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Abstract: Wildfires threaten and kill people, destroy urban and rural property, degrade air quality,
ravage forest ecosystems, and contribute to global warming. Wildfire management decision support
models are thus important for avoiding or mitigating the effects of these events. In this context, this
paper aims at providing a review of recent applications of machine learning methods for wildfire
management decision support. The emphasis is on providing a summary of these applications with a
classification according to the case study type, machine learning method, case study location, and
performance metrics. The review considers documents published in the last four years, using a
sample of 135 documents (review articles and research articles). It is concluded that the adoption of
machine learning methods may contribute to enhancing support in different fire management phases.
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1. Introduction

Wildfires, e.g., uncontrolled fires occurring in forest or grassland in rural areas [1],
threaten and kill people, destroy urban and rural property, degrade air quality, ravage
forest ecosystems and Natura 2000 sites, and contribute to global warming. The connection
between climate change and the increased risk of wildfires suggests a paradigm change
in the co-existence of humans with natural catastrophes affecting the environment [2].
Indeed, the regime of wildfires in the Anthropocene is changing due to this complex fire–
human–climate interaction [3]. The forest fires paradox has been highlighted by several
authors [4–6]. They may play an important ecological role by removing deadwood and
opening space for the growth of new vegetation. They may also release nutrients into the
soil and offer ecological niches for the proliferation of wildlife. In contrast, when occurring
at high intensity, forest fires lead to negative environmental impacts such as a decrease in
soil quality (e.g., loss of biota, volatilization of its nutrients, and an increase in erosion).
They may further contribute to a decline in biodiversity, as well as to a decrease in air
quality [3,4], thus threatening forested landscapes [7].

Wildfires result from the interaction of several factors (e.g., the composition of the
fuels, ignition sources, weather conditions, and topography) [8]. The landscape mosaic
impacts the wildfire development process, e.g., fire ignition and frequency, rate of spread,
the energy released, and the severity [3]. The complexity of the phenomenon poses a
challenge to its modelling and simulation in order to address wildfire hazards proactively,
i.e., to enhance silvicultural practices and forest management plans to design resilient land-
scapes and to reduce loss [9–12] According to the EU Horizon 2020 Work Programme [11],
the fire management cycle may be broadly segmented into three stages: (i) prevention
and preparedness (pre-fire); (ii) detection and response (management of active wildfires);
(iii) restoration and adaptation activities (post-wildfire). The literature discusses the re-
search into methods and tools to help address each stage, as well as the policy emphasis on
each [12,13].
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The literature reports a variety of models targeting specific stages of the fire man-
agement cycle, e.g., wildfire occurrence models, wildfire damage models (e.g., [14–18]),
wildfire spread models [9,12,19], fuel and stand growth and yield models, stand-level
management scheduling methods, forested landscape management methods (e.g., [20,21]),
dispatch and deployment models, and information and decision systems as technological
support platforms (e.g., [15–17,22]). Scientific methods, namely, statistical modelling and
operations research analysis have contributed greatly to understanding the behaviour
and driving factors of wildfires, as well as providing situational awareness and decision
support to improve operational decision-making [23,24]. Nevertheless, despite scientific
and technological breakthroughs in addressing specific fire management problems, new
approaches are needed to understand the complex wildfire phenomenon and mitigate its
impacts [3]. The use of machine learning models is a well-established approach in many
fields of science [20,21], and could thus be an option to address the challenges faced by
wildfire management.

According to [25], “machine learning is an evolving branch of computational algo-
rithms that are designed to emulate human intelligence by learning from the surrounding
environment”. Furthermore, it “can improve automatically through experience” [8]. In [8],
the most frequently used machine learning approaches are detailed from a wildfire per-
spective. The authors briefly present popular algorithms within each category (supervised,
unsupervised, and agent-based), along with references that discuss the fundamentals of
machine learning methods. Details considering the theory of supervised learning may be
found in [26–28]. Supervised learning aims to map labelled input to known output, using a
continuous target variable or a categorical target variable. The continuous target variable is
used for regression tasks, with possible applications in this context in fire susceptibility, fire
spread/burn area prediction, fire occurrence, fire severity, smoke prediction, and climate
change assessment [8]. Some of the popular algorithms for regression tasks are: naive
Bayes [29], decision trees [30], classification and regression trees [31], random forest [32],
deep neural network [33], Gaussian processes [34], neural networks [35], genetic algo-
rithms [36], recurrent neural networks [37], and maximum entropy [38]. The categorical
target variable is used for classification tasks, with possible applications in this context
in fuel characterization, fire detection and fire mapping, for example [8]. Popular algo-
rithms for classification tasks are: neural networks, decision trees, boosted regression trees
(gradient boosted machine) [39], random forest, K-nearest neighbour [40], and support
vector machines [41]. Details on the theory of unsupervised learning may be found in [28].
Unsupervised learning aims to understand patterns and discover outputs, using data in
which the target variable is not available. It can be used for clustering and dimensionality
reduction tasks. Possible applications for the clustering task, in this scope, are fire detection,
fire mapping, burned area prediction, and fire weather prediction [8]. Popular algorithms
for clustering tasks are: K-means clustering [42], self-organizing maps [43], autoencoders,
Gaussian mixture models [44], ISODATA, hidden Markov models [45], and hard competi-
tive learning [46]. Possible applications for the dimensionality reduction task are landscape
controls on fire, fire susceptibility, and fire spread/burned area prediction [8]. Popular
algorithms for dimensionality reduction tasks are: self-organizing maps, autoencoders,
t-distributed stochastic neighbour embedding [47], random forest, boosted regression trees
(also known as gradient boosted machine), and maximum entropy.

Nevertheless, as highlighted by the literature, innovations in wildfire management
decision support have consisted mostly of advancements in the field of operational research
approaches. There is little experience of taking advantage of the potential of machine
learning or deep reinforcement learning techniques—as briefly outlined above—to enhance
wildfire management decision support (e.g., [3,48]). This provided the motivation for a
review of machine learning techniques and applications that may provide insights into
their potential to address the complexity of a holistic approach to fire management. This
review considers recent (2019–present) applications of machine learning methods for
wildfire management decision support, considering the last four years of publications. The
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emphasis is on providing a summary and a classification of the applications according to
the study type, main application of the model, machine learning technique, case study
location, and performance metrics.

Objective, Contribution, and Organization of the Work

The present work aims at developing a review of the recent applications of machine
learning methods for wildfire management decision support, considering the last four years
of publications (from 2019 to the present). This review aims at providing the following
contributions:

• A summary of the applications developed by the studies mentioned;
• A classification according to the study type, main application of the model, machine

learning technique, case study location, and performance metrics.

The work is organized into four main sections. Section 1 provides an introduction
to the scope of the work and its objectives and contributions. Section 2 presents the
methodology used for the development of the systematic review. Section 3 presents
references to the basics of wildfire modelling and machine learning methods, fundamentally
presenting the review results. Section 4 presents the conclusions.

2. Systematic Review Methodology
2.1. Database and Search Terms

The review was built from the Clarivate Web of Science database. The search terms
were (“machine learning” OR “computational learning”) AND (“wildfire” OR “fire”).

2.2. Eligibility Criteria

The criteria for selecting results from the database queries were: (i) a time interval
of four years (from 2019 to the present); (ii) the document type being a journal research
article or review article; (iii) a pertinent match of the title and abstract to the objective of
this work (a focus on wildfire modelling using machine learning techniques); (iv) detailed
consideration of the whole document to assess its relevance (description of the machine
learning technique used, description of the wildfire modelling application, description of
the input data and main results).

2.3. Data Collection Results

Figure 1 presents the results (in numeric terms) for each filtering stage in the systematic
review methodology. The initial search comprised 682 documents, and the final stage
(where the documents were considered eligible and are included in this review) comprised
135 documents.
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3. Results

The results highlighted four earlier reviews of applications of machine learning meth-
ods to wildfire management. In Section 3.1, we list these reviews and highlight further
the motivation for this new review and its added value. Subsequently, we present a sum-
mary of all papers with an emphasis on the methods and techniques used (Section 3.2).
The methods’ input features and feature selection are further explored in Section 3.3. Fi-
nally, Section 3.4 discusses the research trends, challenges, and prospects regarding the
applications of machine-learning-based methods to wildfire management.

3.1. Related Reviews

Three review papers were identified within the final sample of 135 studies focusing
on machine learning applications in wildfire management decision support (Table 1). In
contrast with these reviews, the present work classifies the documents according to the
wildfire management decision support stage, namely, (i) prevention and other related pre-
fire decision support applications, (ii) active wildfire-related decision support applications,
and (iii) restoration and other post-fire-related decision support applications. Moreover, this
review has a broader scope and updates the findings from earlier reviews, as highlighted
in the following sub-sections.

Table 1. Results: pertinent review articles and addressed issues.

Ref. Title Addressed Issues

[8]
A review of machine learning

applications in wildfire science and
management

Overview of popular machine learning methods,
review of applications and advantages and

limitations of the methods

[49]
Forest fire induced Natech risk

assessment: A survey of geospatial
technologies

Review methods based on geospatial
information systems (GIS) for modelling wildfire

risk and their Natural Hazards Triggering
Technological Disasters (Natech) potential

[50]
A Survey of Machine Learning
Algorithms Based Forest Fires

Prediction and Detection Systems

Review of various methods used in forest fires
prediction and detection

3.2. Machine-Learning-Based Applications

The applications are classified into three main categories: pre-fire prevention, active
wildfire, and restoration and post-fire. We outline the application, machine learning
technique employed, case study location, and model performance metrics in Tables 2–4, for
the documents in which there is comprehensive description of the machine learning method
employed. This outline is intended to support the discussion of results and facilitate further
reference in the case of applications where the machine learning method is fully described.

3.2.1. Pre-Fire Prevention and Preparedness

The 51 papers addressing this wildfire cycle management phase focused on the fol-
lowing applications: wildfire fuel modelling, risk assessment and ignition prediction of
wildfires, support to dispatch, landscape planning and prevention measures for severity
mitigation, and development of inventory data. Of the 51 articles, 13.7% applied machine
learning to wildfire fuel modelling (A), 78.4% to risk assessment and ignition prediction
of wildfires (B), nearly 2.0% to landscape planning and prevention measures for severity
mitigation (D), and 5.9% to the development of inventory data (E).

Wildfire Fuel Modelling

In [51], The improvement of the monitoring of Fuel Management Zones has been
studied using extreme gradient boosting, support vector machine, random forest, and
K-nearest neighbours machine learning methods, fed with data from satellite images, vege-
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tation indices and temporal characteristics. In [52], the authors generated initial boundary
conditions for coupled fire–atmosphere simulations that assessed the fuel representation,
using imagery, machine learning, and field sampling. In [53], high-resolution fuel moisture
content and gridded data are developed, with the aim of assimilation into operational fire
prediction (by establishing relationships between the satellite reflectance, surface weather
and soil moisture observations, and fuel moisture content). Surface observations were used
to train multiple machine learning methods (multiple linear regression, random forests
(RFs), gradient boosted regression, and neural networks).

In [54], the authors combined multi-source remote sensing and field data with ma-
chine learning techniques (random forest and support vector machine) and traditional
regression models, to estimate the dead fuel load in a 1 h time horizon, and to understand
its determining factors. In [55], the authors developed models to estimate the fuel moisture
content in a 10 h horizon, making use within their framework of random forest and support
vector machine methods.

A mask region-based convolutional neural network approach was used to automate
dead tree detection from aerial spaces in [56]. In [57], neural networks are used to classify
the presence of wildfire-ignitable liquids on the ground. In [58], a similar approach is
adopted, but instead using K-nearest neighbours and support vector machine.

The optimal timing and location of fuel treatments and timber harvesting to prevent
wildfires is studied in [59], where the authors use approximate dynamic programming and
account for the spatial interactions that generate fire risk.

Risk Assessment and Ignition Prediction of Wildfires

These applications assess both the likelihood of wildfire occurrence and the occurrence
impacts [60], and are an important component of disaster and risk mitigation studies [61].
In [2], the authors used random undersampling and boosting to address the drivers of a
wildfire occurrence and to determine its risk from the multidimensional perspective of
human activity, topology and geography, and land coverage, to deliver findings that can be
used for territorial planning. In [62], remote sensing and machine learning techniques were
used to explore fire determinant features (topography and human-accessibility-related
features) and also to predict the probability of fire occurrence and danger. Fire danger
maps are studied in [63], but from an approach of evaluation of a land cover map and
information from previous fire-affected areas, among other features.

In [64], the wildfire risk is analysed under climate change scenarios, by developing fire
frequency predictions employing random forest, support vector machine and polynomial
machine learning regression methods. In [65], maximum entropy and random forest
methods were tested to determine the risk of wildfire based on satellite images at various
spatial and spectral resolutions.

A forest fire susceptibility index and a social/infrastructural vulnerability index are
developed in [66], employing machine learning methods and GIS multi-criteria decision-
making, with a forest fire susceptibility map as an output. In [67], the authors define a
long-term index for wildfire risk and wildfire danger assessment by employing a fuzzy
K-nearest neighbours classification approach. In [68], logistic regression, deep neural
network, and fire risk indexing models are used to develop an optimized risk indexing
system for wildfire risk assessment. Anthropogenic features were also assessed in [69]
via the application of machine learning models to predict forest fires. In [70], an hourly
risk index is developed based on a CatBoost method. In [71], socio-economic factors are
also considered to determine the wildfire probability using a maximum entropy method
associated with a random forest method.

In [72], forest susceptibility risk is explored using a new ensemble model based on two
deep neural networks, and the model is compared with methods such as extreme gradient
boosting and support vector machine. Another susceptibility map is elaborated in [73],
based on a random forest method that takes into consideration previous fire perimeters
and various geo-environmental predisposing factors. In [74], forest fire susceptibility
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mapping was developed by employing a LogitBoost ensemble-based decision tree method
and benchmarked against support vector machine, random forest, and kernel logistic
regression. In [75], geospatial data, multiple machine learning (neural networks, support
vector machine, and maximum entropy, among others), and spatial statistical tools are
used to demarcate the susceptibility to fire in forests using a weighted approach. In [76], a
machine learning ensemble approach (based on the prediction results of support vector
machine and random forest) is developed to predict wildfires. In [77], the susceptibility
assessment is performed via the random forest method.

In [78], the performance of many machine learning algorithms (naive Bayes, Bayes
network, multivariate logistic regression, and decision tree) are tested for the prediction
and development of a fire susceptibility map. The performance accuracy is also evaluated
in [79], in which boosted regression tree, functional discriminant analysis, classification and
regression trees, generalized linear model, random forest, mixture discriminant analysis,
and a few hybrid methods are developed to predict wildfire hazard and wildfire-prone areas.
In addition, in [80], a multi-hazard risk map (in which wildfires are included) is developed,
and the approach (using support vector machine, boosted regression tree, and generalized
linear model methods) focuses on the improvement of its accuracy. The improvement of
fire risk mapping via satellite-derived metrics is studied in [81], in which logistic regression,
random forest, and extreme gradient boosting are used. Forest susceptibility is mapped
by new hybrid algorithms proposed in [82], and in [83] that susceptibility is assessed by
employing a local weighted learning algorithm with cascade generalization. Forest hazards
are also evaluated in [84], by employing an optimized repeatedly random undersampling
method using support vector machine and a genetic algorithm to compute its parameters.

In [85], the wildfire occurrence is predicted by employing random forest algorithms
and cluster analysis. The authors analyse changes in spatial patterns of ignition probability
over time, taking into consideration human-related drivers, among others. In [86], the
estimation of wildfire probability is achieved by employing neural networks and taking
into consideration features related to biophysical and human drivers.

In [87], a combination of big data, remote sensing, and machine learning methods
(neural networks and support vector machine) is used to extract insights from satellite
images to model the prediction of the occurrence of wildfires. In [88], the authors use
machine learning methods to assess the probability of a fire event starting within a 24 h
horizon from lightning events. In [3], the authors use a deep neural network approach to
estimate and predict wildfire ignition risk, mainly based on topological attributes. In [4], a
GIS-aided maximum entropy method is used for the development of a fire prediction map,
and a feature selection study is performed considering environmental features. In [89], a
total of thirty-six features are evaluated to determine those that provide better performance
of the prediction model. In [1], the authors used random forest models and an ensemble
approach to predict wildfire risk. A convolutional neural network is used to deliver a
spatial prediction model for forest fires in [90], using a set of GIS-based data. In [91], a
GIS-based machine learning method is also developed, in which multiple machine learning
methods are tested.

In [92], the authors employ a broad diversity of machine learning methods targeting
the prediction of the occurrence of forest fires (namely, decision forest classifier, boosted
decision trees, decision jungle classifier, averaged perceptron, local deep support vector
machine, 2-class Bayes point machine, logistic regression, and binary neural network).
Based on the comparison of results, the authors proposed an Internet-of-Things-based smart
fire prediction system. In [93], detailed topological features are used in a hybrid artificial
intelligence model (composed of multivariate adaptive regression splines optimized by
differential flower pollination). In [94], the authors develop a comparison between the
prediction of fire behaviour using machine learning and a physically based method, mainly
evaluating the performance and computational time. The focus is on the calibration of
wildfire prediction machine learning models in [60], in which the methods of random
forests, neural networks, and classification trees are the objects of study, in comparison with
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traditional methods such as logistic regression and logistic generalized additive models.
Random forest is also used in [95].

In [96], the probability of wildfire is modelled based on a machine learning approach,
and it is analysed in terms of the costs associated with the implementation of multiple
prescriptions for risk mitigation. In [97], the authors assess, by means of employing gradient
boosting tree, the impact of weather on the damage caused by fire incidents and also predict
its risk. In [98], a model is proposed to predict fire risk one month in advance.

Support to Dispatch

The work presented in [99] aims at supporting wildfire planning management ac-
tivities by establishing road interrelations between wildfire operational delineations and
potential control locations, using boosted regression models to facilitate future dispatch of
suppression resources. In [100], work is also focused on the firefighters dispatch strategy,
by assessing the probability of fire containment. The models used as training data georefer-
enced historical fire data concerning ignition locations, previous responses, and weather
conditions. They assessed different gradients of features such as detection time, ground
accessibility, and aerial support.

Landscape Planning and Prevention Measures for Severity Mitigation

In [48], the authors assess the delineation of the wildland–urban interface based on
wildfire risk assessment, with a focus on whether fire-based machine learning mapping
enhances the spatial congruence of houses and wildfires, compared with conventional
methods. In [101], the authors study the landslide and wildfire intersection susceptibility,
taking into consideration the uncertainty of susceptibility maps by using three advanced
ensemble machine learning algorithms: adaptive boosting, random forest and gradient
boosting decision tree. In [102], four machine learning classifiers were applied to establish
the wildland–urban interface definition based on fire occurrence data, focusing on housing
density and vegetation coverage. Finally, in [103], the impacts of prescribed burning
treatments are assessed using the random forest method, with the aim of reducing extreme
wildfires. Eight features were evaluated, among them the fire return interval, the seasonality
of the burn, and hydrological and climatic variables.

Table 2. Results: pre-fire prevention applications.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model Performance
Metrics Results

[51] A
Methods of Fuel

Management Zone
improvement

Extreme Gradient Boosting,
Support Vector Machines,

K-Nearest Neighbours, and
Random Forest.

F1-score ranging from
90.0% up to 94.0% and
a Kappa ranging from

0.80 up to 0.89.

[53] A Determining fuel
moisture content

Multiple Linear Regression,
Random Forests, Gradient
Boosted Regression, and

Neural Networks

United States Errors between
25.0–33.0%

[54] A

Estimating fine dead
fuel load and

understand its
determining factors

Multiple Linear Regression,
Random Forest, and

Support Vector Machine

Random Forest: RMSE:
0.09; MSE: 0.01; r: 0.71;

R-2: 0.50)

[55] A Estimating 10 h fuel
moisture content

Random Forest and Support
Vector Machine

(R-2= 0.77–0.82 and
root mean squared

error [RMSE] =
2.0–2.8%)
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Table 2. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model Performance
Metrics Results

[56] A Detection of dead trees
from aerial images

Mask Region-Based
Convolutional Neural

Network

Mean average precision
score = 54.0%

[57] A

Detection of ignitable
liquids on

ground-truth fire
debris

Neural Networks
False positive rate of

0.07 and a true positive
rate of 0.59

[58] A
Detection of ignitable
liquid residue on fire

debris

Linear and Quadratic
Discriminant Analysis,

K-Nearest Neighbours, and
Support Vector Machines
with Radial and Linear

Kernels

Area under the receiver
operating characteristic
curve (0.86–0.92), Equal
error rates (17.0–22.0%)

[60] B

Methods for properly
calibrating statistical

and machine learning
models for fine-scale,
spatially explicit daily

fire occurrence
prediction

Classification Trees,
Random Forests, Neural

Networks, Logistic
Regression Models, and

Logistic Generalized
Additive Models

Alberta, Canada

[61] B Monitoring fire risks
over a large region Transductive PU Learning Southeast China High sensitivity

(>80.0%)

[2] B

Addressing the
multidimensional

effects of three groups
of drivers in territorial

planning under fire
risk

Random Undersampling
and Boosting Chile

Area under the receiver
operating characteristic
curve of 0.967 and an
overall accuracy over

test data of 93.0%

[63] B Modelling fire danger

Support Vector Machine,
Generalized Linear Model,
Functional Data Analysis,

and Random Forest

Iran
Area under the receiver
operating characteristic

curve of 0.855

[64] B
Analysing the

influences of climate
warming on fire risk

Random Forest, Support
Vector Machine and

Polynomial
Changsha, China

[65] B Determining the risk
of fire Maxent and Random Forest Yakutia, Russia

[66] B
Developing spatial

prediction of wildfire
susceptibility

Artificial Neural Network,
Support Vector Machines,

and Random Forest
Iran Accuracies between

74.0–88.0%

[67] B Defining a long-term
wildfire warning index

Fuzzy K-Nearest
Neighbours Brazil

[68] B
Optimizing risk

indexing for fire risk
assessment

Deep Neural Networks Korea

[69] B

Determining the main
explanatory variables

for forest fire
occurrence and

mapping of
probability

Random Forest Eastern Serbia



Inventions 2022, 7, 15 9 of 30

Table 2. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model Performance
Metrics Results

[70] B Developing an hourly
forest fire risk index CatBoost South Korea

Area under the receiver
operating characteristic

curve = 0.8434

[71] B

Estimating and
analysing how human
activity is influencing
forest fire probability

Maximum Entropy (Maxent)
and Random Forest South Korea

[72] B

Prediction of fire
susceptibility and

effects of sample patch
sizes on the predictive

performance of the
algorithms

Deep Neural Network Chile Area under the
curve = 0.953

[73] B Elaborating a wildfire
susceptibility map Random Forests Italy

[74] B Developing a forest
fire susceptibility map

LogitBoost Ensemble-Based
Decision Tree Vietnam 92.0% prediction

capability

[75] B

Weighted approach to
characterizing the

forest fire
susceptibility

Artificial Neural Network,
Generalized Linear Model,

Multivariate Adaptive
Regression Splines, Naive

Bayesian Classifier,
K-Nearest Neighbour,

Support Vector Machine,
Random Forest, Gradient

Boosting Machine, Adaptive
Boosting, and Maximum

Entropy (Maxent)

Kerala, India

Receiver operating
characteristics—area
under curve values

ranging from 0.869 to
0.924

[76] B
Generating

susceptibility maps of
forest fires

Support Vector Machine,
Random Forest, and

Ensemble
Serbia

Ensemble model had
an area under
curve = 0.848

[77] B

Developing a model,
in which probabilistic

outputs allowed
elaboration of wildfire

susceptibility maps.

Random Forest Bolivia

[78] B
Prediction and
mapping of fire
susceptibility

Bayes Network, Naive
Bayes, Decision Tree, and

Multivariate Logistic
Regression

Pu Mat National
Park, Nghe An

Province, Vietnam
Area under curve = 0.96

[79] B
Predicting the fire

hazard in a fire-prone
area

Boosted Regression Tree,
Classification and

Regression Trees, Functional
Discriminant Analysis,

Generalized Linear Model,
Mixture Discriminant

Analysis, Random Forest

Northeast Iran,
Golestan
Province.

Area under
curve = 0.855

[80] B

Producing an accurate
multi-hazard risk map

for a mountainous
area

Support Vector Machine,
Boosted Regression Tree,
and Generalized Linear

Model

Mountainous
region of Iran
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Table 2. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model Performance
Metrics Results

[81] B

Investigating the
impact of

satellite-derived
metrics that represent
long-term vegetation
status and dynamics
on fire risk mapping

Logistic Regression,
Random Forest, and

Extreme Gradient Boosting

Mediterranean
woodlands and

forests

[82] B Mapping forest fire
susceptibility

Frequency Ratio–Multilayer
Perceptron, Frequency

Ratio—Logistic Regression,
Frequency

Ratio–Classification and
Regression Tree, Frequency

Ratio–Support Vector
Machine, and Frequency

Ratio–Random Forest

North Morocco Area under
curve = 0.989

[83] B Prediction of forest fire
susceptibility

Locally Weighted Learning
Algorithm with the Cascade

Generalization, Bagging,
Decorate, and Dagging

Ensemble Learning

Vietnam Area under
curve = 0.993

[84] B
Computing the

probability of hazard
occurrence

Support Vector Machine and
Genetic Algorithm

[85] B

Predicting and
detecting changes in
the spatial pattern of
ignition probability

over time.

Random Forest Brazil Area under
curve = 0.72

[86] B

Estimating wildfire
probability occurrence

as a function of
biophysical and

human-related drivers

Artificial Neural Network Alpine and
subalpine region

Area under
curve = 0.68–0.72

[87] B Predicting the
occurrence of wildfires

Artificial Neural Network
and Support Vector Machine

Prediction
accuracy = 98.3%

[3] B
Estimating and

predicting wildfire
ignition risk

Deep Neural Network

[4] B Proposing forest fire
prediction map Maximum Entropy Brazil and

Australia Area under curve = 0.95

[1] B Predicting the wildfire
risk Random Forest

Monticello and
Winters,

California
Accuracy of 92.0%

[90] B

Proposing a spatial
prediction model for

forest fire
susceptibility

Convolutional Neural
Network

Yunnan Province,
China Area under curve = 0.86

[91] B Assessing forest fire
susceptibility

Boosted Regression Tree,
General Linear Model, and

Mixture Discriminant
Analysis

Fars Province,
Iran
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Table 2. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model Performance
Metrics Results

[92] B Predicting occurrence
of forest fires

Boosted Decision Trees,
Decision Forest Classifier,
Decision Jungle Classifier,

Averaged Perceptron,
2-Class Bayes Point

Machine, Local Deep
Support Vector Machine,
Logistic Regression, and
Binary Neural Network

Area under the
curve = 0.78

[93] B

Analysing and
predicting spatial

patterns of forest fire
danger

Multivariate Adaptive
Regression Splines

Optimized by Differential
Flower Pollination

Lao Cai province
(Vietnam)

Area under the
curve = 0.91

[94] B

Providing details on
specific techniques
being explored for

performing low-cost,
high fidelity fire

predictions

Deep Neural Networks

[60] B

Developing methods
for properly

calibrating statistical
and machine learning
models for fine-scale,
spatially explicit daily

predictions

Classification Trees,
Random Forests, Neural

Networks, Logistic
Regression Models, and

Logistic Generalized
Additive Models

Lac La Biche
region of Alberta,

Canada

[95] B
Estimating the

probability of fire
occurrence

Random Forest

Colombian–
Venezuelan plains
(llanos) ecoregion
in South America.

Accuracy of 94.0%

[97] B

Studying the impact of
weather on the

damage caused by fire
incidents

Gradient Boosting Tree United States

R-2 value of 0.933 and
mean squared error

(MSE) of 124.641 out of
10,000

[98] B

Prediction of African
fire one month in

advance and
generalizing to

provide seasonal
estimates of regional
and global fire risk

Stepwise Generalized
Equilibrium Feedback

Assessment
Africa

[101] D

Developing
susceptibility maps

considering the
intersection of

landslide and wildfire
susceptibility and the

spatial uncertainty

Random Forest, Gradient
Boosting Decision Tree, and

Adaptive Boosting
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Table 2. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model Performance
Metrics Results

[104] E

Creating wildfire
inventory data by

integrating the
polygons collected

through field surveys
using global

positioning systems
(GPS) and the data
collected from the

moderate resolution
imaging spectrometer

(MODIS) thermal
anomalies product

Artificial Neural Network,
Dmine Regression, DM

Neural, Least Angle
Regression, Multi-Layer

Perceptron, Random Forest,
Radial Basis Function,
Self-Organizing Maps,

Support Vector Machine,
and Decision Tree

[105] E

Developing an
automatized and

cloud-based workflow
for generating a

training dataset of fire
events at a continental

level using freely
available remote

sensing data

Random Forest, Naive
Bayes, and Classification

and Regression Tree.

[106] E

Creating a wildfire
data inventory by
integrating global

positioning system
(GPS) polygons with

data collected from the
moderate resolution

imaging
spectroradiometer
(MODIS) thermal
anomalies product

Artificial Neural Network,
Support Vector Machines,

and Random Forest

Amol County,
northern Iran.

1 References were classified according to the application focus: (A) wildfire fuel modelling; (B) risk assessment
and ignition prediction of wildfires; (D) landscape planning and prevention measures for severity mitigation;
(E) development of inventory data.

Development of Inventory Data

In [104], the wildfire susceptibility was assessed and inventory data were developed
by the integration of GPS and MODIS thermal anomalies product data. Along with the
developed inventory data, conditioning factors were selected and tested with ten different
machine learning methods and compared against the traditional logistic regression method.
In [105], the authors create inventory data for training machine learning models of fire
events using freely available remote sensing data. The training dataset generated was
applied in random forest, classification and regression tree, and naïve Bayes methods.
In [106], a wildfire and conditioning factors data inventory is proposed by also integrating
GPS and MODIS data. The authors demonstrate the application of neural networks, support
vector machine, and random forest to the data.

Table 2 presents in more details the classification of the mentioned articles considering
the pre-fire prevention applications.

3.2.2. Management of Active Wildfires (Detection and Response)

The 21 papers addressing this wildfire cycle management phase focused on the follow-
ing applications: wildfire detection, wildfire spread prediction, and wildfire suppression.
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Of the 21 articles, 61.9% applied machine learning to wildfire detection (A), 23.8% to
wildfire spread prediction (B), and 14.3% to wildfire suppression (C).

Wildfire Detection

The ability to rapidly detect the ignition of a wildfire is of paramount importance in
order to avoid the wildfire turning into an extreme wildfire event [107]. There is thus an
urgent need to focus on high-performance forest fire detection models. Wildfire detection
models should ideally have high fire detection rate and a low false alarm rate [108].

A machine learning image-based model prototype was developed in [109], to detect
smoke from fires within 15 min of ignition. In [110], an image-based smoke detection
method is designed, based on a convolutional neural network approach that works as a
binary classifier. In [111], an imagery-based detection model is presented, and a decision
rule and a Gaussian mixture model are employed to train the model. The authors in [112]
also use imagery-based fire detection, associated with the random forest method to reduce
false alarms. In [113], image features are used alongside a long short term memory network
and a convolutional neural network. Deep learning is used in a multi-level forest detection
method for wildfires in [114]. In [115], an adaptive quasi-unsupervised approach is used to
monitor the boundary conditions to detect forest fires.

A multi-sensor machine-learning-based system is developed in [116], based also on
neural networks. In [117], a similar approach is used but the focus is on surveillance
camera use. A fire-flake generator model based on ambient features and machine learning
is developed in [118]. In [119], PRISMA sensor data were associated with classification
techniques from the support vector machine method.

In [108], the authors aim to increase the accuracy of detection and reduce false alarms
by using a K-nearest neighbour method. In [120], powerlines are used associated with
extreme gradient boosting machine learning to detect wildfires. In [61], the authors used
transductive learning from the positive and unlabelled (PU learning) data method to
identify forest fire occurrence, strongly based on remote sensing data. In [121], satellite
images are used to identify forest fires, based on a random forest method.

Wildfire Spread Prediction

In [122], an in-time methodology is developed both to optimize effective fire contain-
ment resource utilization and (mainly) to predict fire spread, through the use of an ensemble
model based on machine learning methods (e.g., particle swarm and a bat algorithm), a
heuristic approach and principal component regression. Short-term spread prediction is
developed in [19], with real-time rate-of-spread measurements associated with a machine
learning algorithm for correlation. In [123], the fire arrival time is estimated based on
satellite data and the support vector machine.

In [124], the fire front spread is estimated using a deep convolutional inverse graphics
network. In [125], the prediction of wildfire spread is evaluated by employing a statistical
downscaling scheme based on deep learning associated with multi-source remote sensing
data. In [126], the drivers for the fire spread predicted severity as well as prescriptions
are evaluated, associating a random forest method with remote sensing data. In [127],
biophysical and management drivers of the final estimated severity of spread are evaluated
through the use of the random forest method. Final fire size is predicted at the time of
ignition in [128], using decision trees. In [129], machine learning algorithms are integrated
with multistage fire spread models. In [107], there is a special focus on developing inventory
data to characterize the possibility of a wildfire becoming an extreme wildfire event. The
results are applied to train four machine learning methods. The authors concluded that the
use of data registered at the time of the wildfire contributes to increasing the accuracy in
predicting the probability of a wildfire becoming an extreme wildfire event, compared to
the use of historical data.
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Wildfire Suppression

In [130], the authors develop a digital twin framework that combines the track of
the trajectory of released airborne materials for fire suppression and machine learning
to optimize the release dynamics of the aircraft in a fast manner. In [131], the research
assesses a sound-wave fire-extinguishing system, by means of applying machine learning
methods (neural networks, deep neural networks, random forest, K-nearest neighbour, and
ensemble methods) to the dataset, to also classify extinction and non-extinction states of
the fire.

Table 3. Results: management of active wildfire applications.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model
Performance

Metrics Results

[110] A

Proposing a two-module
video smoke detection

framework designed for
embedded applications on

local cameras

Lightweight Deep
Convolutional Neural

Network

[111] A

Proposing an intelligent fire
detection method by
investigating three

approaches to detect fire
based on three different

colour models

Decision Rule and
Gaussian Mixture Model

[112] A

Proposing a combined 3-step
forest fire detection algorithm

(i.e., thresholding,
machine-learning-based

modelling, and
post-processing)

Random Forest South Korea

Overall accuracy
similar to 99.2%,

probability of
detection

[113] A Proposing a multistage fire
detection method

Convolutional Neural
Networks and Long
Short Term Memory

Networks

[114] A Proposing a multi-level forest
fire detection method

General Advanced
Networks, Adaptive

Boosting, Convolutional
Neural Networks, and

Support Vector Machine

[116] A

Proposing a method using
machine learning techniques
for multimedia surveillance

during fire emergencies

Adaptive Boosting and
Many Multi-Layer
Perceptron Neural

Networks

[117] A
Proposing a fire detection
method using sensors and

image data

Adaptive Boosting,
Multi-Layer Perceptron
Neural Networks, and
Convolutional Neural

Networks

[118] A Proposing a data-driven
fire-flake simulation model Neural Network

[119] A
Exploring the potential use of
the PRISMA sensor for active

wildfire characterization
Support Vector Machine New South

Wales
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Table 3. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model
Performance

Metrics Results

[108] A

Proposing a method that
widens the view of fire

detection from conventional
two-class to multi-class

classification problems to
meet complex forest image

background

K-Nearest Neighbour
Decision Tree

[120] A

Exploring and discovering the
numerical patterns from the

contact to the ignition process
between different

upper-storey vegetations and
the powerlines

Hybrid Step Extreme
Gradient Boosting

[61] A
Developing a workflow

process to monitor fires over a
large region

Transductive PU
Learning Southeast China

[121] A

Systematically testing and
comparing reflectance and
fractional cover candidate

severity indices

Random Forest

[123] B Estimating the fire arrival
time from satellite data Support Vector Machine California,

United States

12.0% burned area
absolute percentage

error; 5.0% total
burned area mean
percentage error, a

0.21 false alarm
ratio average, a 0.86

probability of
detection average,

and a 0.82
Sorensen’s

coefficient average

[124] B
Estimating the time-resolved

spatial evolution of a
wildland fire front

Deep Convolutional
Inverse Graphics

Network

[125] B
Developing a fire progression

model considering the
uncertainties

U-Net Convolutional
Neural Network

[126] B

Identifying the main
environmental factors driving

fire severity in extreme fire
events

Random Forest California, USA

[128] B
Investigating the controls and
predictability of final fire size

at the time of ignition
Decision Tree 50.4 +/− 5.2%

accuracy

[131] C
Creating a sound-wave

fire-extinguishing system and
performing firefighting tests

Artificial Neural
Network, K-Nearest
Neighbour, Random
Forest, Stacking, and

Deep Neural Network
Methods
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Table 3. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case Study
Location

Model
Performance

Metrics Results

[132] C

Developing a sound-wave
flame extinction system in

order to extinguish the flames
at an early stage of the fire

Adaptive-Network-
Based Fuzzy Inference

Systems), CN2 Rule and
DT (Decision Tree)

[133] C

Creating an automated
system that is capable of

real-time, intelligent object
detection and recognition and

facilitating the improved
situational awareness of

firefighters during an
emergency response

Convolutional Neural
Network

1 References were classified according to the application focus: (A) wildfire detection; (B) wildfire spread prediction;
(C) wildfire suppression.

In [132], the authors develop further a sound-wave flame extinction system to target
the wildfire at a very early stage. It is based on a developed dataset that considers features
such as fuel type, flame size, decibels, frequency, airflow, and distance. The approach em-
ploys adaptive-network-based fuzzy inference systems and decision tree methods. In [133],
the authors propose an automated real-time system of intelligent object detection and
recognition to improve the situational awareness of firefighters during wildfire emergency
response, using convolutional neural networks to classify and identify objects of interest
from thermal imagery.

Table 3 presents in more details the classification of the mentioned articles considering
the management of active wildfire applications.

3.2.3. Post-Fire Wildfires (Restoration and Adaptation Activities)

The evaluation of wildfire severity in a given area is of importance, as it allows us
to estimate the economic impacts of the wildfire [134]. It further provides information
to support restoration decisions and the prioritization of post-fire management strate-
gies [135,136]. The 34 papers addressing this wildfire cycle management phase focused
on the following applications: burned area and severity, impacts related to social factors,
impacts related to carbon fluxes, and impacts related to forest conditions. Of the 34 articles,
61.8% applied machine learning to the characterization of burned area and severity (A),
8.8% to the assessment of impacts related to social factors (B), 5.9% to the assessment of
impacts related to carbon fluxes (C), and 23.5% to the assessment of impacts related to
forest conditions (D).

Burned Area and Severity

Socio-economic features are evaluated in [137] along with meteorological and land
surface characteristics, and the Shapley additive explanation method is used to predict
the burned area. In [138], the authors assess the degree to which the machine learning
training data affect the classification accuracy of fire severity modelling prediction. They
consider the sample size and sample imbalance, also assessing the transferability of models
to different geographic regions. In [139], random forest machine learning was used to
determine the influence of pre-fire vegetation structure, weather conditions, and fire history
on the wildfire severity, and to deliver management recommendations to mitigate the
damage. In [140], an ensemble of machine learning methods approach is employed to
predict the burned area. In [134], prediction of the severity is achieved using a combination
of classification and regression machine learning algorithms.
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In [141], the authors used machine learning methods to estimate the burned area after
a wildfire based on environmental factors such as fuel moisture, precipitation, vapour
pressure, and temporal scale (dataset size). In [142], four hybrid models are compared
to map wildland fire effects, using support vector machine and an adaptive neuro-fuzzy
influence system, as well as meta-heuristic models. In [143], one of the modelling stages
encompasses the processing of thematic maps of the area burnt, using machine learning
techniques. In [136], automatic mapping of burned areas is achieved through the use
of deep learning, considering a variety of network architectures applied to satellite data.
The authors in [144] used pre and post-fire satellite images to identify the burn severity,
employing random forest and support vector machine supervised classification. In [145],
random forest also is used. Satellite imagery is used in [146], coupled with a random forest
algorithm, both to detect recently burned areas and also to estimate the fire history.

In [147], remote sensing and machine learning are used to characterize burned areas in
order to generate a map. Burned area detection for large areas is explored in [148], by means
of satellite imagery and machine learning methods. In [149], the burned area is detected
by evaluating the canopy cover pre- and post-fire, according to classification performed
via machine learning. In another study, [150], a mask region-based convolutional neural
network was used, coupled with a support vector machine to determine the post-fire
affected areas, including pixels under the trees, based on images of the tree crowns. In [151],
this detection is achieved through the analysis of reflectance contrasts associated with
a classification regression tree algorithm. In [152–154], satellite images and the random
forest machine learning method were used for the same purpose. In [155], various machine
learning methods are assessed to determine the best fit for burned area prediction. In [156],
the study focuses on the use of unsupervised methods. In [157], spectral indices associated
with burned areas are classified by a random forest algorithm. In [158], neural networks
are used and the accuracy is evaluated. In [159], the authors use a random forest method to
develop a model that assesses the relationship between the severity of the wildfire and the
previous suite of environmental conditions.

Table 4. Results: post-wildfire and restoration.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case study
Location

Model
Performance

Metrics Results

[137] A

Incorporating predictors of local
meteorology, land-surface

characteristics, and
socio-economic variables to

predict monthly burned area

Shapley Additive
Explanation United States

[138] A

Examining how training data
properties affect fire severity

classification across forest,
woodland, and shrubland

communities

Southern Australia

[139] A
Determining the main

environmental variables that
control fire severity in large fires

Random Forest Iberian Peninsula

[140] A
Predicting the burned area of
forest fires and the occurrence

of large-scale forest fires
Portugal

[141] A Topological data analysis to
assess the final burned area United States
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Table 4. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case study
Location

Model
Performance

Metrics Results

[142] A Mapping wildland fires

Support Vector
Regression and the

Adaptive
Neuro-Fuzzy

Inference System

Jerash Province,
Jordan

[143] A

Determining relationships
existing between the triggering
of landslides and burnt areas

through processing of the
thematic maps of the burnt

areas and landslide
susceptibility assessment

[136] A

Developing models for
automatically mapping burned

areas from unitemporal
multispectral imagery

[144] A

Assessing burn severity across
the burn scars and testing the
effectiveness of several remote
sensing methods for generating

accurate map products

Random Forest
and Support Vector

Machine
Interior of Alaska

[145] A Mapping of burned areas using
microwave data Random Forests

[146] A Identifying burned areas and
estimating the fire history Random Forest North Carolina,

United States

[147] A
Using automatic algorithm

approach to map burned areas
from remote sensing

[148] A

Examining the use of sUAS
imagery to train and validate

burn severity and extent
mapping of large wildland fires

from various satellite images

[149] A

Calculating tree mortality
through the comparison of

hyperspatial post-fire canopy
cover and pre-fire canopy cover

Mask
Region-Based
Convolutional

Neural Network

[150] A Determining trees and burned
pixels in a post-fire forest

Mask
Region-Based
Convolutional

Neural Network
and Support Vector

Machine

[151] A
Analysing bi-temporal (pre- and
post-fire) reflectance contrast of
burn-sensitive spectral bands

Classification
Regression Tree,
Random Forest,

and Support Vector
Machine



Inventions 2022, 7, 15 19 of 30

Table 4. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case study
Location

Model
Performance

Metrics Results

[155] A

Mapping burned and unburned
areas, differentiating fire

occurrence dates, and
distinguishing between old and

more recent fires

K-Nearest
Neighbours

Algorithm (K-NN),
Support Vector
Machine (SVM)
And Random

Forest

Mediterranean
area

[156] A

Investigates the use capability
of the free synthetic aperture

radar data for burned area
mapping

Portugal and Italy

[157] A

Test the applicability of a
normalized difference spectral

index with the shortwave
infrared and blue spectral bands
in accurately mapping burned

areas

Random Forest

[158] A Estimating burned areas in
forest fires

Artificial Neural
Network

[159] A

Examine the fine-scale
association between burn

severity and a suite of
environmental drivers

Random Forest California, United
States

Accuracy of 79.0%
in classifying

categories of burn
severity

[160] B Evaluate public health impacts
of wildfire smoke

Ordinary
Multi-Linear
Regression

Method,
Generalized

Boosting Method,
and Random

Forest

United States

[161] B

Prediction models for
ground-level ozone during

wildfires, evaluating the
predictive accuracy

California, United
States

[162] B

Explored different combinations
of biophysical and social factors
to characterize wildfire-affected

areas

Classification Trees Portugal

[163] C

The carbon flux of the
woodland was monitored to
simulate daily net ecosystem

production, ecosystem
respiration, and gross primary

production

[164] C

Calculating emissions
associated with forest fires in

Mexico, based on different
satellite observation products

Random Forest Mexico and United
States
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Table 4. Cont.

Ref. Classification 1 Detailed Application Machine Learning
Technique

Case study
Location

Model
Performance

Metrics Results

[135] D

Proposes a unitemporal
simulation approach based on

the generation of synthetic
spectral databases from linear

spectral mixing to classify
wildfire severity

Random Forest Spain Accuracy between
90.0–95.0%

[165] D Prediction of post-fire tree
mortality Random Forest

Reduced the bias
in comparison
with logistic

regression method

[166] D Focus on the post-fire debris
flow hazards analysis

Decision Tree
Algorithm

Sensitivity of 81.0%
and specificity of

78.0%

[167] D Map forest disturbance after a
wildfire

Multiple Linear
Regression,

Support Vector
Machine, and

Random Forest

Northeastern
China

[168] D

Identify temporal trends in
post-fire regeneration and

influences of climate on
post-fire regeneration, with

focus on post-fire establishment,
initial post-fire density and

radial growth

[169] D

Assessed the contributions of
land cover composition, climate,
and topography on the spatial

forest regeneration

Boosted
Regression Trees

New Mexico,
United States

[170] D

Evaluate the potential of a
radiative transfer model
inversion approach for

estimating fractional vegetation
cover after wildfire from

satellite reflectance data at high
spatial resolution

Gaussian Processes
Regression

Mediterranean
Basin

[171] D
Assessed whether passive

restoration of old trees could
overcome constraints in time

Random Forest Colorado, United
States

1 References were classified according to the application focus: (A) burned area and severity; (B) impacts related
to social factors; (C) impacts related to carbon fluxes; (D) impacts related to forest conditions.

Impacts Related to Social Factors

In [160], machine learning methods were used (e.g., ordinary multi-linear regression
method, a random forest, and a generalized boosting method) to assess the public health
impacts of the smoke generated by the wildfire, while considering the transportation and
dispersion of the particles. In [161], the authors used machine learning prediction methods
to estimate the ground-level ozone during the wildfires. In [162], the impact of wildfires on
biophysical and social factors was analysed using classification trees.
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Impacts Related to Carbon Fluxes

In [163], the carbon fluxes (carbon source and carbon sink) related to carbon sequestra-
tion were assessed using a machine learning regression technique, by analysing pre- and
post-wildfire data, to contribute to post-fire ecology-related decision-making. In [164], the
authors develop an approach based on a random forest regression model for estimating
emissions associated with wildfires, using satellite observations.

Impacts Related to Forest Conditions

In [135], the authors used random forest to develop four severity category classifica-
tions, where the model can detect the impacts of the wildfire on forests by classifying them
as unburned, partial canopy unburned, canopy scorched, or canopy consumed. In [165],
the authors predict tree mortality by employing a random forest model, and also evaluate
the bias related to the model, in comparison with logistic regression.

In [166], a decision tree model is developed for the inductive inference of categorical
data characterization, aiming at the post-fire analysis of debris hazards. In [167], stepwise
multiple linear regression, support vector machine, and random forest were employed to
analyse the statistical relationships between the recovery of the post-fire vegetation and
the factors influencing it. In [168], the authors used a combination of dendro-ecological
methods and machine learning to focus on the post-fire forest generation, taking into con-
sideration factors related to climate, topographic variation, and pre-fire structure. In [169],
a boosted regression trees method is used to assess the contribution of factors such as cover
composition, topography, and climate on the vegetation.

In [170], the authors study the impact of wildfires on top-of-canopy spectral reflectance,
by means the of Gaussian processes regression method. The authors in [171] focused on
a combination of GIS and random forest methods to assess the passive restoration of old
trees over time.

Table 4 presents in more details the classification of the mentioned articles considering
the post-wildfire and restoration applications.

3.3. Machine-Learning-Based Model Features and Feature Selection Sensitivity Analysis

The use of high-dimensional data to train a model is a challenge in the application of
machine learning. To address this, feature selection is used to remove irrelevant data or
data with a lower impact on the model performance. The papers that explicitly presented
a feature selection process aimed to select the best predictors by employing recursive
feature elimination. In this framework, the size of the initial set of variables is recursively
reduced, and an important related factor is attributed to each variable (as described in [88]),
providing insights into which physical process associated with the variable with the biggest
impact on the accuracy of the model. In order to contribute to the understanding the
complex interrelationships between anthropogenic controls, wildfires, and the environment,
while increasing the efficiency of decision-making support by removing unnecessary data,
a feature selection process is developed in [3,61,62,64,99,110,117]. This is influential in
reducing the computational time, improving the accuracy of the learning process, and
facilitating the interpretation of the results [172].

3.4. Identified Research Trends and Challenges

This review concluded that there is an obvious potential for adopting machine learning
methods for forecasting and classification, in different stages of the wildfire management cycle.

First, we list the trends identified. The category of pre-fire prevention and prepared-
ness was the one most addressed by the reviewed papers. Most machine learning applica-
tions in the pre-fire stage (Table 2) focused on the two broad categories of risk assessment
and ignition prediction of wildfires (78.4%), followed by the use of machine learning for
wildfire fuel modelling (13.7%). The remaining applications for this stage accounted for
7.9% of the studies.
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Most research focusing on the management of active wildfires reported the use of
machine learning for wildfire detection (61.9%), followed by its use for wildfire spread
prediction (23.8%), and wildfire suppression (14.3%).

In the post-wildfire stage, e.g., restoration and adaptation activities, machine learning
approaches were mostly used for the assessment of burned areas severity (61.8%), followed
by applications for the assessment of impacts related to post-fire forest conditions (23.5%),
with the remaining applications accounting for 14.7% of the studies. A summary of research
trends from the literature review includes:

• The increase in the use of ensemble modelling, which can reduce the inaccuracy and
the computational time of the models by combining different models and machine
learning techniques.

• The shifting focus from obtaining detailed physical interpretations to obtaining faster
results based on input and output variables, especially at the stages in which the
computational time of the modelling process is of critical importance, such as when
dealing with active wildfires.

• The increasing concern with reducing the subjective bias associated with expert-
opinion-based methods, as well as with incorporating uncertainty analysis at the
modelling or sub-modelling stages.

• The use in many papers of the association of remote sensing imageries, machine
learning, and geospatial analysis to predict or classify variables of interest, in order to
identify areas that are prone to wildfire occurrence.

• The exploration of classification and prediction using the main machine learning
methods of random forest, support vector machine, and neural networks.

• The use, in many documents, of the association of multiple methods to obtain a more
accurate set of candidate models for the same area, to provide a more refined sampling
and to choose a final model, indicating that the researchers are exploring an integrated
approach to benefit from the capabilities of different methods to assess the complex
problem of wildfire modelling.

A variety of challenges still remain, associated with the use of machine learning
methods to support wildfire management. Some of them are:

• The need for constant improvement, mainly to obtain faster models while enhancing
the interpretability of the results. This is still a critical factor in machine-learning-based
models.

• Overall, the studies did not present the computational time associated with the mod-
elling process, which is necessary to evaluate the applicability of the models in such
an important field as disaster management.

• Few studies developed feature selection to increase the efficiency of decision support.
• Lack of information about simulation platforms, precluding the comparison of the

computational efficiency of different tools.
• Lack of experience of using global models that can be applied to different regions and

with different datasets and thus of assessing the potential for generalization of the
models via a parametric study of bias–variance trade-offs.

• Few studies are available that focus on the multifunctionality of forested landscape
management planning, i.e., on integrating wildfire protection concerns in contexts
characterized by demands for multiple ecosystem services.

• There is almost no analysis on the bare minimum amount of data needed for a useful
model, especially for the active wildfire stage.

• Despite the fact that some methods deal with uncertainty, when models encompass
forecasting the uncertainty may be substantial, thus impacting the results (as in the case
of models that consider weather features) associated with management prescriptions.

• There are still few datasets for extensive wildfires, and most of the models are devel-
oped using smaller wildfire events for training, which may not correctly reflect the
context of extreme wildfire events.
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• The acquisition of landscape dynamics data usually requires migrating data between
datasets to quantify spatial patterns and changes through space and time. More
developments are still required in this field.

• There may be issues regarding model overfitting that still need to be addressed.
• There is a need to bridge the gaps between monitorization and learning, and the

decision-making process.
• There is a need for broader models that can help integrate the different wildfire

management stages.

4. Conclusions

This review contributed to the characterization of the state of the art on the application
of machine learning techniques to wildfire management decision support. It provided
a summary of 135 recent papers (published between 2019 and 2022) that used machine
learning approaches to address wildfire management issues. It also provided a classification
of these approaches according to the area of application, machine learning method, case
study location, and performance metrics.

In the case of the pre-fire prevention and preparedness stage, the main applications
identified were segmented into the following categories: wildfire fuel modelling, risk
assessment and ignition prediction of wildfires, support to dispatch, landscape planning
and prevention measures for severity mitigation, and inventory data. In the case of the stage
of management of active wildfires, the main applications were segmented into wildfire
detection, spread prediction, and suppression. Finally, in the case of the post-wildfire stage
of restoration and adaptation activities, the main applications were segmented into the
analysis of burned area and severity, impacts related to social factors, impacts related to
carbon fluxes, and impacts related to forest conditions.

The literature highlights that the main machine learning methods used for wildfire
management decision support are random forest, support vector machine, and neural
networks, and that both classification and prediction are explored. Overall, there is a trend
towards the use of ensemble modelling to improve the accuracy of the models, as well
as towards the integration of remote sensing imageries, machine learning, and geospatial
analysis to identify areas that are prone to wildfire occurrence. The literature highlights
further the potential for the association of multiple modelling methods to obtain a more
accurate set of candidate models for the same area, to provide a more refined sampling in
order to choose a final model.

There are still many challenges associated with a wider use of machine learning meth-
ods. Constant improvement is needed, mainly to obtain faster models while improving the
interpretability of the results. There must also be a focus on the study of the computational
time required for the modelling process, as well as a trade-off analysis between the compu-
tational time, platform simulation, feature selection, and management prescriptions related
to the results obtained by the models.

Substantial steps are being taken to promote the use of machine learning methods
within the framework of wildfire modelling applications. This review concluded that
there is an obvious potential for adopting machine learning methods for forecasting and
classification and for enhancing management decision support. It listed further challenges
related to the fulfillment of this potential.
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