessed on 15 December 2020).
59. Hajizadeh, M.; Navarro, B.; Bashir, N.S.; Torchetti, E.M.; Di Serio, F. Development and validation of a multiplex RT-PCR method

for the simultaneous detection of five grapevine viroids. J. Virol. Methods 2012, 179, 62–69. [CrossRef]
60. Sanzani, S.M.; Li Destri Nicosia, M.G.; Faedda, R.; Cacciola, S.O.; Schena, L. Use of Quantitative PCR Detection Methods to

Study Biocontrol Agents and Phytopathogenic Fungi and Oomycetes in Environmental Samples. J. Phytopathol. 2014, 162, 1–13.
[CrossRef]

61. Duressa, D.; Rauscher, G.; Koike, S.T.; Mou, B.; Hayes, R.J.; Maruthachalam, K.; Subbarao, P.V.; Klosterman, S.J. A Real-Time PCR
Assay for Detection and Quantification of Verticillium dahliae in Spinach Seed. Phytopathology 2012, 102, 443–451. [CrossRef]

62. DeShields, J.B.; Bomberger, R.A.; Woodhall, J.W.; Wheeler, D.L.; Moroz, N.; Johnson, D.A.; Tanaka, K. On-Site Molecular Detection
of Soil-Borne Phytopathogens Using a Portable Real-Time PCR System. J. Vis. Exp. 2018, 132, e56891. [CrossRef]

63. Londoño, M.A.; Harmon, C.L.; Polston, J.E. Evaluation of recombinase polymerase amplification for detection of begomoviruses
by plant diagnostic clinics. Virol. J. 2016, 13, 48. [CrossRef]

64. Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. TrAC Trends
Anal. Chem. 2018, 98, 19–35. [CrossRef]

65. Lau, H.Y.; Wu, H.; Wee, E.J.H.; Trau, M.; Wang, Y.; Botella, J.R. Specific and Sensitive Isothermal Electrochemical Biosensor for
Plant Pathogen DNA Detection with Colloidal Gold Nanoparticles as Probes. Sci. Rep. 2017, 7, 38896. [CrossRef]

66. Yu, J.; Shen, D.; Dai, T.; Lu, X.; Xu, H.; Dou, D. Rapid and equipment-free detection of Phytophthora capsici using lateral flow
strip-based recombinase polymerase amplification assay. Lett. Appl. Microbiol. 2019, 69, 64–70. [CrossRef]

67. Zou, Y.; Mason, M.G.; Wang, Y.; Wee, E.; Turni, C.; Blackall, P.J.; Trau, M.; Botella, J.R. Nucleic acid purification from plants,
animals and microbes in under 30 seconds. PLoS Biol. 2017, 15, 1–22. [CrossRef]

68. Strayer-Scherer, A.; Jones, J.B.; Paret, M.L. Recombinase Polymerase Amplification Assay for Field Detection of Tomato Bacterial
Spot Pathogens. Phytopathology® 2019, 109, 690–700. [CrossRef]

69. Zhang, S.; Ravelonandro, M.; Russell, P.; McOwen, N.; Briard, P.; Bohannon, S.; Vrient, A. Rapid diagnostic detection of plum pox
virus in Prunus plants by isothermal AmplifyRP® using reverse transcription-recombinase polymerase amplification. J. Virol.
Methods 2014, 207, 114–120. [CrossRef]

70. Zeng, R.; Luo, J.; Gao, S.; Xu, L.; Song, Z.; Dai, F. Rapid detection of Cucumber green mottle mosaic virus by reverse transcription
recombinase polymerase amplification. Mol. Cell. Probes 2019, 43, 84–85. [CrossRef]

71. Mekuria, T.A.; Zhang, S.; Eastwell, K.C. Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse
transcription-recombinase polymerase amplification. J. Virol. Methods 2014, 205, 24–30. [CrossRef]

72. Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual
detection of products. Nat. Protoc. 2008, 3, 877–882. [CrossRef] [PubMed]

73. Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique
for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643. [CrossRef] [PubMed]

74. Karakkat, B.B.; Hockemeyer, K.; Franchett, M.; Olson, M.; Mullenberg, C.; Koch, P.L. Detection of root-infecting fungi on
cool-season turfgrasses using loop-mediated isothermal amplification and recombinase polymerase amplification. J. Microbiol.
Methods 2018, 151, 90–98. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ac500540z
http://dx.doi.org/10.1007/s00216-013-7428-6
http://dx.doi.org/10.1016/j.bios.2013.08.009
http://www.ncbi.nlm.nih.gov/pubmed/24001513
http://dx.doi.org/10.1016/j.snb.2018.10.080
http://dx.doi.org/10.1038/scientificamerican0490-56
http://www.ncbi.nlm.nih.gov/pubmed/2315679
http://dx.doi.org/10.1111/j.1744-7348.2004.tb00354.x
http://dx.doi.org/10.1186/1746-4811-10-29
http://www.ncbi.nlm.nih.gov/pubmed/25250056
http://dx.doi.org/10.1007/s11033-019-04961-x
http://dx.doi.org/10.1007/s13593-014-0246-1
http://dx.doi.org/10.1021/acsnano.9b00193
http://dx.doi.org/10.1371/journal.pone.0082704
https://bitesizebio.com/24581/what-is-a-ct-value/
http://dx.doi.org/10.1016/j.jviromet.2011.09.022
http://dx.doi.org/10.1111/jph.12147
http://dx.doi.org/10.1094/PHYTO-10-11-0280
http://dx.doi.org/10.3791/56891
http://dx.doi.org/10.1186/s12985-016-0504-8
http://dx.doi.org/10.1016/j.trac.2017.10.015
http://dx.doi.org/10.1038/srep38896
http://dx.doi.org/10.1111/lam.13166
http://dx.doi.org/10.1371/journal.pbio.2003916
http://dx.doi.org/10.1094/PHYTO-03-18-0101-R
http://dx.doi.org/10.1016/j.jviromet.2014.06.026
http://dx.doi.org/10.1016/j.mcp.2018.12.005
http://dx.doi.org/10.1016/j.jviromet.2014.04.015
http://dx.doi.org/10.1038/nprot.2008.57
http://www.ncbi.nlm.nih.gov/pubmed/18451795
http://dx.doi.org/10.1111/jam.13647
http://www.ncbi.nlm.nih.gov/pubmed/29165905
http://dx.doi.org/10.1016/j.mimet.2018.06.011
http://www.ncbi.nlm.nih.gov/pubmed/29964073


Inventions 2021, 6, 29 43 of 47

75. Plant Pathogen Tests—Creative Diagnostics. Available online: https://www.creative-diagnostics.com/plant-pathogen-elisa-kits.
htm (accessed on 16 December 2020).

76. Agdia—ELISA. Available online: https://orders.agdia.com/pathogen-tests/elisa (accessed on 16 December 2020).
77. Bio-Rad. What Is ELISA?—An Introduction to ELISA. Available online: https://www.bio-rad-antibodies.com/an-introduction-

to-elisa.html (accessed on 16 December 2020).
78. Estrela, P.; Koczula, K.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120. [CrossRef]
79. Razo, S.C.; Panferov, V.G.; Safenkova, I.V.; Varitsev, Y.A.; Zherdev, A.V.; Dzantiev, B.B. Double-enhanced lateral flow immunoassay

for potato virus X based on a combination of magnetic and gold nanoparticles. Anal. Chim. Acta 2018, 1007, 50–60. [CrossRef]
80. Chen, Y.; Chen, Q.; Han, M.; Zhou, J.; Gong, L.; Niu, Y.; Zhang, Y.; He, L.; Zhang, L. Development and optimization of a multiplex

lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chem. 2016,
213, 478–484. [CrossRef]

81. Haji-Hashemi, H.; Habibi, M.M.; Safarnejad, M.R.; Norouzi, P.; Ganjali, M.R. Label-free electrochemical immunosensor based on
electrodeposited Prussian blue and gold nanoparticles for sensitive detection of citrus bacterial canker disease. Sens. Actuators B
Chem. 2018, 275, 61–68. [CrossRef]

82. Riberi, W.I.; Tarditto, L.V.; Zon, M.A.; Arévalo, F.J.; Fernández, H. Development of an electrochemical immunosensor to determine
zearalenone in maize using carbon screen printed electrodes modified with multi-walled carbon nanotubes/polyethyleneimine
dispersions. Sens. Actuators B Chem. 2018, 254, 1271–1277. [CrossRef]

83. Zhao, Y.; Liu, L.; Kong, D.; Kuang, H.; Wang, L.; Xu, C. Dual Amplified Electrochemical Immunosensor for Highly Sensitive
Detection of Pantoea stewartii sbusp. stewartii. ACS Appl. Mater. Interfaces 2014, 6, 21178–21183. [CrossRef]

84. Hashemi Tameh, M.; Primiceri, E.; Chiriacò, M.S.; Poltronieri, P.; Bahar, M.; Maruccio, G. Pectobacterium atrosepticum Biosensor
for Monitoring Blackleg and Soft Rot Disease of Potato. Biosensors 2020, 10, 64. [CrossRef]

85. Zeng, C.; Huang, X.; Xu, J.; Li, G.; Ma, J.; Ji, H.F.; Zhu, S.; Chen, H. Rapid and sensitive detection of maize chlorotic mottle virus
using surface plasmon resonance-based biosensor. Anal. Biochem. 2013, 440, 18–22. [CrossRef]

86. Hallau, L.; Neumann, M.; Klatt, B.; Kleinhenz, B.; Klein, T.; Kuhn, C.; Röhrig, M.; Bauckhage, C.; Kersting, K.; Mahlein, A.K.; et al.
Automated identification of sugar beet diseases using smartphones. Plant Pathol. 2018, 67, 399–410. [CrossRef]

87. Johannes, A.; Picon, A.; Alvarez-Gila, A.; Echazarra, J.; Rodriguez-Vaamonde, S.; Navajas, A.D.; Ortiz-Barredo, A. Automatic
plant disease diagnosis using mobile capture devices, applied on a wheat use case. Comput. Electron. Agric. 2017, 138, 200–209.
[CrossRef]

88. Petrellis, N. A smart phone image processing application for plant disease diagnosis. In Proceedings of the 2017 6th International
Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 4–6 May 2017; pp. 1–4.

89. Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016,
7, 1419. [CrossRef]

90. Barbedo, J.G.A.; Koenigkan, L.V.; Santos, T.T. Identifying multiple plant diseases using digital image processing. Biosyst. Eng.
2016, 147, 104–116. [CrossRef]

91. Schor, N.; Bechar, A.; Ignat, T.; Dombrovsky, A.; Elad, Y.; Berman, S. Robotic Disease Detection in Greenhouses: Combined
Detection of Powdery Mildew and Tomato Spotted Wilt Virus. IEEE Robot. Autom. Lett. 2016, 1, 354–360. [CrossRef]

92. Zhou, R.; Kaneko, S.; Tanaka, F.; Kayamori, M.; Shimizu, M. Image-based field monitoring of Cercospora leaf spot in sugar beet
by robust template matching and pattern recognition. Comput. Electron. Agric. 2015, 116, 65–79. [CrossRef]

93. Pourreza, A.; Lee, W.S.; Ehsani, R.; Schueller, J.K.; Raveh, E. An optimum method for real-time in-field detection of Huanglongbing
disease using a vision sensor. Comput. Electron. Agric. 2015, 110, 221–232. [CrossRef]

94. Lloret, J.; Bosch, I.; Sendra, S.; Serrano, A. A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing.
Sensors 2011, 11, 6165–6196. [CrossRef]

95. Moghadam, P.; Ward, D.; Goan, E.; Jayawardena, S.; Sikka, P.; Hernandez, E. Plant Disease Detection Using Hyperspectral
Imaging. In Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications
(DICTA), Sydney, NSW, Australia, 29 November–1 December 2017; pp. 1–8.

96. Mishra, P.; Asaari, M.S.M.; Herrero-Langreo, A.; Lohumi, S.; Diezma, B.; Scheunders, P. Close range hyperspectral imaging of
plants: A reviewf. Biosyst. Eng. 2017, 164, 49–67. [CrossRef]

97. Abdulridha, J.; Ampatzidis, Y.; Kakarla, S.C.; Roberts, P. Detection of target spot and bacterial spot diseases in tomato using
UAV-based and benchtop-based hyperspectral imaging techniques. Precis. Agric. 2020, 21, 955–978. [CrossRef]

98. Wang, Dongyi, V.R.; Holmes, M.; Seibel, G.; Bechar, A.; Nof, S.; Tao, Y. Early Detection of Tomato Spotted Wilt Virus by
Hyperspectral Imaging and Outlier Removal Auxiliary Classifier Generative Adversarial Nets (OR-AC-GAN). Sci. Rep. 2019,
9, 4377. [CrossRef]

99. Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using
explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 98. [CrossRef]

100. Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; González-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A Deep Learning-Based
Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sens. 2019,
11, 1554. [CrossRef]

101. Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease
with Successive Projections Algorithm and Machine-learning Classifiers. Sci. Rep. 2017, 7, 4125. [CrossRef]

https://www.creative-diagnostics.com/plant-pathogen-elisa-kits.htm
https://www.creative-diagnostics.com/plant-pathogen-elisa-kits.htm
https://orders.agdia.com/pathogen-tests/elisa
https://www.bio-rad-antibodies.com/an-introduction-to-elisa.html
https://www.bio-rad-antibodies.com/an-introduction-to-elisa.html
http://dx.doi.org/10.1042/EBC20150012
http://dx.doi.org/10.1016/j.aca.2017.12.023
http://dx.doi.org/10.1016/j.foodchem.2016.06.116
http://dx.doi.org/10.1016/j.snb.2018.07.148
http://dx.doi.org/10.1016/j.snb.2017.07.113
http://dx.doi.org/10.1021/am506104r
http://dx.doi.org/10.3390/bios10060064
http://dx.doi.org/10.1016/j.ab.2013.04.026
http://dx.doi.org/10.1111/ppa.12741
http://dx.doi.org/10.1016/j.compag.2017.04.013
http://dx.doi.org/10.3389/fpls.2016.01419
http://dx.doi.org/10.1016/j.biosystemseng.2016.03.012
http://dx.doi.org/10.1109/LRA.2016.2518214
http://dx.doi.org/10.1016/j.compag.2015.05.020
http://dx.doi.org/10.1016/j.compag.2014.11.021
http://dx.doi.org/10.3390/s110606165
http://dx.doi.org/10.1016/j.biosystemseng.2017.09.009
http://dx.doi.org/10.1007/s11119-019-09703-4
http://dx.doi.org/10.1038/s41598-019-40066-y
http://dx.doi.org/10.1186/s13007-019-0479-8
http://dx.doi.org/10.3390/rs11131554
http://dx.doi.org/10.1038/s41598-017-04501-2


Inventions 2021, 6, 29 44 of 47

102. Islam, M.; Anh Dinh.; Wahid, K.; Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support
vector machine. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE),
Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–4.

103. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial
Nets. In Advances in Neural Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger,
K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27, pp. 2672–2680.

104. Lu, J.; Ehsani, R.; Shi, Y.; de Castro, A.I.; Wang, S. Detection of multi-tomato leaf diseases (late blight, target and bacterial spots)
in different stages by using a spectral-based sensor. Sci. Rep. 2018, 8, 2793. [CrossRef]

105. Del Fiore, A.; Reverberi, M.; Ricelli, A.; Pinzari, F.; Serranti, S.; Fabbri, A.; Bonifazi, G.; Fanelli, C. Early detection of toxigenic
fungi on maize by hyperspectral imaging analysis. Int. J. Food Microbiol. 2010, 144, 64–71. [CrossRef] [PubMed]

106. Costa, J.M.; Grant, O.M.; Chaves, M.M. Thermography to explore plant–environment interactions. J. Exp. Bot. 2013, 64, 3937–3949.
[CrossRef] [PubMed]

107. Zhu, W.; Chen, H.; Ciechanowska, I.; Spaner, D. Application of infrared thermal imaging for the rapid diagnosis of crop disease.
IFAC-PapersOnLine 2018, 51, 424–430. [CrossRef]

108. Oerke, E.; Fröhling, P.; Steiner, U. Thermographic assessment of scab disease on apple leaves. Precis. Agric. 2011, 12, 699–715.
[CrossRef]

109. Smigaj, M.; Gaulton, R.; Suárez, J.C.; Barr, S.L. Canopy temperature from an Unmanned Aerial Vehicle as an indicator of tree
stress associated with red band needle blight severity. For. Ecol. Manag. 2019, 433, 699–708. [CrossRef]

110. Wen, D.M.; Chen, M.X.; Zhao, L.; Ji, T.; Li, M.; Yang, X.T. Use of thermal imaging and Fourier transform infrared spectroscopy for
the pre-symptomatic detection of cucumber downy mildew. Eur. J. Plant Pathol. 2019, 155, 405–416. [CrossRef]

111. Jafari, M.; Minaei, S.; Safaie, N. Detection of pre-symptomatic rose powdery-mildew and gray-mold diseases based on thermal
vision. Infrared Phys. Technol. 2017, 85, 170–183. [CrossRef]

112. Wang, M.; Ling, N.; Dong, X.; Zhu, Y.; Shen, Q.; Guo, S. Thermographic visualization of leaf response in cucumber plants infected
with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum. Plant Physiol. Biochem. 2012, 61, 153–161. [CrossRef]
[PubMed]

113. Sankaran, S.; Mishra, A.; Maja, J.M.; Ehsani, R. Visible-near infrared spectroscopy for detection of Huanglongbing in citrus
orchards. Comput. Electron. Agric. 2011, 77, 127–134. [CrossRef]

114. Liang, P.S.; Haff, R.P.; Hua, S.S.T.; Munyaneza, J.E.; Mustafa, T.; Sarreal, S.B.L. Nondestructive detection of zebra chip disease in
potatoes using near-infrared spectroscopy. Biosyst. Eng. 2018, 166, 161–169. [CrossRef]

115. Gold, K.M.; Townsend, P.A.; Herrmann, I.; Gevens, A.J. Investigating potato late blight physiological differences across potato
cultivars with spectroscopy and machine learning. Plant Sci. 2020, 295, 110316. [CrossRef]
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