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Abstract: Accurate and rapid taxonomy identification is the initial step in spider image recognition.
More than 50,000 spider species are estimated to exist worldwide; however, their identification is still
challenging due to the morphological similarity in their physical structures. Deep learning is a known
modern technique in computer science, biomedical science, and bioinformatics. With the help of
deep learning, new opportunities are available to reveal advanced taxonomic methods. In this study,
we applied a deep-learning-based approach using the YOLOv7 framework to provide an efficient
and user-friendly identification tool for spider species found in Taiwan called Spider Identification
APP (SpiderID_APP). The YOLOv7 model is integrated as a fully connected neural network. The
training of the model was performed on 24,000 images retrieved from the freely available annotated
database iNaturalist. We provided 120 genus classifications for Taiwan spider species, and the
results exhibited accuracy on par with iNaturalist. Furthermore, the presented SpiderID_APP is
time- and cost-effective, and researchers and citizen scientists can use this APP as an initial entry
point to perform spider identification in Taiwan. However, for detailed species identification at
the species level, additional methods like DNA barcoding or genitalic structure dissection are still
considered necessary.

Keywords: biodiversity; deep learning; genera identification; iNaturalist; spider identification;
taxonomy identification; YOLOv7

1. Introduction

The populace and diversity of arachnids are adversely influenced by anthropogenic
factors, such as the alteration of their natural habitat due to human activities or the active
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extermination of these repugnant yet beneficial indoor predators [1,2]. Scientists estimate
that approximately 4300 spider genera and 50,000 spider species exist globally [3]. Ac-
curate spider identification holds paramount importance across ecological, agricultural,
and public health domains [4,5]. Though many spider species have distinct patterns and
shapes that ease identification, a plethora of them require intensive morphological studies.
In addressing these challenges, we conceptualize a broader AI-aided classification system.
The primary layer, central to this paper, involves our application providing initial spider
classification based on images. This tool is designed to offer non-specialists a method-
ological introduction to spider taxonomy and to alleviate the initial screening process for
specialists. Although this layer is integral to our current research, it represents only the
inaugural phase of a more encompassing strategy. For instances where our application’s
primary identification yields low-confidence results, subsequent steps in the proposed
pipeline would necessitate detailed microscopic procedures, such as microdissection and
lactic acid treatment, followed by high-resolution imaging. These images could then be
analyzed either by experts or potentially by another AI model adept at microscopic imagery
of spider anatomy. It is imperative to emphasize that while this comprehensive pipeline is
outlined, the current research is dedicated exclusively to its first step.

Historical taxonomic approaches, spanning centuries, have grappled with challenges,
notably in differentiating sex dimorphism [6–9]. While the image-based recognition ap-
proach has demonstrated potential, as within a pool of three spider genera, 100% genus
recognition and 81% species recognition were recorded [10], a study in a large scope
indicated that spiders (Araneae) yielded only a 50% accuracy when identified using a
morphospecies approach [11]. Notably, in this study, all specimens were separated into
morphospecies by a non-specialist and later correctly identified by specialized taxonomists,
suggesting that the low accuracy might stem not only from the inherent challenges of
image-based taxonomic classification but also from potential human error. This under-
scores the pressing need and opportunity for specialized tools like our image-based AI to
enhance spider identification. The same study reported up to 91% accuracy for other taxa
like Lepidoptera, demonstrating the potential of tailored approaches in taxonomy. Addi-
tionally, the minor 3.3% overall difference between morphospecies and taxonomic species
estimates, even though it was claimed as an artifact due to the balancing-out phenomenon
of splitting (one species separated into more than one morphospecies) and lumping (more
than one species classified as a single morphospecies), suggests that, with the right re-
finements, image-based tools can closely approach taxonomic accuracy. By integrating
AI, and specifically YOLO-based models, into the scope of genus-level identification, our
study aims to circumvent these challenges with a thorough understanding of its capabilities
and limitations.

Our hypothesis in this study is that integrating AI, specifically YOLO-based models,
for genus-level spider identification can significantly improve the accuracy and efficiency
of identifying spiders compared to traditional methods. We expect that this approach will
not only streamline the identification process but also reduce errors associated with manual
classification, especially in cases where species exhibit subtle morphological differences.
Our prediction is that our AI-assisted tool will demonstrate higher accuracy in genus-level
identification than current non-expert methods, thus providing a valuable resource for both
researchers and citizen scientists. Moreover, we anticipate that the application will serve as
a steppingstone towards developing more advanced AI tools capable of achieving even
greater precision in spider identification at the species level.

Modern biological research’s breadth is vast, but gathering large-scale biological data
and long-term monitoring often hits resource constraints in which citizen science presents
a compelling solution [12–15]. A notable example within spider projects includes the
Spider in da House application, a collaborative effort between taxonomists and citizen
scientists, originally designed for spider identification [16]. Another prominent platform
is iNaturalist, a widely utilized online database both for contributing observations and
referencing species [17,18]. Current identification methodologies of non-expert spider
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enthusiasts, major contributions of observations in citizen science projects, like seeking
reference images online or consulting expert-authored spider atlases [19–21], are labor-
intensive and prone to error. Having a tool for fast spider identification, integrated with
AI capabilities, would potentially empower non-expert spider enthusiasts to make more
precise contributions to online databases, thereby reducing the time experts must invest
in making corrections. However, it is crucial to underline that while an AI-assisted tool
can streamline and expedite the identification process, it cannot entirely supplant the role
of experts in the field of spider taxonomy. This is because spider taxonomic identification
based purely on external appearance, or habitus, is often misleading. Many spider species
exhibit identical or nearly identical colorations and patterns, making it an unreliable metric
for accurate identification. In numerous cases, precise spider identification necessitates the
examination of “the finer microscopic characteristics” (“Es geht aus allem wol hervor, dasz
die feinern microscopischen merkmale bei untersscheidung der arten wol nicht zu entbehren
sind”) (“It is clear from everything that the finer microscopic features cannot be dispensed
with when distinguishing between species”) [22]. These nuanced, internal distinctions
are the gold standard in spider taxonomy, and while technology can assist, it cannot yet
replicate the expert eye’s subtlety and depth.

Using deep learning model training on a large dataset of labeled images, which can
identify the key features and provide the probability of detection based on such extracted
features, is essential for this task [23,24]. The field of automatic classification is rapidly
growing with the application of deep learning and artificial intelligence [25,26]. Mainly,
image classification for spider identification using a deep learning approach still needs
improvement compared to other fields [27,28]. It is observed that accuracy evaluation
on testing datasets in such studies is high due to the low diversity in the dataset used.
For example, a study conducted by Sinnott et al. in 2020 used nine classification classes
belonging to nine different families within two infraorders [28], while the research by Chen
et al. in 2021 used multi-angle images of 30 species within a single genus of Pseudopoda for
gender classification [27].

You Only Look Once (YOLO) is the state-of-the-art deep learning model designed
for real-time object detection that was first introduced by Redmon et al. [29]. YOLO
gained attention for its single-stage detection architecture and fast detection speed without
sacrificing accuracy [30]. Furthermore, YOLO works in the background with convolutional
neural networks (CNNs) as feature maps to generate bounding box predictions rather
than relying on generated features as in region-based convolutional neural networks (R-
CNNs) [31]. YOLO exhibited successful results in a wide range of applications, such as
mammals [32], fish [33], plants [34], and insects [35]. Several YOLO versions have been
released by different research groups. The model advancements often include architectural
changes and optimization techniques to enhance performance. However, it is important
to note that the subsequent ones are not necessarily better than the previous ones since
each version may also have hidden caveats that could impact its overall effectiveness in
specific tasks. Therefore, in this study, we have included several recent YOLO models,
namely YOLOv5 [36], YOLOv6 [37], YOLOv7, and YOLOv8 [38], to construct a deep-
learning-based framework for spider classification using image datasets available on online
open-source databases.

This study’s chief ambition is to pioneer an effective genus-level spider identification
method for spider species found in Taiwan. The species-level distinction often demands
intricate procedures like multi-angle microscopic imagery combined with lactic acid treat-
ments and microdissection, especially when examining genitalia [39,40]. Our approach
to genus-level classification, on the other hand, sidesteps the intricacies associated with
polymorphism and sibling species [41–43]. A visual representation of this study’s pipeline
is illustrated in Figure 1.
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Figure 1. Overall schema of developing a fully automated approach for spider classification (Spi-
derID_APP) using a YOLO-based deep learning model. (A) Collection of spider images of different 
genera from open-access databases. (B) Labeling of the dataset to perform training and testing using 
a YOLO-based model. (C) YOLO-based model architecture for given different parameters (e.g., 
batch size). (D) Classification results presented of spider image with respect to genus. 

2. Methodology 
2.1. Data Collection 

Data were collected from the online open-source database iNaturalist 
(https://www.iNaturalist.org/, accessed on 18 July 2022) and the Taiwan Biodiversity Net-
work (TBN, https://www.tbn.org.tw/, accessed on 20 July 2022), while ensuring that the 
downloaded images were research-graded with given genus names (Figure 1A). Data col-
lection was further enhanced by using a self-developed, specifically designed Python web 
crawling script to hasten the data gathering. Out of more than 524,000 images of those 325 
spider species identified across iNaturalist and TBN databases, more than 28,000 research-
graded images of spiders with a history of being found in Taiwan were collected. The 
image set was quality-controlled by removing images of spiders with low visibility (such 
as out-of-focus images, over- or under-exposed images) to minimize the potential negative 
impacts on model performance. 

2.2. Computer Specification 
The training process was performed on a system equipped with a graphic processing 

unit (GPU) and CUDA kernel; details of our computer configuration are as follows: CPU 
of i7-12700, 2.1 GHz, memory (RAM) of 16 GB, and Nvidia GeForce GTX 3050 with 2560 
CUDA cores [44], graphic memory of 8 GB and essential software such as Python 3.9.13 
(https://www.python.org/downloads/release/python-3913/, accessed on 28 May 2022), 
Pytorch 1.13 (https://pytorch.org/get-started/previous-versions/, accessed on 27 July 2022) 
[45], NVIDIA CUDA toolkits version 11 (https://developer.nvidia.com/cuda-11.0-down-

Figure 1. Overall schema of developing a fully automated approach for spider classification (Spi-
derID_APP) using a YOLO-based deep learning model. (A) Collection of spider images of different
genera from open-access databases. (B) Labeling of the dataset to perform training and testing using
a YOLO-based model. (C) YOLO-based model architecture for given different parameters (e.g., batch
size). (D) Classification results presented of spider image with respect to genus.

2. Methodology
2.1. Data Collection

Data were collected from the online open-source database iNaturalist (https://www.
iNaturalist.org/, accessed on 18 July 2022) and the Taiwan Biodiversity Network (TBN,
https://www.tbn.org.tw/, accessed on 20 July 2022), while ensuring that the downloaded
images were research-graded with given genus names (Figure 1A). Data collection was
further enhanced by using a self-developed, specifically designed Python web crawling
script to hasten the data gathering. Out of more than 524,000 images of those 325 spider
species identified across iNaturalist and TBN databases, more than 28,000 research-graded
images of spiders with a history of being found in Taiwan were collected. The image set was
quality-controlled by removing images of spiders with low visibility (such as out-of-focus
images, over- or under-exposed images) to minimize the potential negative impacts on
model performance.

2.2. Computer Specification

The training process was performed on a system equipped with a graphic processing
unit (GPU) and CUDA kernel; details of our computer configuration are as follows: CPU of
i7-12700, 2.1 GHz, memory (RAM) of 16 GB, and Nvidia GeForce GTX 3050 with 2560 CUDA
cores [44], graphic memory of 8 GB and essential software such as Python 3.9.13 (https:
//www.python.org/downloads/release/python-3913/, accessed on 28 May 2022), Pytorch
1.13 (https://pytorch.org/get-started/previous-versions/, accessed on 27 July 2022) [45],
NVIDIA CUDA toolkits version 11 (https://developer.nvidia.com/cuda-11.0-download-
archive, accessed on 27 July 2022), and NVIDIA CUDA Deep Neural Network Library
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version 8.4.1 (cuDNN, https://developer.nvidia.com/rdp/cudnn-download, accessed on
27 July 2022) [46,47].

2.3. Dataset Labeling and Preparation Process

Training of an accurate model to identify spider genera and gender significantly
depends on the input dataset with reliable bounding box specifications [48]. Images
were annotated by drawing bounding boxes around spiders in each image. When the
cephalothorax (head compartment) of the spider was visible, gender was determined based
on the presence or absence of palps; typically, male spiders exhibit noticeable palps, while
females do not [49]. Additionally, for some spider genera, such as Chikunia and Argiope,
sexual dimorphism is distinctly evident, with clear and distinctive differences in habitus
between males and females [50]. In some cases, gender annotation was not feasible due to
camera angle, low image quality, or spider morphology that did not exhibit clear gender
distinctions. For optimal analysis, images should adhere to certain minimum requirements,
such as clarity, proper angle showcasing the distinctive anatomical features, and adequate
resolution [51]. The labeling script used was a customized version of the OpenLabeling
script developed by Joao Cartucho (https://github.com/Cartucho/OpenLabeling, accessed
on 28 July 2022) with added features for faster labeling and relabeling processes. The
necessary information for precise labeling was procured from the sources, examination
of taxonomic literature, or consultation with experts in spider taxonomy, particularly of
spider species in Taiwan. Subsequently, the labeled dataset was duplicated and processed
to generate two distinct types of datasets: the NoGender (NG) dataset, which comprises
120 classes corresponding to 120 spider genera without gender involvement, and the
WithGender (WG) dataset, which includes 240 classes due to the differentiation between
male and female individuals within each genus, thus involving gender. Both datasets were
then partitioned into datasets for training and validation (NG_TVD and WG_TVD) and
testing (NG_TeD and WG_TeD) datasets, employing a stratified sampling technique to
guarantee that each subset preserved a comparable distribution of genera and genders.
Both TVDs underwent further division using an 80/20 holdout ratio before being input into
the training process [52]. The annotation files were stored in YOLO format, with a separate
text file for each labeled image. Each text file contained five arguments: an integer-type
number representing the labeling class and four float-type numbers representing bounding
box characteristics of relative center point coordinates and their width and height.

2.4. Data Augmentation and Dataset Balancing

Data augmentation is a common technique used in deep learning studies, with various
data augmentation techniques for images being considered, where original images undergo
random transformations such as flip, rotation, shear, mosaic, or color channel manipulations
such as HSV augmentation. This process helps the models increase their generalizability by
balancing the dataset and enhancing the robustness, enabling models to learn to recognize
spiders under different lighting conditions, orientations, and other variations that may be
encountered in real-world situations. Data augmentation for balancing purposes in this
study was performed using a self-developed algorithm to generate a random combination
of transformation based on probability across three types of augmentation techniques:
random vertical flip, random rotation up to 90 degrees, and x-axis and y-axis random
shear up to 45 degrees. Several transformation matrices were applied to maintain the
accurate position of the bounding box on the augmented images (Figure 2). Other image
augmentations were applied for robustness enhancement by adjusting the hyperparameters
in the YOLO data augmentation feature [53].

https://developer.nvidia.com/rdp/cudnn-download
https://github.com/Cartucho/OpenLabeling
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Figure 2. Spider images undergo three distinct combinations of image augmentations, ensuring vari-
ety in the dataset. Post-augmentation, the bounding boxes are recalculated to continue encompassing
the spiders, preserving accurate object localization tightly.

2.5. Model Fine-Tuning Process and Evaluation Metrics

This study employed YOLO-based models (versions 5, 6, 7, and 8) for spider identifi-
cation due to their strong performance in object detection and classification tasks. These
models are acclaimed for their optimal balance between accuracy, complexity, and compu-
tational efficiency. It is important to note that this study did not aim to alter the already
optimized architecture of the YOLO models, as the team did not possess the mathemat-
ical expertise required for such architectural modifications. Instead, the focus was on
optimizing other critical factors such as the input dataset and training parameters, which
were within the scope of our capabilities. To compare the performance of each YOLO
iteration and select the best model for this study, each model was initialized with pre-
trained weights from large-scale datasets such as ImageNet [54] and Microsoft Common
Objects in Context (COCO) [55]. Each YOLO-based model’s pre-trained weights were
fine-tuned using WG_TVD and NG_TVD, resulting in two lines of models: model_WG
and model_NG. Fine-tuning of the models was performed using the custom WG_TVD
and NG_TVD datasets, adjusting hyperparameters to optimize spider identification. The
training process was monitored using Tensorboard 2.9.0 [56], with a learning rate scheduler
and early stop mechanism to ensure precise convergence and avoid overfitting. Model
performance was evaluated using TeD and iteratively refined through hyperparameter
tuning and cross-validation. An internally designed scoring system was developed for
cross-model performance comparison, and statistical analyses were conducted to determine
the significance of the difference between models’ performances (Table 1).
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Table 1. Evaluation of trained models on TeD regarding speed benchmark metrics.

Score Identifier with Confidence Value Identifier without Confidence Value

2 points Correct identification with confidence score > 0.75. Correct identification to genus level

1 point Correct identification on both models with confidence
score in the range [0.5 ÷ 7.5] Correct identification to subfamily and family level

0 points Incorrect identification or correct identification but
confidence score < 0.5

Incorrect identification or can only give several
non-confident suggestions

We fine-tuned two types of datasets, “NG” and “WG”, using four selected YOLO
models, resulting in eight distinct models. Input hyperparameters such as batch size,
number of epochs, initial learning rate, and learning rate decay were considered. Input
data resolution and batch size required tuning, so experiments were designed with image
resolutions of 416 × 416, 512 × 512, and 640 × 640 and batch sizes of 16, 32, 64, and 128.
YOLO models’ optimization steps depend on three loss values.

In the training process evaluation, loss values were monitored. All four models use
localization loss (Lbox) and classification loss (Lcls) in their total loss calculation, while
YOLOv5 and YOLOv7 use confidence loss (Lobj), and YOLOv6 and YOLOv8 use distribu-
tion focal loss (LDFL). Total loss was calculated with corresponding weights for each loss
function (Formulas (1) and (2)).

Loss = w1 × Lbox + w2 × Lcls + w3 × Lobj (1)

Loss = w1 × Lbox + w2 × Lcls + w3 × LDFL (2)

where wi are the weights of corresponding loss functions. There has been a proposal
of new loss functions such as SIoU, which greatly speeds up the training convergence
process so that the prediction box first moves to the nearest axis. However, such a function
greatly penalizes a large margin of error, which goes against the variety of spider species
within a genus [57,58]. Monitoring classification loss values during training is crucial to
avoid overfitting and enhance model generalization. The YOLO training code incorporates
measures to address overfittings, such as Pytorch scheduler algorithms and best-weight-
saving scripts.

To determine the optimal version of YOLO-based image recognition for spiders, a
performance evaluation was performed between the 8 models obtained from the training
process using the standard F1-score, precision, and recall, [59] along with other factors
regarding the easiness of implementation into a spider detection APP such as inference
time (IT) and trainable parameters. These evaluation measurements were computed as per
standard true positive (TP), false positive (FP), and false negative (FN) cases [60]:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN

Similarly, the F1-score was calculated based on a previously reported formula [61]:

F1=
2 × Precision × Recall

Precision + Recall
(4)

Additionally, due to the aim of this study being to identify spider genera, accuracy
and area under the receiver operating characteristic curve (AUC-ROC), or area under the
curve, were also considered for inclusion in the benchmark metric for the performance
evaluation process of the model, which was calculated using sklearn.metrics, a machine
learning library available in Python packages, the inputs of which are arrays of ground
truth values and prediction values [62].



Inventions 2023, 8, 153 8 of 24

Unlike existing taxonomical identifier tools such as the one provided by iNaturalist,
which rely on a suggestion mode to present an identification of higher taxonomic rank when
the confidence of the current rank is insufficient, our final application would display the
genus prediction and its confidence score. Due to such a difference in result demonstration,
in this study, we present the novel Spider Identification Scoring System (SISS) specifically
designed for the classification task. For identifiers with a confidence value, SISS awards
higher points for high-confidence classifications (>0.75), lower points for lower-confidence
classifications (0.5 to 7.5), and no points for very-low-confidence classifications (<0.5).
Identifiers such as the iNaturalist tool use a scoring method for identifiers without a
confidence value (Table 1).

For model complexity and time evaluation, we used the same set of hyperparameters
for the initial set of models, considering training time for future updates to the APP. Training
time was calculated automatically by YOLO training scripts during the training process.
In contrast, the inference time was calculated using the Python time package to obtain
the value of time at the beginning of the prediction process and time at the end of the
prediction process, hence resulting in time taken (in milliseconds) for the prediction process.
It must be noted that the model loading process is excluded from such calculations, so
the actual time for processing individual images is much higher than the given values.
However, if multiple images are selected for identification, the model must be loaded
once at the beginning of the process, hence reducing the total time taken significantly. The
trainable parameters of a CNN network like YOLO are determined by the complexity of
each layer in the architecture, which includes factors such as the size of the input channel,
output channel, and filter layer. The number of parameters also depends on the type of
layer, such as convolutional, pooling [63], or fully connected layers [64], and the specific
architecture of the model. These parameters are represented by each layer’s learnable
weights and biases, which are adjusted during training to minimize the loss function. A
high number of parameters can increase the model’s capacity to learn complex features
and improve its performance. Still, it can also increase the risk of overfitting and require
more computational resources for training and inference.

2.6. GUI Design

The implementation of a user-friendly GUI for the SpiderID application, which uti-
lized Python’s Tkinter package [65] and YOLO detection script (https://github.com/
WongKinYiu/yolov7, accessed on 19 September 2022), was essential in providing a seam-
less and intuitive experience for users aiming to identify spider genera. The incorporation of
an aesthetically pleasing and easy-to-navigate graphical interface allows users to efficiently
access the application’s features without prior knowledge or technical expertise. Further-
more, this approachable design fosters user engagement and accessibility, encouraging
more individuals to explore the fascinating world of spiders.

3. Result
3.1. Data Collection and Preparation

According to data from TBN and the WSC, there are currently 325 registered spider
species across 201 genera and 44 families in Taiwan. Interestingly, across 201 genera, 120
of those possess 99.69% image records, while the other genera either have no or very few
images (Supplemental Figure S1A). It can be observed that online databases are susceptible
to data imbalance due to the disparity in how commonly a spider genus is encountered by
humans. Some genera possess tens of thousands of images, while some only have around
100 images available. Downloading and using this whole dataset would cause a serious
imbalance in the dataset, which is not recommended for effective model training. Hence, in
this study, we have downloaded 28,000 images across 120 spider genera. After performing
quality control on the downloaded images, a total of 23,962 images were selected for further
processing, and the quantity details are provided in Supplemental Table S1B.

https://github.com/WongKinYiu/yolov7
https://github.com/WongKinYiu/yolov7
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Out of the total pool of 23,962 images, 2449 images were probed pseudorandomly to
preserve the ratio between classes, for TeD (Supplemental Figure S1B,C); the rest were TVD,
which would be later split into a training dataset and validation dataset using an 80/20
holdout ratio. The TVD datasets were then augmented by applying three transformations:
50% to flip vertically, a random rotation of 0 ÷ 90 degrees, and a random shear on the x-axis
or y-axis with shear degree varying between 0 and 45 degrees to generate up to 600 images
per labeling class in the training dataset and 150 images per labeling class in the validation
and testing dataset.

3.2. Model Complexity and Training Time Evaluation

To best fit the capability of the computer specification, the training on all models
runs with the default settings of each YOLO version to determine the optimizable range
of batch size since a higher batch size would require much more computational power.
Compared to other YOLO versions, we observed that YOLOv7 models have the highest
GPU requirement (4.21–4.66 Gb) and average training time per epoch (31.2–59.8 min),
showing higher model complexity compared to the other models tested (Table 2).

Table 2. Comparison of training time on GPU with the same hyperparameter settings on different
YOLO-based model versions.

Model Name Weight Size
(Kilobytes)

GPU Requirement
(Gigabytes)

Average Training Time
per Epoch (Minutes)

YOLOv5_WG 15,209 1.84 18.5
YOLOv5_NG 14,590 1.31 8.8
YOLOv6_WG 148,801 4.01 31.4
YOLOv6_NG 148,375 3.84 14.9
YOLOv7_WG 75,506 4.66 59.8
YOLOv7_NG 74,238 4.21 31.2
YOLOv8_WG 10,611 3.33 16.0
YOLOv8_NG 7125 2.52 5.2

(“_WG”: models using training dataset with gender; “_NG”: models using training dataset without gender).

3.3. Cross-Model Evaluation in the Training Process

Each YOLO version was used for training on both the WG and NG datasets, resulting
in eight different models. The models were trained over 500 epochs as the validation
mAP0.5:0.95 values, and recorded loss values are plotted in Figure 3. It can be observed
that even though the training loss values keep decreasing in each subsequent epoch, the
validation mAP values do not follow, which is a normal phenomenon in model training.
YOLOv7 models perform the best among the models used, showing better mAP validation
values in both the WG (Figure 3A) and NG (Figure 3B) models.
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3.4. Cross-Model Evaluation on TeD

Figure 4 describes the low false positive rate of identification for all models. Regarding
the tradeoff between true positive and false positive rates, YOLOv7 has an AUC score
ranked among the highest in both the WG (Figure 4A) and NG (Figure 4B) model com-
parisons. Even though v5_WG and v6_NG perform slightly better than their respective
v7 models, with the ultimate aim of building an application for identification, we found
that the support scripts of YOLOv6 are not path-friendly for application deployment.
The optimization steps would be conducted on YOLOv7 models; the fully optimized
configurations would be applied to other YOLO models to train the final versions for
performance comparison.
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3.5. Optimization
3.5.1. Data Resolution Selection

To evaluate the performance of models using different input image size values, a
partial dataset was probed from the whole dataset in a pseudorandom manner to keep the
image ratio per class. The image size values must satisfy the conditions of being a multiple
of pixel stride, which is 32 for YOLO models, and remain close to the mean value of both
the training and real-life data the model would encounter. A pool of three image size
values—416 × 416, 512 × 512, and 640 × 640 pixels, among which 416 × 416 and 640 × 640
are the common image size settings in the YOLO network and 512 × 512 was determined
based on a dataset analysis (Supplemental Figure S1D)—was then selected for performance
analysis. The input image size of 512 × 512 was proven to be the best configuration for
YOLOv7 models according to classification loss, F1-score, and SISS evaluation in both the
WG and NG model comparisons (Figure 5 and Table 3).
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Table 3. YOLOv7 models’ performance with different image size configurations, evaluated by
F1-score and SISS.

Base Model Training Resolution F1-Score Precision Recall SISS Evaluation (%)

YOLOv7_WG 416 × 416 0.681 0.695 0.668 79.82
512 × 512 0.694 0.714 0.675 81.60
640 × 640 0.685 0.701 0.67 79.83

YOLOv7_NG 416 × 416 0.834 0.847 0.822 83.93
512 × 512 0.877 0.889 0.866 88.95
640 × 640 0.849 0.861 0.838 83.99

3.5.2. Batch Size Optimization

Due to the large dataset, training with a batch size of eight images already allocated
a considerable amount of GPU memory using the mentioned computer system (Table 2).
Thus, to fine-tune the batch size parameter, nominal batch size (NBS) was used, in which
the model would accumulate the loss after each batch κ times before optimization.

k = NBS ÷ BS (5)

This method enables the possibility of simulating model training with a high batch
size, even when working with a large dataset on a limited computational budget. However,
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NBS is a hidden parameter set at 64 by default across all versions of YOLO used; hence,
source code modification has to be performed to enable fine-tuning such parameters. In this
study, the conventional loss functions of YOLO were preserved by respective evaluation.
An optimization based on the nominal batch size was conducted on the whole dataset,
in which images were resized to 512 × 512, as the classification loss values were used as
assessment metrics. NBS 64 has proven to be the best configuration for YOLOv7 models as
it has a lower classification loss than other models (Figure 6A). NBS 64 performed slightly
better than NBS 128 and more than 10 percent better than lower NBS settings, as shown
quantitatively in Figure 6B.
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3.6. Assessment of Final Models through Internal Evaluation

All eight models that were retrained based on the optimized parameters were then
used to run prediction on TeD. When the models are evaluated using the F1-score, a similar
trend can be observed in pre-optimized models. While comparing YOLOv7 to YOLOv6,
it was observed that despite the F1-score of the NG version being 4% lower, the YOLOv7
model pair (YOLOv7_NG and YOLOv7_WG) was still better overall; the F1-score of the
WG version for YOLOv7 was 19.1% higher than that of YOLOv6. In terms of detection
speed, although YOLOv7 inference time is three times longer compared to other models
when running on a system that uses only CPU, this difference in milliseconds (ms) is not
considered a significant drawback for the project because the aim of the project does not
involve real-time identification. Moreover, while running on a GPU and CUDA-supported
system, YOLOv7 models have much lower inference time (IT) than YOLOv6 models
(Table 4). Additionally, the YOLOv7 pair of models (WG and NG) exhibits overall better
performance than model pairs from other YOLO versions when the models are evaluated
on TeD using SISS. Eventually, the overall weights of the YOLOv7 model pair were selected
as default weights for SpiderID_APP deployment.
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Table 4. Evaluation of trained models on TeD.

Model F1-Score Precision Recall IT-GPU (ms) IT-CPU (ms) SISS Evaluation (%)

YOLOv8_NG 0.750 0.830 0.685 7.37 53.87 34.10
YOLOv8_WG 0.503 0.609 0.429 8.13 47.83 31.98
YOLOv7_NG 0.885 0.903 0.867 16.93 224.07 89.08
YOLOv7_WG 0.702 0.709 0.695 16.9 218.37 80.99
YOLOv6_NG 0.913 0.952 0.895 30.57 74.47 89.77
YOLOv6_WG 0.601 0.650 0.607 32.43 84.7 68.72
YOLOv5_NG 0.754 0.797 0.716 9.13 66.7 76.24
YOLOv5_WG 0.821 0.846 0.798 6.87 74.43 85.16

Inference time (IT) is calculated for predictions running on a GPU (IT-GPU) and
on a CPU (IT-CPU); IT only considers the time (in milliseconds, ms) required to iden-
tify each image; the model loading time is excluded. The computational requirements,
which are proportional to the number of parameters within the models in a nonlinear
manner, are displayed in GFLOPS, equivalent to 2 billion (109) floating-point operations
per second (FLOPS).

3.7. Assessment of Final Models on Flexibility and Robustness

Real-life spider records can be susceptible to various occlusions; images or video
shapes can be captured in a variety of resolutions and angles. Due to the need to evaluate the
models’ performance in real-life situations, where the confidence level of the identification is
important, SISS was used as the evaluation metric. Firstly, we evaluated the performance of
models on TeD at their original size and through the resizing process. Table 5 demonstrated
a drop in performance with TeD images resized to a resolution other than 512 × 512; such
decrease is small (<1%) for YOLOv7_WG models but by a considerable amount (>5%) for
YOLOv7_NG. Secondly, to evaluate the robustness of the models, we utilized an augmented
version of the TeD dataset (TeD_Aug) in which the images had been subjected to synthetic
image perturbations. Three distinct versions of TeD_Aug were generated using different
random seeds in the transformation script, an extended version of the one employed for
augmenting the training and validation datasets since we had to include the augmentations
performed by YOLO to account for a broad range of image occlusions. The performances
of YOLOv7 models tested on TeD and TeD_Aug are displayed in Table 6. Considering SISS
as an evaluation metric, the final model of YOLOv7_NG is overall better than its version
that does not use the balanced dataset, with 0.3% and 4.9% increases in performance when
tested on TeD and TeD_Aug, respectively. Meanwhile, the YOLOv7_WG model that was
trained on the dataset augmented for balance interestingly has a slight drop in performance
(~0.5%) compared to the non-augmented one when tested on TeD but a considerable boost
(~4.4%) in performance when tested on TeD_Aug. Moreover, the final models have better
robustness since their SISS decreases when tested on augmented images instead of original
ones are only 3.06% and 1.28%, which are 54 to 75 percent lower than those of the non-
balanced models, 6.76% and 5.13%, for WG and NG models, respectively. The accuracy of
the v7_WG and v7_NG models across genera and families within the testing dataset can be
further visualized in Figure 7.

Table 5. Evaluation of final YOLOv7 models when receiving images at different resolutions.

Model TeD Resized Resolution F1-Score Precision Recall SISS (%)

YOLOv7_WG (Final)
416 × 416 0.696 0.704 0.689 80.78
512 × 512 0.702 0.709 0.695 80.99
640 × 640 0.699 0.704 0.694 80.80

YOLOv7_NG (Final)
416 × 416 0.854 0.867 0.841 84.03
512 × 512 0.885 0.903 0.867 89.08
640 × 640 0.857 0.875 0.840 84.00
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Table 6. Evaluation of final YOLOv7 models when being tested on original test dataset (TeD) and
augmented test dataset (TeD_Aug). The TeD_Aug evaluations were performed in triplicate and are
expressed as mean with standard deviation.

Model Test Dataset F1-Score Precision Recall SISS (%)

YOLOv7_WG
(Non-balanced)

TeD 0.703 0.702 0.704 81.43

TeD_Aug 0.600 ± 0.0028 0.625 ± 0.0026 0.577 ± 0.0049 74.67 ± 0.273

YOLOv7_WG (Final)
TeD 0.702 0.709 0.695 80.99

TeD_Aug 0.704 ± 0.0005 0.722 ± 0.0026 0.688 ± 0.0021 77.93 ± 0.148

YOLOv7_NG
(Non-balanced)

TeD 0.887 0.889 0.886 88.81

TeD_Aug 0.736 ± 0.0026 0.760 ± 0.0100 0.714 ± 0.0056 83.68 ± 0.192

YOLOv7_NG (Final)
TeD 0.885 0.903 0.867 89.08

TeD_Aug 0.874 ± 0.0012 0.891 ± 0.0073 0.858 ± 0.0092 87.80 ± 0.093
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3.8. Assessment of Final Models through External Evaluation

In this study, we compared the identification performance between our SpiderID_APP
and the iNaturalist classification tool. As the most expansive citizen science database,
iNaturalist boasts an extensive metadata collection of myriad fauna and insects derived
from user contributions and potentially other online publicly available databases. Given
iNaturalist’s expansive and diverse metadata, it was necessary to create an evaluation set
composed of locally stored images annotated by arachnology experts to establish reliable
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ground truth values. The evaluation set consisted of 51 images of spiders found in the
Taiwan region, with 40 images featuring spider genera present in both tools’ databases
and 11 images containing spider genera not included in our training dataset. These im-
ages were identified by the SpiderID_APP utilizing two distinct weight sets of YOLOv7
(v7_WG and v7_NG) to generate two sets of results accompanied by confidence scores.
These images were subsequently graded by using the iNaturalist tool, yielding a third
set of results without confidence scores, as iNaturalist needs to furnish such information.
It can be observed from the iNaturalist website that their tool’s algorithm avoids results
with low confidence scores, opting instead for higher taxonomic ranks (such as subfam-
ily or family) until a specific confidence threshold is met. In contrast, our models are
limited to identifying spiders at the genus level, albeit with the provision of confidence
scores. The SISS method was employed to ensure a fair evaluation of the results. Upon
evaluating the initial set of 40 images, SpiderID_APP and iNaturalist manifested virtually
identical performance, with respective scores of 59 and 53 (Figure 8A). However, when
the assessment was expanded to include an additional 11 images featuring spider genera
absent from our training dataset—a circumstance guaranteed to yield a score of zero for
SpiderID_APP—iNaturalist’s performance showcased only a minimal uptick (Figure 8B).
Of the potential 22 additional points that could be obtained, iNaturalist’s score increased
by 4 points. Even though all spider genera within the 51 images were represented in the
iNaturalist database, the score of the iNaturalist tool only slightly improved when these
unfamiliar genera were included.
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purple points are where both SpiderID_APP and iNaturalist were given a maximum point of 2 points,
overlapping the ground truth line. Detailed evaluation can be found in Table S1A.

3.9. Easy operation of SpiderID_APP for Spider Identification at the Genus Level

To enable users to identify spiders efficiently, we developed a user-friendly application,
SpiderID_APP, in which users can select one or several spider images for identification
(Figure 9A). After selecting the appropriate weight, SpiderID_APP can recognize spiders at
the genus level, providing gender information when using the v7_WG weight as the default
setting or omitting gender information when the v7_NG weight is selected (Figure 9B).
Additionally, SpiderID_APP supports video input and can halt the prediction process
prematurely, saving the prediction results obtained at that point instead of waiting for the
entire video to be identified, as is the case with the built-in prediction function of YOLOv7.
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(A,B) The SpiderID_APP main interface with three function buttons: (1) load model from weight file,
(2) select one or more images for identification, (3) select a video for identification, and (4) load analyze
history. (C) Side-by-side comparison of spider identification results between SpiderID_APP and iNat-
uralist; the green box means correct identification, while the red box means incorrect identification.

4. Discussion

In this study, our primary endeavor was to harness the YOLO-based method to devise
an initial screening tool, the SpiderID_APP, for spider identification in Taiwan. While this
application marks a significant stride in the realm of spider distribution, its primary role
within the scope of this study is the preliminary classification of major spider genera in
Taiwan and goes some way to assist citizen science in obtaining information on spider iden-
tification. Such a tool, besides its identification capability, can also contribute to diminishing
the unwarranted fear many harbor toward spiders [66]. An interesting observation from
our data collection is that the 120 genera classified represent 99.69% of the recorded spider
data in Taiwan (Supplemental Figure S1A). This highlights that while there are more genera
in the Taiwanese habitat, their lower frequency of encounters and scant record numbers
limit their inclusion and representativeness in our model training. This dominance of
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certain genera implies that the SpiderID_APP identification capabilities are predominantly
inclined towards spiders from peridomestic areas and those residing in hiking trails and
national parks. Recognizing this, we want users to be aware of the APP’s inherent bias
towards certain environments, especially since the data suggest a higher representation
of genera frequently encountered by humans. Considering the dominant genera in our
dataset, the SpiderID_APP, developed in a Python environment [67], is tailored to classify
spiders that are frequently documented in Taiwan. However, the underlying design and
framework of the APP suggest the potential to facilitate the identification of other less
documented or even unfamiliar genera based on shared morphological and pattern charac-
teristics present in the data. Taxa not included in this study, like Callitrichia formosana and
Loxobates daitoensis, are either non-indigenous or exceedingly rare, with minimal sightings
reported, such as those in Taiwan based on the TBN records (accessed on 20 July 2022).

The proliferation of deep learning applications in image-processing models across sec-
tors like biomedical research, plant sciences, and biodiversity has been remarkable [68–72].
Yet, the task of discerning spider images is daunting given the variability in imaging
conditions. In our pursuit, we employed YOLO-based models for spider genus classifica-
tion, utilizing an extensive image dataset. Post-collection, images were standardized to
512 × 512 pixels, ensuring uniformity for the YOLO model [73]. The data augmentation
strategies employed included random flip, rotation, and dual-axis shear. Our evaluations
pinpointed the YOLOv7 model as the most adept for our classification aims, mirroring its
success in other domains [33,74]. However, while our tool is pioneering, it is pivotal to
underscore that it does not supplant the intricate processes of taxonomic analysis [75]. As
a precursor, it simplifies the process of initial screening, but the depth of taxonomy lies
beyond its scope. This limitation is recognized as one of the inherent challenges in the
application of machine learning for species identification, especially when considering the
rich diversity of spider species within Taiwan and globally.

During the model training process, we incorporated various hyperparameter opti-
mization steps, such as input image size and training batch size. Input image size impacts
computational requirements and detail detection, with smaller sizes reducing memory
consumption and training time but potentially losing critical information. In comparison,
larger sizes allow for finer detail detection but increase resource usage [76–78]. Further-
more, using an image size configuration higher than the training dataset image size can also
cause potential loss of mid-level and high-level features [76], negatively affecting the model
learning process and leading to suboptimal detection performance. Regarding batch size,
fine-tuning the batch size hyperparameter is significant for balancing the tradeoff between
accuracy and training speed [79]. While larger batch sizes accelerate the training process by
allowing the optimization algorithm to process more training samples per iteration, they
may result in less noisy gradient estimates and reduced stochasticity, potentially leading to
overfitting or poor generalization on validation or test data [80]. However, despite causing
slower training speed, smaller batch sizes do not guarantee superior model performance.
Smaller batch sizes introduce more noise in the gradient estimates since fewer samples are
used to compute the gradients. This increased noise might help the model to bypass the
local minima or saddle points. However, it also can lead to convergence instability, causing
the model’s training loss to fluctuate and making it more challenging for the model to reach
an optimal solution. This can prevent the model from escaping suboptimal regions in the
loss landscape. Another issue worth considering is that a smaller batch size may impede
the training process, primarily on hardware optimized for large batch sizes, and a large
batch size will cause out-of-memory errors on systems that have low GPU memory [81,82].
By carefully considering these parameters, we developed an efficient and accurate model
for spider identification.

It can be observed throughout the result demonstration that WG models generally do
not perform as well as NG models. The assessment using Spearman rank correlation of all
the training classes in WG models shows that the male percentage of the training dataset
has a significant (p < 0.0001) correlation with every WG model’s SISS evaluation score on
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male spiders in each genus (Supplemental Figure S1E). It has been suggested in several
deep learning studies that an imbalance in the dataset can lead to a decrease in the overall
performance of the model, primarily due to the nature of machine learning, which relies on
patterns learned from data to make predictions and may tend to favor the majority class in
pursuit of minimizing loss and maximizing accuracy [83,84]. A similar phenomenon can
be observed based on the assessment of individual training classes in this study. However,
such imbalance is inevitable in the current study because even though dataset balancing
was employed, the ratio discrepancy between male and female images is vast and can be
compensated by such up-sampling techniques. Data-balancing strategies such as over-
sampling and under-sampling [85] using the mentioned image augmentation techniques
can only be applied to the NG dataset but not the WG dataset. This was observed to be due
to the lack of male individuals in some spider genera, which consequently generated several
training classes of male spiders with zero or close-to-zero image counts (Table S1B). There
are several contributing factors to this observed pattern. Firstly, in certain genera, gender
identification from a single-angle image proved challenging, as the dimorphic features
were not clearly discernible. Secondly, for some genera, the copulatory organs are relatively
diminutive. Thus, the differentiation between male and female specimens is primarily
predicated on relative size disparities. For instance, genera like Pholcus, Smeringopus, and
Spermophora, which are often referred to as “cellar spiders”, present challenges in gender
differentiation without a comparative reference. The third reason is that the natural gender
distribution in such genera is already imbalanced due to underlying bias in offspring
production [86]. While removing the training classes with close-to-zero image counts could
potentially increase the overall model performance, targeting a constantly updated model
was valued over the temporary performance of the current study’s model. Indeed, keeping
the classes intact to facilitate a smooth transfer learning process [83] and gathering sufficient
training data to reach a certain male percentage threshold for each YOLO model would
certainly improve the models’ performance in future studies (Supplemental Figure S1F).

In our internal evaluation of eight models, we observed varying rankings when using
two different evaluation methods: F1-score and SISS. Specifically, in the final assessment,
model v5_WG achieved a higher F1-score but a lower SISS score compared to v7_WG. This
discrepancy stems from the inherent nature of these metrics. While F1-score assesses the
balance between precision and recall without factoring in the confidence of predictions,
SISS awards points based on both the correctness and confidence level of predictions.
Consequently, this revealed that although v5_WG was adept at correctly identifying the
spider genus, it did so with less confidence than v7_WG, resulting in overall less reliable
outcomes. In this context, where an accurate and confident identification of a spider genus
is paramount to prevent misclassification, SISS emerges as the more appropriate metric for
final evaluation. This emphasis on high-confidence predictions underscores the reliability
and value of models in real-world applications. This understanding of model performance
and reliability led us to further assess the flexibility and robustness of our final models.
Notably, a significant decline in performance was observed when the input images were
not resized, highlighting a challenge in adapting to varying image sizes. To mitigate
this, we introduced a resize variable in the prediction script, effectively addressing this
limitation. Additionally, when tested on the augmented TeD dataset, our final models
exhibited greater resilience compared to those trained on non-balanced data. This resilience
was further evidenced by a markedly lower performance decrease—ranging from 54 to
75 percent less than the primitive models—when various synthetic image perturbations
were introduced. Such findings highlight the critical role of data augmentation in enhancing
the performance and robustness of our models, ensuring their efficacy in diverse and
challenging identification scenarios.

In the external evaluation, iNaturalist was selected as a comparative tool due to
its prominent standing as an optimal spider identification instrument in the research
community [18]. Our SpiderID_APP exhibited marginally superior results compared
to iNaturalist in our limited testing dataset, yielding scores of 59 and 57, respectively.
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When omitting the 11 data points relating to genera not encompassed in our training
dataset, this score becomes 59 to 53. It is critical to underline that the design intent behind
SpiderID_APP is not to overshadow iNaturalist but to act as a supplementary offline tool
that is specially designed for researchers with a keen interest in natural taxonomy. Notably,
the performance of SpiderID_APP varied when juxtaposed with iNaturalist, surpassing
it in certain identification scenarios and lagging in others (as illustrated in Figure 9C).
Multiple underlying factors dictate this differential performance. Primarily, the nature
of their respective training datasets is distinct. The specialized dataset of SpiderID_APP,
being spider-focused, offers it a potentially enhanced acumen in spider identification. On
the other hand, iNaturalist’s dataset, by virtue of encompassing myriad animal species,
offers a broader range but perhaps at the expense of specialized precision. The constrained
size of our dataset, relative to iNaturalist’s expansive one, might curtail its proficiency
in discerning spider genera that exhibit high morphological similarities. The focus on a
subset of around 50 prevalent spider species is deliberate, considering the pronounced
influence of urbanization on biodiversity. The spiders that frequently manifest in urban
settings, and thus are predominantly recorded on platforms like iNaturalist, are typically
from this select group. Correctly identifying this subset is of paramount importance for
a range of applications, from public health to ecological studies. By refining our model
to cater to this subset, our objective is to address the immediate identification challenges
faced by the majority of users, while recognizing that capturing the extensive diversity
of spiders is a far more intricate endeavor. Lastly, the foundational models and image
classification methodologies differ between the tools. SpiderID_APP employs YOLOv7 for
object detection, leveraging bounding box theory, whereas iNaturalist, over its evolution,
has incorporated a variety of models, such as Inception-V3 [18], Resnet-50, Regnet-8GF [87],
MAE [40], and MetaFormer, all of which are based on whole image inputs.

In the realm of academic research, two other studies have focused on spider identifi-
cation, considering taxonomy and gender [27,28]. Unfortunately, comparisons with these
studies are not feasible. One study did not release its model or application [27], while the
other claimed to have developed an iOS application [28]. However, their associated GitHub
repository is outdated, making a comparative test impossible. In the broader context of
spider identification methodologies outside academic circles, it is observed that platforms
like community-driven forums, while free, rely on user submissions and collective exper-
tise, which might not always yield the most accurate or timely identifications. Conversely,
many mobile applications, despite their claims of sophisticated AI and machine learning
capabilities, often restrict access through payment models or advertisements, potentially
limiting their use.

In contrast, SpiderID_APP stands out with its user-centric approach, providing imme-
diate, automated identification without such barriers. This accessibility, combined with
advanced technological capabilities, sets SpiderID_APP apart from other methodologies.
The application includes a setup file that streamlines the installation process, making it
especially user-friendly for those not well versed in Python or coding languages. Our
setup file is a batch file (setup.bat) compatible with Windows and MacOS. It automati-
cally downloads and installs the Python environment and the necessary dependencies
for SpiderID_APP. Upon completion, a run.bat file is generated, which enables users to
launch the application directly, bypassing the need to navigate through several installation
steps. By prioritizing ease of use, SpiderID_APP offers a unique blend of technological
sophistication and accessibility, catering to both researchers and enthusiasts seeking reliable
and straightforward spider identifications.

5. Potential Limitations and Future Work

Our research, pioneering in its approach, is focused on spider identification within
Taiwan, utilizing a dataset that encompasses 120 genera. This specific focus, while effective
for the Taiwanese context, highlights a significant limitation—the challenge of generalizing
this model to diverse spider populations in different geographical regions. The 120 genera



Inventions 2023, 8, 153 20 of 24

covered represent a substantial portion of Taiwan’s spider diversity, but they may not
encapsulate the broader spectrum of species found globally. Addressing this constraint is
pivotal for the future development of SpiderID_APP. As we plan for SpiderID_APP 2.0,
aiming to extend our reach beyond Taiwan, we anticipate encountering a more complex
array of spider genera. This complexity is not just in numbers but also in the nuanced
morphological differences that are critical for accurate identification. Some of these genera
may require advanced identification techniques, such as genitalia dissection, which are
beyond the current capabilities of image-based AI models. This expansion will not only
test the model’s adaptability to a wider range of species but also its ability to maintain
accuracy amidst greater diversity. In tackling these challenges, SpiderID_APP 2.0 will
explore the integration of a microscopic-adept AI model. This model would assist in
instances where the primary AI tool yields low-confidence identifications, potentially
utilizing high-resolution microscopic images for a deeper level of analysis. However, this
approach brings forth its own set of challenges. Ensuring the accuracy and reliability of the
model across diverse species, each with unique identifying features, will be a significant
undertaking. It underscores the critical role of human expertise in the taxonomic process,
not only in model validation but also in guiding the AI’s learning process.

Moreover, a comprehensive analysis of the challenges faced by SpiderID_APP reveals
several key areas of concern. Firstly, the current model’s reliance on image quality and
specific imaging conditions can lead to limitations in real-world scenarios where such
ideal conditions may not always be met. Secondly, the potential for bias in the training
dataset, given the prevalence of certain spider species over others, might skew the model’s
performance. This bias could manifest in less accurate identifications for less commonly
encountered species. Lastly, the necessity for continual updates to the model’s training
dataset cannot be overstated, especially in the rapidly evolving field of taxonomy where
new species are discovered and existing classifications are frequently updated. These
factors collectively emphasize the need for ongoing refinement and enhancement of the
SpiderID_APP to ensure its robustness and reliability as a tool for spider identification.

6. Conclusions

In this study, we have successfully developed SpiderID_APP, an AI-driven application
that leverages the YOLOv7 object detection model for the preliminary identification of
major spider genera in Taiwan. This tool represents a significant step in the application of
advanced AI methodologies to the field of arachnology, specifically targeting the needs
of spider identification within a defined geographical region. The core achievement of
our research lies in the creation of a practical, user-friendly tool that assists in the initial
classification of spiders. By streamlining the identification process, SpiderID_APP facilitates
the work of both professional arachnologists and citizen scientists. Its utility, however, is
primarily as a preliminary screening tool, laying a foundation for further detailed taxonomic
analysis by experts. Our approach demonstrates the potential of AI in enhancing traditional
biological studies, particularly in biodiversity research. While SpiderID_APP is tailored for
a specific ecological and geographical context, the methodologies and insights gained could
serve as a valuable reference for similar projects in other areas of biological research. It is
important to note that while SpiderID_APP marks a step forward in integrating technology
with biodiversity studies, it does not aim to replace the nuanced and detailed work involved
in spider taxonomy. Instead, it seeks to complement and support these efforts by providing
a reliable and efficient means for initial species identification.

In conclusion, our study contributes to the field of arachnology by introducing an
innovative tool that combines technological advancement with biological research. Spi-
derID_APP serves as an example of how AI can be effectively applied to specific challenges
in biodiversity studies, offering a model that can be adapted and extended to other research
areas within the biological sciences.



Inventions 2023, 8, 153 21 of 24

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/inventions8060153/s1, Figure S1: The graphical representation
of spider data distribution at the genus level (% on genus and image count) which was obtained
based on data from TBN (Taiwan Biodiversity Network, https://www.tbn.org.tw/taxa, accessed on
3 December 2023) and the WSC (World Spider Catalog, https://wsc.nmbe.ch/, accessed on 27 July
2022); Table S1A: Details of SpiderID_APP and iNaturalist evaluations using SISS on locally stored
images provided by spider experts. Table S1B: Dataset metadata and prediction accuracies of trained
models against test dataset.
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