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Abstract: Photovoltaic (PV) systems face challenges in achieving maximum energy extraction due
to the non-linear nature of their current versus voltage (IxV) characteristics, which are influenced
by temperature and solar irradiation. These factors lead to variations in power generation. The
situation becomes even more complex under partial shading conditions, causing distortion in the
characteristic curve and creating discrepancies between local and global maximum power points.
Achieving the highest output is crucial to enhancing energy efficiency in such systems. How-
ever, conventional maximum power point tracking (MPPT) techniques often struggle to locate
the global maximum point required to extract the maximum power from the PV system. This
study employs genetic algorithms (GAs) to address this issue. The system can efficiently search
for the global maximum point using genetic algorithms, maximizing power extraction from the
PV arrangements. The proposed approach is compared with the traditional Perturb and Observe
(P&O) method through simulations, demonstrating its superior effectiveness in achieving optimal
power generation.

Keywords: MPPT; partial shading; genetic algorithms; photovoltaic system; electronic converter

1. Introduction

With technological development and the advancement of industry, there is a growing
increase in energy demand worldwide [1–3]. Photovoltaic (PV) energy derived from
solar power is gaining prominence in this context due to its clean and emission-free
primary source, making it a viable option for electrical systems [4,5]. Solar energy is free
of generation costs, non-polluting, and requires low maintenance [6,7]. Due to the high
initial investment cost, the energy produced by photovoltaic systems is more expensive
than that produced by other energy production systems [6,7]. There is a wide variety of
applications for photovoltaic energy; some examples are in homes, cars, charging stations,
water pumping stations, and rural area electrification, improving domestic, medical care,
agriculture, and education sectors [3–5].

Due to the varying solar incidence during the day and partial or total shading effects,
photovoltaic panels often do not operate at their maximum capacity [8,9]. Different voltage
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and current levels are observed based on the configurations adopted in a photovoltaic
arrangement. When there is partial shading on a photovoltaic array, the current versus
voltage (IxV) characteristics change due to the system’s dependence on solar radiation and
temperature. An escalation in shading induces a decline in the current of the PV array [9].
Simultaneously, a temperature increase reduces the PV array voltage [7]. Consequently,
points with different solar radiation and temperatures may exist in a given photovoltaic
arrangement, reducing the PV’s total generation capacity [10,11]. The characteristics of
partial shading can be observed in strings installed in urban environments, where partial
shading can be caused by trees, towers, buildings, and structures obstructing solar radia-
tion [12,13]. Another way to obtain partial shade points in a string relates to positioning
when installing the panels [14].

To tackle this challenge, the widely used solution is the implementation of MPPT
(Maximum Power Point Tracking) systems [6,7,15,16]. Conventional tracking algorithms
cannot effectively mitigate the challenges posed by partial shading, causing the panel
to operate within local maximum bands and thereby reducing the overall efficiency of
the photovoltaic array [9,17]. Two of the most commonly employed MPPT techniques,
renowned for their simple implementation and minimal sensor requirements, are the
Perturb and Observe (P&O) and Hill Climbing (HC) methods [18].

P&O continuously perturbs the operating point and observes the resulting change
in power, making it suitable for various applications despite its susceptibility to rapid
environmental changes. Building upon the simplicity of P&O, Incremental Conductance
(INC) considers the instantaneous change in power concerning voltage, offering adapt-
ability to rapidly changing solar irradiance conditions, rendering it effective in dynamic
environments [19]. In addition to P&O and INC, Fractional Open-Circuit Voltage (FOCV) is
another approach that utilizes a fraction of the open-circuit voltage to estimate the optimal
operating point. Particularly effective under partially shaded conditions, FOCV addresses
scenarios where traditional methods may fail [20].

In response to the limitations of conventional MPPT algorithms, the development of
stochastic algorithms and artificial intelligence techniques has been pivotal. For instance,
Model Predictive Control (MPC) employs a mathematical model of the PV system to predict
future behavior and determine the optimal operating point. MPC handles dynamic and
varying environmental conditions, providing an effective control strategy [21]. Artificial
intelligence (AI) and machine learning (ML) techniques, including Differential Evolu-
tion (DE), genetic algorithms (GAs), Particle Swarm Optimization (PSO), and Artificial
Neural Networks (ANNs), offer adaptive and self-learning capabilities [15,16,22]. These
approaches optimize MPPT in real time and exhibit promising results under diverse condi-
tions. Fuzzy Logic Control introduces linguistic rules to adapt to changing environmental
conditions, providing robustness and the ability to handle uncertainties. Fuzzy logic-based
MPPT systems demonstrate effectiveness in various operational scenarios [23].

The Ripple Correlation Control (RCC) technique is noteworthy for its performance
under high-solar-irradiance conditions; however, its tracking efficiency experiences a
drop at low solar irradiance [18]. The main drawback of conventional Maximum Power
Point Tracking (MPPT) algorithms is their inefficiency under rapidly changing environ-
mental conditions, such as fluctuations in solar irradiance and temperature. Traditional
MPPT methods, like Perturb and Observe (P&O) or Incremental Conductance (IC), rely on
steady-state conditions to accurately track the maximum power point (MPP). However, in
dynamic conditions, these algorithms can fail to track the true MPP accurately and quickly,
leading to power losses. This limitation arises because conventional MPPT algorithms
typically use fixed step sizes or response times, making them slow to adapt to sudden
changes, thus resulting in suboptimal performance and reduced energy harvest from the
solar panels.

Introducing more intricate approaches, Hybrid MPPT Systems integrate multiple
MPPT algorithms, combining the strengths of different techniques to enhance overall
system performance—particularly valuable in conditions where individual methods may
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fall short [24]. Complementing this, Distributed MPPT techniques allocate control across
multiple inverters in grid-connected PV systems, optimizing power extraction for large-
scale installations while enhancing efficiency and minimizing losses [25].

To address challenges related to the partial shading of strings, intelligent or bio-
inspired algorithms offer effective solutions [26]. Among these, GAs stand out, developed
based on Darwin’s theory of the evolution of species. GAs distinguish themselves from
traditional search and optimization techniques by working with a population of potential
candidates rather than a single point. The GAs are an adaptive search mechanism based on
the Darwinian principle of natural selection and genetic reproduction, where their main
task is to efficiently search for solutions that are in line with the problem’s objective. This
characteristic makes GAs efficient for finding optimal or approximate solutions to various
problems [27,28]. These algorithms play a crucial role in overcoming issues associated
with partial shading in photovoltaic arrays, providing robust optimization strategies that
contribute to improved energy extraction in varying environmental conditions.

In this context, an investigation was conducted into applying two MPPT methods—the
widely used P&O and the bio-inspired GA—to a photovoltaic system consisting of three
modules. The analysis was executed using MATLAB as the simulation tool. Various partial
shading scenarios were simulated to assess the efficacy of these methods in addressing
shading issues. Some works in the literature, such as [29,30], present an MPPT method
based on genetic algorithms. However, the system topology and the algorithm approach
differ from the proposal in this work. Previous studies have explored the application of
GAs for MPPT to address some of the limitations of conventional methods. These studies
have shown that GAs can effectively adapt to rapidly changing environmental conditions
by optimizing the tracking process through evolutionary techniques, thereby improving
the efficiency and accuracy of MPPT. It would be beneficial to include and discuss these
prior studies in the current work to provide a comprehensive context and highlight the
advancements and unique contributions of your research [29,30].

The primary objective was to validate the MPPT techniques and observe their per-
formance in tracking the maximum power point (MPP) under challenging conditions.
Particular emphasis was placed on comparing the two methods under diverse operating
conditions. Comprehensive analyses were performed on the data obtained from these
experiments to discern the advantages of GA over conventional MPPT methods. These
findings contribute to ongoing efforts to optimize energy extraction in varying environ-
mental conditions and underscore the potential of bio-inspired approaches in overcoming
challenges associated with solar panel shading.

2. Power Converters and MPPT Algorithms

To optimize the efficiency of the photovoltaic system, incorporating a power con-
verter between the panels and the electric grid is indispensable. Nevertheless, it is es-
sential to acknowledge that the current generation of these converters presents efficiency
limitations [31]. Given the uncontrollable nature of environmental conditions, the focus
naturally shifts towards effectively managing the dynamic load variations experienced by
the panel. In addressing this challenge, DC-DC or DC-AC converters are pivotal in the
control strategy.

The literature reveals a diverse array of converters [32,33]. Notable among these for
photovoltaic projects are (i) buck, (ii) boost, and (iii) buck-boost DC-DC converters. DC-DC
converters, also known as choppers, function as devices capable of converting a fixed
voltage source into a variable voltage source or a variable source into a fixed source. This
conversion involves passive elements in the system, such as an inductor and capacitor,
and a solid-state device that operates through high-frequency switching, utilizing the
pulse-width modulation (PWM) technique.

Power converters typically demonstrate efficiency levels from 90% to 95% [31–34].
The nuanced performance within this range is intricately tied to the converter’s topology,
design elements, the quality of components, and operating conditions, such as input
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and output voltage specifications, as well as load characteristics [30–33]. These diverse
factors collectively contribute to the dynamic efficiency variations observed across different
operational scenarios. Ongoing research and developments in power electronics continue
to refine and optimize converter efficiency over time [34–37].

The conventional boost converter topology is often employed in photovoltaic sys-
tems to increase the output voltage beyond the input voltage, effectively regulating and
stabilizing the panel voltage, ensuring optimal photovoltaic system operation [37]. This
configuration presents some positive aspects, such as simplicity, ease of implementation,
and suitability for low- to moderate-power applications. However, it comes with limita-
tions, including higher ripple currents, potential reliability issues, and reduced efficiency,
particularly in scenarios with rapid changes in environmental conditions [32,37].

In contrast, while associated with high-power, high-current applications, the inter-
leaved boost converter offers several advantages over conventional boost converters [38]. It
excels in distributing the load current across multiple phases, thereby reducing individual
current stress on each phase. This distributed current handling results in lower component
stresses, improved reliability, and increased power processing capability. The interleaved
boost converter also helps mitigate ripple currents, enhances system reliability, and im-
proves overall efficiency [38]. Despite these benefits, its implementation might be overly
complex for low- to moderate-power applications.

Considering the specific requirements and operational conditions of the photovoltaic
system, the conventional boost converter was chosen to prioritize simplicity and ease of
implementation, given the lower power range involved in this work. Figure 1 illustrates
a basic boost converter or voltage lifter. It operates through a two-stage process: (1) the
conduction of the transistor (S), and (2) the conduction of the diode (D).
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Figure 1. Boost converter circuit schematic.

In the initial stage, depicted in Figure 2a, the transistor conducts while the diode
remains blocked. During this phase, the inductor L is charged directly by the input voltage
Vi. It is important to note that the output voltage Vo exceeds Vi, resulting in the diode being
inversely biased since it does not conduct current to the load R.
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Figure 2. Simplified circuit schematic of the boost converter, showcasing configurations with (a) the
switch closed and the diode open, and (b) the switch open and the diode closed.

The transistor is open in the second stage of the boost converter circuit, as illustrated
in Figure 2b. During this phase, the stored energy in the inductor is released. Having
accumulated energy during the transistor’s conduction phase, the inductor maintains the
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circuit’s Io current flow. With the switch S opens, the diode D conducts, providing a path
for the inductor’s stored energy to discharge.

As the energy is released, the voltage across the inductor reverses, causing a voltage
drop across the diode. This allows the energy to flow from the inductor to the load resistor
R, effectively boosting the output voltage beyond the input voltage Vi. In general, the
capacitor C helps smooth out any voltage ripples, contributing to a more stable output
voltage. This two-stage boost converter operation enables the system to step up the input
voltage to a higher level, making it a valuable component in power electronics applications,
including photovoltaic systems.

The converter’s inductance, capacitance, and output-to-input voltage ratio can be
determined using Equations (1) to (3), respectively [39].

L =
Vi · δ

fS· ∆IL
(1)

C =
Io · δ

fS· ∆VC
(2)

VO
Vi

=
1

1 − δ
(3)

These parameters are a function of the transistor’s duty cycle δ and switching fre-
quency fS, as well as the current ripple in the inductor ∆IL and the voltage ripple across
the capacitor ∆VC. Adjusting the duty cycle allows the converter to optimize its operation
for maximum power extraction from the PV system. Duty cycle control can be achieved
through an MPPT algorithm or a dedicated controller [40,41].

2.1. Perturbation and Observation (P&O)

A visual representation of the flowchart outlining the P&O method is given in Figure 3.
It involves systematically perturbing the array voltage, either by increasing or decreasing
it, and monitoring the resulting output power. In the event of a power increase, the
perturbation continues in the same direction; otherwise, it reverses direction.
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This iterative process periodically updates itself, leading to oscillations around the
MPP rather than stabilization at the precise MPP [42–44]. As will be shown later, an
inherent challenge of the P&O method arises when the system operates under partial
shading conditions, potentially causing it to converge to local maxima instead of reaching
its maximum efficiency [6,7].

2.2. Genetic Algorithm (GA)

In the 1950s and 1960s, scientists independently studied evolutionary systems with the
idea that evolution could be used as a tool for optimizing engineering problems [30]. The
main idea in all the systems was to evolve an original population of candidate solutions to a
given problem, using operators inspired by natural genetic variation and natural selection.
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Genetic algorithms, or GAs, were created by John Holland in the 1960s and developed by
Holland and his students and colleagues at the University of Michigan [31].

In contrast to evolution and evolutionary programming strategies, Holland’s original
goal was not to design algorithms to solve specific problems, but rather to formally study
the phenomenon of natural adaptation and how it could be imported into computer systems;
thus, the genetic algorithm was presented as an abstraction of biological evolution, where
it is a method for transforming a population of chromosomes, which can be represented as
a chain of 1’s and 0’s, into a new population using a kind of natural selection in conjunction
with the operators of crossover, mutation, and inversion of inspired genetics.

As illustrated in the flowchart of Figure 4, genetic algorithms represent an adaptive
search mechanism grounded in the Darwinian principles of natural selection and genetic
reproduction. The primary objective is to explore solutions aligned with the problem’s
objectives efficiently.
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The GA unfolds through the following key steps:
(i) Initialization: An initial generation population is randomly created.
(ii) Generation Iteration: Maintaining a population of potential solutions denoted as

P(gen) = (x1 . . . xn).
(iii) Evaluation: Each individual (xi) in the population undergoes evaluation through

a fitness function, determining its fitness measure.
(iv) Selection: New individuals are generated from µ individuals in the current popu-

lation, selected for breeding based on their fitness measures. Preferential treatment is given
to the best-performing individuals.

(v) Recombination and Mutation: Some individuals undergo changes through recom-
bination and mutation processes, forming new potential solutions.

(vi) Next Generation Selection: Individuals from the old and newly formed solutions
are chosen for the next generation (gen + 1).

This iterative process continues until a predefined stopping condition is met. The stop-
ping condition is often based on achieving a desired fitness level for the solutions [15,16].
The repetition continues until the specified condition, an expected fitness level or a maxi-
mum number of iterations, is satisfied.

2.2.1. Representation or Encoding

Genetic algorithms commonly employ binary or floating-point representations. Binary
representation consists of a fixed vector formed by concatenating “0” and “1”, and it is
direct if solutions are binary or indirect if conversion is needed. Floating-point represen-
tation, associating a vector of real numbers with a defined size, offers advantages such
as smaller chromosome size, reduced CPU and memory consumption, and simplified
representation [15,16]. However, it does not facilitate the direct use of building blocks for
demonstrating convergence [45,46].
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2.2.2. Fitness of Individuals

The fitness function establishes a direct link between the GA and the problem character-
istics, mimicking nature where fitness measures a population’s environmental adaptation.
For the proposed work, focusing on maximizing power output, fitness is determined by
the individuals who contribute to this objective [47,48].

2.2.3. Selection Methods

Selection mimics genetic evolution’s reproduction phase, favoring the fittest individu-
als as progenitors for generating a new candidate population. Various selection methods
exist, including the Roulette Method, tournament selection, and linear or exponential
sorting [49–51].

2.2.4. Genetic Reproduction

The chosen coding method for individual representation guides the application of
genetic operators. Genetic reproduction can occur asexually, where an individual inde-
pendently generates a descendant through mutation. Alternatively, sexual reproduction
involves two individuals contributing to creating one or more offspring through processes
like genetic recombination, crossbreeding, or crossover [51].

The crossover operator is a pivotal component of genetic reproduction, involving
the exchange of genetic material between two individuals. This process generates two
new individuals formed by combining information from the pair of progenitor individuals.
Various standard crossover operators exist, including those with one cutoff point, two cutoff
points, multipoint or uniform, and heuristic approaches [52]. This critical phase plays a
key role in shaping the population’s genetic diversity and influencing the evolutionary
process’s convergence speed.

2.2.5. Mutation

The mutation operator randomly modifies one or more chromosome genes, generating
a new individual. The mutation rate, representing the mutation probability, is generally
small to avoid potential fitness reduction [51].

2.2.6. Evolution Parameters

Implementing a genetic algorithm requires carefully considering several critical param-
eters that collectively shape the algorithm’s overall performance. These parameters include
population size, crossover rate, generation interval, number of generations, convergence of
the evaluation function, number of rounds, and seeding rate [53,54].

Population size, representing the number of individuals in a population, directly
influences the diversity and exploration capacity of the algorithm. The crossover rate,
determining the probability of two individuals undergoing crossover, balances exploration
and exploitation [53,54]. The generation interval, closely tied to population size, defines the
percentage of the population replaced in each new generation. A higher rate can expedite
the algorithm but may risk losing high-fitness individuals, while a lower rate slows the
algorithm but retains individuals with superior fitness levels. The number of generations is
a crucial stopping criterion, indicating the total cycles or new populations generated. A
low value may lead to premature convergence, while a high value extends processing time
but allows for a more thorough exploration of the search space. To ensure convergence to
an optimal solution, the convergence of the evaluation function is vital. The number of
rounds dictates the total iterations of the algorithm, contributing to its overall performance.
The seeding rate influences the diversity and exploration capacity of the initial population.
Optimal values for these parameters must be judiciously adjusted, considering the specific
characteristics of the population. Genetic algorithms involve a dynamic process, and
parameter tuning is essential for achieving optimal results [55,56].
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In the proposed work, a meticulous examination and comparison of these evolution
parameters are conducted to assess their impact on the performance of two maximum
power tracking techniques for a photovoltaic system—conventional P&O and the innova-
tive GA. This comprehensive analysis unfolds under simulated conditions, encompassing
normal and partially shaded operating scenarios. The systematic evaluation aims to as-
certain the effectiveness and efficiency of these methods in optimizing power output for
photovoltaic applications.

3. PV System Model

The power converter and the tracking algorithm are primarily linked through the
duty cycle (δ). The tracking algorithm assesses voltage and current data from the system,
dynamically adjusting the duty cycle to optimize extracted power [26]. Figure 5 depicts the
boost converter models utilized for the P&O and GA tracking algorithms. In both cases, the
dimensioned boost converter maintains consistent values, with inductance and capacitance
data determined by Equations (1) and (2). Simultaneously, duty cycle determination is
executed through Equation (3), thereby isolating the δ parameter. All simulations for both
algorithms are conducted within the Matlab/Simulink computing environment.
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Figure 5. MPPT controller configurations for the duty cycle to the boost converters, depicting (a) the
P&O method and (b) the GA-based method.

Table 1 presents the solar plate data utilized as the foundation for the simulations. The
plate model adopted for this purpose is the Soltech 1STH-FRL-4H-260-M60-BLK.
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Table 1. Key parameters of the solar plate used as the basis for simulations.

Parameter Average Value

Maximum Power 259.44 W
Open Circuit Voltage (VOC) 38.6 V

Voltage at Maximum Power Point 31.6 V
Temperature Coefficient in VOC −0.356%/◦C

Number of Cells per Module 60
Short Circuit Current (ISC) 8.93 A

Current at Maximum Power Point 8.21 A
Temperature Coefficient in ISC 0.102%/◦C

Each of the three panels experienced a uniform light intensity of 1000 W/m2 under a
constant temperature of 25 ◦C. The simulations encompass three distinct scenarios. In the
initial simulation, no partial shading was introduced, allowing all three panels to receive
the full 1000 W/m2. In the second simulation, partial shading was applied to one solar
panel, reducing its irradiance to 500 W/m2. Finally, the third simulation involved partial
shading on two solar panels. The first panel maintained an irradiance of 1000 W/m2, the
second panel experienced shading with 900 W/m2, and the third panel with 500 W/m2.

The boost converter was engineered to manage the diverse power characteristics of
the solar plate, with a primary emphasis on accommodating the highest voltage (38.6 V)
and current levels (8.93 A), while operating at 20 kHz. The calculated simulation model
parameters included an inductance of 1.5 mH and a capacitance of 36 µF, considering a
load of 100 Ω. The transistor and diode models were selected as ideal switches, exhibiting
zero or infinite resistance depending on the switch’s state.

4. Results
4.1. Case Study 1

When partial shading is not applied, and the maximum power point is determined
to be 778.19 W, both techniques demonstrate satisfactory performance under steady-state
conditions. Figures 6 and 7 depict the power, voltage, and current plots corresponding to
the P&O and GA-based MPPT techniques, respectively.
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4.2. Case Study 2

Figure 8 offers a comprehensive insight into the photovoltaic arrangement’s P-I curve
under partial shading conditions. The intricate curve presents two noteworthy maximum
points, contributing to the nuanced system performance analysis. Notably, a local maximum
lies at 436.97 W, while a global maximum is at 512.29 W.

Inventions 2024, 9, x FOR PEER REVIEW 11 of 18 
 

 

Figure 8. Case 2: power versus current characteristic curve. 

The P&O algorithm exhibits a limitation in reaching the maximum power point, set-

tling in proximity to a local maximum. The resultant tracking efficiency is quantified at 

85.19 percent, as meticulously portrayed in the graphical representation offered in Figure 

9. Conversely, the GA-based MPPT technique emerges as a contrasting protagonist in this 

scenario. It not only attains the coveted maximum power point but sustains a stable power 

output of 508.80 W in the permanent regime. The accompanying illustration in Figure 10 

vividly captures this triumph, emphasizing a remarkable efficiency of 99.32%. 

 

Figure 9. Case 2: power, voltage, and current versus time for the P&O MPPT method. 

Figure 8. Case 2: power versus current characteristic curve.

The P&O algorithm exhibits a limitation in reaching the maximum power point,
settling in proximity to a local maximum. The resultant tracking efficiency is quantified at
85.19 percent, as meticulously portrayed in the graphical representation offered in Figure 9.
Conversely, the GA-based MPPT technique emerges as a contrasting protagonist in this
scenario. It not only attains the coveted maximum power point but sustains a stable power
output of 508.80 W in the permanent regime. The accompanying illustration in Figure 10
vividly captures this triumph, emphasizing a remarkable efficiency of 99.32%.
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4.3. Case Study 3

Figure 11 portrays the P-I curve of the photovoltaic arrangement encountering partial
shading conditions in Case 3. The intricacies of the curve unfold with three notable maxima
points, featuring two local maxima at 435.49 W and 245.96 W, alongside the most significant
power point that yields a power output of 477.55 W.

Within Case 3, the P&O method, once again, encounters challenges in reaching the
global maximum point, as discerned from the P-I curve specific to this case. The resultant
efficiency in the permanent regime is quantified at 51.22%, a finding prominently displayed
in the graphical representation offered in Figure 12. In stark contrast, the GA-based MPPT
technique stands out as a shining example of superior performance in Case 3. It not only
achieves a commendable power output of 477.20 W in the permanent regime but also
attains an enviable efficiency of 99.93% in accurately tracking the highest power point for
this specific case. This is illustrated in the graphical representation provided in Figure 13.
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5. Discussion

Table 2 summarizes the P&O and GA-based MPPT technique performances in three
distinct simulated cases, conducted under a constant light intensity of 1000 W/m2 and
a temperature of 25 ◦C, each characterized by specific shading conditions. In the first
scenario, where no partial shading is applied, the algorithms showcase positive aspects,
such as achieving the highest power point of 778.19 W, indicating efficient power generation.
However, there is slight room for improvement in GA efficiency, which is 98.61%. Moving to
the second case, involving partial shading of one panel, the GA efficiency excels at 99.93%,
underscoring the algorithm’s robustness in handling shading conditions. Conversely,
the P&O efficiency drops significantly to 51.22%, signaling challenges in partial shading
situations. In the third simulated case, with partial shading on two panels, while GA
efficiency remains high at 99.93%, P&O efficiency drops to 51.22%. Once again, it indicates
potential limitations of the P&O method in dealing with shading scenarios. Moreover,
the highest power point slightly decreases to 477.55 W compared to the case with no
partial shading.

Table 2. Comparative performance summary of P&O and GA-based MPPT techniques in three
simulated photovoltaic cases under varying shading conditions.

Case Number HPP (W) Power (W) Efficiency (%)
P&O GA P&O GA

1 778.19 774.60 767.40 99.54 98.61
2 512.29 436.4 508.80 85.19 99.32
3 477.55 244.60 477.20 51.22 99.93

These simulations offer valuable insights into algorithmic adaptability in diverse shad-
ing conditions. The comparison between a genetic algorithm and the widely recognized
P&O method reveals notable shortcomings in the latter. P&O demonstrates significant
limitations in determining the global maximum power point under partial shading condi-
tions. Additionally, the extracted power exhibits oscillatory behavior in response to rapid
changes in weather conditions [18]. As da Luz and coauthors demonstrated in [57], future
work should focus on experimental validation to corroborate these findings.

Addressing the challenge of partial shading is crucial for effectively utilizing flexible
photovoltaics across various applications. These applications span from silicon-based
technologies [58] to CIGS [59,60] and even organic thin films [60,61], finding applications
in diverse areas such as mobility, electronic gadgets, furniture, and building façades.
Expanding and diversifying the applications of flexible photovoltaics is an area that requires
further exploration. Both hardware and software development are essential to enhance the
performance and efficiency of these devices.

Moreover, understanding the mechanisms of degradation is paramount. In the case of
organic thin-film modules, exposure to partial shading may lead to chemical degradation,
impacting the structural integrity of the materials and potentially reducing their efficiency
over time [62–64]. On the other hand, silicon-based flexible modules may face challenges
such as increased series resistance and the risk of short circuits under partial shading
conditions [62,63]. Investigating these degradation pathways is also crucial for develop-
ing mitigation strategies and ensuring the long-term reliability of flexible photovoltaic
technologies and power quality [65–69].

6. Conclusions

This study examined and compared two MPPT methods, namely the P&O and GA
techniques, in different configurations of a photovoltaic system. The comparison was
conducted through three simulation cases using a photovoltaic system comprising three
modules connected in series. In Case 1, all three modules received the same solar irradiation
of 1000 W/m2 without shading. In Case 2, two modules received 1000 W/m2 while one



Inventions 2024, 9, 64 14 of 17

received 500 W/m2, representing partial shading. In the final case, the first module
received 1000 W/m2, the second received 900 W/m2, and the third received 500 W/m2.
The temperature was kept constant at 25 ◦C throughout the simulations.

The two techniques were simulated for each case to track the maximum power point
using P&O and GA MPPT techniques. The P&O method performed well in Case 1 without
shading. However, in Cases 2 and 3, when partial shading was introduced, the technique
encountered difficulties and remained stuck at local maximum points, hindering power
generation. On the other hand, the GA-based MPPT technique successfully tracked the
global maximum point in all three simulation cases, showcasing its effectiveness and
accuracy in both shadeless and partially shaded systems. These findings validate the
efficacy of GA-based MPPT compared to traditional methods and highlight its superiority
in mitigating shading effects and optimizing energy extraction.

By shedding light on the advantages of bio-inspired approaches, particularly genetic
algorithms, in overcoming the complexities associated with solar panel shading, this study
contributes to the ongoing quest for enhanced efficiency and resilience in photovoltaic
systems. These insights pave the way for the continued refinement of MPPT strategies,
driving progress toward sustainable energy utilization in varying environmental contexts.

Author Contributions: Conceptualization: M.H.M.B., F.M.d.O. and O.H.A.J.; methodology: M.H.M.B.,
F.M.d.O., F.S., M.R.C. and O.H.A.J.; validation: F.M.d.O., F.S., J.E.E.I., M.R.C. and O.H.A.J.; inves-
tigation and simulation: M.H.M.B. and F.M.d.O.; writing—original draft preparation: M.H.M.B.,
F.M.d.O. and O.H.A.J.; writing—review and editing: F.M.d.O., F.S., J.E.E.I., M.R.C. and O.H.A.J.;
project administration: F.M.d.O. and O.H.A.J.; funding acquisition: F.S., M.R.C. and O.H.A.J. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the FACEPE agency (Fundação de Amparo a
Pesquisa de Pernambuco) throughout the project with references APQ-0616-9.25/21 and APQ-0642-
9.25/22. O.H.A.J. was funded by the Brazilian National Council for Scientific and Technological
Development (CNPq), grant numbers 407531/2018-1, 303293/2020-9, 405385/2022-6, 405350/2022-8
and 40666/2022-3, as well as the Program in Energy Systems Engineering (PPGESE) Academic Unit
of Cabo de Santo Agostinho (UACSA), Federal Rural University of Pernambuco (UFRPE). M.H.M.B.
and F.M.O. were funded by the Federal University of Latin American Integration (UNILA). M.R.C.
was funded by UNICAMP (State University of Campinas) throughout the Auxílio Início de Carreira
(Docente), FAEPEX, process number 2095/23, as well as the Programa de Incentivo a Novos Docentes
(PIND), FAEPEX, process number 2419/23.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author/s.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Rani, P.; Parkash, V.; Sharma, N.K. Technological aspects, utilization and impact on power system for distributed generation:

A comprehensive survey. Renew. Sust. Energ. Rev. 2024, 192, 114257. [CrossRef]
2. Sadeghi, D.; Ahmadi, S.E.; Amiri, N.; Satinder; Marzband, M.; Abusorrah, A.; Rawa, M. Designing, optimizing and comparing

distributed generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in
residential buildings. Energy 2022, 253, 123947. [CrossRef]

3. Heideier, R.; Bajay, S.V.; Jannuzzi, G.M.; Gomes, R.D.M.; Guanais, L.; Ribeiro, I.; Paccola, A. Impacts of photovoltaic distributed
generation and energy efficiency measures on the electricity market of three representative Brazilian distribution utilities. Energy
Sustain. Dev. 2020, 54, 60–71. [CrossRef]

4. Santos, A.Q.O.; da Silva, A.R.; Ledesma, J.J.G.; de Almeida, A.B.; Cavallari, M.R.; Junior, O.H.A. Electricity Market in Brazil:
A Critical Review on the Ongoing Reform. Energies 2021, 14, 2873. [CrossRef]

5. Basher, M.K. Design and Development of Advanced Photovoltaic (PV) Glass-Based Materials for Net Zero Energy Buildings (NZEB); Edith
Cowan University: Joondalup, Australia, 2023. [CrossRef]

6. Lyden, S.; Haque, M.E. Maximum Power Point Tracking techniques for photovoltaic systems: A comprehensive review and
comparative analysis. Renew. Sust. Energ. Rev. 2015, 52, 1504–1518. [CrossRef]

7. Sarvi, M.; Azadian, A. A comprehensive review and classified comparison of MPPT algorithms in PV systems. Energy Syst. 2022,
13, 281–320. [CrossRef]

https://doi.org/10.1016/j.rser.2023.114257
https://doi.org/10.1016/j.energy.2022.123947
https://doi.org/10.1016/j.esd.2019.10.007
https://doi.org/10.3390/en14102873
https://doi.org/10.25958/04vm-qy20
https://doi.org/10.1016/j.rser.2015.07.172
https://doi.org/10.1007/s12667-021-00427-x


Inventions 2024, 9, 64 15 of 17

8. Mansoor, M.; Mirza, A.F.; Ling, Q. Harris hawk optimization-based MPPT control for PV systems under partial shading conditions.
J. Clean. Prod. 2020, 274, 122857. [CrossRef]

9. Mohapatra, A.; Nayak, B.; Das, P.; Mohanty, K.B. A review on MPPT techniques of PV system under partial shading condition.
Renew. Sust. Energ. Rev. 2017, 80, 854–867. [CrossRef]

10. Perraki, V.; Kounavis, P. Effect of temperature and radiation on the parameters of photovoltaic modules. J. Renew. Sustain. Energy
2016, 8, 013102. [CrossRef]

11. Appelbaum, J.; Maor, T. Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum. Appl. Sci. 2020,
10, 914. [CrossRef]

12. Liu, Z.; Guo, Z.; Chen, Q.; Song, C.; Shang, W.; Yuan, M.; Zhang, H. A review of data-driven smart building-integrated
photovoltaic systems: Challenges and objectives. Energy 2023, 263 Pt E, 126082. [CrossRef]

13. Alami, A.H.; Rabaia, M.K.H.; Sayed, E.T.; Ramadan, M.; Abdelkareem, M.A.; Alasad, S.; Olabi, A.G. Management of potential
challenges of PV technology proliferation. Sustain. Energy Technol. Assess. 2022, 51, 101942. [CrossRef]

14. Trzmiel, G.; Głuchy, D.; Kurz, D. The impact of shading on the exploitation of photovoltaic installations. Renew. Energy 2020, 153,
480–498. [CrossRef]

15. Moçambique, N.E.M.; Ottoboni, K.d.A.; Fuzato, G.H.F.; Bastos, R.F.; Gonçalves, A.F.Q.; Pozzebon, G.G.; de Aguiar, C.R.; Machado,
R.Q. Tracking Algorithms and Voltage Controllers Used to Obtain the Maximum Power Point of PV Arrays. J. Control Autom.
Electr. Syst. 2015, 26, 661–674. [CrossRef]

16. Derbeli, M.; Napole, C.; Barambones, O.; Sanchez, J.; Calvo, I.; Fernández-Bustamante, P. Maximum Power Point Tracking
Techniques for Photovoltaic Panel: A Review and Experimental Applications. Energies 2021, 14, 7806. [CrossRef]

17. Devarakonda, A.K.; Karuppiah, N.; Selvaraj, T.; Balachandran, P.K.; Shanmugasundaram, R.; Senjyu, T. A Comparative Analysis
of Maximum Power Point Techniques for Solar Photovoltaic Systems. Energies 2022, 15, 8776. [CrossRef]

18. Kamarzaman, N.A.; Tan, C.W. A comprehensive review of maximum power point tracking algorithms for photovoltaic systems.
Renew. Sust. Energ. Rev. 2014, 37, 585–598. [CrossRef]

19. André, S.; Silva, F.; Pinto, S.; Miguens, P. Novel Incremental Conductance Feedback Method with Integral Compensator for
Maximum Power Point Tracking: A Comparison Using Hardware in the Loop. Appl. Sci. 2023, 13, 4082. [CrossRef]
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