
 

 
 

 

 
Inventions 2024, 9, 63. https://doi.org/10.3390/inventions9030063 www.mdpi.com/journal/inventions 

Article 

Enhancing Structural Capacity Assessment with a Novel  

Failure Decision Function for Rectangular Reinforced  

Concrete Columns 

Petros Christou 1,*, Marios Charalambides 2, Demetris Nicolaides 1 and Georgios Xekalakis 3 

1 Department of Civil Engineering, Frederick University, Nicosia 1036, Cyprus; d.nicolaides@frederick.ac.cy 
2 Department of Business Administration, Center of Sciences, Frederick University, Nicosia 1036, Cyprus; 

bus.chm@frederick.ac.cy 
3 Frederick Research Center, Nicosia 1036, Cyprus; g.xekalakis@frederick.ac.cy 

* Correspondence: p.christou@frederick.ac.cy 

Abstract: This study introduces the Failure Decision Function, a novel approach for evaluating the 

structural capacity of rectangular reinforced concrete columns under axial forces and moments, both 

uniaxial and biaxial. The method simplifies existing practices, enhancing accuracy and integration 

into design software. The methodology hinges on deriving exact biaxial bending failure surfaces, 

utilizing integral expressions based on material properties and cross-sectional geometry. This direct 

integration process uncovers failure surface characteristics previously undocumented. Results con-

firm the utility of the Failure Decision Function through comparative analysis with established lit-

erature, showcasing its potential for simplifying and improving structural capacity assessments. 

The analytic procedure developed enables efficient computation of failure surfaces, streamlining the 

inclusion of these functions in structural engineering software in two key ways: (1) compiling a 

library of pre-calculated functions for quick capacity checks and (2) creating a dynamic application 

that generates these functions based on specific design parameters, allowing users to explore vari-

ous load and moment scenarios. In conclusion, the Failure Decision Function represents a significant 

advancement in structural engineering design, offering an accurate and user-friendly method for 

assessing column performance under critical loading conditions. 

Keywords: failure decision function; capacity assessment; design of concrete columns; interaction 

diagrams; stress integration; biaxial bending; failure surfaces 

 

1. Introduction 

In structural engineering, assessing the capacity of columns is vital to ensure the 

safety and efficiency of buildings and infrastructure. Traditional methods for analyzing 

and designing reinforced concrete columns use practical tools like interaction diagrams, 

which illustrate failure envelopes under axial load and uniaxial or biaxial bending (P-M-

M). These diagrams are based on the constitutive relationships of concrete and steel (stress 

vs. strain), the geometry of the cross-section, and the consideration of the stress vs. strain 

plane’s inclination and orientation, representing various failure modes. The calculation of 

a point on the envelope corresponds to an inclination and orientation of the neutral axis 

in the deformed state of the cross-section and the estimation of the axial force and bending 

moment capacity of the section based on equilibrium and compatibility conditions. 

The initial work on interaction diagrams, specifically biaxial design charts for rectan-

gular reinforced concrete sections, was conducted by Grasser and Linse in 1972 [1,2]. Since 

then, various methods, including manual, experimental, numerical, and analytical ap-

proaches, have been developed. Notable contributions by Nilson and Winter, 1991, [3] 

expanded interaction diagrams to include biaxial bending through three-dimensional fail-

ure surfaces. Engineers typically use interaction diagrams in line with code provisions, 
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such as Eurocode 2-clause 5.8.9, although, according to Papanikolaou and Sextos, 2016, 

[4], the application of uniform interaction diagrams across Eurocode-compliant countries 

is not easy due to the variability in specific parameters (e.g., the range of values of the 

reducing factor for long-term effects in the National Annexes). Another contribution to 

the state of the art is provided by Bhargav et al., 2023 [5], who introduce an algorithm 

using a modified thick layer integration approach and a nested bisection method to gen-

erate exact load contours and complete interaction surfaces. 

Various interaction diagrams describing column behavior resulting from experi-

mental work have been provided by Dundar et al., 2008 [6] and Pallarés et al., 2008 [7]. 

Further, structural analysis and design software packages use numerical techniques, as 

presented by Fafitis, 2001 [8], Papanikolaou, 2012 [9], and Matuszak and P Pluciński, 2014 

[10], to produce these diagrams. The fiber method, which involves discretizing the section 

into smaller elements (fibers) and using the uniaxial stress–strain relationship of each ele-

ment, was implemented by Lejano, 2007 [11] and further utilized by Christou et al., 2013 

[12] and Kwak and Kwak, 2010 [13] to calculate average forces in a section by aggregating 

the resisting forces of all fibers. In addition, Bouzid and Demagh, 2011 [14] proposed a 

simple formula to estimate the resistance capacity of biaxially loaded short reinforced con-

crete columns, facilitating the development of interaction diagrams. 

The analytical computation of these diagrams can be complex. Di Laora et al., 2019 

[15] introduced an analytical, code-compatible procedure for reinforced concrete circular 

sections, approximating an analytical solution to the computation of the interaction dia-

grams without iterations and numerical computation. Rodriguez and Aristizabal-Ochoa, 

1999 [16] and Quaranta, Trentadue, and Marano, 2017 [17] addressed this by subdividing 

the section and employing exact analytical stress distribution for closed-form integration 

of the resulting expressions. Vaz Rodrigues, 2015 [18] developed an algorithm that subdi-

vides sections into trapezoidal elements using polygon clipping techniques, with exact 

numerical integration on each trapezoid using the change of variables theorem and 

Gauss–Legendre integration, 2021 [19]. Additionally, da Silva et al., 2009 [20] demon-

strated that closed-form solutions for multi-rectangular sections not only simplify calcu-

lations but also enhance computational efficiency. These advancements highlight the di-

versity and potential precision of techniques available for the structural analysis of rein-

forced concrete sections. 

This study introduces a novel analytical framework for assessing the capacity of short 

reinforced concrete rectangular columns through the development of a Failure Decision 

Function (FDF). The underlying theory addresses the mathematical challenge of deter-

mining whether a point in space lies inside, on the boundary, or outside a closed three-

dimensional surface, such as an ellipsoid, as proposed by Schneider and Eberly, 2002 [21]. 

This innovative approach simplifies the generation of precise failure surfaces and en-

hances the practical application of these findings in relevant software and decision-mak-

ing strategies, potentially reducing computational effort. The findings reveal unique char-

acteristics of the failure surfaces, distinct from those documented in existing literature, 

offering new insights into the structural behavior of columns. This work underscores the 

importance of continuous innovation in structural analysis and design, promising signif-

icant implications for both theoretical research and practical engineering applications. 

2. Methods 

2.1. Model Description and Computational Methodology 

Bending in columns arises when an eccentric load, aligned parallel to the vertical axis 

of the column section, is applied. This eccentricity, denoted as e, is the distance from the 

applied load to the column’s plastic centroid (PC), as illustrated in Figure 1. This relation-

ship establishes a specific pairing of axial load and bending moment for any given eccen-

tricity, leading to a strain distribution across the column section that can be described by 

a plane equation. This distribution’s interface with the column’s cross-sectional plane is 
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marked by a straight line known as the neutral axis (NA) (Figure 2). At the point of failure, 

this strain distribution corresponds to distinct values of axial load (PT) and bending mo-

ments (MXT and MYT), where T signifies the total values. The resulting interaction diagrams 

(for uniaxial bending) and failure surfaces (for biaxial bending) serve as graphical repre-

sentations of the column’s failure across an entire range of eccentricities, as shown in Fig-

ure 3. 

The compressive capacity (PTO) and tensile capacity (Pten) of the column, under con-

centric loading (where e = 0), where the strain plane is parallel to the column’s cross-sec-

tional plane, define the extremities of the failure envelope. The intersection of the interac-

tion diagram with the moment axis (horizontal axis) conceptually represents a condition 

of pure bending, leading to failure at theoretically infinite eccentricity. Here, MXTO and 

MYTO represent the moment capacities for such scenarios. Points within the interaction 

diagram or on the failure surface delineate a range of eccentricities limited by these critical 

values, indicating that failure is either dominated by axial loads at smaller eccentricities 

or by bending moments at larger eccentricities. 

 

Figure 1. Eccentric load applied on an RC column section. 

 

Figure 2. Strain distribution over a cross-section. 

 

Figure 3. Typical interaction diagram (uniaxial bending) and failure surface (biaxial bending). 
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This flexural model of this study is founded on a critical assumption regarding the 

behavior of plane sections under bending stress. Specifically, it assumes that plane sec-

tions, which are planar prior to the application of flexure, maintain their planar geometry 

throughout the flexural deformation process. Consequently, the model prescribes a linear 

strain distribution across the section. 

A crucial aspect of the model concerns the strain in the reinforcement, which is as-

sumed to be consistent with the strain experienced by the adjacent concrete at their inter-

face. This assumption implies a perfect bond condition between the concrete and the re-

inforcing bars, effectively eliminating any potential for debonding. Moreover, the model 

simplifies the representation of reinforcing bars as geometric points, assigning to each an 

area equivalent to that of the actual bar used. Despite their presence, the cross-sectional 

area occupied by the steel reinforcements is considered negligible and, thus, is not de-

ducted from the concrete’s total cross-sectional area. 

An additional simplification inherent in this model is the complete disregard for the 

tensile strength of concrete. This assumption is predicated on the understanding that con-

crete’s contribution to tensile resistance is minimal relative to its compressive capacity. 

The model identifies the onset of failure as the point at which any location within the 

section attains the maximum compressive strain defined for concrete. 

It is important to note that the proposed model does not accommodate variations in 

the material behavior of concrete attributed to confinement effects. This limitation under-

scores a simplification in modeling the complex interactions within the concrete under 

varying stress states. 

Throughout this investigation, a specific sign convention is employed for clarity and 

consistency in reporting results. According to this convention, compressive quantities are 

denoted as positive, while tensile quantities are represented as negative. This approach 

facilitates a straightforward interpretation of the model’s outcomes. 

In the analytical framework outlined in this study, the stress–strain relationships for 

concrete and steel reinforcement are essential in understanding and predicting the struc-

tural behavior under load. The model for concrete stress–strain (Figure 4a) follows the 

modified Hognestad curve [22–25], aligning with the recommendations made by Park and 

Paulay, 1975 [26]. This particular curve offers a refined approach to capturing the complex 

behavior of concrete under compression, emphasizing a more realistic representation of 

the material’s response up to and including failure. For the steel reinforcement, the stress–

strain relationship (Figure 4b) is characterized by an elastic–plastic model, again reflecting 

the guidelines proposed by Park and Paulay, 1975 [26]. This assumption permits a 

straightforward interpretation of the reinforcement’s behavior, focusing on the transition 

from elastic performance to plastic deformation, a critical aspect in understanding the 

overall flexural behavior of reinforced concrete elements. It is important to acknowledge 

the flexibility of the model in terms of integrating alternative stress–strain curves. This 

adaptability underscores the model’s potential applicability to a broad range of concrete 

and reinforcement materials, provided their stress–strain behaviors are well-documented 

and understood. 
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(a) (b) 

Figure 4. Cross-sectional material properties: (a) Stress vs. strain curve for concrete; (b) stress vs. 

strain curve for steel reinforcement. 

Central to the proposed analytical model is the concept of failure, which is explicitly 

defined as the point at which concrete undergoes crushing at a strain level denoted as εcu. 

This definition implies that any strain distribution across a cross-section signifies a poten-

tial failure state if it includes at least one point where the concrete strain reaches εcu. This 

approach to defining failure is instrumental in constructing interaction diagrams, which 

graphically represent the relationship between axial forces and bending moments. 

Determining a specific point on the interaction diagram involves analytical integra-

tion of the stresses corresponding to a given strain distribution. This calculation is critical 

in mapping out the failure envelope for the structure, providing insights into the limits of 

its load-bearing capacity. Bending moments, a key factor in this analysis, are calculated 

with respect to the plastic centroid of the section. This methodology facilitates a compre-

hensive understanding of the structural behavior, enabling the prediction of failure modes 

under various loading conditions. 

Through this analytical framework (Figure 5), a robust tool for the assessment of re-

inforced concrete elements is aimed to be provided, offering insights that are crucial for 

both the design and analysis of such structures. 

A key contribution of this study is the formulation of analytic functions designed for 

determining precise points on the failure surface. These functions derive from the inter-

play between the geometry and material characteristics of rectangular sections, accommo-

dating various patterns of steel reinforcement. Detailed in Supplementary S1 are the inte-

gral expressions for PT, MXT, and MYT, which outline the cross-sectional capacity. To facil-

itate computation, this process is delineated into 14 distinct cases and sub-cases, as ex-

pounded in Supplementary S2. 

Utilizing MATLAB software [27], these integrals are calculated, yielding analytic ex-

pressions that explicitly specify the axial force and bending moments across any possible 

strain distribution of the section, inclusive of all orientations of the neutral axis (NA). The 

expressions resulting from these calculations are cataloged in Supplementary S3. Remark-

ably, this means that a single set of expressions suffices for any rectangular column section 

and any combination of reinforcement. In essence, this framework requires only one com-

prehensive set of expressions to analyze all rectangular sections. 
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Figure 5. Flowchart of the proposed analytical framework. 

2.2. Generation of the Interaction Diagrams and Failure Surfaces 

The analytic expressions are implemented in an algorithm coded in MATLAB to gen-

erate the array of points for all failure states (tension to compression) and plot the exact 

shape of the failure surface. The plot is based on a series of curves, each of which repre-

sents a failure state that corresponds to an orientation of the NA (defined by the angle θ). 

Each plot for θ includes the points (PT, MXT, MYT) that correspond to any inclination of the 

strain plane (defined by the angle φ), which has a strain equal to εcu at point Q1 and a 

strain value equal to εs at the extreme steel fiber (Figure 2). The inclinations of the strain 

plane are achieved by varying the strain values εs through the range εsmax ≤ ε < εcu, where 

εsmax is the maximum tensile strain on the stress–strain curve for steel. The change of εs 

essentially defines a shift of the NA. This procedure is repeated for orientations of the NA 

ranging from 0o≤ θ < 90oto plot the failure surface in the first quadrant. 

The process is repeated by changing successively the points from Q2 to Q4 and as-

signing the value of εcu at the respective locations (points Q2 to Q4). For any Qi the curve is 

generated in the respective quadrant of the failure surface. It is worth mentioning that if 

the reinforcement layout is symmetric, the values of axial force and bending moments in 

the quadrants are equal in magnitude but different in signs. As a result, for such cases, 

after the development of the failure surface in the first quadrant, the generation of the 

failure surface in the rest of the quadrants is trivial. 

For the purpose of validating the effectiveness and accuracy of the proposed analytic 

method, its results have been benchmarked against established examples from the aca-

demic literature, as detailed in Table 1. Specifically, Section A compares the results with 

Example 7.7 from the work of Leet and Bernal, 1997, referenced as [28]. Section B engages 
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with Example 13.14.1, as presented in the study by Wang and Salmon, 1979 [29]. Further-

more, Section C evaluates Example 8.1, derived from the research of Nilson and Winter, 

1991 [3]. The comparison reveals that the outcomes of the analytic method closely align 

with those documented in the literature, underscoring its reliability and precision. Nota-

bly, certain discrepancies were observed across all cases, which are consistently accounted 

for and thoroughly examined in the subsequent discussion. 

1. A lower value for the ultimate load, 𝑃𝑇𝑂 (Table 1), is calculated using the analytic 

method. The difference is attributed to the way of the calculation of the ultimate load. 

Based on examples found in the literature: 𝑃𝑇𝑂 = 0.85𝑓𝑐
′𝐴𝑐 + 𝑓𝑦𝐴𝑠 where 𝐴𝑐 is the 

net area of concrete and 𝐴𝑠 is the area of steel reinforcement. While this may be rea-

sonable, it is not consistent with the assumptions regarding the failure of the section, 

which states that at least one point in the section must reach 𝜀𝑐𝑢. However, the stress 

in concrete is 0.85𝑓𝑐
′ at strain level 𝜀0 and not at 𝜀𝑐𝑢. At strain level 𝜀𝑐𝑢 the stress in 

concrete is 0.852𝑓𝑐
′ = 0.7225 𝑓𝑐

′ resulting in the smaller value of axial force calculated 

by the analytic method. 

Table 1. Comparative Analysis of Verification Examples. 

AA Cross Section Interaction Diagram Failure Decision Function 

A 

Example 7.7—Leet and 

Bernal (1997)  

  

 

B 

Example 13.14.1—Wang 

and Salmon (1979) 

  

 

C 

Example 8.1—Nilson and 

Winter (1991)  

  
 

6.0 cm 48 cm

25 cm

6.0 cm

6.0 cm
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As = 30.5cm²
f'c = 20.5MPa
fy = 345MPa

6.5 cm 37 cm

17 cm

6.5 cm
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f'c = 24MPa
fy = 345MPa
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2. The curves for various orientations of the NA follow a pattern that is not of planar 

nature (Figure 6) as shown for typical interaction diagrams found in the literature. 

The non-planar shape explains why numerical methods sometimes cannot converge 

to particular points on the interaction diagram. 

 

Figure 6. Plan view of the failure surface (Example 13.14.1–Wang and Salmon (1979)). 

3. The upper part of the interaction diagram or the failure surface calculated by the an-

alytic method (Table 1) at strain levels just before the case of pure compression (i.e., 

when the strain on one side of the section equals to 𝜀𝑐𝑢 and on the other side is just 

below 𝜀𝑐𝑢 as shown in Figure 7 shows that the moments change sign/orientation. 

When the section is in pure compression, the strain distribution is uniform at the 

value 𝜀𝑐𝑢 and the bending moments become zero (assuming that the section is sym-

metric). Observing the stress–strain relation of concrete (Figure 4a), we note that prior 

to 𝜀𝑜 as the value of the strain increases, so does the value of the stress. However, 

when the strains are greater than 𝜀𝑜 then, as the value of the strain increases, the 

value of the stress decreases. As the strain plane tends to become horizontal (i.e., state 

of pure compression, 𝜀 = 𝜀𝑐𝑢) then all points on the plane have values greater than 

𝜀𝑜 (Figure 7). Based on the above, the stresses in the shaded area of the section are 

less than those in the non-shaded area. Considering that the area on both sides of the 

plastic centroid (shaded and non-shaded) are equal, then the resulting force on the 

shaded area is less than that of the non-shaded area, causing a moment with opposite 

sign. 

 

Figure 7. Strain plane orientation just before the section is in pure compression. 

2.3. Failure Decision Function 

The core objective of this research is to enhance the efficiency and accuracy of evalu-

ating structural sections subjected to combined axial forces and bending moments. Central 
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to this approach is the introduction of the Failure Decision Function (FDF), which simpli-

fies the assessment process. The FDF is designed to quickly, accurately, and reliably de-

termine the safety of a section under any combination of axial force and bending moments. 

This paper outlines the development process for the Failure Decision Function, detailing 

the steps necessary to achieve a tool that practitioners in the field can rely on for rapid and 

precise evaluations. 

a. Setup the model to develop the analytic functions for the computation of the exact 

shape of the failure surface (Section 2); 

b. Generate the failure surface for various types of cross-sections and reinforcement pat-

terns using the analytic functions (Section 3); 

c. Develop a polynomial approximation for the failure surface by fitting a surface of the 

form 𝐹(𝑃𝑇, 𝑀𝑋𝑇 , 𝑀𝑌𝑇) = 0 through the points of the actual curve. In this work, we 

utilized the MATLAB optimization toolbox coupled with an R2 test to ensure high 

accuracy. To ensure that the reduced set of points is well approximated by a smooth 

function, it is important to approximate each quadrant of angle 𝜃, of the failure sur-

face separately. Basic reflection and reinforcement rearrangement operations enable 

the reduction of the approximation problem to fit in the first quadrant. Figure 8 shows 

a sample of the exact points (in blue) and points obtained by the best-fit polynomial 

(in red). The R2 approximation index was computed at 0.97, which is considered sat-

isfactory. The high accuracy of the approximation is also reflected in the Figure. 

  

Figure 8. Three-dimensional visualization of the failure surface (in blue) and the corresponding 

Failure Decision Function (in orange). 

• Define the Failure Decision Function. Considering that for a particular value of 𝑃𝑇 

there are multiple-moment couples (𝑀𝑋𝑇 , 𝑀𝑌𝑇), the failure surface in any quadrant 

cannot be expressed in the form of 𝑃𝑇 = 𝑓(𝑀𝑋𝑇 ,  𝑀𝑌𝑇). Rather, one can choose any of 

the two moments to be approximated as functions of the axial load and the other 

moment. The simplicity of polynomials, coupled with their significant approxima-

tion properties [30], has led the authors to select 𝑀𝑌𝑇 = 𝑓(𝑃𝑇 , 𝑀𝑋𝑇) as a polynomial 

function of 𝑃𝑇 and MXT. Numerical simulations indicate that the choice of moment 

on the right-hand side does not affect the quality of the approximation. The Failure 

Decision Function is defined as: 

𝐹(𝑃𝑇, 𝑀𝑋𝑇 , 𝑀𝑌𝑇) = 𝑓(𝑃𝑇, 𝑀𝑋𝑇) − 𝑀𝑌𝑇  (1) 

As shown in the next section, numerical simulations indicate that polynomials up to 

and including terms of degree three are sufficient for this problem. As a result, the Failure 

Decision Function in Equation (1) takes the form (2): 
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𝐹(𝑃𝑇 , 𝑀𝑋𝑇 ,  𝑀𝑌𝑇)  

=  𝑎00 +  𝑎10𝑃𝑇 + 𝑎01𝑀𝑋𝑇 + 𝑎20𝑃𝑇
2 + 𝑎11𝑃𝑇𝑀𝑋𝑇 + 𝑎02𝑀𝑋𝑇

2

+                                                  𝑎30𝑃𝑇
3 + 𝑎21𝑃𝑇

2𝑀𝑋𝑇

+ 𝑎12𝑃𝑇𝑀𝑋𝑇
2 + 𝑎03𝑀𝑋𝑇

3 − 𝑀𝑌𝑇 

(2) 

The Failure Decision Function 𝐹(𝑃𝑇, 𝑀𝑋𝑇 , 𝑀𝑌𝑇) can be used for a reliable and quick 

check of whether a section is safe or not subject to any combination of axial force and 

bending moments (𝑃𝑇
∗, 𝑀𝑋𝑇

∗ ,  𝑀𝑌𝑇
∗ ). In detail, if 𝐹(𝑃𝑇

∗ , 𝑀𝑋𝑇
∗ ,  𝑀𝑌𝑇

∗ )  < 0, the section is safe 

as the point is inside the failure surface, whereas if 𝐹(𝑃𝑇
∗, 𝑀𝑋𝑇

∗ ,  𝑀𝑌𝑇
∗ ) > 0, the section is 

not safe as the point is outside the failure surface. 

Figure 9 provides an illustrative depiction of the Failure Decision Function (FDF) ap-

plied to evaluate the structural integrity of a fixed rectangular section—specifically, Sec-

tion B, as outlined in Table 1—under various reinforcement scenarios. The Figure show-

cases four distinct reinforcement cases, each represented by different colors for clarity: 

purple, yellow (representing the two scenarios with lesser reinforcement), and orange, 

blue (depicting scenarios with greater reinforcement). A black circle illustrates a specific 

combination of axial load and bending moments applied to the section. 

Analysis via the FDF reveals that the sections with lower levels of reinforcement (pur-

ple and yellow) are inadequate, as indicated by the black circle’s position outside their 

respective curves. This external positioning signifies that the applied loads surpass the 

sections’ failure thresholds, leading to a failure scenario. Conversely, for the sections with 

higher levels of reinforcement (orange and blue), the black circle falls within the safety 

bounds of their curves, indicating that these sections can safely withstand the applied load 

and moment combinations without failure. This graphical representation underscores the 

utility of the FDF in discerning between safe and unsafe structural configurations under 

specific loading conditions. 

 

Figure 9. Representation of the Failure Decision Function for fixed rectangular RC concrete section 

with four distinct reinforcement options. 

3. Results 

Implications to Software 

The proposed analytical procedure introduces a simplified approach for efficiently 

computing the failure surface and the Failure Decision Function (FDF) across a broad 

spectrum of cross-sectional shapes and material properties. This innovative method prom-

ises to significantly reduce the time and effort traditionally required for such analyses, 

presenting a one-time computation process that yields extensive utility for various engi-

neering applications. Following the initial determination of the failure surface and FDF, 

this methodology facilitates its integration into structural engineering software, enhanc-

ing the capabilities of such applications in two significant aspects: 
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a. Compile a library of Failure Decision Functions, similar to Table 2, in software applica-

tions and perform capacity checks without the requirement of developing the failure 

surfaces, thus saving computational time. Further, include a feature that will enable 

the software to “suggest” safe cross sections and reinforcement combinations for the 

applied (𝑃𝑇
∗, 𝑀𝑋𝑇

∗ ,  𝑀𝑌𝑇
∗ ). The latter will provide the user with the flexibility to exper-

iment with dimensions and reinforcement options prior to running the analysis again. 

Table 2. Sample Failure Decision Functions. 

AA Section 

Failure Decision Function 

F(PT, MXT, MYT) = 𝑎00+𝑎10𝑃𝑇 + 𝑎01𝑀𝑋𝑇 +

𝑎20𝑃𝑇
2 + 𝑎11𝑃𝑇𝑀𝑋𝑇 + 𝑎02𝑀𝑋𝑇

2 + 𝑎30𝑃𝑇
3 +

𝑎21𝑃𝑇
2𝑀𝑋𝑇 + 𝑎12𝑃𝑇𝑀𝑋𝑇

2 + 𝑎03𝑀𝑋𝑇
3 − 𝑀𝑌𝑇 

A 

      Example 7.7—Leet and Bernal (1997) 

 

𝑎00 = −146.9, 
𝑎10 = −0.08211, 
𝑎01 =  −0.1805, 
𝑎20 = 0.00005179, 
𝑎11 = −0.000390, 
𝑎02 = 0.03124, 
𝑎30 = 5 × 10−10, 
𝑎21 = 3.779 × 10−7, 
𝑎12 = 1.07 × 10−6, 
𝑎03 = −0.00003449. 

B 

    Example 13.14.1—Wang and  

Salmon (1979) 

 

𝑎00 = −283, 
𝑎10 = −0.2076, 
𝑎01 = −0.5732, 
𝑎20 = 0.00005867, 
𝑎11 =  −0.0007491, 
𝑎02 =  0.01511, 
𝑎30 =  1.662 × 10−11, 
𝑎21 = 2.033 × 10−7, 
𝑎12 =  3.524 × 10−7, 
𝑎03 = −0.00001534. 

C 

Example 8.1—Nilson and Winter (1991) 

 

𝑎00 = −192.8, 
𝑎10 = −0.1621, 
𝑎01 = −0.5575,
𝑎20 = 0.00006145,
𝑎11 = −0.0009175,
𝑎02 =  0.02398,
𝑎30 = −6.702 × 10−10,
𝑎21 = 3.128 × 10−7,
𝑎12 = 7.435 × 10−7,
𝑎03 = −0.0000473. 

D 

          Section 50 × 50 cm 

 

𝑎00 = −205.1, 
𝑎10 = −0.1815,  
𝑎01 = −0.2328,
𝑎20 = 0.00004419,
𝑎11 =  −0.0005301,
𝑎02 =  0.005983,
𝑎30 =  −1.827 × 10−9,
𝑎21 = 7.375 × 10−8,
𝑎12 =  1.643 × 10−7,
𝑎03 = −4.974 × 10−6. 

E           Section 40 × 40 cm 
𝑎00 =  −76.65,  
𝑎10 = −0.1645, 

6.0 cm 48 cm

25 cm

6.0 cm

6.0 cm

6.0 cm

As = 30.5cm²
f'c = 20.5MPa
fy = 345MPa

6.5 cm 37 cm

17 cm

6.5 cm

6.5 cm

6.5 cm

As = 25.8cm²
f'c = 24MPa
fy = 345MPa

5 cm 40 cm

40 cm

5 cm

5 cm

5 cm

As = 16.08cm²
f'c = 30MPa
fy = 500MPa
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𝑎01 = −0.2259,
𝑎20 = 0.00006181,
𝑎11 = −0.00105,
𝑎02 =  0.01347,
𝑎30 = −4.14 × 10−9,
𝑎21 = 2.302 × 10−7,
𝑎12 = 6.157 × 10−7,
𝑎03 = −0.00002373. 

As a practical demonstration of the methodology’s applicability, Table 3 lists an ex-

tract of 24 test scenarios from a dataset encompassing 123 distinct test scenarios, each 

characterized by unique configurations of concrete dimensions and steel reinforcement 

layouts. Additionally, the table documents the outcomes generated by the Failure Deci-

sion Function (FDF) when applied to a specific set of loading conditions. The function is 

evaluated for the loading scenario (𝑃𝑇
∗, 𝑀𝑋𝑇

∗ ,  𝑀𝑌𝑇
∗ ) =  (300, 150, −200), which represents 

a particular combination of axial force and bending moments. These data not only validate 

the FDF’s efficacy across a diverse range of structural scenarios but also demonstrate its 

potential for reliable, real-time analysis in structural engineering applications. In the pro-

posed software application, users input a loading scenario consisting of an axial load and 

biaxial moments (𝑃𝑇
∗, 𝑀𝑋𝑇

∗ , 𝑀𝑌𝑇
∗ ) , along with the proposed cross-sectional dimensions, 

number of steel bars, bar diameter, and location of each steel bar. The application provides 

real-time feedback indicating whether the selected combination is likely to fail. In the 

event of a failure, users can modify the dimensions or adjust the steel reinforcement to 

explore alternative configurations that meet the non-failure criteria. In addition, the ap-

plication enables users to explore various options of non-failure configurations. 

Table 3. Test cases with the implementation of the Failure Decision Function (Bar Diam. = 16 mm 

(Y16), nx = # of bars in x direction, ny = # of bars in y direction, A, B = Cross Section Dimensions). 

A ny B nx FDF A ny B nx FDF 

0.3 2 0.5 5 F 0.4 2 0.6 2 F 

0.3 3 0.5 5 F 0.5 5 0.4 4 P 

0.3 2 0.6 2 F 0.4 3 0.6 2 F 

0.3 3 0.6 2 F 0.4 4 0.6 2 F 

0.3 2 0.6 3 F 0.4 2 0.6 3 F 

0.4 4 0.5 3 F 0.4 3 0.6 3 F 

0.4 2 0.5 4 F 0.4 4 0.6 3 P 

0.4 3 0.5 4 F 0.4 2 0.6 4 F 

0.4 4 0.5 4 P 0.4 3 0.6 4 P 

0.4 2 0.5 5 F 0.4 4 0.6 4 P 

0.4 3 0.5 5 P 0.5 2 0.5 2 F 

0.4 4 0.5 5 P 0.5 3 0.5 2 F 

In each of the 123 test cases, the authors precisely computed the failure surface points 

utilizing analytic formulas, subsequently constructed the Failure Decision Function, and 

applied it to assess the specific axial load and moment combination(𝑃𝑇
∗ , 𝑀𝑋𝑇

∗ ,  𝑀𝑌𝑇
∗ ) =

 (300, 150, −200). These computations were efficiently performed in just fifteen (15) sec-

onds on an i7 processor equipped with 12 GB of RAM. This performance highlights the 

method’s efficiency, demonstrating that the failure check for a load–moment combination 

relative to a single section can be executed almost instantaneously. 

b. Develop an application that dynamically generates the Failure Decision Function for 

any specified set of cross-sectional geometries, material properties, and reinforcement 

patterns. This tool will allow users to “experiment” with different combinations of 

axial loads and bending moments to evaluate the structural suitability of various 

5 cm 30 cm

30 cm

5 cm

5 cm

5 cm

As = 8.04cm²
f'c = 30MPa
fy = 500MPa
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sections. The capability to provide instantaneous assessments makes this application 

particularly valuable in several key engineering activities: 

i. Preliminary Design Stage: The application can be utilized to generate trial sections 

during the initial design phase, enabling designers to quickly iterate over different 

section configurations. By assessing various combinations of loads and moments, 

engineers can optimize structural elements efficiently, ensuring that the prelimi-

nary designs meet all necessary safety and performance criteria; 

ii. Site Inspection: During construction or routine inspections, especially in instances 

where there are deviations from the initial designs, the application serves as a crit-

ical tool for on-the-spot assessments of section capacity. This functionality is cru-

cial for verifying the structural integrity of sections when unexpected changes or 

errors are detected in the construction phase, thereby aiding in immediate deci-

sion-making to address potential safety concerns. 

The real-time operation of this application not only enhances the flexibility and effi-

ciency of structural design and verification processes but also supports the adaptive as-

sessment capabilities required in dynamic construction environments. 

4. Discussion 

The novelty of the approach that is presented in this study relies on the fact that the 

capacity assessment of the section for any loading scenario is provided through the Failure 

Decision Function (FDF). The main outcomes of the study are listed below: 

• Analytic method for constructing uniaxial interaction diagrams and biaxial bending 

failure surfaces for rectangular reinforced concrete sections. This method utilizes the 

nonlinear stress–strain relationships for concrete and steel reinforcement to develop 

precise mathematical expressions; 

• Analytic formulae developed within this paper enable the rapid computation of the 

FDF; 

• Failure Decision Function (FDF) is a tool designed to assess the structural integrity of 

columns subjected to axial forces and either uniaxial or biaxial bending moments. 

A major contribution of this research is the detailed characterization of the geometry 

of the failure surface. It has been revealed that the curves, which depend on the orientation 

(angle θ) of the neutral axis, are not planar. Particularly at higher parts of these curves, 

near the pure compression strain levels, the moments exhibit changes in sign or orienta-

tion. This insight adds significant depth to the existing literature on structural failure anal-

ysis. 

Additionally, the computation of the maximum axial force, derived from the analytic 

method at the critical strain level (εcu), aligns with established failure assumptions but 

presents a lower force value than traditionally cited in the literature, which typically uses 

a different baseline strain (εο). This finding suggests that a potential recalibration of stand-

ard practices might be warranted to enhance the accuracy and safety of structural assess-

ments. 

5. Conclusions 

This study introduces an approach for assessing rectangular reinforced concrete col-

umns using the Failure Decision Function (FDF). It develops an analytic method for con-

structing uniaxial interaction diagrams and biaxial bending failure surfaces by utilizing 

nonlinear stress–strain relationships and section properties, enabling mathematical ex-

pressions for axial force and bending moments. This method enhances the safety and ac-

curacy of capacity failure representation in the design of rectangular reinforced concrete 

columns. The FDF facilitates real-time testing of various section dimensions and reinforce-

ment configurations. When integrated into software, this capability streamlines design 

and evaluation processes, making them efficient and responsive. Additionally, the FDF 

can be incorporated into software libraries for immediate assessment of structural 
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integrity under axial forces and bending moments, further improving the efficiency and 

responsiveness of structural analysis software. The study’s detailed characterization of the 

failure surface reveals non-planar curves dependent on the neutral axis orientation, en-

hancing the understanding of structural failure of rectangular reinforced concrete col-

umns. In conclusion, the findings advance the efficiency of structural design and assess-

ment for reinforced concrete columns, simplifying structural assessments. 
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